Abstract

Optical frequency combs (OFCs) have attracted attention as optical frequency rulers due to their tooth-like discrete spectra together with their inherent mode-locking nature and phase-locking control to a frequency standard. Based on this concept, their applications until now have been demonstrated in the fields of optical frequency metrology. However, if the utility of OFCs can be further expanded beyond their application by exploiting new aspects of OFCs, this will lead to new developments in optical metrology and instrumentation. Here, we report a fiber sensing application of OFCs based on a coherent link between the optical and radio frequencies, enabling high-precision refractive index measurement based on frequency measurement in radio-frequency (RF) region. Our technique encodes a refractive index change of a liquid sample into a repetition frequency of OFC by a combination of an intracavity multi-mode-interference fiber sensor and wavelength dispersion of a cavity fiber. Then, the change in refractive index is read out by measuring the repetition frequency in RF region based on a frequency standard. Use of an OFC as a photonic RF converter will lead to the development of new applications in high-precision fiber sensing with the help of functional fiber sensors and precise RF measurement.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Strain sensing based on strain to radio-frequency conversion of optical frequency comb

Takeo Minamikawa, Takashi Ogura, Yoshiaki Nakajima, Eiji Hase, Yasuhiro Mizutani, Hirotsugu Yamamoto, Kaoru Minoshima, and Takeshi Yasui
Opt. Express 26(8) 9484-9491 (2018)

Direct 15-GHz mode-spacing optical frequency comb with a Kerr-lens mode-locked Yb:Y2O3 ceramic laser

Mamoru Endo, Isao Ito, and Yohei Kobayashi
Opt. Express 23(2) 1276-1282 (2015)

Frequency-comb-referenced mid-infrared source for high-precision spectroscopy

Jari Peltola, Markku Vainio, Thomas Fordell, Tuomas Hieta, Mikko Merimaa, and Lauri Halonen
Opt. Express 22(26) 32429-32439 (2014)

References

  • View by:
  • |
  • |
  • |

  1. T. Udem, J. Reichert, R. Holzwarth, and T. W. Hänsch, “Accurate measurement of large optical frequency differences with a mode-locked laser,” Opt. Lett. 24(13), 881–883 (1999).
    [Crossref] [PubMed]
  2. M. Niering, R. Holzwarth, J. Reichert, P. Pokasov, T. Udem, M. Weitz, T. W. Hänsch, P. Lemonde, G. Santarelli, M. Abgrall, P. Laurent, C. Salomon, and A. Clairon, “Measurement of the hydrogen 1S- 2S transition frequency by phase coherent comparison with a microwave cesium fountain clock,” Phys. Rev. Lett. 84(24), 5496–5499 (2000).
    [Crossref] [PubMed]
  3. T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002).
    [Crossref] [PubMed]
  4. S. A. Diddams, L. Hollberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature 445(7128), 627–630 (2007).
    [Crossref] [PubMed]
  5. A. Asahara, A. Nishiyama, S. Yoshida, K. I. Kondo, Y. Nakajima, and K. Minoshima, “Dual-comb spectroscopy for rapid characterization of complex optical properties of solids,” Opt. Lett. 41(21), 4971–4974 (2016).
    [Crossref] [PubMed]
  6. T. Minamikawa, Y.-D. Hsieh, K. Shibuya, E. Hase, Y. Kaneoka, S. Okubo, H. Inaba, Y. Mizutani, H. Yamamoto, T. Iwata, and T. Yasui, “Dual-comb spectroscopic ellipsometry,” Nat. Commun. 8(1), 610 (2017).
    [Crossref] [PubMed]
  7. N. Kuse, A. Ozawa, and Y. Kobayashi, “Static FBG strain sensor with high resolution and large dynamic range by dual-comb spectroscopy,” Opt. Express 21(9), 11141–11149 (2013).
    [Crossref] [PubMed]
  8. I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3(6), 351–356 (2009).
    [Crossref]
  9. P. A. Elzinga, R. J. Kneisler, F. E. Lytle, Y. Jiang, G. B. King, and N. M. Laurendeau, “Pump/probe method for fast analysis of visible spectral signatures utilizing asynchronous optical sampling,” Appl. Opt. 26(19), 4303–4309 (1987).
    [Crossref] [PubMed]
  10. Y. Takagi and S. Adachi, “Subpicosecond optical sampling spectrometer using asynchronous tunable mode-locked lasers,” Rev. Sci. Instrum. 70(5), 2218–2224 (1999).
    [Crossref]
  11. A. Bartels, R. Cerna, C. Kistner, A. Thoma, F. Hudert, C. Janke, and T. Dekorsy, “Ultrafast time-domain spectroscopy based on high-speed asynchronous optical sampling,” Rev. Sci. Instrum. 78(3), 035107 (2007).
    [Crossref] [PubMed]
  12. A. Abbas, Y. Guillet, J.-M. Rampnoux, P. Rigail, E. Mottay, B. Audoin, and S. Dilhaire, “Picosecond time resolved opto-acoustic imaging with 48 MHz frequency resolution,” Opt. Express 22(7), 7831–7843 (2014).
    [Crossref] [PubMed]
  13. A. Asahara and K. Minoshima, “Development of ultrafast time-resolved dual-comb spectroscopy,” APL Photon. 2(4), 041301 (2017).
    [Crossref]
  14. K. Minoshima and H. Matsumoto, “High-accuracy measurement of 240-m distance in an optical tunnel by use of a compact femtosecond laser,” Appl. Opt. 39(30), 5512–5517 (2000).
    [Crossref] [PubMed]
  15. K. Minoshima, K. Arai, and H. Inaba, “High-accuracy self-correction of refractive index of air using two-color interferometry of optical frequency combs,” Opt. Express 19(27), 26095–26105 (2011).
    [Crossref] [PubMed]
  16. G. Wu, M. Takahashi, K. Arai, H. Inaba, and K. Minoshima, “Extremely high-accuracy correction of air refractive index using two-colour optical frequency combs,” Sci. Rep. 3(1), 1894 (2013).
    [Crossref] [PubMed]
  17. S. Liu, Z. Yin, L. Zhang, L. Gao, X. Chen, and J. Cheng, “Multilongitudinal mode fiber laser for strain measurement,” Opt. Lett. 35(6), 835–837 (2010).
    [Crossref] [PubMed]
  18. O. Hadeler, M. Ibsen, and M. N. Zervas, “Distributed-feedback fiber laser sensor for simultaneous strain and temperature measurements operating in the radio-frequency domain,” Appl. Opt. 40(19), 3169–3175 (2001).
    [Crossref] [PubMed]
  19. O. Hadeler, E. Rønnekleiv, M. Ibsen, and R. I. Laming, “Polarimetric distributed feedback fiber laser sensor for simultaneous strain and temperature measurements,” Appl. Opt. 38(10), 1953–1958 (1999).
    [Crossref] [PubMed]
  20. T. Guo, A. C. Wong, W. S. Liu, B. O. Guan, C. Lu, and H. Y. Tam, “Beat-frequency adjustable Er3+-doped DBR fiber laser for ultrasound detection,” Opt. Express 19(3), 2485–2492 (2011).
    [Crossref] [PubMed]
  21. Y. Liang, L. Jin, L. Wang, X. Bai, L. Cheng, and B.-O. Guan, “Fiber-laser-based ultrasound sensor for photoacoustic imaging,” Sci. Rep. 7(1), 40849 (2017).
    [Crossref] [PubMed]
  22. T. Minamikawa, T. Ogura, Y. Nakajima, E. Hase, Y. Mizutani, H. Yamamoto, K. Minoshima, and T. Yasui, “Strain sensing based on strain to radio-frequency conversion of optical frequency comb,” Opt. Express 26(8), 9484–9491 (2018).
    [Crossref] [PubMed]
  23. S. Wang, P. Lu, H. Liao, L. Zhang, D. Liu, and J. Zhang, “Passively mode-locked fiber laser sensor for acoustic pressure sensing,” J. Mod. Opt. 60(21), 1892–1897 (2013).
    [Crossref]
  24. T. Minamikawa, T. Ogura, T. Masuoka, E. Hase, Y. Nakajima, Y. Yamaoka, K. Minoshima, and T. Yasui, “Optical-frequency-comb based ultrasound sensor,” Proc. SPIE 10064, 100645C (2017).
    [Crossref]
  25. S. K. Srivastava, R. Verma, and B. D. Gupta, “Surface plasmon resonance based fiber optic sensor for the detection of low water content in ethanol,” Sens. Actuators B Chem. 153(1), 194–198 (2011).
    [Crossref]
  26. S. Binu, V. P. Mahadevan Pillai, V. Pradeepkumar, B. B. Padhy, C. S. Joseph, and N. Chandrasekaran, “Fibre optic glucose sensor,” Mater. Sci. Technol. C 29(1), 183–186 (2009).
  27. H. Tazawa, T. Kanie, and M. Katayama, “Fiber-optic coupler based refractive index sensor and its application to biosensing,” Appl. Phys. Lett. 91(11), 113901 (2007).
    [Crossref]
  28. S. Sekimoto, H. Nakagawa, S. Okazaki, K. Fukuda, S. Asakura, T. Shigemori, and S. Takahashi, “A fiber-optic evanescent-wave hydrogen gas sensor using palladium-supported tungsten oxide,” Sens. Actuators B Chem. 66(1–3), 142–145 (2000).
    [Crossref]
  29. Y. Jung, S. Kim, D. Lee, and K. Oh, “Compact three segmented multimode fibre modal interferometer for high sensitivity refractive-index measurement,” Meas. Sci. Technol. 17(5), 1129–1133 (2006).
    [Crossref]
  30. Q. Wang and G. Farrell, “All-fiber multimode-interference-based refractometer sensor: proposal and design,” Opt. Lett. 31(3), 317–319 (2006).
    [Crossref] [PubMed]
  31. S. Taue, Y. Matsumoto, H. Fukano, and K. Tsuruta, “Experimental analysis of optical fiber multimode interference structure and its application to refractive index measurement,” Jpn. J. Appl. Phys. 51(4S), 04DG14 (2012).
    [Crossref]
  32. H. Fukano, D. Watanabe, and S. Taue, “Sensitivity characteristics of multimode-interference optical-fiber temperature-sensor with solid cladding material,” IEEE Sens. J. 16(24), 8921–8927 (2016).
    [Crossref]
  33. J. E. Antonio-Lopez, A. Castillo-Guzman, D. A. May-Arrioja, R. Selvas-Aguilar, and P. Likamwa, “Tunable multimode-interference bandpass fiber filter,” Opt. Lett. 35(3), 324–326 (2010).
    [Crossref] [PubMed]
  34. J. V. Herráez and R. Belda, “Refractive indices, densities and excess molar volumes of monoalcohols + water,” J. Solution Chem. 35(9), 1315–1328 (2006).
    [Crossref]
  35. T. Yasui, R. Ichikawa, Y.-D. Hsieh, K. Hayashi, H. Cahyadi, F. Hindle, Y. Sakaguchi, T. Iwata, Y. Mizutani, H. Yamamoto, K. Minoshima, and H. Inaba, “Adaptive sampling dual terahertz comb spectroscopy using dual free-running femtosecond lasers,” Sci. Rep. 5(1), 10786 (2015).
    [Crossref] [PubMed]

