Abstract

We demonstrate a novel thermally tunable grating optical filter based on suspended silicon ridge waveguide with low power consumption, fast response and relatively high mechanical stability. An enhanced power efficiency of ~300 pm/mW is achieved by employing isolation trench. Periodic lateral tethers and anchors are utilized to support the overall waveguide for maintaining mechanical robustness. 10%–90% rising time and falling time are measured to be 78 μs and 52 μs, respectively. Simulations and experiments both indicate that the demonstrated device has a relatively homogeneous temperature distribution, which is essential for practical integrated photonic devices.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Submilliwatt thermo-optic switches using free-standing silicon-on-insulator strip waveguides

Peng Sun and Ronald M. Reano
Opt. Express 18(8) 8406-8411 (2010)

Two-dimensional design and analysis of trench-coupler based Silicon Mach-Zehnder thermo-optic switch

Ke Liu, Chenglong Zhang, Sixuan Mu, Shuang Wang, and Volker J. Sorger
Opt. Express 24(14) 15845-15853 (2016)

References

  • View by:
  • |
  • |
  • |

  1. M. Asghari and A. V. Krishnamoorthy, “Silicon photonics: energy-efficient communication,” Nat. Photonics 5(5), 268–270 (2011).
    [Crossref]
  2. Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
    [Crossref] [PubMed]
  3. D. X. Xu, A. Densmore, P. Waldron, J. Lapointe, E. Post, A. Delâge, S. Janz, P. Cheben, J. H. Schmid, and B. Lamontagne, “High bandwidth SOI photonic wire ring resonators using MMI couplers,” Opt. Express 15(6), 3149–3155 (2007).
    [Crossref] [PubMed]
  4. M. K. Lee, C. H. Chu, Y. H. Wang, and S. M. Sze, “1.55-µm and infrared-band photoresponsivity of a Schottky barrier porous silicon photodetector,” Opt. Lett. 26(3), 160–162 (2001).
    [Crossref] [PubMed]
  5. V. R. Almeida, C. A. Barrios, R. R. Panepucci, M. Lipson, M. A. Foster, D. G. Ouzounov, and A. L. Gaeta, “All-optical switching on a silicon chip,” Opt. Lett. 29(24), 2867–2869 (2004).
    [Crossref] [PubMed]
  6. C. Errando-Herranz, F. Niklaus, G. Stemme, and K. B. Gylfason, “Low-power microelectromechanically tunable silicon photonic ring resonator add-drop filter,” Opt. Lett. 40(15), 3556–3559 (2015).
    [Crossref] [PubMed]
  7. S. M. Abdulla, L. J. Kauppinen, M. Dijkstra, M. J. de Boer, E. Berenschot, H. V. Jansen, R. M. de Ridder, and G. J. Krijnen, “Tuning a racetrack ring resonator by an integrated dielectric MEMS cantilever,” Opt. Express 19(17), 15864–15878 (2011).
    [Crossref] [PubMed]
  8. P. Rabiei and W. H. Steier, “Tunable polymer double micro-ring filters,” IEEE Photonics Technol. Lett. 15(9), 1255–1257 (2003).
    [Crossref]
  9. L. Liu, Y. Yang, Z. Li, X. Jin, W. Mo, and X. Liu, “Low power consumption and continuously tunable all-optical microwave filter based on an opto-mechanical microring resonator,” Opt. Express 25(2), 960–971 (2017).
    [Crossref] [PubMed]
  10. P. Dong, W. Qian, H. Liang, R. Shafiiha, D. Feng, G. Li, J. E. Cunningham, A. V. Krishnamoorthy, and M. Asghari, “Thermally tunable silicon racetrack resonators with ultralow tuning power,” Opt. Express 18(19), 20298–20304 (2010).
    [Crossref] [PubMed]
  11. P. Dong, W. Qian, H. Liang, R. Shafiiha, N.-N. Feng, D. Feng, X. Zheng, A. V. Krishnamoorthy, and M. Asghari, “Low power and compact reconfigurable multiplexing devices based on silicon microring resonators,” Opt. Express 18(10), 9852–9858 (2010).
    [Crossref] [PubMed]
  12. F. Gan, T. Barwicz, M. A. Popovic, M. S. Dahlem, C. W. Holzwarth, P. T. Rakich, H. I. Smith, E. P. Ippen, and F. X. Kartner, “Maximizing the thermo-optic tuning range of silicon photonic structures,” in Photonics in Switching (2007), pp. 67–68.
  13. L. Yu, Y. Yin, Y. Shi, D. Dai, and S. He, “Thermally tunable silicon photonic microdisk resonator with transparent graphene nanoheaters,” Optica 3(2), 159 (2016).
    [Crossref]
  14. P. A. Cooper, L. G. Carpenter, C. Holmes, C. Sima, J. C. Gates, and P. G. R. Smith, “Power-Efficiency Enhanced Thermally Tunable Bragg Grating for Silica-on-Silicon Photonics,” IEEE Photonics J. 7(2), 1–11 (2015).
    [Crossref]
  15. A. D. Simard and S. LaRochelle, “Complex apodized Bragg grating filters without circulators in silicon-on-insulator,” Opt. Express 23(13), 16662–16675 (2015).
