Abstract

The optics for an integral field spectrometer based on a lenslet array is described. The principle behind the integral field spectroscopy of this system is introduced and partial modeling of the structure of the system is developed. A hybrid design method from physical optics and geometrical optics is used to design the system. Because the functions of the optical system before and after the lenslet array are different, the telephoto system and the spectrograph need to be separated. The optical system was then optimized using a combination design. This method is confirmed by simulation and comparison results and can be used in the design of other lenslet array integral field spectrometers.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Method for measurement of eccentricity and tilt of lenslet array integral field spectrometer

Jianan Liu, Jianjun Chen, Jianli Liu, Shulong Feng, Jin Yang, Nan Song, Ci Sun, Jicheng Cui, and Bayanheshig
Appl. Opt. 57(34) F50-F55 (2018)

Optical design and evaluation of airborne prism-grating imaging spectrometer

Liyin Yuan, Jia’nan Xie, Zhiping He, Yueming Wang, and Jianyu Wang
Opt. Express 27(13) 17686-17700 (2019)

Lenslet array tunable snapshot imaging spectrometer (LATIS) for hyperspectral fluorescence microscopy

Jason G. Dwight and Tomasz S. Tkaczyk
Biomed. Opt. Express 8(3) 1950-1964 (2017)

References

  • View by:
  • |
  • |
  • |

  1. J. Reimers, A. Bauer, K. P. Thompson, and J. P. Rolland, “Freeform spectrometer enabling increased compactness,” Light Sci. Appl. 6(7e17036), e17026 (2017).
    [Crossref]
  2. M. Kosec, M. Bürmen, D. Tomaževič, F. Pernuš, and B. Likar, “Characterization of a spectrograph based hyperspectral imaging system,” Opt. Express 21(10), 12085–12099 (2013).
    [Crossref] [PubMed]
  3. Z. Zhang, B. Hu, Q. Yin, T. Yu, S. Li, X. Gao, and H. Zhang, “Design of short wave infrared imaging spectrometer system based on CDP,” Opt. Express 23(23), 29758–29763 (2015).
    [Crossref] [PubMed]
  4. P. Cu-Nguyen, A. Grewe, P. Feßer, A. Seifert, S. Sinzinger, and H. Zappe, “An imaging spectrometer employing tunable hyperchromatic micro lenses,” Light Sci. Appl. 5(4e16058), e16058 (2016).
    [Crossref]
  5. R. M. Sullenberger, A. B. Milstein, Y. Rachlin, S. Kaushik, and C. M. Wynn, “Computational reconfigurable imaging spectrometer,” Opt. Express 25(25), 31960–31969 (2017).
    [Crossref] [PubMed]
  6. J. W. Pan, C. M. Wang, H. C. Lan, W. S. Sun, and J. Y. Chang, “Homogenized LED-illumination using microlens arrays for a pocket-sized projector,” Opt. Express 15(17), 10483–10491 (2007).
    [Crossref] [PubMed]
  7. L. Yuan, Z. He, G. Lv, Y. Wang, C. Li, J. Xie, and J. Wang, “Optical design, laboratory test, and calibration of airborne long wave infrared imaging spectrometer,” Opt. Express 25(19), 22440–22454 (2017).
    [Crossref] [PubMed]
  8. L. Yu, “Upgrade of a UV-VIS-NIR imaging spectrometer for the coastal ocean observation: concept, design, fabrication, and test of prototype,” Opt. Express 25(13), 15526–15538 (2017).
    [Crossref] [PubMed]
  9. J. L. Rasilla, R. L. López, and C. Tejada, “OSIRIS Optical integration and tests,” Proc. SPIE 7014, 701438 (2008).
  10. M. McElwain, J. Larkin, S. Metchev, and B. Zuckerman, “High-Contrast Imaging with Keck Adaptive Optics and OSIRIS,” Proc. SPIE 7015, 70151A (2008).
  11. S. Thibault, P. Vallée, E. Artigau, J. Maire, R. Doyon, J.-F. Lavigne, and J. Larkin, “GPI – Cryogenic Spectrograph Optics Performances,” Proc. SPIE 7735, 77351N (2010).
  12. J. E. Larkin, “Diffraction Limited Integral Field Spectrographs for Large Telescopes,” Proc. SPIE 9192, 91920C (2014).
  13. S. Thibault, “Cryogenic Lens Design Case Study: Gemini Planet Imager Spectrograph,” Proc. SPIE 8128, 812802 (2011).
  14. J. E. Larkin, A. Quirrenbach, A. Krabbe, T. Aliado, M. Barczys, G. Brims, J. Canfield, T. Gasaway, D. L. Freniere, N. Magnone, G. Skulason, M. Spencer, D. Sprayberry, and J. Weiss, “OSIRIS, An Infrared Integral Field Spectrograph for the Keck Adaptive Optics System,” Proc. SPIE 4841, 1600–1610 (2003).
  15. J. Larkin, M. Barczys, A. Krabbe, S. Adkins, T. Aliado, and P. Amico, “OSIRIS: A Diffraction Limited Integral Field Spectrograph for Keck,” Proc. SPIE 6269, 62691A (2006).
  16. A. Krabbe, J. E. Larkin, C. Iserlohe, M. Barczys, A. Quirrenbach, M. McElwain, J. Weiss, and S. A. Wright, “First results with OSIRIS: NIR-imaging spectroscopy at the diffraction limit,” Proc. SPIE 6269, 62694Q (2006).
  17. Z. Yang, Y. Tang, M. Bayanheshig, J. Cui, and J. Yang, “Optimization Design Method for Optical System of Prism-Grating Ultraspectral Imaging Spectrometers,” Acta Optica Sinica 34, 0911003 (2014).
  18. L. Chen, S. Kirchberg, B. Y. Jiang, L. Xie, Y. L. Jia, and L. L. Sun, “Fabrication of long-focal-length plano-convex microlens array by combining the micro-milling and injection molding processes,” Appl. Opt. 53(31), 7369–7380 (2014).
    [Crossref] [PubMed]
  19. D. Lee, R. Haynes, D. Ren, and J. Allington-Smith, “Characterization of Lenslet Arrays for Astronomical Spectroscopy,” PASP 113(789), 1406–1419 (2001).
    [Crossref]
  20. C. Feng, B. Wang, Z. Liang, and J. Liang, “Miniaturization of step mirrors in a static Fourier transform spectrometer: theory and simulation,” J. Opt. Soc. Am. B 28(1), 128–133 (2011).
    [Crossref]
  21. J. Cui, Y. Tang, P. Han, M. Pan, and J. Zhang, “Development of diagnostic imaging spectrometer for tumor on-line operation,” Optics and Precision Engineering 21(12), 3043–3049 (2013).
    [Crossref]
  22. C. Yan, J. Xu, and Y. Peng, “Stray light suppression of three-mirror off-axis space optical telescope,” Optics and Precision Engineering 18(2), 290–293 (2010).
  23. Q. Xue, “Design of wide field of view off-axis three-mirror system for hyperspectral imager,” Hongwai Yu Jiguang Gongcheng 41(4), 943–946 (2012).

