Abstract

We experimentally demonstrate a novel cascaded plasmonic superlens, which can directly image subwavelength objects with magnification in the far field at a wavelength of 640nm. The lens consists of two plasmonic slabs. One is a plasmonic cavity lens used for near-field coupling, and the other one is a planar plasmonic lens for phase compensation and thus, image magnification. To tune the performance wavelength to visible and to enhance the near-field transmission, distributed Bragg reflectors are integrated to the plasmonic cavity lens around the lens center, forming additional lateral cavities for surface waves. In this article, we first show numerical results about the working principle and the performance of the lens. Then, we demonstrate the imaging performance of a fabricated superlens experimentally. The fabricated superlens exhibits a lateral resolution down to 200 nm at the wavelength of 640 nm observed in the far field. Compared to our earlier design, shift invariance is achieved with the current approach. Our results could open a way for designing and fabricating novel miniaturized plasmonic superlenses in the future.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Cascaded plasmonic superlens for far-field imaging with magnification at visible wavelength

Huiyu Li, Liwei Fu, Karsten Frenner, and Wolfgang Osten
Opt. Express 26(8) 10888-10897 (2018)

Quasi-3D plasmonic coupling scheme for near-field optical lithography and imaging

Yuan Wang, Zhidong Du, Yongshik Park, Chen Chen, Xiang Zhang, and Liang Pan
Opt. Lett. 40(16) 3918-3921 (2015)

Dynamically tunable and active hyperbolic metamaterials

Joseph S. T. Smalley, Felipe Vallini, Xiang Zhang, and Yeshaiahu Fainman
Adv. Opt. Photon. 10(2) 354-408 (2018)

References

  • View by:
  • |
  • |
  • |

  1. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
    [Crossref] [PubMed]
  2. X. Zhang and Z. Liu, “Superlenses to overcome the diffraction limit,” Nat. Mater. 7(6), 435–441 (2008).
    [Crossref] [PubMed]
  3. N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
    [Crossref] [PubMed]
  4. C. Wang, Y. Zhao, D. Gan, C. Du, and X. Luo, “Subwavelength imaging with anisotropic structure comprising alternately layered metal and dielectric films,” Opt. Express 16(6), 4217–4227 (2008).
    [Crossref] [PubMed]
  5. L. Ferrari, C. Wu, D. Lepage, X. Zhang, and Z. Liu, “Hyperbolic metamaterials and their applications,” Prog. Quantum Electron. 40, 1–40 (2015).
    [Crossref]
  6. Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
    [Crossref] [PubMed]
  7. P. Shekhar, J. Atkinson, and Z. Jacob, “Hyperbolic metamaterials: fundamentals and applications,” Nano Converg. 1(1), 14 (2014).
    [Crossref] [PubMed]
  8. L. Xu, G. Zheng, K. Cao, W. Su, and Y. Liu, “Subwavelength imaging through one-dimensional metallodielectric photonic crystals at optical frequencies,” Optik (Stuttg.) 125(14), 3583–3586 (2014).
    [Crossref]
  9. Y. Xiong, Z. Liu, S. Durant, H. Lee, C. Sun, and X. Zhang, “Tuning the far-field superlens: from UV to visible,” Opt. Express 15(12), 7095–7102 (2007).
    [Crossref] [PubMed]
  10. J. Rho, Z. Ye, Y. Xiong, X. Yin, Z. Liu, H. Choi, G. Bartal, and X. Zhang, “Spherical hyperlens for two-dimensional sub-diffractional imaging at visible frequencies,” Nat. Commun. 1(9), 143 (2010).
    [Crossref] [PubMed]
  11. B. Zhang and G. Barbastathis, “Dielectric metamaterial magnifier creating a virtual color image with far-field subwavelength information,” Opt. Express 18(11), 11216–11222 (2010).
    [Crossref] [PubMed]
  12. J. Zhang, “Evolutionary optimization of compact dielectric lens for farfield sub-wavelength imaging,” Sci. Rep. 5(1), 10083 (2015).
    [Crossref] [PubMed]
  13. D. Li, D. H. Zhang, C. Yan, and Z. Xu, “Figure of merit for optimization of metal - dielectric multilayer lenses,” IEEE Trans. NanoTechnol. 13(3), 452–457 (2014).
    [Crossref]
  14. A. Pastuszczak and R. Kotyński, “Optimized low-loss multilayers for imaging with sub-wavelength resolution in the visible wavelength range,” J. Appl. Phys. 109(8), 084302 (2011).
    [Crossref]
  15. T. Li, V. Nagal, D. H. Gracias, and J. B. Khurgin, “Limits of imaging with multilayer hyperbolic metamaterials,” Opt. Express 25(12), 13588–13601 (2017).
    [Crossref] [PubMed]
  16. Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical superlens,” Nano Lett. 7(2), 403–408 (2007).
    [Crossref] [PubMed]
  17. Z. Jacob, L. V. Alekseyev, and E. Narimanov, “Optical Hyperlens: Far-field imaging beyond the diffraction limit,” Opt. Express 14(18), 8247–8256 (2006).
    [Crossref] [PubMed]
  18. S. Durant, Z. Liu, J. M. Steele, and X. Zhang, “Theory of the transmission properties of an optical far-field superlens for imaging beyond the diffraction limit,” J. Opt. Soc. Am. B 23(11), 2383–2392 (2006).
    [Crossref]
  19. K. Wu and G. P. Wang, “Two-dimensional Fibonacci grating for far-field super-resolution imaging,” Sci. Rep. 6(1), 38651 (2016).
    [Crossref] [PubMed]
  20. F. Wei and Z. Liu, “Plasmonic structured illumination microscopy,” Nano Lett. 10(7), 2531–2536 (2010).
    [Crossref] [PubMed]
  21. F. Hu, M. G. Somekh, D. J. Albutt, K. Webb, E. Moradi, and C. W. See, “Sub-100 nm resolution microscopy based on proximity projection grating scheme,” Sci. Rep. 5(1), 8589 (2015).
    [Crossref] [PubMed]
  22. L. Li, F. Li, T. J. Cui, and K. Yao, “Far-field imaging beyond diffraction limit using single sensor in combination with a resonant aperture,” Opt. Express 23(1), 401–412 (2015).
    [Crossref] [PubMed]
  23. C. Jouvaud, A. Ourir, and J. de Rosny, “Far-field imaging with a multi-frequency metalens,” Appl. Phys. Lett. 104(24), 243507 (2014).
    [Crossref]
  24. R. Wang, B. Z. Wang, Z. S. Gong, and X. Ding, “Far-field subwavelength imaging with near-field resonant metalens scanning at microwave frequencies,” Sci. Rep. 5(1), 11131 (2015).
    [Crossref] [PubMed]
  25. C. Ma and Z. Liu, “A super resolution metalens with phase compensation mechanism,” Appl. Phys. Lett. 96(18), 183103 (2010).
    [Crossref] [PubMed]
  26. C. Ma and Z. Liu, “Designing super-resolution metalenses by the combination of metamaterials and nanoscale plasmonic waveguide couplers,” J. Nanophotonics 5(1), 051604 (2011).
    [Crossref]
  27. H. Li, L. Fu, K. Frenner, and W. Osten, “Cascaded plasmonic superlens for far-field imaging with magnification at visible wavelength,” Opt. Express 26(8), 10888–10897 (2018).
    [Crossref] [PubMed]
  28. H. Shi, C. Wang, C. Du, X. Luo, X. Dong, and H. Gao, “Beam manipulating by metallic nano-slits with variant widths,” Opt. Express 13(18), 6815–6820 (2005).
    [Crossref] [PubMed]
  29. C. Ma and E. Van Keuren, “Toward conventional-optical-lens-like superlenses,” Nano Bulletin 2(1), 130105 (2013).
  30. D. Lu and Z. Liu, “Hyperlenses and metalenses for far-field super-resolution imaging,” Nat. Commun. 3(1), 1205 (2012).
    [Crossref] [PubMed]
  31. F. Xu, G. Chen, C. Wang, B. Cao, and Y. Lou, “Superlens imaging with a surface plasmon polariton cavity in imaging space,” Opt. Lett. 38(19), 3819–3822 (2013).
    [Crossref] [PubMed]
  32. Z. Zhao, Y. Luo, N. Yao, W. Zhang, C. Wang, P. Gao, C. Zhao, M. Pu, and X. Luo, “Modeling and experimental study of plasmonic lens imaging with resolution enhanced methods,” Opt. Express 24(24), 27115–27126 (2016).
    [Crossref] [PubMed]
  33. Y. Luo, L. Liu, W. Zhang, W. Kong, C. Zhao, P. Gao, Z. Zhao, M. Pu, C. Wang, and X. Luo, “Proximity correction and resolution enhancement of plasmonic lens lithography far beyond the near field diffraction limit,” RSC Advances 7(20), 12366–12373 (2017).
    [Crossref]
  34. L. Fu, P. Schau, K. Frenner, and W. Osten, “Cascaded plasmonic superlens for near field imaging with magnification,” Proc. SPIE 9526, 95260Z (2015).
    [Crossref]
  35. H. Li, L. Fu, K. Frenner, and W. Osten, “Nanofabrication results of a novel cascaded plasmonic superlens: lessons learned,” Proc. SPIE 10330, 103300Y (2017).
    [Crossref]
  36. L. Fu, H. Schweizer, T. Weiss, and H. Giessen, “Optical properties of metallic meanders,” J. Opt. Soc. Am. B 26(12), B111–B119 (2009).
    [Crossref]
  37. L. Fu, P. Schau, K. Frenner, W. Osten, T. Weiss, H. Schweizer, and H. Giessen, “Mode coupling and interaction in a plasmonic microcavity with resonant mirrors,” Phys. Rev. B 84(23), 235402 (2011).
    [Crossref]
  38. P. Schau, K. Frenner, L. Fu, H. Schweizer, and W. Osten, “Coupling between surface plasmons and Fabry-Pérot modes in metallic double meander structures,” Proc. SPIE 7711, 77111F (2010).
    [Crossref]
  39. L. Fu, H. Li, K. Frenner, and W. Osten, “Design of a two-dimensional cascaded plasmonic superlens,” Inst. für Tech. Opt. Annu. Rep. 2015/2016, 51–52 (2016).
  40. P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [Crossref]
  41. L. Verslegers, P. B. Catrysse, Z. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. Fan, “Planar lenses based on nanoscale slit arrays in a metallic film,” Nano Lett. 9(1), 235–238 (2009).
    [Crossref] [PubMed]
  42. W. Chen, M. D. Thoreson, S. Ishii, A. V. Kildishev, and V. M. Shalaev, “Ultra-thin ultra-smooth and low-loss silver films on a germanium wetting layer,” Opt. Express 18(5), 5124–5134 (2010).
    [Crossref] [PubMed]
  43. M. Khorasaninejad and F. Capasso, “Metalenses: Versatile multifunctional photonic components,” Science 358(6367), eaam8100 (2017).
  44. Y. Zhu, W. Yuan, Y. Yu, and P. Wang, “Robustly efficient superfocusing of immersion plasmonic lenses based on coupled nanoslits,” Plasmonics 11(6), 1543–1548 (2016).
    [Crossref]
  45. S. Saxena, R. P. Chaudhary, A. Singh, S. Awasthi, and S. Shukla, “Plasmonic micro lens for extraordinary transmission of broadband light,” Sci. Rep. 4(1), 5586 (2014).
    [Crossref] [PubMed]
  46. Y. Li, X. Li, M. Pu, Z. Zhao, X. Ma, Y. Wang, and X. Luo, “Achromatic flat optical components via compensation between structure and material dispersions,” Sci. Rep. 6(1), 19885 (2016).
    [Crossref] [PubMed]