    [Crossref] [PubMed]
  16. A. Liu, Z. Zhang, D. D. Felipe, N. Keil, and N. Grote, “Power-efficient thermo-optic tunable filters based on polymeric waveguide Bragg gratings,” IEEE Photonics Technol. Lett. 26(3), 313–315 (2014).
    [Crossref]
  17. H. C. Kim, K. Ikeda, and Y. Fainman, “Tunable transmission resonant filter and modulator with vertical gratings,” J. Lightwave Technol. 25(5), 1147–1151 (2007).
    [Crossref]
  18. I. Giuntoni, A. Gajda, M. Krause, R. Steingrüber, J. Bruns, and K. Petermann, “Tunable Bragg reflectors on silicon-on-insulator rib waveguides,” Opt. Express 17(21), 18518–18524 (2009).
    [Crossref] [PubMed]
  19. J. Jiang, H. Qiu, G. Wang, Y. Li, T. Dai, X. Wang, H. Yu, J. Yang, and X. Jiang, “Broadband tunable filter based on the loop of multimode Bragg grating,” Opt. Express 26(1), 559–566 (2018).
    [Crossref] [PubMed]
  20. J. St-Yves, H. Bahrami, P. Jean, S. LaRochelle, and W. Shi, “Widely bandwidth-tunable silicon filter with an unlimited free-spectral range,” Opt. Lett. 40(23), 5471–5474 (2015).
    [Crossref] [PubMed]
  21. S. Honda, Z. Wu, J. Matsui, K. Utaka, T. Edura, M. Tokuda, K. Tsutsui, and Y. Wada, “Largely-tunable wideband Bragg gratings fabricated on SOI rib waveguides employed by deep-RIE,” Electron. Lett. 43(11), 630–631 (2007).
    [Crossref]
  22. T. T. Kim, S. G. Lee, H. Y. Park, J. E. Kim, and C. S. Kee, “Asymmetric Mach-Zehnder filter based on self-collimation phenomenon in two-dimensional photonic crystals,” Opt. Express 18(6), 5384–5389 (2010).
    [Crossref] [PubMed]
  23. M. G. Saber, Y. Wang, E. El-Fiky, D. Patel, K. A. Shahriar, M. S. Alam, M. Jacques, Z. Xing, L. Xu, N. Abadía, and D. V. Plant, “Transversely coupled Fabry-Perot resonators with Bragg grating reflectors,” Opt. Lett. 43(1), 13–16 (2018).
    [Crossref] [PubMed]
  24. R. L. Espinola, M. C. Tsai, J. T. Yardley, and R. M. Osgood, “Fast and low-power thermo-optic switch on thin silicon-on-insulator,” IEEE Photonics Technol. Lett. 15(10), 1366–1368 (2003).
    [Crossref]
  25. C. R. Raum, R. Gauthier, and R. N. Tait, “Integrated heaters for the thermal tuning of Bragg grating filters on silicon-on-insulator rib waveguides,” Microw. Opt. Technol. Lett. 53(3), 672–676 (2011).
    [Crossref]
  26. C. R. Raum, R. N. Tait, and R. C. Gauthier, “Fabrication and characterization of a thermo-mechanically tunable grating-assisted waveguide filter,” Proc. SPIE 6898, 68981E (2008).
    [Crossref]
  27. U. Eriksson, J. Wesström, Y. T. Liu, S. Hammerfeldt, M. Hassler, B. Stoltz, N. Carlsson, S. Siraj, E. Goobar, and Y. Matsui, “High performance narrow linewidth thermally tuned semiconductor laser,” in European Conference on Optical Communication, 1–3 (2015).
    [Crossref]
  28. Software: MODE Solutions, Lumerical Solutions, Inc.
  29. X. Wang, W. Shi, H. Yun, S. Grist, N. A. F. Jaeger, and L. Chrostowski, “Narrow-band waveguide Bragg gratings on SOI wafers with CMOS-compatible fabrication process,” Opt. Express 20(14), 15547–15558 (2012).
    [Crossref] [PubMed]
  30. X. Han, Q. Cheng, F. Liu, and Y. Yu, “Numerical analysis on thermal tuning efficiency and thermal stress of a thermally tunable SG-DBR laser,” IEEE Photonics J. 8(3), 1–12 (2016).
    [Crossref]
  31. M. C. Larson, Y. Feng, P. C. Koh, X. Huang, M. Moewe, A. Semakov, A. Patwardhan, E. Chiu, A. Bhardwaj, K. Chan, J. Lu, S. Bajwa, and K. Duncan, “Narrow linewidth high power thermally tuned sampled-grating distributed Bragg reflector laser,” in Optical Fiber Communication Conference (Optical Society of America, 2013), paper OTh3I.4.
    [Crossref]
  32. P. Dong, W. Qian, S. Liao, H. Liang, C. C. Kung, N.-N. Feng, R. Shafiiha, J. Fong, D. Feng, A. V. Krishnamoorthy, and M. Asghari, “Low loss shallow-ridge silicon waveguides,” Opt. Express 18(14), 14474–14479 (2010).
    [Crossref] [PubMed]
  33. P. Sun and R. M. Reano, “Submilliwatt thermo-optic switches using free-standing silicon-on-insulator strip waveguides,” Opt. Express 18(8), 8406–8411 (2010).
    [Crossref] [PubMed]
  34. J. E. Cunningham, I. Shubin, X. Zheng, T. Pinguet, A. Mekis, Y. Luo, H. Thacker, G. Li, J. Yao, K. Raj, and A. V. Krishnamoorthy, “Highly-efficient thermally-tuned resonant optical filters,” Opt. Express 18(18), 19055–19063 (2010).
    [Crossref] [PubMed]

