Abstract

We present the first demonstration of a 4λ transmitter optical sub-assembly (TOSA) on the coarse wavelength division multiplexing (CWDM) grid, i.e., 20 nm spacing, targeting 400G-FR4 requirements over 2 km. The TOSA is based on uncooled InP external modulated laser (EML) technology and it utilizes four EMLs followed by a CWDM multiplexer. We characterize the performance of the TOSA versus received optical modulation amplitude (OMA), number of equalizer taps, reach, modulation format, TOSA case temperature, and bit rate. Four 53 Gbaud 4-level pulse amplitude modulation (PAM4) RF signals are used to drive the TOSA achieving a net rate of 400 Gb/s. Results reveal that 400 Gb/s can be transmitted over 2 km of single mode fiber (SMF) at a bit error rate (BER) below the KP4- forward error correction (KP4-FEC) threshold (i.e., 2.4 × 10−4) using only a 5 tap feed forward equalizer at the receiver. To the best of our knowledge, this is the first demonstration of 400 Gb/s using a 4λ CWDM TOSA over 2 km of SMF. Moreover, we achieve 400 Gb/s and 600 Gb/s over 20 km and 10 km below KP4-FEC and the 7% hard-decision FEC (HD-FEC) (i.e., 3.8 × 10−3) thresholds, respectively, without optical amplification. Furthermore, we show the performance of the TOSA against temperature, where it shows no significant change in the BER performance from 20 °C to 60 °C. Finally, we compare the performance of PAM2, PAM4, and PAM8 modulation formats where we show the possibility of achieving 400 Gb/s aggregate bit rate using 42 Gbaud PAM8 modulation format at the expense of utilizing a stronger FEC.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
400 Gb/s O-band silicon photonic transmitter for intra-datacenter optical interconnects

Eslam El-Fiky, Alireza Samani, David Patel, Maxime Jacques, Mohamed Sowailem, and David V. Plant
Opt. Express 27(7) 10258-10268 (2019)

Low-cost hybrid integrated 4 × 25.78  Gb/s CWDM TOSA for 10  km transmission using DFB-LDs and an arrayed waveguide grating multiplexer

Jun Liu, Qingzhong Huang, Shiqi Tao, Cheng Zeng, and Jinsong Xia
Photon. Res. 6(11) 1067-1073 (2018)

200 Gb/s transmission using a dual-polarization O-Band silicon photonic intensity modulator for Stokes vector direct detection applications

Eslam El-Fiky, Mohamed Osman, Mohammed Sowailem, Alireza Samani, David Patel, Rui Li, Md. G. Saber, Yun Wang, Nicolas Abadia, Yannick D’Mello, and David V. Plant
Opt. Express 25(24) 30336-30348 (2017)

References

  • View by:
  • |
  • |
  • |

  1. “Cisco Global Cloud Index: Forecast and Methodology, 2015–2020,” White Paper-c11-738085, 2016, http://www.cisco.com/c/dam/en/us/solutions/collateral/service-provider/global-cloud-index-gci/white-paper-c11-738085.pdf .
  2. A. Samani, D. Patel, M. Chagnon, E. El-Fiky, R. Li, M. Jacques, N. Abadía, V. Veerasubramanian, and D. V. Plant, “Experimental parametric study of 128 Gb/s PAM-4 transmission system using a multi-electrode silicon photonic Mach zehnder modulator,” Opt. Express 25, 13252–13262 (2017).
    [Crossref] [PubMed]
  3. E. El-Fiky, M. Chagnon, M. Sowailem, A. Samani, M. Morsy-Osman, and D. V. Plant, “168 Gb/s single carrier PAM4 transmission for intra data center optical interconnects,” IEEE Photon. Technol. Lett. 29(3), 314–317 (2017).
    [Crossref]
  4. E. El-Fiky, M. Osman, M. Sowailem, A. Samani, D. Patel, R. Li, M. G. Saber, Y. Wang, N. Abadia, Y. D’Mello, and D. V. Plant, “200 Gb/s transmission using a dual-polarization O-band silicon photonic intensity modulator for stokes vector direct detection applications,” Opt. Express 25, 30336–30348 (2017).
    [Crossref] [PubMed]
  5. A. Dochhan, H. Griesser, N. Eiselt, M. H. Eiselt, and J.-P. Elbers, “Solutions for 80 km DWDM systems,” J. Lightwave Technol. 34, 491–499 (2016).
  6. Y. Kai, M. Nishihara, T. Tanaka, T. Takahara, L. Li, Z. Tao, B. Liu, J. C. Rasmussen, and T. Drenski, “Experimental comparison of pulse amplitude modulation (PAM) and discrete multi-tone (DMT) for short-reach 400-Gbps data communication,”, Proceedings of European Conference on Optical Communication (ECOC), (IEEE, 2013), pp. 1–3.
  7. M. I. Olmedo, T. Zuo, J. B. Jensen, Q. Zhong, X. Xu, S. Popov, and I. T. Monroy, “Multiband carrierless amplitude phase modulation for high capacity optical data links,” J. Lightwave Technol. 32, 798–804 (2014).
  8. P. Dong, J. Lee, Y. K. Chen, L. L. Buhl, S. Chandrasekhar, J. H. Sinsky, and K. Kim, “Four-channel 100-Gb/s per channel discrete multitone modulation using silicon photonic integrated circuits,” Journal of Lightwave Technology 34, 79–84 (2016).
    [Crossref]
  9. K. Zhong, X. Zhou, Y. Wang, L. Wang, J. Yuan, C. Yu, A. P. T. Lau, and C. Lu, “Experimental demonstration of 608Gbit/s short reach transmission employing half-cycle 16QAM Nyquist-SCM signal and direct detection with 25Gbps EML,” Opt. Express 24, 25057–25067 (2016).
    [Crossref] [PubMed]
  10. “IEEE Standard for Ethernet,” IEEE Std 802.3, Amendment 10, 2017.
  11. “100GLambda MSA,” http://100glambda.com ,2018.
  12. M. Birk, L. E. Nelson, G. Zhang, C. Cole, C. Yu, M. Akashi, K. Hiramoto, X. Fu, P. Brooks, A. Schubert, T. Baldwin, R. Luking, and G. Pepper, “First 400GBASE-LR8 interoperability using CFP8 modules,” in Optical Fiber Communication Conference, (Optical Society of America, 2017), p. Th5B.7.
  13. N. Eiselt, J. Wei, H. Griesser, A. Dochhan, M. H. Eiselt, J.-P. Elbers, J. J. V. Olmos, and I. T. Monroy, “First real-time 400G PAM-4 demonstration for inter-data center transmission over 100 km of SSMF at 1550 nm,” in Optical Fiber Communication Conference, (Optical Society of America, 2016), p. W1K.5.
  14. M. R. Billah, M. Blaicher, J. N. Kemal, T. Hoose, H. Zwickel, P.-I. Dietrich, U. Troppenz, M. Moehrle, F. Merget, A. Hofmann, J. Witzens, S. Randel, W. Freude, and C. Koos, “8-channel 448 Gbit/s silicon photonic transmitter enabled by photonic wire bonding,” in Optical Fiber Communication Conference, (Optical Society of America, 2017), p. Th5D.6.
  15. L. Jiang, X. Chen, K. Kim, G. de Valicourt, Z. R. Huang, and P. Dong, “Electro-optic crosstalk in parallel silicon photonic Mach-Zehnder modulators,” Journal of Lightwave Technology 36, 1713–1720 (2018).
    [Crossref]
  16. K. Zhong, W. Chen, Q. Sui, J. Man, A. P. T. Lau, C. Lu, and L. Zeng, “Experimental demonstration of 500Gbit/s short reach transmission employing PAM4 signal and direct detection with 25Gbps device,” in Optical Fiber Communication Conference, (Optical Society of America, 2015), p. Th3A.3.