2018 (1)

2017 (4)

Y. Liang, L. Jin, L. Wang, X. Bai, L. Cheng, and B.-O. Guan, “Fiber-laser-based ultrasound sensor for photoacoustic imaging,” Sci. Rep. 7(1), 40849 (2017).
[Crossref] [PubMed]

A. Asahara and K. Minoshima, “Development of ultrafast time-resolved dual-comb spectroscopy,” APL Photon. 2(4), 041301 (2017).
[Crossref]

T. Minamikawa, T. Ogura, T. Masuoka, E. Hase, Y. Nakajima, Y. Yamaoka, K. Minoshima, and T. Yasui, “Optical-frequency-comb based ultrasound sensor,” Proc. SPIE 10064, 100645C (2017).
[Crossref]

T. Minamikawa, Y.-D. Hsieh, K. Shibuya, E. Hase, Y. Kaneoka, S. Okubo, H. Inaba, Y. Mizutani, H. Yamamoto, T. Iwata, and T. Yasui, “Dual-comb spectroscopic ellipsometry,” Nat. Commun. 8(1), 610 (2017).
[Crossref] [PubMed]

2016 (2)

A. Asahara, A. Nishiyama, S. Yoshida, K. I. Kondo, Y. Nakajima, and K. Minoshima, “Dual-comb spectroscopy for rapid characterization of complex optical properties of solids,” Opt. Lett. 41(21), 4971–4974 (2016).
[Crossref] [PubMed]

H. Fukano, D. Watanabe, and S. Taue, “Sensitivity characteristics of multimode-interference optical-fiber temperature-sensor with solid cladding material,” IEEE Sens. J. 16(24), 8921–8927 (2016).
[Crossref]

2015 (1)

T. Yasui, R. Ichikawa, Y.-D. Hsieh, K. Hayashi, H. Cahyadi, F. Hindle, Y. Sakaguchi, T. Iwata, Y. Mizutani, H. Yamamoto, K. Minoshima, and H. Inaba, “Adaptive sampling dual terahertz comb spectroscopy using dual free-running femtosecond lasers,” Sci. Rep. 5(1), 10786 (2015).
[Crossref] [PubMed]

2014 (1)

2013 (3)

G. Wu, M. Takahashi, K. Arai, H. Inaba, and K. Minoshima, “Extremely high-accuracy correction of air refractive index using two-colour optical frequency combs,” Sci. Rep. 3(1), 1894 (2013).
[Crossref] [PubMed]

N. Kuse, A. Ozawa, and Y. Kobayashi, “Static FBG strain sensor with high resolution and large dynamic range by dual-comb spectroscopy,” Opt. Express 21(9), 11141–11149 (2013).
[Crossref] [PubMed]

S. Wang, P. Lu, H. Liao, L. Zhang, D. Liu, and J. Zhang, “Passively mode-locked fiber laser sensor for acoustic pressure sensing,” J. Mod. Opt. 60(21), 1892–1897 (2013).
[Crossref]

2012 (1)

S. Taue, Y. Matsumoto, H. Fukano, and K. Tsuruta, “Experimental analysis of optical fiber multimode interference structure and its application to refractive index measurement,” Jpn. J. Appl. Phys. 51(4S), 04DG14 (2012).
[Crossref]

2011 (3)

2010 (2)

2009 (2)

I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3(6), 351–356 (2009).
[Crossref]

S. Binu, V. P. Mahadevan Pillai, V. Pradeepkumar, B. B. Padhy, C. S. Joseph, and N. Chandrasekaran, “Fibre optic glucose sensor,” Mater. Sci. Technol. C 29(1), 183–186 (2009).

2007 (3)

H. Tazawa, T. Kanie, and M. Katayama, “Fiber-optic coupler based refractive index sensor and its application to biosensing,” Appl. Phys. Lett. 91(11), 113901 (2007).
[Crossref]

S. A. Diddams, L. Hollberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature 445(7128), 627–630 (2007).
[Crossref] [PubMed]

A. Bartels, R. Cerna, C. Kistner, A. Thoma, F. Hudert, C. Janke, and T. Dekorsy, “Ultrafast time-domain spectroscopy based on high-speed asynchronous optical sampling,” Rev. Sci. Instrum. 78(3), 035107 (2007).
[Crossref] [PubMed]

2006 (3)

J. V. Herráez and R. Belda, “Refractive indices, densities and excess molar volumes of monoalcohols + water,” J. Solution Chem. 35(9), 1315–1328 (2006).
[Crossref]

Y. Jung, S. Kim, D. Lee, and K. Oh, “Compact three segmented multimode fibre modal interferometer for high sensitivity refractive-index measurement,” Meas. Sci. Technol. 17(5), 1129–1133 (2006).
[Crossref]

Q. Wang and G. Farrell, “All-fiber multimode-interference-based refractometer sensor: proposal and design,” Opt. Lett. 31(3), 317–319 (2006).
[Crossref] [PubMed]

2002 (1)

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002).
[Crossref] [PubMed]

2001 (1)

2000 (3)

M. Niering, R. Holzwarth, J. Reichert, P. Pokasov, T. Udem, M. Weitz, T. W. Hänsch, P. Lemonde, G. Santarelli, M. Abgrall, P. Laurent, C. Salomon, and A. Clairon, “Measurement of the hydrogen 1S- 2S transition frequency by phase coherent comparison with a microwave cesium fountain clock,” Phys. Rev. Lett. 84(24), 5496–5499 (2000).
[Crossref] [PubMed]

S. Sekimoto, H. Nakagawa, S. Okazaki, K. Fukuda, S. Asakura, T. Shigemori, and S. Takahashi, “A fiber-optic evanescent-wave hydrogen gas sensor using palladium-supported tungsten oxide,” Sens. Actuators B Chem. 66(1–3), 142–145 (2000).
[Crossref]

K. Minoshima and H. Matsumoto, “High-accuracy measurement of 240-m distance in an optical tunnel by use of a compact femtosecond laser,” Appl. Opt. 39(30), 5512–5517 (2000).
[Crossref] [PubMed]

1999 (3)

1987 (1)

Abbas, A.