2017 (4)

2016 (1)

P. Cu-Nguyen, A. Grewe, P. Feßer, A. Seifert, S. Sinzinger, and H. Zappe, “An imaging spectrometer employing tunable hyperchromatic micro lenses,” Light Sci. Appl. 5(4e16058), e16058 (2016).
[Crossref]

2015 (1)

2014 (3)

J. E. Larkin, “Diffraction Limited Integral Field Spectrographs for Large Telescopes,” Proc. SPIE 9192, 91920C (2014).

Z. Yang, Y. Tang, M. Bayanheshig, J. Cui, and J. Yang, “Optimization Design Method for Optical System of Prism-Grating Ultraspectral Imaging Spectrometers,” Acta Optica Sinica 34, 0911003 (2014).

L. Chen, S. Kirchberg, B. Y. Jiang, L. Xie, Y. L. Jia, and L. L. Sun, “Fabrication of long-focal-length plano-convex microlens array by combining the micro-milling and injection molding processes,” Appl. Opt. 53(31), 7369–7380 (2014).
[Crossref] [PubMed]

2013 (2)

M. Kosec, M. Bürmen, D. Tomaževič, F. Pernuš, and B. Likar, “Characterization of a spectrograph based hyperspectral imaging system,” Opt. Express 21(10), 12085–12099 (2013).
[Crossref] [PubMed]

J. Cui, Y. Tang, P. Han, M. Pan, and J. Zhang, “Development of diagnostic imaging spectrometer for tumor on-line operation,” Optics and Precision Engineering 21(12), 3043–3049 (2013).
[Crossref]

2012 (1)

Q. Xue, “Design of wide field of view off-axis three-mirror system for hyperspectral imager,” Hongwai Yu Jiguang Gongcheng 41(4), 943–946 (2012).