2018 (1)

L. Jiang, X. Chen, K. Kim, G. de Valicourt, Z. R. Huang, and P. Dong, “Electro-optic crosstalk in parallel silicon photonic Mach-Zehnder modulators,” Journal of Lightwave Technology 36, 1713–1720 (2018).
[Crossref]

2017 (3)

2016 (3)

2014 (1)

Abadia, N.

Abadía, N.

Akashi, M.

M. Birk, L. E. Nelson, G. Zhang, C. Cole, C. Yu, M. Akashi, K. Hiramoto, X. Fu, P. Brooks, A. Schubert, T. Baldwin, R. Luking, and G. Pepper, “First 400GBASE-LR8 interoperability using CFP8 modules,” in Optical Fiber Communication Conference, (Optical Society of America, 2017), p. Th5B.7.

Baldwin, T.

M. Birk, L. E. Nelson, G. Zhang, C. Cole, C. Yu, M. Akashi, K. Hiramoto, X. Fu, P. Brooks, A. Schubert, T. Baldwin, R. Luking, and G. Pepper, “First 400GBASE-LR8 interoperability using CFP8 modules,” in Optical Fiber Communication Conference, (Optical Society of America, 2017), p. Th5B.7.

Billah, M. R.

M. R. Billah, M. Blaicher, J. N. Kemal, T. Hoose, H. Zwickel, P.-I. Dietrich, U. Troppenz, M. Moehrle, F. Merget, A. Hofmann, J. Witzens, S. Randel, W. Freude, and C. Koos, “8-channel 448 Gbit/s silicon photonic transmitter enabled by photonic wire bonding,” in Optical Fiber Communication Conference, (Optical Society of America, 2017), p. Th5D.6.

Birk, M.

M. Birk, L. E. Nelson, G. Zhang, C. Cole, C. Yu, M. Akashi, K. Hiramoto, X. Fu, P. Brooks, A. Schubert, T. Baldwin, R. Luking, and G. Pepper, “First 400GBASE-LR8 interoperability using CFP8 modules,” in Optical Fiber Communication Conference, (Optical Society of America, 2017), p. Th5B.7.

Blaicher, M.

M. R. Billah, M. Blaicher, J. N. Kemal, T. Hoose, H. Zwickel, P.-I. Dietrich, U. Troppenz, M. Moehrle, F. Merget, A. Hofmann, J. Witzens, S. Randel, W. Freude, and C. Koos, “8-channel 448 Gbit/s silicon photonic transmitter enabled by photonic wire bonding,” in Optical Fiber Communication Conference, (Optical Society of America, 2017), p. Th5D.6.

Brooks, P.

M. Birk, L. E. Nelson, G. Zhang, C. Cole, C. Yu, M. Akashi, K. Hiramoto, X. Fu, P. Brooks, A. Schubert, T. Baldwin, R. Luking, and G. Pepper, “First 400GBASE-LR8 interoperability using CFP8 modules,” in Optical Fiber Communication Conference, (Optical Society of America, 2017), p. Th5B.7.

Buhl, L. L.

P. Dong, J. Lee, Y. K. Chen, L. L. Buhl, S. Chandrasekhar, J. H. Sinsky, and K. Kim, “Four-channel 100-Gb/s per channel discrete multitone modulation using silicon photonic integrated circuits,” Journal of Lightwave Technology 34, 79–84 (2016).
[Crossref]

Chagnon, M.