2018 (2)

2017 (1)

2016 (2)

L. Yu, Y. Yin, Y. Shi, D. Dai, and S. He, “Thermally tunable silicon photonic microdisk resonator with transparent graphene nanoheaters,” Optica 3(2), 159 (2016).
[Crossref]

X. Han, Q. Cheng, F. Liu, and Y. Yu, “Numerical analysis on thermal tuning efficiency and thermal stress of a thermally tunable SG-DBR laser,” IEEE Photonics J. 8(3), 1–12 (2016).
[Crossref]

2015 (4)

2014 (1)

A. Liu, Z. Zhang, D. D. Felipe, N. Keil, and N. Grote, “Power-efficient thermo-optic tunable filters based on polymeric waveguide Bragg gratings,” IEEE Photonics Technol. Lett. 26(3), 313–315 (2014).
[Crossref]

2012 (1)

2011 (3)

C. R. Raum, R. Gauthier, and R. N. Tait, “Integrated heaters for the thermal tuning of Bragg grating filters on silicon-on-insulator rib waveguides,” Microw. Opt. Technol. Lett. 53(3), 672–676 (2011).
[Crossref]

S. M. Abdulla, L. J. Kauppinen, M. Dijkstra, M. J. de Boer, E. Berenschot, H. V. Jansen, R. M. de Ridder, and G. J. Krijnen, “Tuning a racetrack ring resonator by an integrated dielectric MEMS cantilever,” Opt. Express 19(17), 15864–15878 (2011).
[Crossref] [PubMed]

M. Asghari and A. V. Krishnamoorthy, “Silicon photonics: energy-efficient communication,” Nat. Photonics 5(5), 268–270 (2011).
[Crossref]

2010 (6)

2009 (1)

2008 (1)

C. R. Raum, R. N. Tait, and R. C. Gauthier, “Fabrication and characterization of a thermo-mechanically tunable grating-assisted waveguide filter,” Proc. SPIE 6898, 68981E (2008).
[Crossref]

2007 (3)

2005 (1)

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[Crossref] [PubMed]

2004 (1)

2003 (2)

P. Rabiei and W. H. Steier, “Tunable polymer double micro-ring filters,” IEEE Photonics Technol. Lett. 15(9), 1255–1257 (2003).
[Crossref]

R. L. Espinola, M. C. Tsai, J. T. Yardley, and R. M. Osgood, “Fast and low-power thermo-optic switch on thin silicon-on-insulator,” IEEE Photonics Technol. Lett. 15(10), 1366–1368 (2003).
[Crossref]

2001 (1)

Abadía, N.

Abdulla, S. M.

Alam, M. S.

Almeida, V. R.

Asghari, M.

Bahrami, H.

Barrios, C. A.

Berenschot, E.

Bruns, J.

Carlsson, N.

U. Eriksson, J. Wesström, Y. T. Liu, S. Hammerfeldt, M. Hassler, B. Stoltz, N. Carlsson, S. Siraj, E. Goobar, and Y. Matsui, “High performance narrow linewidth thermally tuned semiconductor laser,” in European Conference on Optical Communication, 1–3 (2015).
[Crossref]

Carpenter, L. G.

P. A. Cooper, L. G. Carpenter, C. Holmes, C. Sima, J. C. Gates, and P. G. R. Smith, “Power-Efficiency Enhanced Thermally Tunable Bragg Grating for Silica-on-Silicon Photonics,” IEEE Photonics J. 7(2), 1–11 (2015).
[Crossref]

Cheben, P.

Cheng, Q.

X. Han, Q. Cheng, F. Liu, and Y. Yu, “Numerical analysis on thermal tuning efficiency and thermal stress of a thermally tunable SG-DBR laser,” IEEE Photonics J. 8(3), 1–12 (2016).
[Crossref]

Chrostowski, L.

Chu, C. H.

Cooper, P. A.

P. A. Cooper, L. G. Carpenter, C. Holmes, C. Sima, J. C. Gates, and P. G. R. Smith, “Power-Efficiency Enhanced Thermally Tunable Bragg Grating for Silica-on-Silicon Photonics,” IEEE Photonics J. 7(2), 1–11 (2015).
[Crossref]

Cunningham, J. E.

Dai, D.

Dai, T.

de Boer, M. J.

de Ridder, R. M.

Delâge, A.

Densmore, A.

Dijkstra, M.

Dong, P.

Edura, T.