2011 (2)

2010 (2)

S. Thibault, P. Vallée, E. Artigau, J. Maire, R. Doyon, J.-F. Lavigne, and J. Larkin, “GPI – Cryogenic Spectrograph Optics Performances,” Proc. SPIE 7735, 77351N (2010).

C. Yan, J. Xu, and Y. Peng, “Stray light suppression of three-mirror off-axis space optical telescope,” Optics and Precision Engineering 18(2), 290–293 (2010).

2008 (2)

J. L. Rasilla, R. L. López, and C. Tejada, “OSIRIS Optical integration and tests,” Proc. SPIE 7014, 701438 (2008).

M. McElwain, J. Larkin, S. Metchev, and B. Zuckerman, “High-Contrast Imaging with Keck Adaptive Optics and OSIRIS,” Proc. SPIE 7015, 70151A (2008).

2007 (1)

2006 (2)

J. Larkin, M. Barczys, A. Krabbe, S. Adkins, T. Aliado, and P. Amico, “OSIRIS: A Diffraction Limited Integral Field Spectrograph for Keck,” Proc. SPIE 6269, 62691A (2006).

A. Krabbe, J. E. Larkin, C. Iserlohe, M. Barczys, A. Quirrenbach, M. McElwain, J. Weiss, and S. A. Wright, “First results with OSIRIS: NIR-imaging spectroscopy at the diffraction limit,” Proc. SPIE 6269, 62694Q (2006).

2003 (1)

J. E. Larkin, A. Quirrenbach, A. Krabbe, T. Aliado, M. Barczys, G. Brims, J. Canfield, T. Gasaway, D. L. Freniere, N. Magnone, G. Skulason, M. Spencer, D. Sprayberry, and J. Weiss, “OSIRIS, An Infrared Integral Field Spectrograph for the Keck Adaptive Optics System,” Proc. SPIE 4841, 1600–1610 (2003).

2001 (1)

D. Lee, R. Haynes, D. Ren, and J. Allington-Smith, “Characterization of Lenslet Arrays for Astronomical Spectroscopy,” PASP 113(789), 1406–1419 (2001).
[Crossref]

Adkins, S.

J. Larkin, M. Barczys, A. Krabbe, S. Adkins, T. Aliado, and P. Amico, “OSIRIS: A Diffraction Limited Integral Field Spectrograph for Keck,” Proc. SPIE 6269, 62691A (2006).

Aliado, T.

J. Larkin, M. Barczys, A. Krabbe, S. Adkins, T. Aliado, and P. Amico, “OSIRIS: A Diffraction Limited Integral Field Spectrograph for Keck,” Proc. SPIE 6269, 62691A (2006).

J. E. Larkin, A. Quirrenbach, A. Krabbe, T. Aliado, M. Barczys, G. Brims, J. Canfield, T. Gasaway, D. L. Freniere, N. Magnone, G. Skulason, M. Spencer, D. Sprayberry, and J. Weiss, “OSIRIS, An Infrared Integral Field Spectrograph for the Keck Adaptive Optics System,” Proc. SPIE 4841, 1600–1610 (2003).

Allington-Smith, J.

D. Lee, R. Haynes, D. Ren, and J. Allington-Smith, “Characterization of Lenslet Arrays for Astronomical Spectroscopy,” PASP 113(789), 1406–1419 (2001).
[Crossref]

Amico, P.

J. Larkin, M. Barczys, A. Krabbe, S. Adkins, T. Aliado, and P. Amico, “OSIRIS: A Diffraction Limited Integral Field Spectrograph for Keck,” Proc. SPIE 6269, 62691A (2006).

Artigau, E.

S. Thibault, P. Vallée, E. Artigau, J. Maire, R. Doyon, J.-F. Lavigne, and J. Larkin, “GPI – Cryogenic Spectrograph Optics Performances,” Proc. SPIE 7735, 77351N (2010).

Barczys, M.

J. Larkin, M. Barczys, A. Krabbe, S. Adkins, T. Aliado, and P. Amico, “OSIRIS: A Diffraction Limited Integral Field Spectrograph for Keck,” Proc. SPIE 6269, 62691A (2006).

A. Krabbe, J. E. Larkin, C. Iserlohe, M. Barczys, A. Quirrenbach, M. McElwain, J. Weiss, and S. A. Wright, “First results with OSIRIS: NIR-imaging spectroscopy at the diffraction limit,” Proc. SPIE 6269, 62694Q (2006).