2018 (1)

2017 (3)

Y. Luo, L. Liu, W. Zhang, W. Kong, C. Zhao, P. Gao, Z. Zhao, M. Pu, C. Wang, and X. Luo, “Proximity correction and resolution enhancement of plasmonic lens lithography far beyond the near field diffraction limit,” RSC Advances 7(20), 12366–12373 (2017).
[Crossref]

H. Li, L. Fu, K. Frenner, and W. Osten, “Nanofabrication results of a novel cascaded plasmonic superlens: lessons learned,” Proc. SPIE 10330, 103300Y (2017).
[Crossref]

T. Li, V. Nagal, D. H. Gracias, and J. B. Khurgin, “Limits of imaging with multilayer hyperbolic metamaterials,” Opt. Express 25(12), 13588–13601 (2017).
[Crossref] [PubMed]

2016 (5)

K. Wu and G. P. Wang, “Two-dimensional Fibonacci grating for far-field super-resolution imaging,” Sci. Rep. 6(1), 38651 (2016).
[Crossref] [PubMed]

L. Fu, H. Li, K. Frenner, and W. Osten, “Design of a two-dimensional cascaded plasmonic superlens,” Inst. für Tech. Opt. Annu. Rep. 2015/2016, 51–52 (2016).

Z. Zhao, Y. Luo, N. Yao, W. Zhang, C. Wang, P. Gao, C. Zhao, M. Pu, and X. Luo, “Modeling and experimental study of plasmonic lens imaging with resolution enhanced methods,” Opt. Express 24(24), 27115–27126 (2016).
[Crossref] [PubMed]

Y. Zhu, W. Yuan, Y. Yu, and P. Wang, “Robustly efficient superfocusing of immersion plasmonic lenses based on coupled nanoslits,” Plasmonics 11(6), 1543–1548 (2016).
[Crossref]

Y. Li, X. Li, M. Pu, Z. Zhao, X. Ma, Y. Wang, and X. Luo, “Achromatic flat optical components via compensation between structure and material dispersions,” Sci. Rep. 6(1), 19885 (2016).
[Crossref] [PubMed]

2015 (6)

F. Hu, M. G. Somekh, D. J. Albutt, K. Webb, E. Moradi, and C. W. See, “Sub-100 nm resolution microscopy based on proximity projection grating scheme,” Sci. Rep. 5(1), 8589 (2015).
[Crossref] [PubMed]

L. Li, F. Li, T. J. Cui, and K. Yao, “Far-field imaging beyond diffraction limit using single sensor in combination with a resonant aperture,” Opt. Express 23(1), 401–412 (2015).
[Crossref] [PubMed]

R. Wang, B. Z. Wang, Z. S. Gong, and X. Ding, “Far-field subwavelength imaging with near-field resonant metalens scanning at microwave frequencies,” Sci. Rep. 5(1), 11131 (2015).
[Crossref] [PubMed]

L. Fu, P. Schau, K. Frenner, and W. Osten, “Cascaded plasmonic superlens for near field imaging with magnification,” Proc. SPIE 9526, 95260Z (2015).
[Crossref]

J. Zhang, “Evolutionary optimization of compact dielectric lens for farfield sub-wavelength imaging,” Sci. Rep. 5(1), 10083 (2015).
[Crossref] [PubMed]

L. Ferrari, C. Wu, D. Lepage, X. Zhang, and Z. Liu, “Hyperbolic metamaterials and their applications,” Prog. Quantum Electron. 40, 1–40 (2015).
[Crossref]

2014 (5)

P. Shekhar, J. Atkinson, and Z. Jacob, “Hyperbolic metamaterials: fundamentals and applications,” Nano Converg. 1(1), 14 (2014).
[Crossref] [PubMed]

L. Xu, G. Zheng, K. Cao, W. Su, and Y. Liu, “Subwavelength imaging through one-dimensional metallodielectric photonic crystals at optical frequencies,” Optik (Stuttg.) 125(14), 3583–3586 (2014).
[Crossref]

D. Li, D. H. Zhang, C. Yan, and Z. Xu, “Figure of merit for optimization of metal - dielectric multilayer lenses,” IEEE Trans. NanoTechnol. 13(3), 452–457 (2014).
[Crossref]

C. Jouvaud, A. Ourir, and J. de Rosny, “Far-field imaging with a multi-frequency metalens,” Appl. Phys. Lett. 104(24), 243507 (2014).
[Crossref]

S. Saxena, R. P. Chaudhary, A. Singh, S. Awasthi, and S. Shukla, “Plasmonic micro lens for extraordinary transmission of broadband light,” Sci. Rep. 4(1), 5586 (2014).
[Crossref] [PubMed]

2013 (2)

2012 (1)

D. Lu and Z. Liu, “Hyperlenses and metalenses for far-field super-resolution imaging,” Nat. Commun. 3(1), 1205 (2012).
[Crossref] [PubMed]

2011 (3)

C. Ma and Z. Liu, “Designing super-resolution metalenses by the combination of metamaterials and nanoscale plasmonic waveguide couplers,” J. Nanophotonics 5(1), 051604 (2011).
[Crossref]

A. Pastuszczak and R. Kotyński, “Optimized low-loss multilayers for imaging with sub-wavelength resolution in the visible wavelength range,” J. Appl. Phys. 109(8), 084302 (2011).
[Crossref]

L. Fu, P. Schau, K. Frenner, W. Osten, T. Weiss, H. Schweizer, and H. Giessen, “Mode coupling and interaction in a plasmonic microcavity with resonant mirrors,” Phys. Rev. B 84(23), 235402 (2011).
[Crossref]

2010 (6)