E. El-Fiky, M. Chagnon, M. Sowailem, A. Samani, M. Morsy-Osman, and D. V. Plant, “168 Gb/s single carrier PAM4 transmission for intra data center optical interconnects,” IEEE Photon. Technol. Lett. 29(3), 314–317 (2017).
[Crossref]

A. Samani, D. Patel, M. Chagnon, E. El-Fiky, R. Li, M. Jacques, N. Abadía, V. Veerasubramanian, and D. V. Plant, “Experimental parametric study of 128 Gb/s PAM-4 transmission system using a multi-electrode silicon photonic Mach zehnder modulator,” Opt. Express 25, 13252–13262 (2017).
[Crossref] [PubMed]

Chandrasekhar, S.

P. Dong, J. Lee, Y. K. Chen, L. L. Buhl, S. Chandrasekhar, J. H. Sinsky, and K. Kim, “Four-channel 100-Gb/s per channel discrete multitone modulation using silicon photonic integrated circuits,” Journal of Lightwave Technology 34, 79–84 (2016).
[Crossref]

Chen, W.

K. Zhong, W. Chen, Q. Sui, J. Man, A. P. T. Lau, C. Lu, and L. Zeng, “Experimental demonstration of 500Gbit/s short reach transmission employing PAM4 signal and direct detection with 25Gbps device,” in Optical Fiber Communication Conference, (Optical Society of America, 2015), p. Th3A.3.

Chen, X.

L. Jiang, X. Chen, K. Kim, G. de Valicourt, Z. R. Huang, and P. Dong, “Electro-optic crosstalk in parallel silicon photonic Mach-Zehnder modulators,” Journal of Lightwave Technology 36, 1713–1720 (2018).
[Crossref]

Chen, Y. K.

P. Dong, J. Lee, Y. K. Chen, L. L. Buhl, S. Chandrasekhar, J. H. Sinsky, and K. Kim, “Four-channel 100-Gb/s per channel discrete multitone modulation using silicon photonic integrated circuits,” Journal of Lightwave Technology 34, 79–84 (2016).
[Crossref]

Cole, C.

M. Birk, L. E. Nelson, G. Zhang, C. Cole, C. Yu, M. Akashi, K. Hiramoto, X. Fu, P. Brooks, A. Schubert, T. Baldwin, R. Luking, and G. Pepper, “First 400GBASE-LR8 interoperability using CFP8 modules,” in Optical Fiber Communication Conference, (Optical Society of America, 2017), p. Th5B.7.

D’Mello, Y.

de Valicourt, G.

L. Jiang, X. Chen, K. Kim, G. de Valicourt, Z. R. Huang, and P. Dong, “Electro-optic crosstalk in parallel silicon photonic Mach-Zehnder modulators,” Journal of Lightwave Technology 36, 1713–1720 (2018).
[Crossref]

Dietrich, P.-I.

M. R. Billah, M. Blaicher, J. N. Kemal, T. Hoose, H. Zwickel, P.-I. Dietrich, U. Troppenz, M. Moehrle, F. Merget, A. Hofmann, J. Witzens, S. Randel, W. Freude, and C. Koos, “8-channel 448 Gbit/s silicon photonic transmitter enabled by photonic wire bonding,” in Optical Fiber Communication Conference, (Optical Society of America, 2017), p. Th5D.6.

Dochhan, A.

A. Dochhan, H. Griesser, N. Eiselt, M. H. Eiselt, and J.-P. Elbers, “Solutions for 80 km DWDM systems,” J. Lightwave Technol. 34, 491–499 (2016).

N. Eiselt, J. Wei, H. Griesser, A. Dochhan, M. H. Eiselt, J.-P. Elbers, J. J. V. Olmos, and I. T. Monroy, “First real-time 400G PAM-4 demonstration for inter-data center transmission over 100 km of SSMF at 1550 nm,” in Optical Fiber Communication Conference, (Optical Society of America, 2016), p. W1K.5.

Dong, P.

L. Jiang, X. Chen, K. Kim, G. de Valicourt, Z. R. Huang, and P. Dong, “Electro-optic crosstalk in parallel silicon photonic Mach-Zehnder modulators,” Journal of Lightwave Technology 36, 1713–1720 (2018).
[Crossref]

P. Dong, J. Lee, Y. K. Chen, L. L. Buhl, S. Chandrasekhar, J. H. Sinsky, and K. Kim, “Four-channel 100-Gb/s per channel discrete multitone modulation using silicon photonic integrated circuits,” Journal of Lightwave Technology 34, 79–84 (2016).
[Crossref]

Drenski, T.

Y. Kai, M. Nishihara, T. Tanaka, T. Takahara, L. Li, Z. Tao, B. Liu, J. C. Rasmussen, and T. Drenski, “Experimental comparison of pulse amplitude modulation (PAM) and discrete multi-tone (DMT) for short-reach 400-Gbps data communication,”, Proceedings of European Conference on Optical Communication (ECOC), (IEEE, 2013), pp. 1–3.

Eiselt, M. H.

A. Dochhan, H. Griesser, N. Eiselt, M. H. Eiselt, and J.-P. Elbers, “Solutions for 80 km DWDM systems,” J. Lightwave Technol. 34, 491–499 (2016).

N. Eiselt, J. Wei, H. Griesser, A. Dochhan, M. H. Eiselt, J.-P. Elbers, J. J. V. Olmos, and I. T. Monroy, “First real-time 400G PAM-4 demonstration for inter-data center transmission over 100 km of SSMF at 1550 nm,” in Optical Fiber Communication Conference, (Optical Society of America, 2016), p. W1K.5.