J. E. Larkin, A. Quirrenbach, A. Krabbe, T. Aliado, M. Barczys, G. Brims, J. Canfield, T. Gasaway, D. L. Freniere, N. Magnone, G. Skulason, M. Spencer, D. Sprayberry, and J. Weiss, “OSIRIS, An Infrared Integral Field Spectrograph for the Keck Adaptive Optics System,” Proc. SPIE 4841, 1600–1610 (2003).

Bauer, A.

J. Reimers, A. Bauer, K. P. Thompson, and J. P. Rolland, “Freeform spectrometer enabling increased compactness,” Light Sci. Appl. 6(7e17036), e17026 (2017).
[Crossref]

Bayanheshig, M.

Z. Yang, Y. Tang, M. Bayanheshig, J. Cui, and J. Yang, “Optimization Design Method for Optical System of Prism-Grating Ultraspectral Imaging Spectrometers,” Acta Optica Sinica 34, 0911003 (2014).

Brims, G.

J. E. Larkin, A. Quirrenbach, A. Krabbe, T. Aliado, M. Barczys, G. Brims, J. Canfield, T. Gasaway, D. L. Freniere, N. Magnone, G. Skulason, M. Spencer, D. Sprayberry, and J. Weiss, “OSIRIS, An Infrared Integral Field Spectrograph for the Keck Adaptive Optics System,” Proc. SPIE 4841, 1600–1610 (2003).

Bürmen, M.

Canfield, J.

J. E. Larkin, A. Quirrenbach, A. Krabbe, T. Aliado, M. Barczys, G. Brims, J. Canfield, T. Gasaway, D. L. Freniere, N. Magnone, G. Skulason, M. Spencer, D. Sprayberry, and J. Weiss, “OSIRIS, An Infrared Integral Field Spectrograph for the Keck Adaptive Optics System,” Proc. SPIE 4841, 1600–1610 (2003).

Chang, J. Y.

Chen, L.

Cui, J.

Z. Yang, Y. Tang, M. Bayanheshig, J. Cui, and J. Yang, “Optimization Design Method for Optical System of Prism-Grating Ultraspectral Imaging Spectrometers,” Acta Optica Sinica 34, 0911003 (2014).

J. Cui, Y. Tang, P. Han, M. Pan, and J. Zhang, “Development of diagnostic imaging spectrometer for tumor on-line operation,” Optics and Precision Engineering 21(12), 3043–3049 (2013).
[Crossref]

Cu-Nguyen, P.

P. Cu-Nguyen, A. Grewe, P. Feßer, A. Seifert, S. Sinzinger, and H. Zappe, “An imaging spectrometer employing tunable hyperchromatic micro lenses,” Light Sci. Appl. 5(4e16058), e16058 (2016).
[Crossref]

Doyon, R.

S. Thibault, P. Vallée, E. Artigau, J. Maire, R. Doyon, J.-F. Lavigne, and J. Larkin, “GPI – Cryogenic Spectrograph Optics Performances,” Proc. SPIE 7735, 77351N (2010).

Feng, C.

Feßer, P.

P. Cu-Nguyen, A. Grewe, P. Feßer, A. Seifert, S. Sinzinger, and H. Zappe, “An imaging spectrometer employing tunable hyperchromatic micro lenses,” Light Sci. Appl. 5(4e16058), e16058 (2016).
[Crossref]

Freniere, D. L.

J. E. Larkin, A. Quirrenbach, A. Krabbe, T. Aliado, M. Barczys, G. Brims, J. Canfield, T. Gasaway, D. L. Freniere, N. Magnone, G. Skulason, M. Spencer, D. Sprayberry, and J. Weiss, “OSIRIS, An Infrared Integral Field Spectrograph for the Keck Adaptive Optics System,” Proc. SPIE 4841, 1600–1610 (2003).

Gao, X.

Gasaway, T.

J. E. Larkin, A. Quirrenbach, A. Krabbe, T. Aliado, M. Barczys, G. Brims, J. Canfield, T. Gasaway, D. L. Freniere, N. Magnone, G. Skulason, M. Spencer, D. Sprayberry, and J. Weiss, “OSIRIS, An Infrared Integral Field Spectrograph for the Keck Adaptive Optics System,” Proc. SPIE 4841, 1600–1610 (2003).

Grewe, A.