S. Honda, Z. Wu, J. Matsui, K. Utaka, T. Edura, M. Tokuda, K. Tsutsui, and Y. Wada, “Largely-tunable wideband Bragg gratings fabricated on SOI rib waveguides employed by deep-RIE,” Electron. Lett. 43(11), 630–631 (2007).
[Crossref]

El-Fiky, E.

Eriksson, U.

U. Eriksson, J. Wesström, Y. T. Liu, S. Hammerfeldt, M. Hassler, B. Stoltz, N. Carlsson, S. Siraj, E. Goobar, and Y. Matsui, “High performance narrow linewidth thermally tuned semiconductor laser,” in European Conference on Optical Communication, 1–3 (2015).
[Crossref]

Errando-Herranz, C.

Espinola, R. L.

R. L. Espinola, M. C. Tsai, J. T. Yardley, and R. M. Osgood, “Fast and low-power thermo-optic switch on thin silicon-on-insulator,” IEEE Photonics Technol. Lett. 15(10), 1366–1368 (2003).
[Crossref]

Fainman, Y.

Felipe, D. D.

A. Liu, Z. Zhang, D. D. Felipe, N. Keil, and N. Grote, “Power-efficient thermo-optic tunable filters based on polymeric waveguide Bragg gratings,” IEEE Photonics Technol. Lett. 26(3), 313–315 (2014).
[Crossref]

Feng, D.

Feng, N.-N.

Fong, J.

Foster, M. A.

Gaeta, A. L.

Gajda, A.

Gates, J. C.

P. A. Cooper, L. G. Carpenter, C. Holmes, C. Sima, J. C. Gates, and P. G. R. Smith, “Power-Efficiency Enhanced Thermally Tunable Bragg Grating for Silica-on-Silicon Photonics,” IEEE Photonics J. 7(2), 1–11 (2015).
[Crossref]

Gauthier, R.

C. R. Raum, R. Gauthier, and R. N. Tait, “Integrated heaters for the thermal tuning of Bragg grating filters on silicon-on-insulator rib waveguides,” Microw. Opt. Technol. Lett. 53(3), 672–676 (2011).
[Crossref]

Gauthier, R. C.

C. R. Raum, R. N. Tait, and R. C. Gauthier, “Fabrication and characterization of a thermo-mechanically tunable grating-assisted waveguide filter,” Proc. SPIE 6898, 68981E (2008).
[Crossref]

Giuntoni, I.

Goobar, E.

U. Eriksson, J. Wesström, Y. T. Liu, S. Hammerfeldt, M. Hassler, B. Stoltz, N. Carlsson, S. Siraj, E. Goobar, and Y. Matsui, “High performance narrow linewidth thermally tuned semiconductor laser,” in European Conference on Optical Communication, 1–3 (2015).
[Crossref]

Grist, S.

Grote, N.

A. Liu, Z. Zhang, D. D. Felipe, N. Keil, and N. Grote, “Power-efficient thermo-optic tunable filters based on polymeric waveguide Bragg gratings,” IEEE Photonics Technol. Lett. 26(3), 313–315 (2014).
[Crossref]

Gylfason, K. B.

Hammerfeldt, S.

U. Eriksson, J. Wesström, Y. T. Liu, S. Hammerfeldt, M. Hassler, B. Stoltz, N. Carlsson, S. Siraj, E. Goobar, and Y. Matsui, “High performance narrow linewidth thermally tuned semiconductor laser,” in European Conference on Optical Communication, 1–3 (2015).
[Crossref]

Han, X.

X. Han, Q. Cheng, F. Liu, and Y. Yu, “Numerical analysis on thermal tuning efficiency and thermal stress of a thermally tunable SG-DBR laser,” IEEE Photonics J. 8(3), 1–12 (2016).
[Crossref]

Hassler, M.

U. Eriksson, J. Wesström, Y. T. Liu, S. Hammerfeldt, M. Hassler, B. Stoltz, N. Carlsson, S. Siraj, E. Goobar, and Y. Matsui, “High performance narrow linewidth thermally tuned semiconductor laser,” in European Conference on Optical Communication, 1–3 (2015).
[Crossref]

He, S.

Holmes, C.

P. A. Cooper, L. G. Carpenter, C. Holmes, C. Sima, J. C. Gates, and P. G. R. Smith, “Power-Efficiency Enhanced Thermally Tunable Bragg Grating for Silica-on-Silicon Photonics,” IEEE Photonics J. 7(2), 1–11 (2015).
[Crossref]

Honda, S.

S. Honda, Z. Wu, J. Matsui, K. Utaka, T. Edura, M. Tokuda, K. Tsutsui, and Y. Wada, “Largely-tunable wideband Bragg gratings fabricated on SOI rib waveguides employed by deep-RIE,” Electron. Lett. 43(11), 630–631 (2007).
[Crossref]

Ikeda, K.

Jacques, M.

Jaeger, N. A. F.

Jansen, H. V.

Janz, S.

Jean, P.

Jiang, J.

Jiang, X.

Jin, X.

Kauppinen, L. J.

Kee, C. S.

Keil, N.