P. Schau, K. Frenner, L. Fu, H. Schweizer, and W. Osten, “Coupling between surface plasmons and Fabry-Pérot modes in metallic double meander structures,” Proc. SPIE 7711, 77111F (2010).
[Crossref]

W. Chen, M. D. Thoreson, S. Ishii, A. V. Kildishev, and V. M. Shalaev, “Ultra-thin ultra-smooth and low-loss silver films on a germanium wetting layer,” Opt. Express 18(5), 5124–5134 (2010).
[Crossref] [PubMed]

J. Rho, Z. Ye, Y. Xiong, X. Yin, Z. Liu, H. Choi, G. Bartal, and X. Zhang, “Spherical hyperlens for two-dimensional sub-diffractional imaging at visible frequencies,” Nat. Commun. 1(9), 143 (2010).
[Crossref] [PubMed]

B. Zhang and G. Barbastathis, “Dielectric metamaterial magnifier creating a virtual color image with far-field subwavelength information,” Opt. Express 18(11), 11216–11222 (2010).
[Crossref] [PubMed]

F. Wei and Z. Liu, “Plasmonic structured illumination microscopy,” Nano Lett. 10(7), 2531–2536 (2010).
[Crossref] [PubMed]

C. Ma and Z. Liu, “A super resolution metalens with phase compensation mechanism,” Appl. Phys. Lett. 96(18), 183103 (2010).
[Crossref] [PubMed]

2009 (2)

L. Fu, H. Schweizer, T. Weiss, and H. Giessen, “Optical properties of metallic meanders,” J. Opt. Soc. Am. B 26(12), B111–B119 (2009).
[Crossref]

L. Verslegers, P. B. Catrysse, Z. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. Fan, “Planar lenses based on nanoscale slit arrays in a metallic film,” Nano Lett. 9(1), 235–238 (2009).
[Crossref] [PubMed]

2008 (2)

2007 (3)

Y. Xiong, Z. Liu, S. Durant, H. Lee, C. Sun, and X. Zhang, “Tuning the far-field superlens: from UV to visible,” Opt. Express 15(12), 7095–7102 (2007).
[Crossref] [PubMed]

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
[Crossref] [PubMed]

Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical superlens,” Nano Lett. 7(2), 403–408 (2007).
[Crossref] [PubMed]

2006 (2)

2005 (2)

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[Crossref] [PubMed]

H. Shi, C. Wang, C. Du, X. Luo, X. Dong, and H. Gao, “Beam manipulating by metallic nano-slits with variant widths,” Opt. Express 13(18), 6815–6820 (2005).
[Crossref] [PubMed]

2000 (1)

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[Crossref] [PubMed]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Albutt, D. J.

F. Hu, M. G. Somekh, D. J. Albutt, K. Webb, E. Moradi, and C. W. See, “Sub-100 nm resolution microscopy based on proximity projection grating scheme,” Sci. Rep. 5(1), 8589 (2015).
[Crossref] [PubMed]

Alekseyev, L. V.

Atkinson, J.

P. Shekhar, J. Atkinson, and Z. Jacob, “Hyperbolic metamaterials: fundamentals and applications,” Nano Converg. 1(1), 14 (2014).
[Crossref] [PubMed]

Awasthi, S.

S. Saxena, R. P. Chaudhary, A. Singh, S. Awasthi, and S. Shukla, “Plasmonic micro lens for extraordinary transmission of broadband light,” Sci. Rep. 4(1), 5586 (2014).
[Crossref] [PubMed]

Barbastathis, G.

Barnard, E. S.

L. Verslegers, P. B. Catrysse, Z. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. Fan, “Planar lenses based on nanoscale slit arrays in a metallic film,” Nano Lett. 9(1), 235–238 (2009).
[Crossref] [PubMed]

Bartal, G.

J. Rho, Z. Ye, Y. Xiong, X. Yin, Z. Liu, H. Choi, G. Bartal, and X. Zhang, “Spherical hyperlens for two-dimensional sub-diffractional imaging at visible frequencies,” Nat. Commun. 1(9), 143 (2010).
[Crossref] [PubMed]

Brongersma, M. L.

L. Verslegers, P. B. Catrysse, Z. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. Fan, “Planar lenses based on nanoscale slit arrays in a metallic film,” Nano Lett. 9(1), 235–238 (2009).
[Crossref] [PubMed]

Cao, B.

Cao, K.

L. Xu, G. Zheng, K. Cao, W. Su, and Y. Liu, “Subwavelength imaging through one-dimensional metallodielectric photonic crystals at optical frequencies,” Optik (Stuttg.) 125(14), 3583–3586 (2014).
[Crossref]

Catrysse, P. B.

L. Verslegers, P. B. Catrysse, Z. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. Fan, “Planar lenses based on nanoscale slit arrays in a metallic film,” Nano Lett. 9(1), 235–238 (2009).
[Crossref] [PubMed]

Chaudhary, R. P.

S. Saxena, R. P. Chaudhary, A. Singh, S. Awasthi, and S. Shukla, “Plasmonic micro lens for extraordinary transmission of broadband light,” Sci. Rep. 4(1), 5586 (2014).
[Crossref] [PubMed]

Chen, G.

Chen, W.

Choi, H.

J. Rho, Z. Ye, Y. Xiong, X. Yin, Z. Liu, H. Choi, G. Bartal, and X. Zhang, “Spherical hyperlens for two-dimensional sub-diffractional imaging at visible frequencies,” Nat. Commun. 1(9), 143 (2010).
[Crossref] [PubMed]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Cui, T. J.

de Rosny, J.

C. Jouvaud, A. Ourir, and J. de Rosny, “Far-field imaging with a multi-frequency metalens,” Appl. Phys. Lett. 104(24), 243507 (2014).
[Crossref]

Ding, X.

R. Wang, B. Z. Wang, Z. S. Gong, and X. Ding, “Far-field subwavelength imaging with near-field resonant metalens scanning at microwave frequencies,” Sci. Rep. 5(1), 11131 (2015).
[Crossref] [PubMed]

Dong, X.

Du, C.

Durant, S.

Fan, S.

L. Verslegers, P. B. Catrysse, Z. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. Fan, “Planar lenses based on nanoscale slit arrays in a metallic film,” Nano Lett. 9(1), 235–238 (2009).
[Crossref] [PubMed]

Fang, N.

Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical superlens,” Nano Lett. 7(2), 403–408 (2007).
[Crossref] [PubMed]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[Crossref] [PubMed]

Ferrari, L.

L. Ferrari, C. Wu, D. Lepage, X. Zhang, and Z. Liu, “Hyperbolic metamaterials and their applications,” Prog. Quantum Electron. 40, 1–40 (2015).
[Crossref]

Frenner, K.

H. Li, L. Fu, K. Frenner, and W. Osten, “Cascaded plasmonic superlens for far-field imaging with magnification at visible wavelength,” Opt. Express 26(8), 10888–10897 (2018).
[Crossref] [PubMed]

H. Li, L. Fu, K. Frenner, and W. Osten, “Nanofabrication results of a novel cascaded plasmonic superlens: lessons learned,” Proc. SPIE 10330, 103300Y (2017).
[Crossref]

L. Fu, H. Li, K. Frenner, and W. Osten, “Design of a two-dimensional cascaded plasmonic superlens,” Inst. für Tech. Opt. Annu. Rep. 2015/2016, 51–52 (2016).

L. Fu, P. Schau, K. Frenner, and W. Osten, “Cascaded plasmonic superlens for near field imaging with magnification,” Proc. SPIE 9526, 95260Z (2015).
[Crossref]

L. Fu, P. Schau, K. Frenner, W. Osten, T. Weiss, H. Schweizer, and H. Giessen, “Mode coupling and interaction in a plasmonic microcavity with resonant mirrors,” Phys. Rev. B 84(23), 235402 (2011).
[Crossref]

P. Schau, K. Frenner, L. Fu, H. Schweizer, and W. Osten, “Coupling between surface plasmons and Fabry-Pérot modes in metallic double meander structures,” Proc. SPIE 7711, 77111F (2010).
[Crossref]

Fu, L.

H. Li, L. Fu, K. Frenner, and W. Osten, “Cascaded plasmonic superlens for far-field imaging with magnification at visible wavelength,” Opt. Express 26(8), 10888–10897 (2018).
[Crossref] [PubMed]

H. Li, L. Fu, K. Frenner, and W. Osten, “Nanofabrication results of a novel cascaded plasmonic superlens: lessons learned,” Proc. SPIE 10330, 103300Y (2017).
[Crossref]

L. Fu, H. Li, K. Frenner, and W. Osten, “Design of a two-dimensional cascaded plasmonic superlens,” Inst. für Tech. Opt. Annu. Rep. 2015/2016, 51–52 (2016).