P. Cu-Nguyen, A. Grewe, P. Feßer, A. Seifert, S. Sinzinger, and H. Zappe, “An imaging spectrometer employing tunable hyperchromatic micro lenses,” Light Sci. Appl. 5(4e16058), e16058 (2016).
[Crossref]

Han, P.

J. Cui, Y. Tang, P. Han, M. Pan, and J. Zhang, “Development of diagnostic imaging spectrometer for tumor on-line operation,” Optics and Precision Engineering 21(12), 3043–3049 (2013).
[Crossref]

Haynes, R.

D. Lee, R. Haynes, D. Ren, and J. Allington-Smith, “Characterization of Lenslet Arrays for Astronomical Spectroscopy,” PASP 113(789), 1406–1419 (2001).
[Crossref]

He, Z.

Hu, B.

Iserlohe, C.

A. Krabbe, J. E. Larkin, C. Iserlohe, M. Barczys, A. Quirrenbach, M. McElwain, J. Weiss, and S. A. Wright, “First results with OSIRIS: NIR-imaging spectroscopy at the diffraction limit,” Proc. SPIE 6269, 62694Q (2006).

Jia, Y. L.

Jiang, B. Y.

Kaushik, S.

Kirchberg, S.

Kosec, M.

Krabbe, A.

J. Larkin, M. Barczys, A. Krabbe, S. Adkins, T. Aliado, and P. Amico, “OSIRIS: A Diffraction Limited Integral Field Spectrograph for Keck,” Proc. SPIE 6269, 62691A (2006).

A. Krabbe, J. E. Larkin, C. Iserlohe, M. Barczys, A. Quirrenbach, M. McElwain, J. Weiss, and S. A. Wright, “First results with OSIRIS: NIR-imaging spectroscopy at the diffraction limit,” Proc. SPIE 6269, 62694Q (2006).

J. E. Larkin, A. Quirrenbach, A. Krabbe, T. Aliado, M. Barczys, G. Brims, J. Canfield, T. Gasaway, D. L. Freniere, N. Magnone, G. Skulason, M. Spencer, D. Sprayberry, and J. Weiss, “OSIRIS, An Infrared Integral Field Spectrograph for the Keck Adaptive Optics System,” Proc. SPIE 4841, 1600–1610 (2003).

Lan, H. C.

Larkin, J.

S. Thibault, P. Vallée, E. Artigau, J. Maire, R. Doyon, J.-F. Lavigne, and J. Larkin, “GPI – Cryogenic Spectrograph Optics Performances,” Proc. SPIE 7735, 77351N (2010).

M. McElwain, J. Larkin, S. Metchev, and B. Zuckerman, “High-Contrast Imaging with Keck Adaptive Optics and OSIRIS,” Proc. SPIE 7015, 70151A (2008).

J. Larkin, M. Barczys, A. Krabbe, S. Adkins, T. Aliado, and P. Amico, “OSIRIS: A Diffraction Limited Integral Field Spectrograph for Keck,” Proc. SPIE 6269, 62691A (2006).

Larkin, J. E.

J. E. Larkin, “Diffraction Limited Integral Field Spectrographs for Large Telescopes,” Proc. SPIE 9192, 91920C (2014).

A. Krabbe, J. E. Larkin, C. Iserlohe, M. Barczys, A. Quirrenbach, M. McElwain, J. Weiss, and S. A. Wright, “First results with OSIRIS: NIR-imaging spectroscopy at the diffraction limit,” Proc. SPIE 6269, 62694Q (2006).

J. E. Larkin, A. Quirrenbach, A. Krabbe, T. Aliado, M. Barczys, G. Brims, J. Canfield, T. Gasaway, D. L. Freniere, N. Magnone, G. Skulason, M. Spencer, D. Sprayberry, and J. Weiss, “OSIRIS, An Infrared Integral Field Spectrograph for the Keck Adaptive Optics System,” Proc. SPIE 4841, 1600–1610 (2003).

Lavigne, J.-F.

S. Thibault, P. Vallée, E. Artigau, J. Maire, R. Doyon, J.-F. Lavigne, and J. Larkin, “GPI – Cryogenic Spectrograph Optics Performances,” Proc. SPIE 7735, 77351N (2010).

Lee, D.

D. Lee, R. Haynes, D. Ren, and J. Allington-Smith, “Characterization of Lenslet Arrays for Astronomical Spectroscopy,” PASP 113(789), 1406–1419 (2001).
[Crossref]

Li, C.