A. Liu, Z. Zhang, D. D. Felipe, N. Keil, and N. Grote, “Power-efficient thermo-optic tunable filters based on polymeric waveguide Bragg gratings,” IEEE Photonics Technol. Lett. 26(3), 313–315 (2014).
[Crossref]

Kim, H. C.

Kim, J. E.

Kim, T. T.

Krause, M.

Krijnen, G. J.

Krishnamoorthy, A. V.

Kung, C. C.

Lamontagne, B.

Lapointe, J.

LaRochelle, S.

Lee, M. K.

Lee, S. G.

Li, G.

Li, Y.

Li, Z.

Liang, H.

Liao, S.

Lipson, M.

Liu, A.

A. Liu, Z. Zhang, D. D. Felipe, N. Keil, and N. Grote, “Power-efficient thermo-optic tunable filters based on polymeric waveguide Bragg gratings,” IEEE Photonics Technol. Lett. 26(3), 313–315 (2014).
[Crossref]

Liu, F.

X. Han, Q. Cheng, F. Liu, and Y. Yu, “Numerical analysis on thermal tuning efficiency and thermal stress of a thermally tunable SG-DBR laser,” IEEE Photonics J. 8(3), 1–12 (2016).
[Crossref]

Liu, L.

Liu, X.

Liu, Y. T.

U. Eriksson, J. Wesström, Y. T. Liu, S. Hammerfeldt, M. Hassler, B. Stoltz, N. Carlsson, S. Siraj, E. Goobar, and Y. Matsui, “High performance narrow linewidth thermally tuned semiconductor laser,” in European Conference on Optical Communication, 1–3 (2015).
[Crossref]

Luo, Y.

Matsui, J.

S. Honda, Z. Wu, J. Matsui, K. Utaka, T. Edura, M. Tokuda, K. Tsutsui, and Y. Wada, “Largely-tunable wideband Bragg gratings fabricated on SOI rib waveguides employed by deep-RIE,” Electron. Lett. 43(11), 630–631 (2007).
[Crossref]

Matsui, Y.

U. Eriksson, J. Wesström, Y. T. Liu, S. Hammerfeldt, M. Hassler, B. Stoltz, N. Carlsson, S. Siraj, E. Goobar, and Y. Matsui, “High performance narrow linewidth thermally tuned semiconductor laser,” in European Conference on Optical Communication, 1–3 (2015).
[Crossref]

Mekis, A.

Mo, W.

Niklaus, F.

Osgood, R. M.

R. L. Espinola, M. C. Tsai, J. T. Yardley, and R. M. Osgood, “Fast and low-power thermo-optic switch on thin silicon-on-insulator,” IEEE Photonics Technol. Lett. 15(10), 1366–1368 (2003).
[Crossref]

Ouzounov, D. G.

Panepucci, R. R.

Park, H. Y.

Patel, D.

Petermann, K.

Pinguet, T.

Plant, D. V.

Post, E.

Pradhan, S.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[Crossref] [PubMed]

Qian, W.

Qiu, H.

Rabiei, P.

P. Rabiei and W. H. Steier, “Tunable polymer double micro-ring filters,” IEEE Photonics Technol. Lett. 15(9), 1255–1257 (2003).
[Crossref]

Raj, K.

Raum, C. R.

C. R. Raum, R. Gauthier, and R. N. Tait, “Integrated heaters for the thermal tuning of Bragg grating filters on silicon-on-insulator rib waveguides,” Microw. Opt. Technol. Lett. 53(3), 672–676 (2011).
[Crossref]

C. R. Raum, R. N. Tait, and R. C. Gauthier, “Fabrication and characterization of a thermo-mechanically tunable grating-assisted waveguide filter,” Proc. SPIE 6898, 68981E (2008).
[Crossref]

Reano, R. M.

Saber, M. G.

Schmid, J. H.

Schmidt, B.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[Crossref] [PubMed]

Shafiiha, R.

Shahriar, K. A.

Shi, W.

Shi, Y.

Shubin, I.

Sima, C.

P. A. Cooper, L. G. Carpenter, C. Holmes, C. Sima, J. C. Gates, and P. G. R. Smith, “Power-Efficiency Enhanced Thermally Tunable Bragg Grating for Silica-on-Silicon Photonics,” IEEE Photonics J. 7(2), 1–11 (2015).
[Crossref]

Simard, A. D.

Siraj, S.

U. Eriksson, J. Wesström, Y. T. Liu, S. Hammerfeldt, M. Hassler, B. Stoltz, N. Carlsson, S. Siraj, E. Goobar, and Y. Matsui, “High performance narrow linewidth thermally tuned semiconductor laser,” in European Conference on Optical Communication, 1–3 (2015).
[Crossref]

Smith, P. G. R.

P. A. Cooper, L. G. Carpenter, C. Holmes, C. Sima, J. C. Gates, and P. G. R. Smith, “Power-Efficiency Enhanced Thermally Tunable Bragg Grating for Silica-on-Silicon Photonics,” IEEE Photonics J. 7(2), 1–11 (2015).
[Crossref]

Steier, W. H.