Eiselt, N.

A. Dochhan, H. Griesser, N. Eiselt, M. H. Eiselt, and J.-P. Elbers, “Solutions for 80 km DWDM systems,” J. Lightwave Technol. 34, 491–499 (2016).

N. Eiselt, J. Wei, H. Griesser, A. Dochhan, M. H. Eiselt, J.-P. Elbers, J. J. V. Olmos, and I. T. Monroy, “First real-time 400G PAM-4 demonstration for inter-data center transmission over 100 km of SSMF at 1550 nm,” in Optical Fiber Communication Conference, (Optical Society of America, 2016), p. W1K.5.

Elbers, J.-P.

A. Dochhan, H. Griesser, N. Eiselt, M. H. Eiselt, and J.-P. Elbers, “Solutions for 80 km DWDM systems,” J. Lightwave Technol. 34, 491–499 (2016).

N. Eiselt, J. Wei, H. Griesser, A. Dochhan, M. H. Eiselt, J.-P. Elbers, J. J. V. Olmos, and I. T. Monroy, “First real-time 400G PAM-4 demonstration for inter-data center transmission over 100 km of SSMF at 1550 nm,” in Optical Fiber Communication Conference, (Optical Society of America, 2016), p. W1K.5.

El-Fiky, E.

Freude, W.

M. R. Billah, M. Blaicher, J. N. Kemal, T. Hoose, H. Zwickel, P.-I. Dietrich, U. Troppenz, M. Moehrle, F. Merget, A. Hofmann, J. Witzens, S. Randel, W. Freude, and C. Koos, “8-channel 448 Gbit/s silicon photonic transmitter enabled by photonic wire bonding,” in Optical Fiber Communication Conference, (Optical Society of America, 2017), p. Th5D.6.

Fu, X.

M. Birk, L. E. Nelson, G. Zhang, C. Cole, C. Yu, M. Akashi, K. Hiramoto, X. Fu, P. Brooks, A. Schubert, T. Baldwin, R. Luking, and G. Pepper, “First 400GBASE-LR8 interoperability using CFP8 modules,” in Optical Fiber Communication Conference, (Optical Society of America, 2017), p. Th5B.7.

Griesser, H.

A. Dochhan, H. Griesser, N. Eiselt, M. H. Eiselt, and J.-P. Elbers, “Solutions for 80 km DWDM systems,” J. Lightwave Technol. 34, 491–499 (2016).

N. Eiselt, J. Wei, H. Griesser, A. Dochhan, M. H. Eiselt, J.-P. Elbers, J. J. V. Olmos, and I. T. Monroy, “First real-time 400G PAM-4 demonstration for inter-data center transmission over 100 km of SSMF at 1550 nm,” in Optical Fiber Communication Conference, (Optical Society of America, 2016), p. W1K.5.

Hiramoto, K.

M. Birk, L. E. Nelson, G. Zhang, C. Cole, C. Yu, M. Akashi, K. Hiramoto, X. Fu, P. Brooks, A. Schubert, T. Baldwin, R. Luking, and G. Pepper, “First 400GBASE-LR8 interoperability using CFP8 modules,” in Optical Fiber Communication Conference, (Optical Society of America, 2017), p. Th5B.7.

Hofmann, A.

M. R. Billah, M. Blaicher, J. N. Kemal, T. Hoose, H. Zwickel, P.-I. Dietrich, U. Troppenz, M. Moehrle, F. Merget, A. Hofmann, J. Witzens, S. Randel, W. Freude, and C. Koos, “8-channel 448 Gbit/s silicon photonic transmitter enabled by photonic wire bonding,” in Optical Fiber Communication Conference, (Optical Society of America, 2017), p. Th5D.6.

Hoose, T.

M. R. Billah, M. Blaicher, J. N. Kemal, T. Hoose, H. Zwickel, P.-I. Dietrich, U. Troppenz, M. Moehrle, F. Merget, A. Hofmann, J. Witzens, S. Randel, W. Freude, and C. Koos, “8-channel 448 Gbit/s silicon photonic transmitter enabled by photonic wire bonding,” in Optical Fiber Communication Conference, (Optical Society of America, 2017), p. Th5D.6.

Huang, Z. R.

L. Jiang, X. Chen, K. Kim, G. de Valicourt, Z. R. Huang, and P. Dong, “Electro-optic crosstalk in parallel silicon photonic Mach-Zehnder modulators,” Journal of Lightwave Technology 36, 1713–1720 (2018).
[Crossref]

Jacques, M.

Jensen, J. B.

Jiang, L.

L. Jiang, X. Chen, K. Kim, G. de Valicourt, Z. R. Huang, and P. Dong, “Electro-optic crosstalk in parallel silicon photonic Mach-Zehnder modulators,” Journal of Lightwave Technology 36, 1713–1720 (2018).
[Crossref]

Kai, Y.

Y. Kai, M. Nishihara, T. Tanaka, T. Takahara, L. Li, Z. Tao, B. Liu, J. C. Rasmussen, and T. Drenski, “Experimental comparison of pulse amplitude modulation (PAM) and discrete multi-tone (DMT) for short-reach 400-Gbps data communication,”, Proceedings of European Conference on Optical Communication (ECOC), (IEEE, 2013), pp. 1–3.

Kemal, J. N.

M. R. Billah, M. Blaicher, J. N. Kemal, T. Hoose, H. Zwickel, P.-I. Dietrich, U. Troppenz, M. Moehrle, F. Merget, A. Hofmann, J. Witzens, S. Randel, W. Freude, and C. Koos, “8-channel 448 Gbit/s silicon photonic transmitter enabled by photonic wire bonding,” in Optical Fiber Communication Conference, (Optical Society of America, 2017), p. Th5D.6.