L. Fu, P. Schau, K. Frenner, and W. Osten, “Cascaded plasmonic superlens for near field imaging with magnification,” Proc. SPIE 9526, 95260Z (2015).
[Crossref]

L. Fu, P. Schau, K. Frenner, W. Osten, T. Weiss, H. Schweizer, and H. Giessen, “Mode coupling and interaction in a plasmonic microcavity with resonant mirrors,” Phys. Rev. B 84(23), 235402 (2011).
[Crossref]

P. Schau, K. Frenner, L. Fu, H. Schweizer, and W. Osten, “Coupling between surface plasmons and Fabry-Pérot modes in metallic double meander structures,” Proc. SPIE 7711, 77111F (2010).
[Crossref]

L. Fu, H. Schweizer, T. Weiss, and H. Giessen, “Optical properties of metallic meanders,” J. Opt. Soc. Am. B 26(12), B111–B119 (2009).
[Crossref]

Gan, D.

Gao, H.

Gao, P.

Y. Luo, L. Liu, W. Zhang, W. Kong, C. Zhao, P. Gao, Z. Zhao, M. Pu, C. Wang, and X. Luo, “Proximity correction and resolution enhancement of plasmonic lens lithography far beyond the near field diffraction limit,” RSC Advances 7(20), 12366–12373 (2017).
[Crossref]

Z. Zhao, Y. Luo, N. Yao, W. Zhang, C. Wang, P. Gao, C. Zhao, M. Pu, and X. Luo, “Modeling and experimental study of plasmonic lens imaging with resolution enhanced methods,” Opt. Express 24(24), 27115–27126 (2016).
[Crossref] [PubMed]

Giessen, H.

L. Fu, P. Schau, K. Frenner, W. Osten, T. Weiss, H. Schweizer, and H. Giessen, “Mode coupling and interaction in a plasmonic microcavity with resonant mirrors,” Phys. Rev. B 84(23), 235402 (2011).
[Crossref]

L. Fu, H. Schweizer, T. Weiss, and H. Giessen, “Optical properties of metallic meanders,” J. Opt. Soc. Am. B 26(12), B111–B119 (2009).
[Crossref]

Gong, Z. S.

R. Wang, B. Z. Wang, Z. S. Gong, and X. Ding, “Far-field subwavelength imaging with near-field resonant metalens scanning at microwave frequencies,” Sci. Rep. 5(1), 11131 (2015).
[Crossref] [PubMed]

Gracias, D. H.

Hu, F.

F. Hu, M. G. Somekh, D. J. Albutt, K. Webb, E. Moradi, and C. W. See, “Sub-100 nm resolution microscopy based on proximity projection grating scheme,” Sci. Rep. 5(1), 8589 (2015).
[Crossref] [PubMed]

Ishii, S.

Jacob, Z.

P. Shekhar, J. Atkinson, and Z. Jacob, “Hyperbolic metamaterials: fundamentals and applications,” Nano Converg. 1(1), 14 (2014).
[Crossref] [PubMed]

Z. Jacob, L. V. Alekseyev, and E. Narimanov, “Optical Hyperlens: Far-field imaging beyond the diffraction limit,” Opt. Express 14(18), 8247–8256 (2006).
[Crossref] [PubMed]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Jouvaud, C.

C. Jouvaud, A. Ourir, and J. de Rosny, “Far-field imaging with a multi-frequency metalens,” Appl. Phys. Lett. 104(24), 243507 (2014).
[Crossref]

Khurgin, J. B.

Kildishev, A. V.

Kong, W.

Y. Luo, L. Liu, W. Zhang, W. Kong, C. Zhao, P. Gao, Z. Zhao, M. Pu, C. Wang, and X. Luo, “Proximity correction and resolution enhancement of plasmonic lens lithography far beyond the near field diffraction limit,” RSC Advances 7(20), 12366–12373 (2017).
[Crossref]

Kotynski, R.

A. Pastuszczak and R. Kotyński, “Optimized low-loss multilayers for imaging with sub-wavelength resolution in the visible wavelength range,” J. Appl. Phys. 109(8), 084302 (2011).
[Crossref]

Lee, H.

Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical superlens,” Nano Lett. 7(2), 403–408 (2007).
[Crossref] [PubMed]

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
[Crossref] [PubMed]

Y. Xiong, Z. Liu, S. Durant, H. Lee, C. Sun, and X. Zhang, “Tuning the far-field superlens: from UV to visible,” Opt. Express 15(12), 7095–7102 (2007).
[Crossref] [PubMed]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[Crossref] [PubMed]

Lepage, D.

L. Ferrari, C. Wu, D. Lepage, X. Zhang, and Z. Liu, “Hyperbolic metamaterials and their applications,” Prog. Quantum Electron. 40, 1–40 (2015).
[Crossref]

Li, D.

D. Li, D. H. Zhang, C. Yan, and Z. Xu, “Figure of merit for optimization of metal - dielectric multilayer lenses,” IEEE Trans. NanoTechnol. 13(3), 452–457 (2014).
[Crossref]

Li, F.

Li, H.

H. Li, L. Fu, K. Frenner, and W. Osten, “Cascaded plasmonic superlens for far-field imaging with magnification at visible wavelength,” Opt. Express 26(8), 10888–10897 (2018).
[Crossref] [PubMed]

H. Li, L. Fu, K. Frenner, and W. Osten, “Nanofabrication results of a novel cascaded plasmonic superlens: lessons learned,” Proc. SPIE 10330, 103300Y (2017).
[Crossref]

L. Fu, H. Li, K. Frenner, and W. Osten, “Design of a two-dimensional cascaded plasmonic superlens,” Inst. für Tech. Opt. Annu. Rep. 2015/2016, 51–52 (2016).

Li, L.

Li, T.

Li, X.

Y. Li, X. Li, M. Pu, Z. Zhao, X. Ma, Y. Wang, and X. Luo, “Achromatic flat optical components via compensation between structure and material dispersions,” Sci. Rep. 6(1), 19885 (2016).
[Crossref] [PubMed]

Li, Y.

Y. Li, X. Li, M. Pu, Z. Zhao, X. Ma, Y. Wang, and X. Luo, “Achromatic flat optical components via compensation between structure and material dispersions,” Sci. Rep. 6(1), 19885 (2016).
[Crossref] [PubMed]

Liu, L.

Y. Luo, L. Liu, W. Zhang, W. Kong, C. Zhao, P. Gao, Z. Zhao, M. Pu, C. Wang, and X. Luo, “Proximity correction and resolution enhancement of plasmonic lens lithography far beyond the near field diffraction limit,” RSC Advances 7(20), 12366–12373 (2017).
[Crossref]

Liu, Y.

L. Xu, G. Zheng, K. Cao, W. Su, and Y. Liu, “Subwavelength imaging through one-dimensional metallodielectric photonic crystals at optical frequencies,” Optik (Stuttg.) 125(14), 3583–3586 (2014).
[Crossref]

Liu, Z.

L. Ferrari, C. Wu, D. Lepage, X. Zhang, and Z. Liu, “Hyperbolic metamaterials and their applications,” Prog. Quantum Electron. 40, 1–40 (2015).
[Crossref]

D. Lu and Z. Liu, “Hyperlenses and metalenses for far-field super-resolution imaging,” Nat. Commun. 3(1), 1205 (2012).
[Crossref] [PubMed]

C. Ma and Z. Liu, “Designing super-resolution metalenses by the combination of metamaterials and nanoscale plasmonic waveguide couplers,” J. Nanophotonics 5(1), 051604 (2011).
[Crossref]

C. Ma and Z. Liu, “A super resolution metalens with phase compensation mechanism,” Appl. Phys. Lett. 96(18), 183103 (2010).
[Crossref] [PubMed]

J. Rho, Z. Ye, Y. Xiong, X. Yin, Z. Liu, H. Choi, G. Bartal, and X. Zhang, “Spherical hyperlens for two-dimensional sub-diffractional imaging at visible frequencies,” Nat. Commun. 1(9), 143 (2010).
[Crossref] [PubMed]

F. Wei and Z. Liu, “Plasmonic structured illumination microscopy,” Nano Lett. 10(7), 2531–2536 (2010).
[Crossref] [PubMed]

X. Zhang and Z. Liu, “Superlenses to overcome the diffraction limit,” Nat. Mater. 7(6), 435–441 (2008).
[Crossref] [PubMed]

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
[Crossref] [PubMed]

Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical superlens,” Nano Lett. 7(2), 403–408 (2007).
[Crossref] [PubMed]

Y. Xiong, Z. Liu, S. Durant, H. Lee, C. Sun, and X. Zhang, “Tuning the far-field superlens: from UV to visible,” Opt. Express 15(12), 7095–7102 (2007).
[Crossref] [PubMed]

S. Durant, Z. Liu, J. M. Steele, and X. Zhang, “Theory of the transmission properties of an optical far-field superlens for imaging beyond the diffraction limit,” J. Opt. Soc. Am. B 23(11), 2383–2392 (2006).
[Crossref]

Lou, Y.