Abgrall, M.

M. Niering, R. Holzwarth, J. Reichert, P. Pokasov, T. Udem, M. Weitz, T. W. Hänsch, P. Lemonde, G. Santarelli, M. Abgrall, P. Laurent, C. Salomon, and A. Clairon, “Measurement of the hydrogen 1S- 2S transition frequency by phase coherent comparison with a microwave cesium fountain clock,” Phys. Rev. Lett. 84(24), 5496–5499 (2000).
[Crossref] [PubMed]

Adachi, S.

Y. Takagi and S. Adachi, “Subpicosecond optical sampling spectrometer using asynchronous tunable mode-locked lasers,” Rev. Sci. Instrum. 70(5), 2218–2224 (1999).
[Crossref]

Antonio-Lopez, J. E.

Arai, K.

G. Wu, M. Takahashi, K. Arai, H. Inaba, and K. Minoshima, “Extremely high-accuracy correction of air refractive index using two-colour optical frequency combs,” Sci. Rep. 3(1), 1894 (2013).
[Crossref] [PubMed]

K. Minoshima, K. Arai, and H. Inaba, “High-accuracy self-correction of refractive index of air using two-color interferometry of optical frequency combs,” Opt. Express 19(27), 26095–26105 (2011).
[Crossref] [PubMed]

Asahara, A.

Asakura, S.

S. Sekimoto, H. Nakagawa, S. Okazaki, K. Fukuda, S. Asakura, T. Shigemori, and S. Takahashi, “A fiber-optic evanescent-wave hydrogen gas sensor using palladium-supported tungsten oxide,” Sens. Actuators B Chem. 66(1–3), 142–145 (2000).
[Crossref]

Audoin, B.

Bai, X.

Y. Liang, L. Jin, L. Wang, X. Bai, L. Cheng, and B.-O. Guan, “Fiber-laser-based ultrasound sensor for photoacoustic imaging,” Sci. Rep. 7(1), 40849 (2017).
[Crossref] [PubMed]

Bartels, A.

A. Bartels, R. Cerna, C. Kistner, A. Thoma, F. Hudert, C. Janke, and T. Dekorsy, “Ultrafast time-domain spectroscopy based on high-speed asynchronous optical sampling,” Rev. Sci. Instrum. 78(3), 035107 (2007).
[Crossref] [PubMed]

Belda, R.

J. V. Herráez and R. Belda, “Refractive indices, densities and excess molar volumes of monoalcohols + water,” J. Solution Chem. 35(9), 1315–1328 (2006).
[Crossref]

Binu, S.

S. Binu, V. P. Mahadevan Pillai, V. Pradeepkumar, B. B. Padhy, C. S. Joseph, and N. Chandrasekaran, “Fibre optic glucose sensor,” Mater. Sci. Technol. C 29(1), 183–186 (2009).

Cahyadi, H.

T. Yasui, R. Ichikawa, Y.-D. Hsieh, K. Hayashi, H. Cahyadi, F. Hindle, Y. Sakaguchi, T. Iwata, Y. Mizutani, H. Yamamoto, K. Minoshima, and H. Inaba, “Adaptive sampling dual terahertz comb spectroscopy using dual free-running femtosecond lasers,” Sci. Rep. 5(1), 10786 (2015).
[Crossref] [PubMed]

Castillo-Guzman, A.

Cerna, R.

A. Bartels, R. Cerna, C. Kistner, A. Thoma, F. Hudert, C. Janke, and T. Dekorsy, “Ultrafast time-domain spectroscopy based on high-speed asynchronous optical sampling,” Rev. Sci. Instrum. 78(3), 035107 (2007).
[Crossref] [PubMed]

Chandrasekaran, N.

S. Binu, V. P. Mahadevan Pillai, V. Pradeepkumar, B. B. Padhy, C. S. Joseph, and N. Chandrasekaran, “Fibre optic glucose sensor,” Mater. Sci. Technol. C 29(1), 183–186 (2009).

Chen, X.

Cheng, J.

Cheng, L.

Y. Liang, L. Jin, L. Wang, X. Bai, L. Cheng, and B.-O. Guan, “Fiber-laser-based ultrasound sensor for photoacoustic imaging,” Sci. Rep. 7(1), 40849 (2017).
[Crossref] [PubMed]

Clairon, A.

M. Niering, R. Holzwarth, J. Reichert, P. Pokasov, T. Udem, M. Weitz, T. W. Hänsch, P. Lemonde, G. Santarelli, M. Abgrall, P. Laurent, C. Salomon, and A. Clairon, “Measurement of the hydrogen 1S- 2S transition frequency by phase coherent comparison with a microwave cesium fountain clock,” Phys. Rev. Lett. 84(24), 5496–5499 (2000).
[Crossref] [PubMed]

Coddington, I.

I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3(6), 351–356 (2009).
[Crossref]

Dekorsy, T.

A. Bartels, R. Cerna, C. Kistner, A. Thoma, F. Hudert, C. Janke, and T. Dekorsy, “Ultrafast time-domain spectroscopy based on high-speed asynchronous optical sampling,” Rev. Sci. Instrum. 78(3), 035107 (2007).
[Crossref] [PubMed]

Diddams, S. A.

S. A. Diddams, L. Hollberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature 445(7128), 627–630 (2007).
[Crossref] [PubMed]

Dilhaire, S.

Elzinga, P. A.

Farrell, G.

Fukano, H.

H. Fukano, D. Watanabe, and S. Taue, “Sensitivity characteristics of multimode-interference optical-fiber temperature-sensor with solid cladding material,” IEEE Sens. J. 16(24), 8921–8927 (2016).
[Crossref]

S. Taue, Y. Matsumoto, H. Fukano, and K. Tsuruta, “Experimental analysis of optical fiber multimode interference structure and its application to refractive index measurement,” Jpn. J. Appl. Phys. 51(4S), 04DG14 (2012).
[Crossref]

Fukuda, K.

S. Sekimoto, H. Nakagawa, S. Okazaki, K. Fukuda, S. Asakura, T. Shigemori, and S. Takahashi, “A fiber-optic evanescent-wave hydrogen gas sensor using palladium-supported tungsten oxide,” Sens. Actuators B Chem. 66(1–3), 142–145 (2000).
[Crossref]

Gao, L.

Guan, B. O.

Guan, B.-O.

Y. Liang, L. Jin, L. Wang, X. Bai, L. Cheng, and B.-O. Guan, “Fiber-laser-based ultrasound sensor for photoacoustic imaging,” Sci. Rep. 7(1), 40849 (2017).
[Crossref] [PubMed]

Guillet, Y.

Guo, T.

Gupta, B. D.

S. K. Srivastava, R. Verma, and B. D. Gupta, “Surface plasmon resonance based fiber optic sensor for the detection of low water content in ethanol,” Sens. Actuators B Chem. 153(1), 194–198 (2011).
[Crossref]

Hadeler, O.

Hänsch, T. W.

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002).
[Crossref] [PubMed]

M. Niering, R. Holzwarth, J. Reichert, P. Pokasov, T. Udem, M. Weitz, T. W. Hänsch, P. Lemonde, G. Santarelli, M. Abgrall, P. Laurent, C. Salomon, and A. Clairon, “Measurement of the hydrogen 1S- 2S transition frequency by phase coherent comparison with a microwave cesium fountain clock,” Phys. Rev. Lett. 84(24), 5496–5499 (2000).
[Crossref] [PubMed]

T. Udem, J. Reichert, R. Holzwarth, and T. W. Hänsch, “Accurate measurement of large optical frequency differences with a mode-locked laser,” Opt. Lett. 24(13), 881–883 (1999).
[Crossref] [PubMed]

Hase, E.

T. Minamikawa, T. Ogura, Y. Nakajima, E. Hase, Y. Mizutani, H. Yamamoto, K. Minoshima, and T. Yasui, “Strain sensing based on strain to radio-frequency conversion of optical frequency comb,” Opt. Express 26(8), 9484–9491 (2018).
[Crossref] [PubMed]

T. Minamikawa, T. Ogura, T. Masuoka, E. Hase, Y. Nakajima, Y. Yamaoka, K. Minoshima, and T. Yasui, “Optical-frequency-comb based ultrasound sensor,” Proc. SPIE 10064, 100645C (2017).
[Crossref]

T. Minamikawa, Y.-D. Hsieh, K. Shibuya, E. Hase, Y. Kaneoka, S. Okubo, H. Inaba, Y. Mizutani, H. Yamamoto, T. Iwata, and T. Yasui, “Dual-comb spectroscopic ellipsometry,” Nat. Commun. 8(1), 610 (2017).
[Crossref] [PubMed]

Hayashi, K.