Kim, K.

L. Jiang, X. Chen, K. Kim, G. de Valicourt, Z. R. Huang, and P. Dong, “Electro-optic crosstalk in parallel silicon photonic Mach-Zehnder modulators,” Journal of Lightwave Technology 36, 1713–1720 (2018).
[Crossref]

P. Dong, J. Lee, Y. K. Chen, L. L. Buhl, S. Chandrasekhar, J. H. Sinsky, and K. Kim, “Four-channel 100-Gb/s per channel discrete multitone modulation using silicon photonic integrated circuits,” Journal of Lightwave Technology 34, 79–84 (2016).
[Crossref]

Koos, C.

M. R. Billah, M. Blaicher, J. N. Kemal, T. Hoose, H. Zwickel, P.-I. Dietrich, U. Troppenz, M. Moehrle, F. Merget, A. Hofmann, J. Witzens, S. Randel, W. Freude, and C. Koos, “8-channel 448 Gbit/s silicon photonic transmitter enabled by photonic wire bonding,” in Optical Fiber Communication Conference, (Optical Society of America, 2017), p. Th5D.6.

Lau, A. P. T.

K. Zhong, X. Zhou, Y. Wang, L. Wang, J. Yuan, C. Yu, A. P. T. Lau, and C. Lu, “Experimental demonstration of 608Gbit/s short reach transmission employing half-cycle 16QAM Nyquist-SCM signal and direct detection with 25Gbps EML,” Opt. Express 24, 25057–25067 (2016).
[Crossref] [PubMed]

K. Zhong, W. Chen, Q. Sui, J. Man, A. P. T. Lau, C. Lu, and L. Zeng, “Experimental demonstration of 500Gbit/s short reach transmission employing PAM4 signal and direct detection with 25Gbps device,” in Optical Fiber Communication Conference, (Optical Society of America, 2015), p. Th3A.3.

Lee, J.

P. Dong, J. Lee, Y. K. Chen, L. L. Buhl, S. Chandrasekhar, J. H. Sinsky, and K. Kim, “Four-channel 100-Gb/s per channel discrete multitone modulation using silicon photonic integrated circuits,” Journal of Lightwave Technology 34, 79–84 (2016).
[Crossref]

Li, L.

Y. Kai, M. Nishihara, T. Tanaka, T. Takahara, L. Li, Z. Tao, B. Liu, J. C. Rasmussen, and T. Drenski, “Experimental comparison of pulse amplitude modulation (PAM) and discrete multi-tone (DMT) for short-reach 400-Gbps data communication,”, Proceedings of European Conference on Optical Communication (ECOC), (IEEE, 2013), pp. 1–3.

Li, R.

Liu, B.

Y. Kai, M. Nishihara, T. Tanaka, T. Takahara, L. Li, Z. Tao, B. Liu, J. C. Rasmussen, and T. Drenski, “Experimental comparison of pulse amplitude modulation (PAM) and discrete multi-tone (DMT) for short-reach 400-Gbps data communication,”, Proceedings of European Conference on Optical Communication (ECOC), (IEEE, 2013), pp. 1–3.

Lu, C.

K. Zhong, X. Zhou, Y. Wang, L. Wang, J. Yuan, C. Yu, A. P. T. Lau, and C. Lu, “Experimental demonstration of 608Gbit/s short reach transmission employing half-cycle 16QAM Nyquist-SCM signal and direct detection with 25Gbps EML,” Opt. Express 24, 25057–25067 (2016).
[Crossref] [PubMed]

K. Zhong, W. Chen, Q. Sui, J. Man, A. P. T. Lau, C. Lu, and L. Zeng, “Experimental demonstration of 500Gbit/s short reach transmission employing PAM4 signal and direct detection with 25Gbps device,” in Optical Fiber Communication Conference, (Optical Society of America, 2015), p. Th3A.3.

Luking, R.

M. Birk, L. E. Nelson, G. Zhang, C. Cole, C. Yu, M. Akashi, K. Hiramoto, X. Fu, P. Brooks, A. Schubert, T. Baldwin, R. Luking, and G. Pepper, “First 400GBASE-LR8 interoperability using CFP8 modules,” in Optical Fiber Communication Conference, (Optical Society of America, 2017), p. Th5B.7.

Man, J.

K. Zhong, W. Chen, Q. Sui, J. Man, A. P. T. Lau, C. Lu, and L. Zeng, “Experimental demonstration of 500Gbit/s short reach transmission employing PAM4 signal and direct detection with 25Gbps device,” in Optical Fiber Communication Conference, (Optical Society of America, 2015), p. Th3A.3.

Merget, F.

M. R. Billah, M. Blaicher, J. N. Kemal, T. Hoose, H. Zwickel, P.-I. Dietrich, U. Troppenz, M. Moehrle, F. Merget, A. Hofmann, J. Witzens, S. Randel, W. Freude, and C. Koos, “8-channel 448 Gbit/s silicon photonic transmitter enabled by photonic wire bonding,” in Optical Fiber Communication Conference, (Optical Society of America, 2017), p. Th5D.6.

Moehrle, M.

M. R. Billah, M. Blaicher, J. N. Kemal, T. Hoose, H. Zwickel, P.-I. Dietrich, U. Troppenz, M. Moehrle, F. Merget, A. Hofmann, J. Witzens, S. Randel, W. Freude, and C. Koos, “8-channel 448 Gbit/s silicon photonic transmitter enabled by photonic wire bonding,” in Optical Fiber Communication Conference, (Optical Society of America, 2017), p. Th5D.6.