Lu, D.

D. Lu and Z. Liu, “Hyperlenses and metalenses for far-field super-resolution imaging,” Nat. Commun. 3(1), 1205 (2012).
[Crossref] [PubMed]

Luo, X.

Y. Luo, L. Liu, W. Zhang, W. Kong, C. Zhao, P. Gao, Z. Zhao, M. Pu, C. Wang, and X. Luo, “Proximity correction and resolution enhancement of plasmonic lens lithography far beyond the near field diffraction limit,” RSC Advances 7(20), 12366–12373 (2017).
[Crossref]

Y. Li, X. Li, M. Pu, Z. Zhao, X. Ma, Y. Wang, and X. Luo, “Achromatic flat optical components via compensation between structure and material dispersions,” Sci. Rep. 6(1), 19885 (2016).
[Crossref] [PubMed]

Z. Zhao, Y. Luo, N. Yao, W. Zhang, C. Wang, P. Gao, C. Zhao, M. Pu, and X. Luo, “Modeling and experimental study of plasmonic lens imaging with resolution enhanced methods,” Opt. Express 24(24), 27115–27126 (2016).
[Crossref] [PubMed]

C. Wang, Y. Zhao, D. Gan, C. Du, and X. Luo, “Subwavelength imaging with anisotropic structure comprising alternately layered metal and dielectric films,” Opt. Express 16(6), 4217–4227 (2008).
[Crossref] [PubMed]

H. Shi, C. Wang, C. Du, X. Luo, X. Dong, and H. Gao, “Beam manipulating by metallic nano-slits with variant widths,” Opt. Express 13(18), 6815–6820 (2005).
[Crossref] [PubMed]

Luo, Y.

Y. Luo, L. Liu, W. Zhang, W. Kong, C. Zhao, P. Gao, Z. Zhao, M. Pu, C. Wang, and X. Luo, “Proximity correction and resolution enhancement of plasmonic lens lithography far beyond the near field diffraction limit,” RSC Advances 7(20), 12366–12373 (2017).
[Crossref]

Z. Zhao, Y. Luo, N. Yao, W. Zhang, C. Wang, P. Gao, C. Zhao, M. Pu, and X. Luo, “Modeling and experimental study of plasmonic lens imaging with resolution enhanced methods,” Opt. Express 24(24), 27115–27126 (2016).
[Crossref] [PubMed]

Ma, C.

C. Ma and E. Van Keuren, “Toward conventional-optical-lens-like superlenses,” Nano Bulletin 2(1), 130105 (2013).

C. Ma and Z. Liu, “Designing super-resolution metalenses by the combination of metamaterials and nanoscale plasmonic waveguide couplers,” J. Nanophotonics 5(1), 051604 (2011).
[Crossref]

C. Ma and Z. Liu, “A super resolution metalens with phase compensation mechanism,” Appl. Phys. Lett. 96(18), 183103 (2010).
[Crossref] [PubMed]

Ma, X.

Y. Li, X. Li, M. Pu, Z. Zhao, X. Ma, Y. Wang, and X. Luo, “Achromatic flat optical components via compensation between structure and material dispersions,” Sci. Rep. 6(1), 19885 (2016).
[Crossref] [PubMed]

Moradi, E.

F. Hu, M. G. Somekh, D. J. Albutt, K. Webb, E. Moradi, and C. W. See, “Sub-100 nm resolution microscopy based on proximity projection grating scheme,” Sci. Rep. 5(1), 8589 (2015).
[Crossref] [PubMed]

Nagal, V.

Narimanov, E.

Osten, W.

H. Li, L. Fu, K. Frenner, and W. Osten, “Cascaded plasmonic superlens for far-field imaging with magnification at visible wavelength,” Opt. Express 26(8), 10888–10897 (2018).
[Crossref] [PubMed]

H. Li, L. Fu, K. Frenner, and W. Osten, “Nanofabrication results of a novel cascaded plasmonic superlens: lessons learned,” Proc. SPIE 10330, 103300Y (2017).
[Crossref]

L. Fu, H. Li, K. Frenner, and W. Osten, “Design of a two-dimensional cascaded plasmonic superlens,” Inst. für Tech. Opt. Annu. Rep. 2015/2016, 51–52 (2016).

L. Fu, P. Schau, K. Frenner, and W. Osten, “Cascaded plasmonic superlens for near field imaging with magnification,” Proc. SPIE 9526, 95260Z (2015).
[Crossref]

L. Fu, P. Schau, K. Frenner, W. Osten, T. Weiss, H. Schweizer, and H. Giessen, “Mode coupling and interaction in a plasmonic microcavity with resonant mirrors,” Phys. Rev. B 84(23), 235402 (2011).
[Crossref]

P. Schau, K. Frenner, L. Fu, H. Schweizer, and W. Osten, “Coupling between surface plasmons and Fabry-Pérot modes in metallic double meander structures,” Proc. SPIE 7711, 77111F (2010).
[Crossref]

Ourir, A.

C. Jouvaud, A. Ourir, and J. de Rosny, “Far-field imaging with a multi-frequency metalens,” Appl. Phys. Lett. 104(24), 243507 (2014).
[Crossref]

Pastuszczak, A.

A. Pastuszczak and R. Kotyński, “Optimized low-loss multilayers for imaging with sub-wavelength resolution in the visible wavelength range,” J. Appl. Phys. 109(8), 084302 (2011).
[Crossref]

Pendry, J. B.

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[Crossref] [PubMed]

Pikus, Y.

Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical superlens,” Nano Lett. 7(2), 403–408 (2007).
[Crossref] [PubMed]

Pu, M.

Y. Luo, L. Liu, W. Zhang, W. Kong, C. Zhao, P. Gao, Z. Zhao, M. Pu, C. Wang, and X. Luo, “Proximity correction and resolution enhancement of plasmonic lens lithography far beyond the near field diffraction limit,” RSC Advances 7(20), 12366–12373 (2017).
[Crossref]

Y. Li, X. Li, M. Pu, Z. Zhao, X. Ma, Y. Wang, and X. Luo, “Achromatic flat optical components via compensation between structure and material dispersions,” Sci. Rep. 6(1), 19885 (2016).
[Crossref] [PubMed]

Z. Zhao, Y. Luo, N. Yao, W. Zhang, C. Wang, P. Gao, C. Zhao, M. Pu, and X. Luo, “Modeling and experimental study of plasmonic lens imaging with resolution enhanced methods,” Opt. Express 24(24), 27115–27126 (2016).
[Crossref] [PubMed]

Rho, J.

J. Rho, Z. Ye, Y. Xiong, X. Yin, Z. Liu, H. Choi, G. Bartal, and X. Zhang, “Spherical hyperlens for two-dimensional sub-diffractional imaging at visible frequencies,” Nat. Commun. 1(9), 143 (2010).
[Crossref] [PubMed]

Saxena, S.

S. Saxena, R. P. Chaudhary, A. Singh, S. Awasthi, and S. Shukla, “Plasmonic micro lens for extraordinary transmission of broadband light,” Sci. Rep. 4(1), 5586 (2014).
[Crossref] [PubMed]

Schau, P.

L. Fu, P. Schau, K. Frenner, and W. Osten, “Cascaded plasmonic superlens for near field imaging with magnification,” Proc. SPIE 9526, 95260Z (2015).
[Crossref]

L. Fu, P. Schau, K. Frenner, W. Osten, T. Weiss, H. Schweizer, and H. Giessen, “Mode coupling and interaction in a plasmonic microcavity with resonant mirrors,” Phys. Rev. B 84(23), 235402 (2011).
[Crossref]

P. Schau, K. Frenner, L. Fu, H. Schweizer, and W. Osten, “Coupling between surface plasmons and Fabry-Pérot modes in metallic double meander structures,” Proc. SPIE 7711, 77111F (2010).
[Crossref]

Schweizer, H.

L. Fu, P. Schau, K. Frenner, W. Osten, T. Weiss, H. Schweizer, and H. Giessen, “Mode coupling and interaction in a plasmonic microcavity with resonant mirrors,” Phys. Rev. B 84(23), 235402 (2011).
[Crossref]

P. Schau, K. Frenner, L. Fu, H. Schweizer, and W. Osten, “Coupling between surface plasmons and Fabry-Pérot modes in metallic double meander structures,” Proc. SPIE 7711, 77111F (2010).
[Crossref]

L. Fu, H. Schweizer, T. Weiss, and H. Giessen, “Optical properties of metallic meanders,” J. Opt. Soc. Am. B 26(12), B111–B119 (2009).
[Crossref]

See, C. W.