T. Yasui, R. Ichikawa, Y.-D. Hsieh, K. Hayashi, H. Cahyadi, F. Hindle, Y. Sakaguchi, T. Iwata, Y. Mizutani, H. Yamamoto, K. Minoshima, and H. Inaba, “Adaptive sampling dual terahertz comb spectroscopy using dual free-running femtosecond lasers,” Sci. Rep. 5(1), 10786 (2015).
[Crossref] [PubMed]

Herráez, J. V.

J. V. Herráez and R. Belda, “Refractive indices, densities and excess molar volumes of monoalcohols + water,” J. Solution Chem. 35(9), 1315–1328 (2006).
[Crossref]

Hindle, F.

T. Yasui, R. Ichikawa, Y.-D. Hsieh, K. Hayashi, H. Cahyadi, F. Hindle, Y. Sakaguchi, T. Iwata, Y. Mizutani, H. Yamamoto, K. Minoshima, and H. Inaba, “Adaptive sampling dual terahertz comb spectroscopy using dual free-running femtosecond lasers,” Sci. Rep. 5(1), 10786 (2015).
[Crossref] [PubMed]

Hollberg, L.

S. A. Diddams, L. Hollberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature 445(7128), 627–630 (2007).
[Crossref] [PubMed]

Holzwarth, R.

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002).
[Crossref] [PubMed]

M. Niering, R. Holzwarth, J. Reichert, P. Pokasov, T. Udem, M. Weitz, T. W. Hänsch, P. Lemonde, G. Santarelli, M. Abgrall, P. Laurent, C. Salomon, and A. Clairon, “Measurement of the hydrogen 1S- 2S transition frequency by phase coherent comparison with a microwave cesium fountain clock,” Phys. Rev. Lett. 84(24), 5496–5499 (2000).
[Crossref] [PubMed]

T. Udem, J. Reichert, R. Holzwarth, and T. W. Hänsch, “Accurate measurement of large optical frequency differences with a mode-locked laser,” Opt. Lett. 24(13), 881–883 (1999).
[Crossref] [PubMed]

Hsieh, Y.-D.

T. Minamikawa, Y.-D. Hsieh, K. Shibuya, E. Hase, Y. Kaneoka, S. Okubo, H. Inaba, Y. Mizutani, H. Yamamoto, T. Iwata, and T. Yasui, “Dual-comb spectroscopic ellipsometry,” Nat. Commun. 8(1), 610 (2017).
[Crossref] [PubMed]

T. Yasui, R. Ichikawa, Y.-D. Hsieh, K. Hayashi, H. Cahyadi, F. Hindle, Y. Sakaguchi, T. Iwata, Y. Mizutani, H. Yamamoto, K. Minoshima, and H. Inaba, “Adaptive sampling dual terahertz comb spectroscopy using dual free-running femtosecond lasers,” Sci. Rep. 5(1), 10786 (2015).
[Crossref] [PubMed]

Hudert, F.

A. Bartels, R. Cerna, C. Kistner, A. Thoma, F. Hudert, C. Janke, and T. Dekorsy, “Ultrafast time-domain spectroscopy based on high-speed asynchronous optical sampling,” Rev. Sci. Instrum. 78(3), 035107 (2007).
[Crossref] [PubMed]

Ibsen, M.

Ichikawa, R.

T. Yasui, R. Ichikawa, Y.-D. Hsieh, K. Hayashi, H. Cahyadi, F. Hindle, Y. Sakaguchi, T. Iwata, Y. Mizutani, H. Yamamoto, K. Minoshima, and H. Inaba, “Adaptive sampling dual terahertz comb spectroscopy using dual free-running femtosecond lasers,” Sci. Rep. 5(1), 10786 (2015).
[Crossref] [PubMed]

Inaba, H.

T. Minamikawa, Y.-D. Hsieh, K. Shibuya, E. Hase, Y. Kaneoka, S. Okubo, H. Inaba, Y. Mizutani, H. Yamamoto, T. Iwata, and T. Yasui, “Dual-comb spectroscopic ellipsometry,” Nat. Commun. 8(1), 610 (2017).
[Crossref] [PubMed]

T. Yasui, R. Ichikawa, Y.-D. Hsieh, K. Hayashi, H. Cahyadi, F. Hindle, Y. Sakaguchi, T. Iwata, Y. Mizutani, H. Yamamoto, K. Minoshima, and H. Inaba, “Adaptive sampling dual terahertz comb spectroscopy using dual free-running femtosecond lasers,” Sci. Rep. 5(1), 10786 (2015).
[Crossref] [PubMed]

G. Wu, M. Takahashi, K. Arai, H. Inaba, and K. Minoshima, “Extremely high-accuracy correction of air refractive index using two-colour optical frequency combs,” Sci. Rep. 3(1), 1894 (2013).
[Crossref] [PubMed]

K. Minoshima, K. Arai, and H. Inaba, “High-accuracy self-correction of refractive index of air using two-color interferometry of optical frequency combs,” Opt. Express 19(27), 26095–26105 (2011).
[Crossref] [PubMed]

Iwata, T.

T. Minamikawa, Y.-D. Hsieh, K. Shibuya, E. Hase, Y. Kaneoka, S. Okubo, H. Inaba, Y. Mizutani, H. Yamamoto, T. Iwata, and T. Yasui, “Dual-comb spectroscopic ellipsometry,” Nat. Commun. 8(1), 610 (2017).
[Crossref] [PubMed]

T. Yasui, R. Ichikawa, Y.-D. Hsieh, K. Hayashi, H. Cahyadi, F. Hindle, Y. Sakaguchi, T. Iwata, Y. Mizutani, H. Yamamoto, K. Minoshima, and H. Inaba, “Adaptive sampling dual terahertz comb spectroscopy using dual free-running femtosecond lasers,” Sci. Rep. 5(1), 10786 (2015).
[Crossref] [PubMed]

Janke, C.

A. Bartels, R. Cerna, C. Kistner, A. Thoma, F. Hudert, C. Janke, and T. Dekorsy, “Ultrafast time-domain spectroscopy based on high-speed asynchronous optical sampling,” Rev. Sci. Instrum. 78(3), 035107 (2007).
[Crossref] [PubMed]

Jiang, Y.

Jin, L.

Y. Liang, L. Jin, L. Wang, X. Bai, L. Cheng, and B.-O. Guan, “Fiber-laser-based ultrasound sensor for photoacoustic imaging,” Sci. Rep. 7(1), 40849 (2017).
[Crossref] [PubMed]

Joseph, C. S.

S. Binu, V. P. Mahadevan Pillai, V. Pradeepkumar, B. B. Padhy, C. S. Joseph, and N. Chandrasekaran, “Fibre optic glucose sensor,” Mater. Sci. Technol. C 29(1), 183–186 (2009).

Jung, Y.

Y. Jung, S. Kim, D. Lee, and K. Oh, “Compact three segmented multimode fibre modal interferometer for high sensitivity refractive-index measurement,” Meas. Sci. Technol. 17(5), 1129–1133 (2006).
[Crossref]

Kaneoka, Y.

T. Minamikawa, Y.-D. Hsieh, K. Shibuya, E. Hase, Y. Kaneoka, S. Okubo, H. Inaba, Y. Mizutani, H. Yamamoto, T. Iwata, and T. Yasui, “Dual-comb spectroscopic ellipsometry,” Nat. Commun. 8(1), 610 (2017).
[Crossref] [PubMed]

Kanie, T.

H. Tazawa, T. Kanie, and M. Katayama, “Fiber-optic coupler based refractive index sensor and its application to biosensing,” Appl. Phys. Lett. 91(11), 113901 (2007).
[Crossref]

Katayama, M.

H. Tazawa, T. Kanie, and M. Katayama, “Fiber-optic coupler based refractive index sensor and its application to biosensing,” Appl. Phys. Lett. 91(11), 113901 (2007).
[Crossref]

Kim, S.

Y. Jung, S. Kim, D. Lee, and K. Oh, “Compact three segmented multimode fibre modal interferometer for high sensitivity refractive-index measurement,” Meas. Sci. Technol. 17(5), 1129–1133 (2006).
[Crossref]

King, G. B.