Monroy, I. T.

M. I. Olmedo, T. Zuo, J. B. Jensen, Q. Zhong, X. Xu, S. Popov, and I. T. Monroy, “Multiband carrierless amplitude phase modulation for high capacity optical data links,” J. Lightwave Technol. 32, 798–804 (2014).

N. Eiselt, J. Wei, H. Griesser, A. Dochhan, M. H. Eiselt, J.-P. Elbers, J. J. V. Olmos, and I. T. Monroy, “First real-time 400G PAM-4 demonstration for inter-data center transmission over 100 km of SSMF at 1550 nm,” in Optical Fiber Communication Conference, (Optical Society of America, 2016), p. W1K.5.

Morsy-Osman, M.

E. El-Fiky, M. Chagnon, M. Sowailem, A. Samani, M. Morsy-Osman, and D. V. Plant, “168 Gb/s single carrier PAM4 transmission for intra data center optical interconnects,” IEEE Photon. Technol. Lett. 29(3), 314–317 (2017).
[Crossref]

Nelson, L. E.

M. Birk, L. E. Nelson, G. Zhang, C. Cole, C. Yu, M. Akashi, K. Hiramoto, X. Fu, P. Brooks, A. Schubert, T. Baldwin, R. Luking, and G. Pepper, “First 400GBASE-LR8 interoperability using CFP8 modules,” in Optical Fiber Communication Conference, (Optical Society of America, 2017), p. Th5B.7.

Nishihara, M.

Y. Kai, M. Nishihara, T. Tanaka, T. Takahara, L. Li, Z. Tao, B. Liu, J. C. Rasmussen, and T. Drenski, “Experimental comparison of pulse amplitude modulation (PAM) and discrete multi-tone (DMT) for short-reach 400-Gbps data communication,”, Proceedings of European Conference on Optical Communication (ECOC), (IEEE, 2013), pp. 1–3.

Olmedo, M. I.

Olmos, J. J. V.

N. Eiselt, J. Wei, H. Griesser, A. Dochhan, M. H. Eiselt, J.-P. Elbers, J. J. V. Olmos, and I. T. Monroy, “First real-time 400G PAM-4 demonstration for inter-data center transmission over 100 km of SSMF at 1550 nm,” in Optical Fiber Communication Conference, (Optical Society of America, 2016), p. W1K.5.

Osman, M.

Patel, D.

Pepper, G.

M. Birk, L. E. Nelson, G. Zhang, C. Cole, C. Yu, M. Akashi, K. Hiramoto, X. Fu, P. Brooks, A. Schubert, T. Baldwin, R. Luking, and G. Pepper, “First 400GBASE-LR8 interoperability using CFP8 modules,” in Optical Fiber Communication Conference, (Optical Society of America, 2017), p. Th5B.7.

Plant, D. V.

Popov, S.

Randel, S.

M. R. Billah, M. Blaicher, J. N. Kemal, T. Hoose, H. Zwickel, P.-I. Dietrich, U. Troppenz, M. Moehrle, F. Merget, A. Hofmann, J. Witzens, S. Randel, W. Freude, and C. Koos, “8-channel 448 Gbit/s silicon photonic transmitter enabled by photonic wire bonding,” in Optical Fiber Communication Conference, (Optical Society of America, 2017), p. Th5D.6.

Rasmussen, J. C.

Y. Kai, M. Nishihara, T. Tanaka, T. Takahara, L. Li, Z. Tao, B. Liu, J. C. Rasmussen, and T. Drenski, “Experimental comparison of pulse amplitude modulation (PAM) and discrete multi-tone (DMT) for short-reach 400-Gbps data communication,”, Proceedings of European Conference on Optical Communication (ECOC), (IEEE, 2013), pp. 1–3.

Saber, M. G.

Samani, A.

Schubert, A.

M. Birk, L. E. Nelson, G. Zhang, C. Cole, C. Yu, M. Akashi, K. Hiramoto, X. Fu, P. Brooks, A. Schubert, T. Baldwin, R. Luking, and G. Pepper, “First 400GBASE-LR8 interoperability using CFP8 modules,” in Optical Fiber Communication Conference, (Optical Society of America, 2017), p. Th5B.7.

Sinsky, J. H.

P. Dong, J. Lee, Y. K. Chen, L. L. Buhl, S. Chandrasekhar, J. H. Sinsky, and K. Kim, “Four-channel 100-Gb/s per channel discrete multitone modulation using silicon photonic integrated circuits,” Journal of Lightwave Technology 34, 79–84 (2016).
[Crossref]

Sowailem, M.

E. El-Fiky, M. Chagnon, M. Sowailem, A. Samani, M. Morsy-Osman, and D. V. Plant, “168 Gb/s single carrier PAM4 transmission for intra data center optical interconnects,” IEEE Photon. Technol. Lett. 29(3), 314–317 (2017).
[Crossref]

E. El-Fiky, M. Osman, M. Sowailem, A. Samani, D. Patel, R. Li, M. G. Saber, Y. Wang, N. Abadia, Y. D’Mello, and D. V. Plant, “200 Gb/s transmission using a dual-polarization O-band silicon photonic intensity modulator for stokes vector direct detection applications,” Opt. Express 25, 30336–30348 (2017).
[Crossref] [PubMed]

Sui, Q.

K. Zhong, W. Chen, Q. Sui, J. Man, A. P. T. Lau, C. Lu, and L. Zeng, “Experimental demonstration of 500Gbit/s short reach transmission employing PAM4 signal and direct detection with 25Gbps device,” in Optical Fiber Communication Conference, (Optical Society of America, 2015), p. Th3A.3.

Takahara, T.