F. Hu, M. G. Somekh, D. J. Albutt, K. Webb, E. Moradi, and C. W. See, “Sub-100 nm resolution microscopy based on proximity projection grating scheme,” Sci. Rep. 5(1), 8589 (2015).
[Crossref] [PubMed]

Shalaev, V. M.

Shekhar, P.

P. Shekhar, J. Atkinson, and Z. Jacob, “Hyperbolic metamaterials: fundamentals and applications,” Nano Converg. 1(1), 14 (2014).
[Crossref] [PubMed]

Shi, H.

Shukla, S.

S. Saxena, R. P. Chaudhary, A. Singh, S. Awasthi, and S. Shukla, “Plasmonic micro lens for extraordinary transmission of broadband light,” Sci. Rep. 4(1), 5586 (2014).
[Crossref] [PubMed]

Singh, A.

S. Saxena, R. P. Chaudhary, A. Singh, S. Awasthi, and S. Shukla, “Plasmonic micro lens for extraordinary transmission of broadband light,” Sci. Rep. 4(1), 5586 (2014).
[Crossref] [PubMed]

Somekh, M. G.

F. Hu, M. G. Somekh, D. J. Albutt, K. Webb, E. Moradi, and C. W. See, “Sub-100 nm resolution microscopy based on proximity projection grating scheme,” Sci. Rep. 5(1), 8589 (2015).
[Crossref] [PubMed]

Steele, J. M.

Su, W.

L. Xu, G. Zheng, K. Cao, W. Su, and Y. Liu, “Subwavelength imaging through one-dimensional metallodielectric photonic crystals at optical frequencies,” Optik (Stuttg.) 125(14), 3583–3586 (2014).
[Crossref]

Sun, C.

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
[Crossref] [PubMed]

Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical superlens,” Nano Lett. 7(2), 403–408 (2007).
[Crossref] [PubMed]

Y. Xiong, Z. Liu, S. Durant, H. Lee, C. Sun, and X. Zhang, “Tuning the far-field superlens: from UV to visible,” Opt. Express 15(12), 7095–7102 (2007).
[Crossref] [PubMed]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[Crossref] [PubMed]

Thoreson, M. D.

Van Keuren, E.

C. Ma and E. Van Keuren, “Toward conventional-optical-lens-like superlenses,” Nano Bulletin 2(1), 130105 (2013).

Verslegers, L.

L. Verslegers, P. B. Catrysse, Z. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. Fan, “Planar lenses based on nanoscale slit arrays in a metallic film,” Nano Lett. 9(1), 235–238 (2009).
[Crossref] [PubMed]

Wang, B. Z.

R. Wang, B. Z. Wang, Z. S. Gong, and X. Ding, “Far-field subwavelength imaging with near-field resonant metalens scanning at microwave frequencies,” Sci. Rep. 5(1), 11131 (2015).
[Crossref] [PubMed]

Wang, C.

Wang, G. P.

K. Wu and G. P. Wang, “Two-dimensional Fibonacci grating for far-field super-resolution imaging,” Sci. Rep. 6(1), 38651 (2016).
[Crossref] [PubMed]

Wang, P.

Y. Zhu, W. Yuan, Y. Yu, and P. Wang, “Robustly efficient superfocusing of immersion plasmonic lenses based on coupled nanoslits,” Plasmonics 11(6), 1543–1548 (2016).
[Crossref]

Wang, R.

R. Wang, B. Z. Wang, Z. S. Gong, and X. Ding, “Far-field subwavelength imaging with near-field resonant metalens scanning at microwave frequencies,” Sci. Rep. 5(1), 11131 (2015).
[Crossref] [PubMed]

Wang, Y.

Y. Li, X. Li, M. Pu, Z. Zhao, X. Ma, Y. Wang, and X. Luo, “Achromatic flat optical components via compensation between structure and material dispersions,” Sci. Rep. 6(1), 19885 (2016).
[Crossref] [PubMed]

Webb, K.

F. Hu, M. G. Somekh, D. J. Albutt, K. Webb, E. Moradi, and C. W. See, “Sub-100 nm resolution microscopy based on proximity projection grating scheme,” Sci. Rep. 5(1), 8589 (2015).
[Crossref] [PubMed]

Wei, F.

F. Wei and Z. Liu, “Plasmonic structured illumination microscopy,” Nano Lett. 10(7), 2531–2536 (2010).
[Crossref] [PubMed]

Weiss, T.

L. Fu, P. Schau, K. Frenner, W. Osten, T. Weiss, H. Schweizer, and H. Giessen, “Mode coupling and interaction in a plasmonic microcavity with resonant mirrors,” Phys. Rev. B 84(23), 235402 (2011).
[Crossref]

L. Fu, H. Schweizer, T. Weiss, and H. Giessen, “Optical properties of metallic meanders,” J. Opt. Soc. Am. B 26(12), B111–B119 (2009).
[Crossref]

White, J. S.

L. Verslegers, P. B. Catrysse, Z. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. Fan, “Planar lenses based on nanoscale slit arrays in a metallic film,” Nano Lett. 9(1), 235–238 (2009).
[Crossref] [PubMed]

Wu, C.

L. Ferrari, C. Wu, D. Lepage, X. Zhang, and Z. Liu, “Hyperbolic metamaterials and their applications,” Prog. Quantum Electron. 40, 1–40 (2015).
[Crossref]

Wu, K.

K. Wu and G. P. Wang, “Two-dimensional Fibonacci grating for far-field super-resolution imaging,” Sci. Rep. 6(1), 38651 (2016).
[Crossref] [PubMed]

Xiong, Y.

J. Rho, Z. Ye, Y. Xiong, X. Yin, Z. Liu, H. Choi, G. Bartal, and X. Zhang, “Spherical hyperlens for two-dimensional sub-diffractional imaging at visible frequencies,” Nat. Commun. 1(9), 143 (2010).
[Crossref] [PubMed]

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
[Crossref] [PubMed]

Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical superlens,” Nano Lett. 7(2), 403–408 (2007).
[Crossref] [PubMed]

Y. Xiong, Z. Liu, S. Durant, H. Lee, C. Sun, and X. Zhang, “Tuning the far-field superlens: from UV to visible,” Opt. Express 15(12), 7095–7102 (2007).
[Crossref] [PubMed]

Xu, F.

Xu, L.

L. Xu, G. Zheng, K. Cao, W. Su, and Y. Liu, “Subwavelength imaging through one-dimensional metallodielectric photonic crystals at optical frequencies,” Optik (Stuttg.) 125(14), 3583–3586 (2014).
[Crossref]

Xu, Z.

D. Li, D. H. Zhang, C. Yan, and Z. Xu, “Figure of merit for optimization of metal - dielectric multilayer lenses,” IEEE Trans. NanoTechnol. 13(3), 452–457 (2014).
[Crossref]

Yan, C.

D. Li, D. H. Zhang, C. Yan, and Z. Xu, “Figure of merit for optimization of metal - dielectric multilayer lenses,” IEEE Trans. NanoTechnol. 13(3), 452–457 (2014).
[Crossref]

Yao, K.

Yao, N.

Ye, Z.

J. Rho, Z. Ye, Y. Xiong, X. Yin, Z. Liu, H. Choi, G. Bartal, and X. Zhang, “Spherical hyperlens for two-dimensional sub-diffractional imaging at visible frequencies,” Nat. Commun. 1(9), 143 (2010).
[Crossref] [PubMed]

Yin, X.

J. Rho, Z. Ye, Y. Xiong, X. Yin, Z. Liu, H. Choi, G. Bartal, and X. Zhang, “Spherical hyperlens for two-dimensional sub-diffractional imaging at visible frequencies,” Nat. Commun. 1(9), 143 (2010).
[Crossref] [PubMed]

Yu, Y.

Y. Zhu, W. Yuan, Y. Yu, and P. Wang, “Robustly efficient superfocusing of immersion plasmonic lenses based on coupled nanoslits,” Plasmonics 11(6), 1543–1548 (2016).
[Crossref]

Yu, Z.

L. Verslegers, P. B. Catrysse, Z. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. Fan, “Planar lenses based on nanoscale slit arrays in a metallic film,” Nano Lett. 9(1), 235–238 (2009).
[Crossref] [PubMed]

Yuan, W.

Y. Zhu, W. Yuan, Y. Yu, and P. Wang, “Robustly efficient superfocusing of immersion plasmonic lenses based on coupled nanoslits,” Plasmonics 11(6), 1543–1548 (2016).
[Crossref]

Zhang, B.