P. Rabiei and W. H. Steier, “Tunable polymer double micro-ring filters,” IEEE Photonics Technol. Lett. 15(9), 1255–1257 (2003).
[Crossref]

Steingrüber, R.

Stemme, G.

Stoltz, B.

U. Eriksson, J. Wesström, Y. T. Liu, S. Hammerfeldt, M. Hassler, B. Stoltz, N. Carlsson, S. Siraj, E. Goobar, and Y. Matsui, “High performance narrow linewidth thermally tuned semiconductor laser,” in European Conference on Optical Communication, 1–3 (2015).
[Crossref]

St-Yves, J.

Sun, P.

Sze, S. M.

Tait, R. N.

C. R. Raum, R. Gauthier, and R. N. Tait, “Integrated heaters for the thermal tuning of Bragg grating filters on silicon-on-insulator rib waveguides,” Microw. Opt. Technol. Lett. 53(3), 672–676 (2011).
[Crossref]

C. R. Raum, R. N. Tait, and R. C. Gauthier, “Fabrication and characterization of a thermo-mechanically tunable grating-assisted waveguide filter,” Proc. SPIE 6898, 68981E (2008).
[Crossref]

Thacker, H.

Tokuda, M.

S. Honda, Z. Wu, J. Matsui, K. Utaka, T. Edura, M. Tokuda, K. Tsutsui, and Y. Wada, “Largely-tunable wideband Bragg gratings fabricated on SOI rib waveguides employed by deep-RIE,” Electron. Lett. 43(11), 630–631 (2007).
[Crossref]

Tsai, M. C.

R. L. Espinola, M. C. Tsai, J. T. Yardley, and R. M. Osgood, “Fast and low-power thermo-optic switch on thin silicon-on-insulator,” IEEE Photonics Technol. Lett. 15(10), 1366–1368 (2003).
[Crossref]

Tsutsui, K.

S. Honda, Z. Wu, J. Matsui, K. Utaka, T. Edura, M. Tokuda, K. Tsutsui, and Y. Wada, “Largely-tunable wideband Bragg gratings fabricated on SOI rib waveguides employed by deep-RIE,” Electron. Lett. 43(11), 630–631 (2007).
[Crossref]

Utaka, K.

S. Honda, Z. Wu, J. Matsui, K. Utaka, T. Edura, M. Tokuda, K. Tsutsui, and Y. Wada, “Largely-tunable wideband Bragg gratings fabricated on SOI rib waveguides employed by deep-RIE,” Electron. Lett. 43(11), 630–631 (2007).
[Crossref]

Wada, Y.

S. Honda, Z. Wu, J. Matsui, K. Utaka, T. Edura, M. Tokuda, K. Tsutsui, and Y. Wada, “Largely-tunable wideband Bragg gratings fabricated on SOI rib waveguides employed by deep-RIE,” Electron. Lett. 43(11), 630–631 (2007).
[Crossref]

Waldron, P.

Wang, G.

Wang, X.

Wang, Y.

Wang, Y. H.

Wesström, J.

U. Eriksson, J. Wesström, Y. T. Liu, S. Hammerfeldt, M. Hassler, B. Stoltz, N. Carlsson, S. Siraj, E. Goobar, and Y. Matsui, “High performance narrow linewidth thermally tuned semiconductor laser,” in European Conference on Optical Communication, 1–3 (2015).
[Crossref]

Wu, Z.

S. Honda, Z. Wu, J. Matsui, K. Utaka, T. Edura, M. Tokuda, K. Tsutsui, and Y. Wada, “Largely-tunable wideband Bragg gratings fabricated on SOI rib waveguides employed by deep-RIE,” Electron. Lett. 43(11), 630–631 (2007).
[Crossref]

Xing, Z.

Xu, D. X.

Xu, L.

Xu, Q.

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[Crossref] [PubMed]

Yang, J.

Yang, Y.

Yao, J.

Yardley, J. T.

R. L. Espinola, M. C. Tsai, J. T. Yardley, and R. M. Osgood, “Fast and low-power thermo-optic switch on thin silicon-on-insulator,” IEEE Photonics Technol. Lett. 15(10), 1366–1368 (2003).
[Crossref]

Yin, Y.

Yu, H.

Yu, L.

Yu, Y.

X. Han, Q. Cheng, F. Liu, and Y. Yu, “Numerical analysis on thermal tuning efficiency and thermal stress of a thermally tunable SG-DBR laser,” IEEE Photonics J. 8(3), 1–12 (2016).
[Crossref]

Yun, H.

Zhang, Z.

A. Liu, Z. Zhang, D. D. Felipe, N. Keil, and N. Grote, “Power-efficient thermo-optic tunable filters based on polymeric waveguide Bragg gratings,” IEEE Photonics Technol. Lett. 26(3), 313–315 (2014).
[Crossref]

Zheng, X.