Y. Kai, M. Nishihara, T. Tanaka, T. Takahara, L. Li, Z. Tao, B. Liu, J. C. Rasmussen, and T. Drenski, “Experimental comparison of pulse amplitude modulation (PAM) and discrete multi-tone (DMT) for short-reach 400-Gbps data communication,”, Proceedings of European Conference on Optical Communication (ECOC), (IEEE, 2013), pp. 1–3.

Tanaka, T.

Y. Kai, M. Nishihara, T. Tanaka, T. Takahara, L. Li, Z. Tao, B. Liu, J. C. Rasmussen, and T. Drenski, “Experimental comparison of pulse amplitude modulation (PAM) and discrete multi-tone (DMT) for short-reach 400-Gbps data communication,”, Proceedings of European Conference on Optical Communication (ECOC), (IEEE, 2013), pp. 1–3.

Tao, Z.

Y. Kai, M. Nishihara, T. Tanaka, T. Takahara, L. Li, Z. Tao, B. Liu, J. C. Rasmussen, and T. Drenski, “Experimental comparison of pulse amplitude modulation (PAM) and discrete multi-tone (DMT) for short-reach 400-Gbps data communication,”, Proceedings of European Conference on Optical Communication (ECOC), (IEEE, 2013), pp. 1–3.

Troppenz, U.

M. R. Billah, M. Blaicher, J. N. Kemal, T. Hoose, H. Zwickel, P.-I. Dietrich, U. Troppenz, M. Moehrle, F. Merget, A. Hofmann, J. Witzens, S. Randel, W. Freude, and C. Koos, “8-channel 448 Gbit/s silicon photonic transmitter enabled by photonic wire bonding,” in Optical Fiber Communication Conference, (Optical Society of America, 2017), p. Th5D.6.

Veerasubramanian, V.

Wang, L.

Wang, Y.

Wei, J.

N. Eiselt, J. Wei, H. Griesser, A. Dochhan, M. H. Eiselt, J.-P. Elbers, J. J. V. Olmos, and I. T. Monroy, “First real-time 400G PAM-4 demonstration for inter-data center transmission over 100 km of SSMF at 1550 nm,” in Optical Fiber Communication Conference, (Optical Society of America, 2016), p. W1K.5.

Witzens, J.

M. R. Billah, M. Blaicher, J. N. Kemal, T. Hoose, H. Zwickel, P.-I. Dietrich, U. Troppenz, M. Moehrle, F. Merget, A. Hofmann, J. Witzens, S. Randel, W. Freude, and C. Koos, “8-channel 448 Gbit/s silicon photonic transmitter enabled by photonic wire bonding,” in Optical Fiber Communication Conference, (Optical Society of America, 2017), p. Th5D.6.

Xu, X.

Yu, C.

K. Zhong, X. Zhou, Y. Wang, L. Wang, J. Yuan, C. Yu, A. P. T. Lau, and C. Lu, “Experimental demonstration of 608Gbit/s short reach transmission employing half-cycle 16QAM Nyquist-SCM signal and direct detection with 25Gbps EML,” Opt. Express 24, 25057–25067 (2016).
[Crossref] [PubMed]

M. Birk, L. E. Nelson, G. Zhang, C. Cole, C. Yu, M. Akashi, K. Hiramoto, X. Fu, P. Brooks, A. Schubert, T. Baldwin, R. Luking, and G. Pepper, “First 400GBASE-LR8 interoperability using CFP8 modules,” in Optical Fiber Communication Conference, (Optical Society of America, 2017), p. Th5B.7.

Yuan, J.

Zeng, L.

K. Zhong, W. Chen, Q. Sui, J. Man, A. P. T. Lau, C. Lu, and L. Zeng, “Experimental demonstration of 500Gbit/s short reach transmission employing PAM4 signal and direct detection with 25Gbps device,” in Optical Fiber Communication Conference, (Optical Society of America, 2015), p. Th3A.3.

Zhang, G.

M. Birk, L. E. Nelson, G. Zhang, C. Cole, C. Yu, M. Akashi, K. Hiramoto, X. Fu, P. Brooks, A. Schubert, T. Baldwin, R. Luking, and G. Pepper, “First 400GBASE-LR8 interoperability using CFP8 modules,” in Optical Fiber Communication Conference, (Optical Society of America, 2017), p. Th5B.7.

Zhong, K.

K. Zhong, X. Zhou, Y. Wang, L. Wang, J. Yuan, C. Yu, A. P. T. Lau, and C. Lu, “Experimental demonstration of 608Gbit/s short reach transmission employing half-cycle 16QAM Nyquist-SCM signal and direct detection with 25Gbps EML,” Opt. Express 24, 25057–25067 (2016).
[Crossref] [PubMed]

K. Zhong, W. Chen, Q. Sui, J. Man, A. P. T. Lau, C. Lu, and L. Zeng, “Experimental demonstration of 500Gbit/s short reach transmission employing PAM4 signal and direct detection with 25Gbps device,” in Optical Fiber Communication Conference, (Optical Society of America, 2015), p. Th3A.3.

Zhong, Q.

Zhou, X.

Zuo, T.

Zwickel, H.

M. R. Billah, M. Blaicher, J. N. Kemal, T. Hoose, H. Zwickel, P.-I. Dietrich, U. Troppenz, M. Moehrle, F. Merget, A. Hofmann, J. Witzens, S. Randel, W. Freude, and C. Koos, “8-channel 448 Gbit/s silicon photonic transmitter enabled by photonic wire bonding,” in Optical Fiber Communication Conference, (Optical Society of America, 2017), p. Th5D.6.