Zhang, D. H.

D. Li, D. H. Zhang, C. Yan, and Z. Xu, “Figure of merit for optimization of metal - dielectric multilayer lenses,” IEEE Trans. NanoTechnol. 13(3), 452–457 (2014).
[Crossref]

Zhang, J.

J. Zhang, “Evolutionary optimization of compact dielectric lens for farfield sub-wavelength imaging,” Sci. Rep. 5(1), 10083 (2015).
[Crossref] [PubMed]

Zhang, W.

Y. Luo, L. Liu, W. Zhang, W. Kong, C. Zhao, P. Gao, Z. Zhao, M. Pu, C. Wang, and X. Luo, “Proximity correction and resolution enhancement of plasmonic lens lithography far beyond the near field diffraction limit,” RSC Advances 7(20), 12366–12373 (2017).
[Crossref]

Z. Zhao, Y. Luo, N. Yao, W. Zhang, C. Wang, P. Gao, C. Zhao, M. Pu, and X. Luo, “Modeling and experimental study of plasmonic lens imaging with resolution enhanced methods,” Opt. Express 24(24), 27115–27126 (2016).
[Crossref] [PubMed]

Zhang, X.

L. Ferrari, C. Wu, D. Lepage, X. Zhang, and Z. Liu, “Hyperbolic metamaterials and their applications,” Prog. Quantum Electron. 40, 1–40 (2015).
[Crossref]

J. Rho, Z. Ye, Y. Xiong, X. Yin, Z. Liu, H. Choi, G. Bartal, and X. Zhang, “Spherical hyperlens for two-dimensional sub-diffractional imaging at visible frequencies,” Nat. Commun. 1(9), 143 (2010).
[Crossref] [PubMed]

X. Zhang and Z. Liu, “Superlenses to overcome the diffraction limit,” Nat. Mater. 7(6), 435–441 (2008).
[Crossref] [PubMed]

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
[Crossref] [PubMed]

Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical superlens,” Nano Lett. 7(2), 403–408 (2007).
[Crossref] [PubMed]

Y. Xiong, Z. Liu, S. Durant, H. Lee, C. Sun, and X. Zhang, “Tuning the far-field superlens: from UV to visible,” Opt. Express 15(12), 7095–7102 (2007).
[Crossref] [PubMed]

S. Durant, Z. Liu, J. M. Steele, and X. Zhang, “Theory of the transmission properties of an optical far-field superlens for imaging beyond the diffraction limit,” J. Opt. Soc. Am. B 23(11), 2383–2392 (2006).
[Crossref]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[Crossref] [PubMed]

Zhao, C.

Y. Luo, L. Liu, W. Zhang, W. Kong, C. Zhao, P. Gao, Z. Zhao, M. Pu, C. Wang, and X. Luo, “Proximity correction and resolution enhancement of plasmonic lens lithography far beyond the near field diffraction limit,” RSC Advances 7(20), 12366–12373 (2017).
[Crossref]

Z. Zhao, Y. Luo, N. Yao, W. Zhang, C. Wang, P. Gao, C. Zhao, M. Pu, and X. Luo, “Modeling and experimental study of plasmonic lens imaging with resolution enhanced methods,” Opt. Express 24(24), 27115–27126 (2016).
[Crossref] [PubMed]

Zhao, Y.

Zhao, Z.

Y. Luo, L. Liu, W. Zhang, W. Kong, C. Zhao, P. Gao, Z. Zhao, M. Pu, C. Wang, and X. Luo, “Proximity correction and resolution enhancement of plasmonic lens lithography far beyond the near field diffraction limit,” RSC Advances 7(20), 12366–12373 (2017).
[Crossref]

Y. Li, X. Li, M. Pu, Z. Zhao, X. Ma, Y. Wang, and X. Luo, “Achromatic flat optical components via compensation between structure and material dispersions,” Sci. Rep. 6(1), 19885 (2016).
[Crossref] [PubMed]

Z. Zhao, Y. Luo, N. Yao, W. Zhang, C. Wang, P. Gao, C. Zhao, M. Pu, and X. Luo, “Modeling and experimental study of plasmonic lens imaging with resolution enhanced methods,” Opt. Express 24(24), 27115–27126 (2016).
[Crossref] [PubMed]

Zheng, G.

L. Xu, G. Zheng, K. Cao, W. Su, and Y. Liu, “Subwavelength imaging through one-dimensional metallodielectric photonic crystals at optical frequencies,” Optik (Stuttg.) 125(14), 3583–3586 (2014).
[Crossref]

Zhu, Y.

Y. Zhu, W. Yuan, Y. Yu, and P. Wang, “Robustly efficient superfocusing of immersion plasmonic lenses based on coupled nanoslits,” Plasmonics 11(6), 1543–1548 (2016).
[Crossref]

Appl. Phys. Lett. (2)

C. Jouvaud, A. Ourir, and J. de Rosny, “Far-field imaging with a multi-frequency metalens,” Appl. Phys. Lett. 104(24), 243507 (2014).
[Crossref]

C. Ma and Z. Liu, “A super resolution metalens with phase compensation mechanism,” Appl. Phys. Lett. 96(18), 183103 (2010).
[Crossref] [PubMed]

IEEE Trans. NanoTechnol. (1)

D. Li, D. H. Zhang, C. Yan, and Z. Xu, “Figure of merit for optimization of metal - dielectric multilayer lenses,” IEEE Trans. NanoTechnol. 13(3), 452–457 (2014).
[Crossref]

Inst. für Tech. Opt. Annu. Rep. (1)

L. Fu, H. Li, K. Frenner, and W. Osten, “Design of a two-dimensional cascaded plasmonic superlens,” Inst. für Tech. Opt. Annu. Rep. 2015/2016, 51–52 (2016).

J. Appl. Phys. (1)

A. Pastuszczak and R. Kotyński, “Optimized low-loss multilayers for imaging with sub-wavelength resolution in the visible wavelength range,” J. Appl. Phys. 109(8), 084302 (2011).
[Crossref]

J. Nanophotonics (1)

C. Ma and Z. Liu, “Designing super-resolution metalenses by the combination of metamaterials and nanoscale plasmonic waveguide couplers,” J. Nanophotonics 5(1), 051604 (2011).
[Crossref]

J. Opt. Soc. Am. B (2)

Nano Bulletin (1)

C. Ma and E. Van Keuren, “Toward conventional-optical-lens-like superlenses,” Nano Bulletin 2(1), 130105 (2013).

Nano Converg. (1)

P. Shekhar, J. Atkinson, and Z. Jacob, “Hyperbolic metamaterials: fundamentals and applications,” Nano Converg. 1(1), 14 (2014).
[Crossref] [PubMed]

Nano Lett. (3)

Z. Liu, S. Durant, H. Lee, Y. Pikus, N. Fang, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical superlens,” Nano Lett. 7(2), 403–408 (2007).
[Crossref] [PubMed]

F. Wei and Z. Liu, “Plasmonic structured illumination microscopy,” Nano Lett. 10(7), 2531–2536 (2010).
[Crossref] [PubMed]

L. Verslegers, P. B. Catrysse, Z. Yu, J. S. White, E. S. Barnard, M. L. Brongersma, and S. Fan, “Planar lenses based on nanoscale slit arrays in a metallic film,” Nano Lett. 9(1), 235–238 (2009).
[Crossref] [PubMed]

Nat. Commun. (2)

D. Lu and Z. Liu, “Hyperlenses and metalenses for far-field super-resolution imaging,” Nat. Commun. 3(1), 1205 (2012).
[Crossref] [PubMed]

J. Rho, Z. Ye, Y. Xiong, X. Yin, Z. Liu, H. Choi, G. Bartal, and X. Zhang, “Spherical hyperlens for two-dimensional sub-diffractional imaging at visible frequencies,” Nat. Commun. 1(9), 143 (2010).
[Crossref] [PubMed]

Nat. Mater. (1)

X. Zhang and Z. Liu, “Superlenses to overcome the diffraction limit,” Nat. Mater. 7(6), 435–441 (2008).
[Crossref] [PubMed]

Opt. Express (10)

C. Wang, Y. Zhao, D. Gan, C. Du, and X. Luo, “Subwavelength imaging with anisotropic structure comprising alternately layered metal and dielectric films,” Opt. Express 16(6), 4217–4227 (2008).
[Crossref] [PubMed]

Y. Xiong, Z. Liu, S. Durant, H. Lee, C. Sun, and X. Zhang, “Tuning the far-field superlens: from UV to visible,” Opt. Express 15(12), 7095–7102 (2007).
[Crossref] [PubMed]