Electron. Lett. (1)

S. Honda, Z. Wu, J. Matsui, K. Utaka, T. Edura, M. Tokuda, K. Tsutsui, and Y. Wada, “Largely-tunable wideband Bragg gratings fabricated on SOI rib waveguides employed by deep-RIE,” Electron. Lett. 43(11), 630–631 (2007).
[Crossref]

IEEE Photonics J. (2)

P. A. Cooper, L. G. Carpenter, C. Holmes, C. Sima, J. C. Gates, and P. G. R. Smith, “Power-Efficiency Enhanced Thermally Tunable Bragg Grating for Silica-on-Silicon Photonics,” IEEE Photonics J. 7(2), 1–11 (2015).
[Crossref]

X. Han, Q. Cheng, F. Liu, and Y. Yu, “Numerical analysis on thermal tuning efficiency and thermal stress of a thermally tunable SG-DBR laser,” IEEE Photonics J. 8(3), 1–12 (2016).
[Crossref]

IEEE Photonics Technol. Lett. (3)

A. Liu, Z. Zhang, D. D. Felipe, N. Keil, and N. Grote, “Power-efficient thermo-optic tunable filters based on polymeric waveguide Bragg gratings,” IEEE Photonics Technol. Lett. 26(3), 313–315 (2014).
[Crossref]

R. L. Espinola, M. C. Tsai, J. T. Yardley, and R. M. Osgood, “Fast and low-power thermo-optic switch on thin silicon-on-insulator,” IEEE Photonics Technol. Lett. 15(10), 1366–1368 (2003).
[Crossref]

P. Rabiei and W. H. Steier, “Tunable polymer double micro-ring filters,” IEEE Photonics Technol. Lett. 15(9), 1255–1257 (2003).
[Crossref]

J. Lightwave Technol. (1)

Microw. Opt. Technol. Lett. (1)

C. R. Raum, R. Gauthier, and R. N. Tait, “Integrated heaters for the thermal tuning of Bragg grating filters on silicon-on-insulator rib waveguides,” Microw. Opt. Technol. Lett. 53(3), 672–676 (2011).
[Crossref]

Nat. Photonics (1)

M. Asghari and A. V. Krishnamoorthy, “Silicon photonics: energy-efficient communication,” Nat. Photonics 5(5), 268–270 (2011).
[Crossref]

Nature (1)

Q. Xu, B. Schmidt, S. Pradhan, and M. Lipson, “Micrometre-scale silicon electro-optic modulator,” Nature 435(7040), 325–327 (2005).
[Crossref] [PubMed]

Opt. Express (13)

I. Giuntoni, A. Gajda, M. Krause, R. Steingrüber, J. Bruns, and K. Petermann, “Tunable Bragg reflectors on silicon-on-insulator rib waveguides,” Opt. Express 17(21), 18518–18524 (2009).
[Crossref] [PubMed]

T. T. Kim, S. G. Lee, H. Y. Park, J. E. Kim, and C. S. Kee, “Asymmetric Mach-Zehnder filter based on self-collimation phenomenon in two-dimensional photonic crystals,” Opt. Express 18(6), 5384–5389 (2010).
[Crossref] [PubMed]

P. Sun and R. M. Reano, “Submilliwatt thermo-optic switches using free-standing silicon-on-insulator strip waveguides,” Opt. Express 18(8), 8406–8411 (2010).
[Crossref] [PubMed]

P. Dong, W. Qian, H. Liang, R. Shafiiha, N.-N. Feng, D. Feng, X. Zheng, A. V. Krishnamoorthy, and M. Asghari, “Low power and compact reconfigurable multiplexing devices based on silicon microring resonators,” Opt. Express 18(10), 9852–9858 (2010).
[Crossref] [PubMed]

P. Dong, W. Qian, S. Liao, H. Liang, C. C. Kung, N.-N. Feng, R. Shafiiha, J. Fong, D. Feng, A. V. Krishnamoorthy, and M. Asghari, “Low loss shallow-ridge silicon waveguides,” Opt. Express 18(14), 14474–14479 (2010).
[Crossref] [PubMed]

J. E. Cunningham, I. Shubin, X. Zheng, T. Pinguet, A. Mekis, Y. Luo, H. Thacker, G. Li, J. Yao, K. Raj, and A. V. Krishnamoorthy, “Highly-efficient thermally-tuned resonant optical filters,” Opt. Express 18(18), 19055–19063 (2010).
[Crossref] [PubMed]

P. Dong, W. Qian, H. Liang, R. Shafiiha, D. Feng, G. Li, J. E. Cunningham, A. V. Krishnamoorthy, and M. Asghari, “Thermally tunable silicon racetrack resonators with ultralow tuning power,” Opt. Express 18(19), 20298–20304 (2010).
[Crossref] [PubMed]

S. M. Abdulla, L. J. Kauppinen, M. Dijkstra, M. J. de Boer, E. Berenschot, H. V. Jansen, R. M. de Ridder, and G. J. Krijnen, “Tuning a racetrack ring resonator by an integrated dielectric MEMS cantilever,” Opt. Express 19(17), 15864–15878 (2011).
[Crossref] [PubMed]

X. Wang, W. Shi, H. Yun, S. Grist, N. A. F. Jaeger, and L. Chrostowski, “Narrow-band waveguide Bragg gratings on SOI wafers with CMOS-compatible fabrication process,” Opt. Express 20(14), 15547–15558 (2012).
[Crossref] [PubMed]