Kistner, C.

A. Bartels, R. Cerna, C. Kistner, A. Thoma, F. Hudert, C. Janke, and T. Dekorsy, “Ultrafast time-domain spectroscopy based on high-speed asynchronous optical sampling,” Rev. Sci. Instrum. 78(3), 035107 (2007).
[Crossref] [PubMed]

Kneisler, R. J.

Kobayashi, Y.

Kondo, K. I.

Kuse, N.

Laming, R. I.

Laurendeau, N. M.

Laurent, P.

M. Niering, R. Holzwarth, J. Reichert, P. Pokasov, T. Udem, M. Weitz, T. W. Hänsch, P. Lemonde, G. Santarelli, M. Abgrall, P. Laurent, C. Salomon, and A. Clairon, “Measurement of the hydrogen 1S- 2S transition frequency by phase coherent comparison with a microwave cesium fountain clock,” Phys. Rev. Lett. 84(24), 5496–5499 (2000).
[Crossref] [PubMed]

Lee, D.

Y. Jung, S. Kim, D. Lee, and K. Oh, “Compact three segmented multimode fibre modal interferometer for high sensitivity refractive-index measurement,” Meas. Sci. Technol. 17(5), 1129–1133 (2006).
[Crossref]

Lemonde, P.

M. Niering, R. Holzwarth, J. Reichert, P. Pokasov, T. Udem, M. Weitz, T. W. Hänsch, P. Lemonde, G. Santarelli, M. Abgrall, P. Laurent, C. Salomon, and A. Clairon, “Measurement of the hydrogen 1S- 2S transition frequency by phase coherent comparison with a microwave cesium fountain clock,” Phys. Rev. Lett. 84(24), 5496–5499 (2000).
[Crossref] [PubMed]

Liang, Y.

Y. Liang, L. Jin, L. Wang, X. Bai, L. Cheng, and B.-O. Guan, “Fiber-laser-based ultrasound sensor for photoacoustic imaging,” Sci. Rep. 7(1), 40849 (2017).
[Crossref] [PubMed]

Liao, H.

S. Wang, P. Lu, H. Liao, L. Zhang, D. Liu, and J. Zhang, “Passively mode-locked fiber laser sensor for acoustic pressure sensing,” J. Mod. Opt. 60(21), 1892–1897 (2013).
[Crossref]

Likamwa, P.

Liu, D.

S. Wang, P. Lu, H. Liao, L. Zhang, D. Liu, and J. Zhang, “Passively mode-locked fiber laser sensor for acoustic pressure sensing,” J. Mod. Opt. 60(21), 1892–1897 (2013).
[Crossref]

Liu, S.

Liu, W. S.

Lu, C.

Lu, P.

S. Wang, P. Lu, H. Liao, L. Zhang, D. Liu, and J. Zhang, “Passively mode-locked fiber laser sensor for acoustic pressure sensing,” J. Mod. Opt. 60(21), 1892–1897 (2013).
[Crossref]

Lytle, F. E.

Mahadevan Pillai, V. P.

S. Binu, V. P. Mahadevan Pillai, V. Pradeepkumar, B. B. Padhy, C. S. Joseph, and N. Chandrasekaran, “Fibre optic glucose sensor,” Mater. Sci. Technol. C 29(1), 183–186 (2009).

Masuoka, T.

T. Minamikawa, T. Ogura, T. Masuoka, E. Hase, Y. Nakajima, Y. Yamaoka, K. Minoshima, and T. Yasui, “Optical-frequency-comb based ultrasound sensor,” Proc. SPIE 10064, 100645C (2017).
[Crossref]

Matsumoto, H.

Matsumoto, Y.

S. Taue, Y. Matsumoto, H. Fukano, and K. Tsuruta, “Experimental analysis of optical fiber multimode interference structure and its application to refractive index measurement,” Jpn. J. Appl. Phys. 51(4S), 04DG14 (2012).
[Crossref]

May-Arrioja, D. A.

Mbele, V.

S. A. Diddams, L. Hollberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature 445(7128), 627–630 (2007).
[Crossref] [PubMed]

Minamikawa, T.

T. Minamikawa, T. Ogura, Y. Nakajima, E. Hase, Y. Mizutani, H. Yamamoto, K. Minoshima, and T. Yasui, “Strain sensing based on strain to radio-frequency conversion of optical frequency comb,” Opt. Express 26(8), 9484–9491 (2018).
[Crossref] [PubMed]

T. Minamikawa, T. Ogura, T. Masuoka, E. Hase, Y. Nakajima, Y. Yamaoka, K. Minoshima, and T. Yasui, “Optical-frequency-comb based ultrasound sensor,” Proc. SPIE 10064, 100645C (2017).
[Crossref]

T. Minamikawa, Y.-D. Hsieh, K. Shibuya, E. Hase, Y. Kaneoka, S. Okubo, H. Inaba, Y. Mizutani, H. Yamamoto, T. Iwata, and T. Yasui, “Dual-comb spectroscopic ellipsometry,” Nat. Commun. 8(1), 610 (2017).
[Crossref] [PubMed]

Minoshima, K.

T. Minamikawa, T. Ogura, Y. Nakajima, E. Hase, Y. Mizutani, H. Yamamoto, K. Minoshima, and T. Yasui, “Strain sensing based on strain to radio-frequency conversion of optical frequency comb,” Opt. Express 26(8), 9484–9491 (2018).
[Crossref] [PubMed]

T. Minamikawa, T. Ogura, T. Masuoka, E. Hase, Y. Nakajima, Y. Yamaoka, K. Minoshima, and T. Yasui, “Optical-frequency-comb based ultrasound sensor,” Proc. SPIE 10064, 100645C (2017).
[Crossref]

A. Asahara and K. Minoshima, “Development of ultrafast time-resolved dual-comb spectroscopy,” APL Photon. 2(4), 041301 (2017).
[Crossref]

A. Asahara, A. Nishiyama, S. Yoshida, K. I. Kondo, Y. Nakajima, and K. Minoshima, “Dual-comb spectroscopy for rapid characterization of complex optical properties of solids,” Opt. Lett. 41(21), 4971–4974 (2016).
[Crossref] [PubMed]

T. Yasui, R. Ichikawa, Y.-D. Hsieh, K. Hayashi, H. Cahyadi, F. Hindle, Y. Sakaguchi, T. Iwata, Y. Mizutani, H. Yamamoto, K. Minoshima, and H. Inaba, “Adaptive sampling dual terahertz comb spectroscopy using dual free-running femtosecond lasers,” Sci. Rep. 5(1), 10786 (2015).
[Crossref] [PubMed]

G. Wu, M. Takahashi, K. Arai, H. Inaba, and K. Minoshima, “Extremely high-accuracy correction of air refractive index using two-colour optical frequency combs,” Sci. Rep. 3(1), 1894 (2013).
[Crossref] [PubMed]

K. Minoshima, K. Arai, and H. Inaba, “High-accuracy self-correction of refractive index of air using two-color interferometry of optical frequency combs,” Opt. Express 19(27), 26095–26105 (2011).
[Crossref] [PubMed]

K. Minoshima and H. Matsumoto, “High-accuracy measurement of 240-m distance in an optical tunnel by use of a compact femtosecond laser,” Appl. Opt. 39(30), 5512–5517 (2000).
[Crossref] [PubMed]

Mizutani, Y.

T. Minamikawa, T. Ogura, Y. Nakajima, E. Hase, Y. Mizutani, H. Yamamoto, K. Minoshima, and T. Yasui, “Strain sensing based on strain to radio-frequency conversion of optical frequency comb,” Opt. Express 26(8), 9484–9491 (2018).
[Crossref] [PubMed]

T. Minamikawa, Y.-D. Hsieh, K. Shibuya, E. Hase, Y. Kaneoka, S. Okubo, H. Inaba, Y. Mizutani, H. Yamamoto, T. Iwata, and T. Yasui, “Dual-comb spectroscopic ellipsometry,” Nat. Commun. 8(1), 610 (2017).
[Crossref] [PubMed]

T. Yasui, R. Ichikawa, Y.-D. Hsieh, K. Hayashi, H. Cahyadi, F. Hindle, Y. Sakaguchi, T. Iwata, Y. Mizutani, H. Yamamoto, K. Minoshima, and H. Inaba, “Adaptive sampling dual terahertz comb spectroscopy using dual free-running femtosecond lasers,” Sci. Rep. 5(1), 10786 (2015).
[Crossref] [PubMed]

Mottay, E.

Nakagawa, H.