Li, S.

Liang, J.

Liang, Z.

Likar, B.

López, R. L.

J. L. Rasilla, R. L. López, and C. Tejada, “OSIRIS Optical integration and tests,” Proc. SPIE 7014, 701438 (2008).

Lv, G.

Magnone, N.

J. E. Larkin, A. Quirrenbach, A. Krabbe, T. Aliado, M. Barczys, G. Brims, J. Canfield, T. Gasaway, D. L. Freniere, N. Magnone, G. Skulason, M. Spencer, D. Sprayberry, and J. Weiss, “OSIRIS, An Infrared Integral Field Spectrograph for the Keck Adaptive Optics System,” Proc. SPIE 4841, 1600–1610 (2003).

Maire, J.

S. Thibault, P. Vallée, E. Artigau, J. Maire, R. Doyon, J.-F. Lavigne, and J. Larkin, “GPI – Cryogenic Spectrograph Optics Performances,” Proc. SPIE 7735, 77351N (2010).

McElwain, M.

M. McElwain, J. Larkin, S. Metchev, and B. Zuckerman, “High-Contrast Imaging with Keck Adaptive Optics and OSIRIS,” Proc. SPIE 7015, 70151A (2008).

A. Krabbe, J. E. Larkin, C. Iserlohe, M. Barczys, A. Quirrenbach, M. McElwain, J. Weiss, and S. A. Wright, “First results with OSIRIS: NIR-imaging spectroscopy at the diffraction limit,” Proc. SPIE 6269, 62694Q (2006).

Metchev, S.

M. McElwain, J. Larkin, S. Metchev, and B. Zuckerman, “High-Contrast Imaging with Keck Adaptive Optics and OSIRIS,” Proc. SPIE 7015, 70151A (2008).

Milstein, A. B.

Pan, J. W.

Pan, M.

J. Cui, Y. Tang, P. Han, M. Pan, and J. Zhang, “Development of diagnostic imaging spectrometer for tumor on-line operation,” Optics and Precision Engineering 21(12), 3043–3049 (2013).
[Crossref]

Peng, Y.

C. Yan, J. Xu, and Y. Peng, “Stray light suppression of three-mirror off-axis space optical telescope,” Optics and Precision Engineering 18(2), 290–293 (2010).

Pernuš, F.

Quirrenbach, A.

A. Krabbe, J. E. Larkin, C. Iserlohe, M. Barczys, A. Quirrenbach, M. McElwain, J. Weiss, and S. A. Wright, “First results with OSIRIS: NIR-imaging spectroscopy at the diffraction limit,” Proc. SPIE 6269, 62694Q (2006).

J. E. Larkin, A. Quirrenbach, A. Krabbe, T. Aliado, M. Barczys, G. Brims, J. Canfield, T. Gasaway, D. L. Freniere, N. Magnone, G. Skulason, M. Spencer, D. Sprayberry, and J. Weiss, “OSIRIS, An Infrared Integral Field Spectrograph for the Keck Adaptive Optics System,” Proc. SPIE 4841, 1600–1610 (2003).

Rachlin, Y.

Rasilla, J. L.

J. L. Rasilla, R. L. López, and C. Tejada, “OSIRIS Optical integration and tests,” Proc. SPIE 7014, 701438 (2008).

Reimers, J.

J. Reimers, A. Bauer, K. P. Thompson, and J. P. Rolland, “Freeform spectrometer enabling increased compactness,” Light Sci. Appl. 6(7e17036), e17026 (2017).
[Crossref]

Ren, D.

D. Lee, R. Haynes, D. Ren, and J. Allington-Smith, “Characterization of Lenslet Arrays for Astronomical Spectroscopy,” PASP 113(789), 1406–1419 (2001).
[Crossref]

Rolland, J. P.

J. Reimers, A. Bauer, K. P. Thompson, and J. P. Rolland, “Freeform spectrometer enabling increased compactness,” Light Sci. Appl. 6(7e17036), e17026 (2017).
[Crossref]

Seifert, A.

P. Cu-Nguyen, A. Grewe, P. Feßer, A. Seifert, S. Sinzinger, and H. Zappe, “An imaging spectrometer employing tunable hyperchromatic micro lenses,” Light Sci. Appl. 5(4e16058), e16058 (2016).
[Crossref]

Sinzinger, S.