IEEE Photon. Technol. Lett. (1)

E. El-Fiky, M. Chagnon, M. Sowailem, A. Samani, M. Morsy-Osman, and D. V. Plant, “168 Gb/s single carrier PAM4 transmission for intra data center optical interconnects,” IEEE Photon. Technol. Lett. 29(3), 314–317 (2017).
[Crossref]

J. Lightwave Technol. (2)

Journal of Lightwave Technology (2)

P. Dong, J. Lee, Y. K. Chen, L. L. Buhl, S. Chandrasekhar, J. H. Sinsky, and K. Kim, “Four-channel 100-Gb/s per channel discrete multitone modulation using silicon photonic integrated circuits,” Journal of Lightwave Technology 34, 79–84 (2016).
[Crossref]

L. Jiang, X. Chen, K. Kim, G. de Valicourt, Z. R. Huang, and P. Dong, “Electro-optic crosstalk in parallel silicon photonic Mach-Zehnder modulators,” Journal of Lightwave Technology 36, 1713–1720 (2018).
[Crossref]

Opt. Express (3)

Other (8)

“IEEE Standard for Ethernet,” IEEE Std 802.3, Amendment 10, 2017.

“100GLambda MSA,” http://100glambda.com ,2018.

M. Birk, L. E. Nelson, G. Zhang, C. Cole, C. Yu, M. Akashi, K. Hiramoto, X. Fu, P. Brooks, A. Schubert, T. Baldwin, R. Luking, and G. Pepper, “First 400GBASE-LR8 interoperability using CFP8 modules,” in Optical Fiber Communication Conference, (Optical Society of America, 2017), p. Th5B.7.

N. Eiselt, J. Wei, H. Griesser, A. Dochhan, M. H. Eiselt, J.-P. Elbers, J. J. V. Olmos, and I. T. Monroy, “First real-time 400G PAM-4 demonstration for inter-data center transmission over 100 km of SSMF at 1550 nm,” in Optical Fiber Communication Conference, (Optical Society of America, 2016), p. W1K.5.

M. R. Billah, M. Blaicher, J. N. Kemal, T. Hoose, H. Zwickel, P.-I. Dietrich, U. Troppenz, M. Moehrle, F. Merget, A. Hofmann, J. Witzens, S. Randel, W. Freude, and C. Koos, “8-channel 448 Gbit/s silicon photonic transmitter enabled by photonic wire bonding,” in Optical Fiber Communication Conference, (Optical Society of America, 2017), p. Th5D.6.

“Cisco Global Cloud Index: Forecast and Methodology, 2015–2020,” White Paper-c11-738085, 2016, http://www.cisco.com/c/dam/en/us/solutions/collateral/service-provider/global-cloud-index-gci/white-paper-c11-738085.pdf .

K. Zhong, W. Chen, Q. Sui, J. Man, A. P. T. Lau, C. Lu, and L. Zeng, “Experimental demonstration of 500Gbit/s short reach transmission employing PAM4 signal and direct detection with 25Gbps device,” in Optical Fiber Communication Conference, (Optical Society of America, 2015), p. Th3A.3.

Y. Kai, M. Nishihara, T. Tanaka, T. Takahara, L. Li, Z. Tao, B. Liu, J. C. Rasmussen, and T. Drenski, “Experimental comparison of pulse amplitude modulation (PAM) and discrete multi-tone (DMT) for short-reach 400-Gbps data communication,”, Proceedings of European Conference on Optical Communication (ECOC), (IEEE, 2013), pp. 1–3.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) An image for the TOSA soldered to the RF board in the test bed, and (b) experimental setup used for the 400G CWDM-TOSA testing. Insets: 53 Gbaud RF signal out of the amplifier, and optical spectrum out of the TOSA. DAC: digital-to-analog converter, TEC: temperature controller, OSA: optical spectrum analyzer, VOA: variable optical attenuator, DSO: digital sampling oscilloscope, and RTO: real time oscilloscope.
Fig. 2
Fig. 2 (a) Light-current characteristics, and (b) measured optical spectra for the four CWDM lasers.
Fig. 3
Fig. 3 (a)–(h) Optical eye diagrams for the four received lanes at the demultiplexer output equalized using a 5 tap FFE on the digital sampling oscilloscope in the B2B (top) and 2 km (bottom) cases.
Fig. 4
Fig. 4 (a) BER performance versus received OMA for the four lanes running at 53 Gbaud each in the B2B case equalized using a 5 tap FFE, and (b) BER performance versus received OMA for the four lanes running at 64 Gbaud each in the B2B case equalized using a 5 tap FFE.
Fig. 5
Fig. 5 (a) BER performance for all lanes running at 400 Gb/s aggregate net rate over different reaches using 5 tap receiver FFE, (b) 75 Gbaud per lane (600 Gb/s) BER performance over different reaches using 11 tap FFE, (c) BER performance versus number of receiver FFE taps for lane 0 running at 75 Gbaud in the B2B and 10 km cases, and (d) BER versus bit rate using 5 and 31 receiver FFE taps at −5 dBm received signal power for lane 0.
Fig. 6
Fig. 6 (a) BER versus bit rate after 40 km reach using 31 FFE taps, and (b) BER versus TOSA case temperature at constant received signal power for 400 Gb/s net rate over 10 km reach.
Fig. 7
Fig. 7 BER versus (a) baud rate and (b) bit rate for different modulation formats over different reaches, and (c) eye diagrams after receiver DSP for PAM4 and PAM8 modulation formats running at 53 and 35 Gbaud, respectively.

Tables (1)

Tables Icon

Table 1 Comparison of our work with previous 400 Gb/s demonstrations.a

Metrics