S. Sekimoto, H. Nakagawa, S. Okazaki, K. Fukuda, S. Asakura, T. Shigemori, and S. Takahashi, “A fiber-optic evanescent-wave hydrogen gas sensor using palladium-supported tungsten oxide,” Sens. Actuators B Chem. 66(1–3), 142–145 (2000).
[Crossref]

Nakajima, Y.

Nenadovic, L.

I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3(6), 351–356 (2009).
[Crossref]

Newbury, N. R.

I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3(6), 351–356 (2009).
[Crossref]

Niering, M.

M. Niering, R. Holzwarth, J. Reichert, P. Pokasov, T. Udem, M. Weitz, T. W. Hänsch, P. Lemonde, G. Santarelli, M. Abgrall, P. Laurent, C. Salomon, and A. Clairon, “Measurement of the hydrogen 1S- 2S transition frequency by phase coherent comparison with a microwave cesium fountain clock,” Phys. Rev. Lett. 84(24), 5496–5499 (2000).
[Crossref] [PubMed]

Nishiyama, A.

Ogura, T.

T. Minamikawa, T. Ogura, Y. Nakajima, E. Hase, Y. Mizutani, H. Yamamoto, K. Minoshima, and T. Yasui, “Strain sensing based on strain to radio-frequency conversion of optical frequency comb,” Opt. Express 26(8), 9484–9491 (2018).
[Crossref] [PubMed]

T. Minamikawa, T. Ogura, T. Masuoka, E. Hase, Y. Nakajima, Y. Yamaoka, K. Minoshima, and T. Yasui, “Optical-frequency-comb based ultrasound sensor,” Proc. SPIE 10064, 100645C (2017).
[Crossref]

Oh, K.

Y. Jung, S. Kim, D. Lee, and K. Oh, “Compact three segmented multimode fibre modal interferometer for high sensitivity refractive-index measurement,” Meas. Sci. Technol. 17(5), 1129–1133 (2006).
[Crossref]

Okazaki, S.

S. Sekimoto, H. Nakagawa, S. Okazaki, K. Fukuda, S. Asakura, T. Shigemori, and S. Takahashi, “A fiber-optic evanescent-wave hydrogen gas sensor using palladium-supported tungsten oxide,” Sens. Actuators B Chem. 66(1–3), 142–145 (2000).
[Crossref]

Okubo, S.

T. Minamikawa, Y.-D. Hsieh, K. Shibuya, E. Hase, Y. Kaneoka, S. Okubo, H. Inaba, Y. Mizutani, H. Yamamoto, T. Iwata, and T. Yasui, “Dual-comb spectroscopic ellipsometry,” Nat. Commun. 8(1), 610 (2017).
[Crossref] [PubMed]

Ozawa, A.

Padhy, B. B.

S. Binu, V. P. Mahadevan Pillai, V. Pradeepkumar, B. B. Padhy, C. S. Joseph, and N. Chandrasekaran, “Fibre optic glucose sensor,” Mater. Sci. Technol. C 29(1), 183–186 (2009).

Pokasov, P.

M. Niering, R. Holzwarth, J. Reichert, P. Pokasov, T. Udem, M. Weitz, T. W. Hänsch, P. Lemonde, G. Santarelli, M. Abgrall, P. Laurent, C. Salomon, and A. Clairon, “Measurement of the hydrogen 1S- 2S transition frequency by phase coherent comparison with a microwave cesium fountain clock,” Phys. Rev. Lett. 84(24), 5496–5499 (2000).
[Crossref] [PubMed]

Pradeepkumar, V.

S. Binu, V. P. Mahadevan Pillai, V. Pradeepkumar, B. B. Padhy, C. S. Joseph, and N. Chandrasekaran, “Fibre optic glucose sensor,” Mater. Sci. Technol. C 29(1), 183–186 (2009).

Rampnoux, J.-M.

Reichert, J.

M. Niering, R. Holzwarth, J. Reichert, P. Pokasov, T. Udem, M. Weitz, T. W. Hänsch, P. Lemonde, G. Santarelli, M. Abgrall, P. Laurent, C. Salomon, and A. Clairon, “Measurement of the hydrogen 1S- 2S transition frequency by phase coherent comparison with a microwave cesium fountain clock,” Phys. Rev. Lett. 84(24), 5496–5499 (2000).
[Crossref] [PubMed]

T. Udem, J. Reichert, R. Holzwarth, and T. W. Hänsch, “Accurate measurement of large optical frequency differences with a mode-locked laser,” Opt. Lett. 24(13), 881–883 (1999).
[Crossref] [PubMed]

Rigail, P.

Rønnekleiv, E.

Sakaguchi, Y.

T. Yasui, R. Ichikawa, Y.-D. Hsieh, K. Hayashi, H. Cahyadi, F. Hindle, Y. Sakaguchi, T. Iwata, Y. Mizutani, H. Yamamoto, K. Minoshima, and H. Inaba, “Adaptive sampling dual terahertz comb spectroscopy using dual free-running femtosecond lasers,” Sci. Rep. 5(1), 10786 (2015).
[Crossref] [PubMed]

Salomon, C.

M. Niering, R. Holzwarth, J. Reichert, P. Pokasov, T. Udem, M. Weitz, T. W. Hänsch, P. Lemonde, G. Santarelli, M. Abgrall, P. Laurent, C. Salomon, and A. Clairon, “Measurement of the hydrogen 1S- 2S transition frequency by phase coherent comparison with a microwave cesium fountain clock,” Phys. Rev. Lett. 84(24), 5496–5499 (2000).
[Crossref] [PubMed]

Santarelli, G.

M. Niering, R. Holzwarth, J. Reichert, P. Pokasov, T. Udem, M. Weitz, T. W. Hänsch, P. Lemonde, G. Santarelli, M. Abgrall, P. Laurent, C. Salomon, and A. Clairon, “Measurement of the hydrogen 1S- 2S transition frequency by phase coherent comparison with a microwave cesium fountain clock,” Phys. Rev. Lett. 84(24), 5496–5499 (2000).
[Crossref] [PubMed]

Sekimoto, S.

S. Sekimoto, H. Nakagawa, S. Okazaki, K. Fukuda, S. Asakura, T. Shigemori, and S. Takahashi, “A fiber-optic evanescent-wave hydrogen gas sensor using palladium-supported tungsten oxide,” Sens. Actuators B Chem. 66(1–3), 142–145 (2000).
[Crossref]

Selvas-Aguilar, R.

Shibuya, K.

T. Minamikawa, Y.-D. Hsieh, K. Shibuya, E. Hase, Y. Kaneoka, S. Okubo, H. Inaba, Y. Mizutani, H. Yamamoto, T. Iwata, and T. Yasui, “Dual-comb spectroscopic ellipsometry,” Nat. Commun. 8(1), 610 (2017).
[Crossref] [PubMed]

Shigemori, T.

S. Sekimoto, H. Nakagawa, S. Okazaki, K. Fukuda, S. Asakura, T. Shigemori, and S. Takahashi, “A fiber-optic evanescent-wave hydrogen gas sensor using palladium-supported tungsten oxide,” Sens. Actuators B Chem. 66(1–3), 142–145 (2000).
[Crossref]

Srivastava, S. K.

S. K. Srivastava, R. Verma, and B. D. Gupta, “Surface plasmon resonance based fiber optic sensor for the detection of low water content in ethanol,” Sens. Actuators B Chem. 153(1), 194–198 (2011).
[Crossref]

Swann, W. C.

I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3(6), 351–356 (2009).
[Crossref]

Takagi, Y.

Y. Takagi and S. Adachi, “Subpicosecond optical sampling spectrometer using asynchronous tunable mode-locked lasers,” Rev. Sci. Instrum. 70(5), 2218–2224 (1999).
[Crossref]

Takahashi, M.

G. Wu, M. Takahashi, K. Arai, H. Inaba, and K. Minoshima, “Extremely high-accuracy correction of air refractive index using two-colour optical frequency combs,” Sci. Rep. 3(1), 1894 (2013).
[Crossref] [PubMed]

Takahashi, S.

S. Sekimoto, H. Nakagawa, S. Okazaki, K. Fukuda, S. Asakura, T. Shigemori, and S. Takahashi, “A fiber-optic evanescent-wave hydrogen gas sensor using palladium-supported tungsten oxide,” Sens. Actuators B Chem. 66(1–3), 142–145 (2000).
[Crossref]

Tam, H. Y.

Taue, S.