P. Cu-Nguyen, A. Grewe, P. Feßer, A. Seifert, S. Sinzinger, and H. Zappe, “An imaging spectrometer employing tunable hyperchromatic micro lenses,” Light Sci. Appl. 5(4e16058), e16058 (2016).
[Crossref]

Skulason, G.

J. E. Larkin, A. Quirrenbach, A. Krabbe, T. Aliado, M. Barczys, G. Brims, J. Canfield, T. Gasaway, D. L. Freniere, N. Magnone, G. Skulason, M. Spencer, D. Sprayberry, and J. Weiss, “OSIRIS, An Infrared Integral Field Spectrograph for the Keck Adaptive Optics System,” Proc. SPIE 4841, 1600–1610 (2003).

Spencer, M.

J. E. Larkin, A. Quirrenbach, A. Krabbe, T. Aliado, M. Barczys, G. Brims, J. Canfield, T. Gasaway, D. L. Freniere, N. Magnone, G. Skulason, M. Spencer, D. Sprayberry, and J. Weiss, “OSIRIS, An Infrared Integral Field Spectrograph for the Keck Adaptive Optics System,” Proc. SPIE 4841, 1600–1610 (2003).

Sprayberry, D.

J. E. Larkin, A. Quirrenbach, A. Krabbe, T. Aliado, M. Barczys, G. Brims, J. Canfield, T. Gasaway, D. L. Freniere, N. Magnone, G. Skulason, M. Spencer, D. Sprayberry, and J. Weiss, “OSIRIS, An Infrared Integral Field Spectrograph for the Keck Adaptive Optics System,” Proc. SPIE 4841, 1600–1610 (2003).

Sullenberger, R. M.

Sun, L. L.

Sun, W. S.

Tang, Y.

Z. Yang, Y. Tang, M. Bayanheshig, J. Cui, and J. Yang, “Optimization Design Method for Optical System of Prism-Grating Ultraspectral Imaging Spectrometers,” Acta Optica Sinica 34, 0911003 (2014).

J. Cui, Y. Tang, P. Han, M. Pan, and J. Zhang, “Development of diagnostic imaging spectrometer for tumor on-line operation,” Optics and Precision Engineering 21(12), 3043–3049 (2013).
[Crossref]

Tejada, C.

J. L. Rasilla, R. L. López, and C. Tejada, “OSIRIS Optical integration and tests,” Proc. SPIE 7014, 701438 (2008).

Thibault, S.

S. Thibault, “Cryogenic Lens Design Case Study: Gemini Planet Imager Spectrograph,” Proc. SPIE 8128, 812802 (2011).

S. Thibault, P. Vallée, E. Artigau, J. Maire, R. Doyon, J.-F. Lavigne, and J. Larkin, “GPI – Cryogenic Spectrograph Optics Performances,” Proc. SPIE 7735, 77351N (2010).

Thompson, K. P.

J. Reimers, A. Bauer, K. P. Thompson, and J. P. Rolland, “Freeform spectrometer enabling increased compactness,” Light Sci. Appl. 6(7e17036), e17026 (2017).
[Crossref]

Tomaževic, D.

Vallée, P.

S. Thibault, P. Vallée, E. Artigau, J. Maire, R. Doyon, J.-F. Lavigne, and J. Larkin, “GPI – Cryogenic Spectrograph Optics Performances,” Proc. SPIE 7735, 77351N (2010).

Wang, B.

Wang, C. M.

Wang, J.

Wang, Y.

Weiss, J.

A. Krabbe, J. E. Larkin, C. Iserlohe, M. Barczys, A. Quirrenbach, M. McElwain, J. Weiss, and S. A. Wright, “First results with OSIRIS: NIR-imaging spectroscopy at the diffraction limit,” Proc. SPIE 6269, 62694Q (2006).

J. E. Larkin, A. Quirrenbach, A. Krabbe, T. Aliado, M. Barczys, G. Brims, J. Canfield, T. Gasaway, D. L. Freniere, N. Magnone, G. Skulason, M. Spencer, D. Sprayberry, and J. Weiss, “OSIRIS, An Infrared Integral Field Spectrograph for the Keck Adaptive Optics System,” Proc. SPIE 4841, 1600–1610 (2003).

Wright, S. A.

A. Krabbe, J. E. Larkin, C. Iserlohe, M. Barczys, A. Quirrenbach, M. McElwain, J. Weiss, and S. A. Wright, “First results with OSIRIS: NIR-imaging spectroscopy at the diffraction limit,” Proc. SPIE 6269, 62694Q (2006).