A. D. Simard and S. LaRochelle, “Complex apodized Bragg grating filters without circulators in silicon-on-insulator,” Opt. Express 23(13), 16662–16675 (2015).
[Crossref] [PubMed]

L. Liu, Y. Yang, Z. Li, X. Jin, W. Mo, and X. Liu, “Low power consumption and continuously tunable all-optical microwave filter based on an opto-mechanical microring resonator,” Opt. Express 25(2), 960–971 (2017).
[Crossref] [PubMed]

D. X. Xu, A. Densmore, P. Waldron, J. Lapointe, E. Post, A. Delâge, S. Janz, P. Cheben, J. H. Schmid, and B. Lamontagne, “High bandwidth SOI photonic wire ring resonators using MMI couplers,” Opt. Express 15(6), 3149–3155 (2007).
[Crossref] [PubMed]

J. Jiang, H. Qiu, G. Wang, Y. Li, T. Dai, X. Wang, H. Yu, J. Yang, and X. Jiang, “Broadband tunable filter based on the loop of multimode Bragg grating,” Opt. Express 26(1), 559–566 (2018).
[Crossref] [PubMed]

Opt. Lett. (5)

Optica (1)

Proc. SPIE (1)

C. R. Raum, R. N. Tait, and R. C. Gauthier, “Fabrication and characterization of a thermo-mechanically tunable grating-assisted waveguide filter,” Proc. SPIE 6898, 68981E (2008).
[Crossref]

Other (4)

U. Eriksson, J. Wesström, Y. T. Liu, S. Hammerfeldt, M. Hassler, B. Stoltz, N. Carlsson, S. Siraj, E. Goobar, and Y. Matsui, “High performance narrow linewidth thermally tuned semiconductor laser,” in European Conference on Optical Communication, 1–3 (2015).
[Crossref]

Software: MODE Solutions, Lumerical Solutions, Inc.

F. Gan, T. Barwicz, M. A. Popovic, M. S. Dahlem, C. W. Holzwarth, P. T. Rakich, H. I. Smith, E. P. Ippen, and F. X. Kartner, “Maximizing the thermo-optic tuning range of silicon photonic structures,” in Photonics in Switching (2007), pp. 67–68.

M. C. Larson, Y. Feng, P. C. Koh, X. Huang, M. Moewe, A. Semakov, A. Patwardhan, E. Chiu, A. Bhardwaj, K. Chan, J. Lu, S. Bajwa, and K. Duncan, “Narrow linewidth high power thermally tuned sampled-grating distributed Bragg reflector laser,” in Optical Fiber Communication Conference (Optical Society of America, 2013), paper OTh3I.4.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 (a) Three-dimensional schematic diagram of the device based on suspended ridge waveguide (without SiO2 upper cladding layer and metal). (b) Top view of the rib waveguide Bragg grating with periodic lateral tethers and anchors. (c) Cross section of the unperturbed ridge waveguide with a thick SiO2 upper cladding layer. (d) Simulated fundamental TE mode profile of the rib waveguide.
Fig. 2
Fig. 2 Simulated (a) bandwidth (wavelength interval between the first nulls) (b) coupling coefficient varies with corrugation width for the gratings on the designed rib waveguide and the gratings on typical strip waveguide.
Fig. 3
Fig. 3 (a) Simulated temperature distribution of the demonstrated structure. A repeated unit is shown in the inset. (b) Simulated thermal deformation distribution of the device.
Fig. 4
Fig. 4 Fabrication circuit of the device: (a) the definition of inner ridge and Bragg gratings. (b) the definition of outer ridge, tethers and anchors. (c) removal of the oxide layer beneath the waveguide to release the structure. (d) deposition of upper cladding layer by PECVD. (e) deposition of Ti/Au heater.
Fig. 5
Fig. 5 (a) SEM images of the overall structure. (b) Focusing grating coupler (FGC) for vertically coupling between fiber and the strip waveguide. (c) Schematic of the double layer linear taper. (d) Magnified sidewall Bragg grating (SBG), tethers and anchors, the arc transitions are used to reduce the thermal deformation in operation. (e) SEM images of the double layer linear taper and the struts, the struts are used to support the released taper and the strip waveguide.
Fig. 6
Fig. 6 Measured results of the device with 60 nm corrugation width. (a) Transmission spectra under different heating powers. (b) Wavelength shift as a function of heating power.
Fig. 7
Fig. 7 Measured results of the device with 80 nm corrugation width. (a) Transmission spectra under different heating powers. (b) Wavelength shift as a function of heating power.
Fig. 8
Fig. 8 Measurement setup of response time.
Fig. 9
Fig. 9 (a) Measurement results of temporal response, the blue line represents original square waveform electrical signal, the orange line represents temporal response recorded by an oscilloscope. (b) Zoom in view of Fig. 9(a) with time range from 2 ms to 3 ms, the falling time τ f is ~52 μs, the rising time τ r is ~78 μs.

Tables (1)

Tables Icon

Table 1 Performance comparison of recent thermally tuned filter works

Metrics