H. Fukano, D. Watanabe, and S. Taue, “Sensitivity characteristics of multimode-interference optical-fiber temperature-sensor with solid cladding material,” IEEE Sens. J. 16(24), 8921–8927 (2016).
[Crossref]

S. Taue, Y. Matsumoto, H. Fukano, and K. Tsuruta, “Experimental analysis of optical fiber multimode interference structure and its application to refractive index measurement,” Jpn. J. Appl. Phys. 51(4S), 04DG14 (2012).
[Crossref]

Tazawa, H.

H. Tazawa, T. Kanie, and M. Katayama, “Fiber-optic coupler based refractive index sensor and its application to biosensing,” Appl. Phys. Lett. 91(11), 113901 (2007).
[Crossref]

Thoma, A.

A. Bartels, R. Cerna, C. Kistner, A. Thoma, F. Hudert, C. Janke, and T. Dekorsy, “Ultrafast time-domain spectroscopy based on high-speed asynchronous optical sampling,” Rev. Sci. Instrum. 78(3), 035107 (2007).
[Crossref] [PubMed]

Tsuruta, K.

S. Taue, Y. Matsumoto, H. Fukano, and K. Tsuruta, “Experimental analysis of optical fiber multimode interference structure and its application to refractive index measurement,” Jpn. J. Appl. Phys. 51(4S), 04DG14 (2012).
[Crossref]

Udem, T.

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002).
[Crossref] [PubMed]

M. Niering, R. Holzwarth, J. Reichert, P. Pokasov, T. Udem, M. Weitz, T. W. Hänsch, P. Lemonde, G. Santarelli, M. Abgrall, P. Laurent, C. Salomon, and A. Clairon, “Measurement of the hydrogen 1S- 2S transition frequency by phase coherent comparison with a microwave cesium fountain clock,” Phys. Rev. Lett. 84(24), 5496–5499 (2000).
[Crossref] [PubMed]

T. Udem, J. Reichert, R. Holzwarth, and T. W. Hänsch, “Accurate measurement of large optical frequency differences with a mode-locked laser,” Opt. Lett. 24(13), 881–883 (1999).
[Crossref] [PubMed]

Verma, R.

S. K. Srivastava, R. Verma, and B. D. Gupta, “Surface plasmon resonance based fiber optic sensor for the detection of low water content in ethanol,” Sens. Actuators B Chem. 153(1), 194–198 (2011).
[Crossref]

Wang, L.

Y. Liang, L. Jin, L. Wang, X. Bai, L. Cheng, and B.-O. Guan, “Fiber-laser-based ultrasound sensor for photoacoustic imaging,” Sci. Rep. 7(1), 40849 (2017).
[Crossref] [PubMed]

Wang, Q.

Wang, S.

S. Wang, P. Lu, H. Liao, L. Zhang, D. Liu, and J. Zhang, “Passively mode-locked fiber laser sensor for acoustic pressure sensing,” J. Mod. Opt. 60(21), 1892–1897 (2013).
[Crossref]

Watanabe, D.

H. Fukano, D. Watanabe, and S. Taue, “Sensitivity characteristics of multimode-interference optical-fiber temperature-sensor with solid cladding material,” IEEE Sens. J. 16(24), 8921–8927 (2016).
[Crossref]

Weitz, M.

M. Niering, R. Holzwarth, J. Reichert, P. Pokasov, T. Udem, M. Weitz, T. W. Hänsch, P. Lemonde, G. Santarelli, M. Abgrall, P. Laurent, C. Salomon, and A. Clairon, “Measurement of the hydrogen 1S- 2S transition frequency by phase coherent comparison with a microwave cesium fountain clock,” Phys. Rev. Lett. 84(24), 5496–5499 (2000).
[Crossref] [PubMed]

Wong, A. C.

Wu, G.

G. Wu, M. Takahashi, K. Arai, H. Inaba, and K. Minoshima, “Extremely high-accuracy correction of air refractive index using two-colour optical frequency combs,” Sci. Rep. 3(1), 1894 (2013).
[Crossref] [PubMed]

Yamamoto, H.

T. Minamikawa, T. Ogura, Y. Nakajima, E. Hase, Y. Mizutani, H. Yamamoto, K. Minoshima, and T. Yasui, “Strain sensing based on strain to radio-frequency conversion of optical frequency comb,” Opt. Express 26(8), 9484–9491 (2018).
[Crossref] [PubMed]

T. Minamikawa, Y.-D. Hsieh, K. Shibuya, E. Hase, Y. Kaneoka, S. Okubo, H. Inaba, Y. Mizutani, H. Yamamoto, T. Iwata, and T. Yasui, “Dual-comb spectroscopic ellipsometry,” Nat. Commun. 8(1), 610 (2017).
[Crossref] [PubMed]

T. Yasui, R. Ichikawa, Y.-D. Hsieh, K. Hayashi, H. Cahyadi, F. Hindle, Y. Sakaguchi, T. Iwata, Y. Mizutani, H. Yamamoto, K. Minoshima, and H. Inaba, “Adaptive sampling dual terahertz comb spectroscopy using dual free-running femtosecond lasers,” Sci. Rep. 5(1), 10786 (2015).
[Crossref] [PubMed]

Yamaoka, Y.

T. Minamikawa, T. Ogura, T. Masuoka, E. Hase, Y. Nakajima, Y. Yamaoka, K. Minoshima, and T. Yasui, “Optical-frequency-comb based ultrasound sensor,” Proc. SPIE 10064, 100645C (2017).
[Crossref]

Yasui, T.

T. Minamikawa, T. Ogura, Y. Nakajima, E. Hase, Y. Mizutani, H. Yamamoto, K. Minoshima, and T. Yasui, “Strain sensing based on strain to radio-frequency conversion of optical frequency comb,” Opt. Express 26(8), 9484–9491 (2018).
[Crossref] [PubMed]

T. Minamikawa, T. Ogura, T. Masuoka, E. Hase, Y. Nakajima, Y. Yamaoka, K. Minoshima, and T. Yasui, “Optical-frequency-comb based ultrasound sensor,” Proc. SPIE 10064, 100645C (2017).
[Crossref]

T. Minamikawa, Y.-D. Hsieh, K. Shibuya, E. Hase, Y. Kaneoka, S. Okubo, H. Inaba, Y. Mizutani, H. Yamamoto, T. Iwata, and T. Yasui, “Dual-comb spectroscopic ellipsometry,” Nat. Commun. 8(1), 610 (2017).
[Crossref] [PubMed]

T. Yasui, R. Ichikawa, Y.-D. Hsieh, K. Hayashi, H. Cahyadi, F. Hindle, Y. Sakaguchi, T. Iwata, Y. Mizutani, H. Yamamoto, K. Minoshima, and H. Inaba, “Adaptive sampling dual terahertz comb spectroscopy using dual free-running femtosecond lasers,” Sci. Rep. 5(1), 10786 (2015).
[Crossref] [PubMed]

Yin, Z.

Yoshida, S.

Zervas, M. N.

Zhang, J.

S. Wang, P. Lu, H. Liao, L. Zhang, D. Liu, and J. Zhang, “Passively mode-locked fiber laser sensor for acoustic pressure sensing,” J. Mod. Opt. 60(21), 1892–1897 (2013).
[Crossref]

Zhang, L.

S. Wang, P. Lu, H. Liao, L. Zhang, D. Liu, and J. Zhang, “Passively mode-locked fiber laser sensor for acoustic pressure sensing,” J. Mod. Opt. 60(21), 1892–1897 (2013).
[Crossref]

S. Liu, Z. Yin, L. Zhang, L. Gao, X. Chen, and J. Cheng, “Multilongitudinal mode fiber laser for strain measurement,” Opt. Lett. 35(6), 835–837 (2010).
[Crossref] [PubMed]

APL Photon. (1)

A. Asahara and K. Minoshima, “Development of ultrafast time-resolved dual-comb spectroscopy,” APL Photon. 2(4), 041301 (2017).
[Crossref]

Appl. Opt. (4)

Appl. Phys. Lett. (1)

H. Tazawa, T. Kanie, and M. Katayama, “Fiber-optic coupler based refractive index sensor and its application to biosensing,” Appl. Phys. Lett. 91(11), 113901 (2007).
[Crossref]

IEEE Sens. J. (1)

H. Fukano, D. Watanabe, and S. Taue, “Sensitivity characteristics of multimode-interference optical-fiber temperature-sensor with solid cladding material,” IEEE Sens. J. 16(24), 8921–8927 (2016).
[Crossref]

J. Mod. Opt. (1)

S. Wang, P. Lu, H. Liao, L. Zhang, D. Liu, and J. Zhang, “Passively mode-locked fiber laser sensor for acoustic pressure sensing,” J. Mod. Opt. 60(21), 1892–1897 (2013).
[Crossref]

J. Solution Chem. (1)

J. V. Herráez and R. Belda, “Refractive indices, densities and excess molar volumes of monoalcohols + water,” J. Solution Chem. 35(9), 1315–1328 (2006).
[Crossref]

Jpn. J. Appl. Phys. (1)

S. Taue, Y. Matsumoto, H. Fukano, and K. Tsuruta, “Experimental analysis of optical fiber multimode interference structure and its application to refractive index measurement,” Jpn. J. Appl. Phys. 51(4S), 04DG14 (2012).
[Crossref]

Mater. Sci. Technol. C (1)

S. Binu, V. P. Mahadevan Pillai, V. Pradeepkumar, B. B. Padhy, C. S. Joseph, and N. Chandrasekaran, “Fibre optic glucose sensor,” Mater. Sci. Technol. C 29(1), 183–186 (2009).