B. Zhang and G. Barbastathis, “Dielectric metamaterial magnifier creating a virtual color image with far-field subwavelength information,” Opt. Express 18(11), 11216–11222 (2010).
[Crossref] [PubMed]

T. Li, V. Nagal, D. H. Gracias, and J. B. Khurgin, “Limits of imaging with multilayer hyperbolic metamaterials,” Opt. Express 25(12), 13588–13601 (2017).
[Crossref] [PubMed]

Z. Jacob, L. V. Alekseyev, and E. Narimanov, “Optical Hyperlens: Far-field imaging beyond the diffraction limit,” Opt. Express 14(18), 8247–8256 (2006).
[Crossref] [PubMed]

Z. Zhao, Y. Luo, N. Yao, W. Zhang, C. Wang, P. Gao, C. Zhao, M. Pu, and X. Luo, “Modeling and experimental study of plasmonic lens imaging with resolution enhanced methods,” Opt. Express 24(24), 27115–27126 (2016).
[Crossref] [PubMed]

H. Li, L. Fu, K. Frenner, and W. Osten, “Cascaded plasmonic superlens for far-field imaging with magnification at visible wavelength,” Opt. Express 26(8), 10888–10897 (2018).
[Crossref] [PubMed]

H. Shi, C. Wang, C. Du, X. Luo, X. Dong, and H. Gao, “Beam manipulating by metallic nano-slits with variant widths,” Opt. Express 13(18), 6815–6820 (2005).
[Crossref] [PubMed]

W. Chen, M. D. Thoreson, S. Ishii, A. V. Kildishev, and V. M. Shalaev, “Ultra-thin ultra-smooth and low-loss silver films on a germanium wetting layer,” Opt. Express 18(5), 5124–5134 (2010).
[Crossref] [PubMed]

L. Li, F. Li, T. J. Cui, and K. Yao, “Far-field imaging beyond diffraction limit using single sensor in combination with a resonant aperture,” Opt. Express 23(1), 401–412 (2015).
[Crossref] [PubMed]

Opt. Lett. (1)

Optik (Stuttg.) (1)

L. Xu, G. Zheng, K. Cao, W. Su, and Y. Liu, “Subwavelength imaging through one-dimensional metallodielectric photonic crystals at optical frequencies,” Optik (Stuttg.) 125(14), 3583–3586 (2014).
[Crossref]

Phys. Rev. B (2)

L. Fu, P. Schau, K. Frenner, W. Osten, T. Weiss, H. Schweizer, and H. Giessen, “Mode coupling and interaction in a plasmonic microcavity with resonant mirrors,” Phys. Rev. B 84(23), 235402 (2011).
[Crossref]

P. B. Johnson and R. W. Christy, “Optical Constants of the Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Phys. Rev. Lett. (1)

J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000).
[Crossref] [PubMed]

Plasmonics (1)

Y. Zhu, W. Yuan, Y. Yu, and P. Wang, “Robustly efficient superfocusing of immersion plasmonic lenses based on coupled nanoslits,” Plasmonics 11(6), 1543–1548 (2016).
[Crossref]

Proc. SPIE (3)

P. Schau, K. Frenner, L. Fu, H. Schweizer, and W. Osten, “Coupling between surface plasmons and Fabry-Pérot modes in metallic double meander structures,” Proc. SPIE 7711, 77111F (2010).
[Crossref]

L. Fu, P. Schau, K. Frenner, and W. Osten, “Cascaded plasmonic superlens for near field imaging with magnification,” Proc. SPIE 9526, 95260Z (2015).
[Crossref]

H. Li, L. Fu, K. Frenner, and W. Osten, “Nanofabrication results of a novel cascaded plasmonic superlens: lessons learned,” Proc. SPIE 10330, 103300Y (2017).
[Crossref]

Prog. Quantum Electron. (1)

L. Ferrari, C. Wu, D. Lepage, X. Zhang, and Z. Liu, “Hyperbolic metamaterials and their applications,” Prog. Quantum Electron. 40, 1–40 (2015).
[Crossref]

RSC Advances (1)

Y. Luo, L. Liu, W. Zhang, W. Kong, C. Zhao, P. Gao, Z. Zhao, M. Pu, C. Wang, and X. Luo, “Proximity correction and resolution enhancement of plasmonic lens lithography far beyond the near field diffraction limit,” RSC Advances 7(20), 12366–12373 (2017).
[Crossref]

Sci. Rep. (6)

F. Hu, M. G. Somekh, D. J. Albutt, K. Webb, E. Moradi, and C. W. See, “Sub-100 nm resolution microscopy based on proximity projection grating scheme,” Sci. Rep. 5(1), 8589 (2015).
[Crossref] [PubMed]

R. Wang, B. Z. Wang, Z. S. Gong, and X. Ding, “Far-field subwavelength imaging with near-field resonant metalens scanning at microwave frequencies,” Sci. Rep. 5(1), 11131 (2015).
[Crossref] [PubMed]

K. Wu and G. P. Wang, “Two-dimensional Fibonacci grating for far-field super-resolution imaging,” Sci. Rep. 6(1), 38651 (2016).
[Crossref] [PubMed]

J. Zhang, “Evolutionary optimization of compact dielectric lens for farfield sub-wavelength imaging,” Sci. Rep. 5(1), 10083 (2015).
[Crossref] [PubMed]

S. Saxena, R. P. Chaudhary, A. Singh, S. Awasthi, and S. Shukla, “Plasmonic micro lens for extraordinary transmission of broadband light,” Sci. Rep. 4(1), 5586 (2014).
[Crossref] [PubMed]

Y. Li, X. Li, M. Pu, Z. Zhao, X. Ma, Y. Wang, and X. Luo, “Achromatic flat optical components via compensation between structure and material dispersions,” Sci. Rep. 6(1), 19885 (2016).
[Crossref] [PubMed]

Science (2)

Z. Liu, H. Lee, Y. Xiong, C. Sun, and X. Zhang, “Far-field optical hyperlens magnifying sub-diffraction-limited objects,” Science 315(5819), 1686 (2007).
[Crossref] [PubMed]

N. Fang, H. Lee, C. Sun, and X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005).
[Crossref] [PubMed]

Other (1)

M. Khorasaninejad and F. Capasso, “Metalenses: Versatile multifunctional photonic components,” Science 358(6367), eaam8100 (2017).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) The far-field superlens is composed of a PPL slab and a DBR-PCL slab. The PPL is composed of a slit array with a pitch of 200 nm in a 400nm-thick silver slab. The respective slit widths from left to right are 88, 64, 57.5, 47.5, 42, 34, 42, 47.5, 57.5, 64, and 88 in nanometer. The distance between the PPL and the DBR-PCL is DC = 40 nm. The parameters for the DBR-PCL structure are Px = 400 nm, d = 30 nm, t = 70 nm, Dspa = 100 nm, and Wr = Px/2-d. (b) Schematic principle diagram to illustrate different mode dispersions existing in the DBR-PCL structure without considering interactions among the modes. (c) Calculated near field transmission dispersions as a function of spatial frequency for the PPL slab, the DBR-PCL slab, and the combined structure. (d) Influence of a relative shift of 20 nm between the two components on the dispersion.
Fig. 2
Fig. 2 (a) Schematic of the superlens located above a double-slit object for imaging calculation. The distance between the DBR-PCL slab and the object is DOM = 140 nm. The slit width W is 100 nm and XD is varied. (b) Calculated imaging field projected by the superlens for the object with XD = 200 nm observed under a microscope with NA = 1.3. (c) Field profiles at z = 0.75 µm for objects with XD = 200 nm and 340 nm, respectively. Image profile from an object with XD = 340 nm in the absence of the superlens is also shown for comparison. (d) Image profiles of the object with XD = 200 nm and with different Δx.
Fig. 3
Fig. 3 Top row shows SEM images for (a) an object with XD = 200 nm and W = 100 nm, (b) SOG gratings and flat groove center prepared for fabricating the DBR-PCL structure, and (c) the complete superlens above the object. The bottom row shows corresponding cross-section schematics of the fabricated structures.
Fig. 4
Fig. 4 (a) SEM image of a double-slit object milled by FIB in a 100nm-thick Cr layer. The slit width is 100 nm and the slit distance is 300 nm. (b-c) Microscope images captured by a CCD camera from the double-slit objects with XD = 300 nm in (b), and XD = 400 nm in (c). (d) Field profiles from the measured objects with different sizes in the absence of the superlens.
Fig. 5
Fig. 5 Figures 5(a), 5(b), and 5(c) are CCD images taken from three identical objects with varied lateral shift Δx between the DBR-PCL and the object. (d) Summed field profiles along the y-axis of the images shown in (a-c), which are normalized to their respective maximum.

Metrics