Meas. Sci. Technol. (1)

Y. Jung, S. Kim, D. Lee, and K. Oh, “Compact three segmented multimode fibre modal interferometer for high sensitivity refractive-index measurement,” Meas. Sci. Technol. 17(5), 1129–1133 (2006).
[Crossref]

Nat. Commun. (1)

T. Minamikawa, Y.-D. Hsieh, K. Shibuya, E. Hase, Y. Kaneoka, S. Okubo, H. Inaba, Y. Mizutani, H. Yamamoto, T. Iwata, and T. Yasui, “Dual-comb spectroscopic ellipsometry,” Nat. Commun. 8(1), 610 (2017).
[Crossref] [PubMed]

Nat. Photonics (1)

I. Coddington, W. C. Swann, L. Nenadovic, and N. R. Newbury, “Rapid and precise absolute distance measurements at long range,” Nat. Photonics 3(6), 351–356 (2009).
[Crossref]

Nature (2)

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416(6877), 233–237 (2002).
[Crossref] [PubMed]

S. A. Diddams, L. Hollberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature 445(7128), 627–630 (2007).
[Crossref] [PubMed]

Opt. Express (5)

Opt. Lett. (5)

Phys. Rev. Lett. (1)

M. Niering, R. Holzwarth, J. Reichert, P. Pokasov, T. Udem, M. Weitz, T. W. Hänsch, P. Lemonde, G. Santarelli, M. Abgrall, P. Laurent, C. Salomon, and A. Clairon, “Measurement of the hydrogen 1S- 2S transition frequency by phase coherent comparison with a microwave cesium fountain clock,” Phys. Rev. Lett. 84(24), 5496–5499 (2000).
[Crossref] [PubMed]

Proc. SPIE (1)

T. Minamikawa, T. Ogura, T. Masuoka, E. Hase, Y. Nakajima, Y. Yamaoka, K. Minoshima, and T. Yasui, “Optical-frequency-comb based ultrasound sensor,” Proc. SPIE 10064, 100645C (2017).
[Crossref]

Rev. Sci. Instrum. (2)

Y. Takagi and S. Adachi, “Subpicosecond optical sampling spectrometer using asynchronous tunable mode-locked lasers,” Rev. Sci. Instrum. 70(5), 2218–2224 (1999).
[Crossref]

A. Bartels, R. Cerna, C. Kistner, A. Thoma, F. Hudert, C. Janke, and T. Dekorsy, “Ultrafast time-domain spectroscopy based on high-speed asynchronous optical sampling,” Rev. Sci. Instrum. 78(3), 035107 (2007).
[Crossref] [PubMed]

Sci. Rep. (3)

G. Wu, M. Takahashi, K. Arai, H. Inaba, and K. Minoshima, “Extremely high-accuracy correction of air refractive index using two-colour optical frequency combs,” Sci. Rep. 3(1), 1894 (2013).
[Crossref] [PubMed]

Y. Liang, L. Jin, L. Wang, X. Bai, L. Cheng, and B.-O. Guan, “Fiber-laser-based ultrasound sensor for photoacoustic imaging,” Sci. Rep. 7(1), 40849 (2017).
[Crossref] [PubMed]

T. Yasui, R. Ichikawa, Y.-D. Hsieh, K. Hayashi, H. Cahyadi, F. Hindle, Y. Sakaguchi, T. Iwata, Y. Mizutani, H. Yamamoto, K. Minoshima, and H. Inaba, “Adaptive sampling dual terahertz comb spectroscopy using dual free-running femtosecond lasers,” Sci. Rep. 5(1), 10786 (2015).
[Crossref] [PubMed]

Sens. Actuators B Chem. (2)

S. K. Srivastava, R. Verma, and B. D. Gupta, “Surface plasmon resonance based fiber optic sensor for the detection of low water content in ethanol,” Sens. Actuators B Chem. 153(1), 194–198 (2011).
[Crossref]

S. Sekimoto, H. Nakagawa, S. Okazaki, K. Fukuda, S. Asakura, T. Shigemori, and S. Takahashi, “A fiber-optic evanescent-wave hydrogen gas sensor using palladium-supported tungsten oxide,” Sens. Actuators B Chem. 66(1–3), 142–145 (2000).
[Crossref]

Supplementary Material (1)

NameDescription
» Visualization 1       Temporal behavior of RF spectrum of the optical beat signal between one mode of the MMI-OFC and a CW laser light phase-locked to another fully stabilized OFC

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Principle of operation. (a) Schematic diagram of the MMI fiber sensor. An inset of Fig. 1(a) shows a schematic drawing of the Goos-Hänchen shift on the surface of the clad-less MMF. The MMI fiber sensor functions as an RI-dependent tunable bandpass filter via the MMI process. (b) Conversion from sample RI change to RI-dependent frep shift. The intracavity MMI fiber sensor shifts the optical spectrum of the MMI-OFC depending on the sample RI. The wavelength-shifted MMI-OFC spectrum experiences the wavelength dispersion of the cavity fiber, resulting in the conversion from an RI-dependent spectral shift to an RI-dependent shift of the optical cavity length nL. Such an RI-dependent nL shift leads to an RI-dependent frep shift based on Eq. (1).
Fig. 2
Fig. 2 Experimental setup. See Materials and methods for details.
Fig. 3
Fig. 3 Comparison of optical spectrum between usual OFC and MMI-OFC.
Fig. 4
Fig. 4 (a) RF spectrum of the RF comb mode within the frequency range of 3000 MHz. RF spectrum of the fundamental component with the frequency range of (b) 50 MHz, (c) 0.07 MHz, and (d) 0.003 MHz. RF spectrum of the 49-th harmonic component with the frequency range of (b) 50 MHz, (c) 0.07 MHz, and (d) 0.003 MHz RBW, resolution bandwidth; VBW, video bandwidth.
Fig. 5
Fig. 5 RF spectrum of the optical beat signal between one mode of the MMI-OFC and a CW laser light phase-locked to another fully stabilized OFC (see Visualization 1).
Fig. 6
Fig. 6 Comparison of frequency fluctuation between usual OFC and MMI-OFC.
Fig. 7
Fig. 7 RI-dependent shift of optical spectrum. (a) Optical spectra of MMI-OFC with respect to different sample RIs and (b) magnified spectra of their peaks. Increasing sample RI causes a long-wavelength shift of the optical spectrum. (c) Relation between sample RI and wavelength shift ∆λ in the MMI-OFC. Plots and error bars indicate the mean and the standard deviation of ∆λ in 5 repetitive measurements. (d) Relation between sample RI and wavelength shift ∆λ in the extra-cavity MMI fiber sensor. Blue line shows a linear approximation by a curve fitting analysis.
Fig. 8
Fig. 8 RI-dependent frep shift. (a) RF spectra of frep signal with respect to different sample RI. Increasing sample RI causes decrease of frep. (b) Relation between sample RI and frep shift. Plots and error bars indicate the mean and the standard deviation of frep in 5 repetitive measurements. Blue line shows a linear approximation by a curve fitting analysis.
Fig. 9
Fig. 9 Dependence of frep shift on temperature. (a) Cavity temperature dependence and (b) sample temperature dependence. Plots and error bars indicate the mean and the standard deviation of frep in 5 repetitive measurements. Blue line shows a linear approximation by a curve fitting analysis.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

f rep = c nL ,
Z= λ n MMF 2π sin 2 θ( n sam n MMF ) 2 ,
λ MMI = n MMF m L MMF [D( n scan )] 2 ,
RI=1.3326+4.90× 10 4 ×EC.

Metrics