Wynn, C. M.

Xie, J.

Xie, L.

Xu, J.

C. Yan, J. Xu, and Y. Peng, “Stray light suppression of three-mirror off-axis space optical telescope,” Optics and Precision Engineering 18(2), 290–293 (2010).

Xue, Q.

Q. Xue, “Design of wide field of view off-axis three-mirror system for hyperspectral imager,” Hongwai Yu Jiguang Gongcheng 41(4), 943–946 (2012).

Yan, C.

C. Yan, J. Xu, and Y. Peng, “Stray light suppression of three-mirror off-axis space optical telescope,” Optics and Precision Engineering 18(2), 290–293 (2010).

Yang, J.

Z. Yang, Y. Tang, M. Bayanheshig, J. Cui, and J. Yang, “Optimization Design Method for Optical System of Prism-Grating Ultraspectral Imaging Spectrometers,” Acta Optica Sinica 34, 0911003 (2014).

Yang, Z.

Z. Yang, Y. Tang, M. Bayanheshig, J. Cui, and J. Yang, “Optimization Design Method for Optical System of Prism-Grating Ultraspectral Imaging Spectrometers,” Acta Optica Sinica 34, 0911003 (2014).

Yin, Q.

Yu, L.

Yu, T.

Yuan, L.

Zappe, H.

P. Cu-Nguyen, A. Grewe, P. Feßer, A. Seifert, S. Sinzinger, and H. Zappe, “An imaging spectrometer employing tunable hyperchromatic micro lenses,” Light Sci. Appl. 5(4e16058), e16058 (2016).
[Crossref]

Zhang, H.

Zhang, J.

J. Cui, Y. Tang, P. Han, M. Pan, and J. Zhang, “Development of diagnostic imaging spectrometer for tumor on-line operation,” Optics and Precision Engineering 21(12), 3043–3049 (2013).
[Crossref]

Zhang, Z.

Zuckerman, B.

M. McElwain, J. Larkin, S. Metchev, and B. Zuckerman, “High-Contrast Imaging with Keck Adaptive Optics and OSIRIS,” Proc. SPIE 7015, 70151A (2008).

Acta Optica Sinica (1)

Z. Yang, Y. Tang, M. Bayanheshig, J. Cui, and J. Yang, “Optimization Design Method for Optical System of Prism-Grating Ultraspectral Imaging Spectrometers,” Acta Optica Sinica 34, 0911003 (2014).

Appl. Opt. (1)

Hongwai Yu Jiguang Gongcheng (1)

Q. Xue, “Design of wide field of view off-axis three-mirror system for hyperspectral imager,” Hongwai Yu Jiguang Gongcheng 41(4), 943–946 (2012).

J. Opt. Soc. Am. B (1)

Light Sci. Appl. (2)

J. Reimers, A. Bauer, K. P. Thompson, and J. P. Rolland, “Freeform spectrometer enabling increased compactness,” Light Sci. Appl. 6(7e17036), e17026 (2017).
[Crossref]

P. Cu-Nguyen, A. Grewe, P. Feßer, A. Seifert, S. Sinzinger, and H. Zappe, “An imaging spectrometer employing tunable hyperchromatic micro lenses,” Light Sci. Appl. 5(4e16058), e16058 (2016).
[Crossref]

Opt. Express (6)

Optics and Precision Engineering (2)

J. Cui, Y. Tang, P. Han, M. Pan, and J. Zhang, “Development of diagnostic imaging spectrometer for tumor on-line operation,” Optics and Precision Engineering 21(12), 3043–3049 (2013).
[Crossref]

C. Yan, J. Xu, and Y. Peng, “Stray light suppression of three-mirror off-axis space optical telescope,” Optics and Precision Engineering 18(2), 290–293 (2010).

PASP (1)

D. Lee, R. Haynes, D. Ren, and J. Allington-Smith, “Characterization of Lenslet Arrays for Astronomical Spectroscopy,” PASP 113(789), 1406–1419 (2001).
[Crossref]

Proc. SPIE (8)

J. L. Rasilla, R. L. López, and C. Tejada, “OSIRIS Optical integration and tests,” Proc. SPIE 7014, 701438 (2008).

M. McElwain, J. Larkin, S. Metchev, and B. Zuckerman, “High-Contrast Imaging with Keck Adaptive Optics and OSIRIS,” Proc. SPIE 7015, 70151A (2008).

S. Thibault, P. Vallée, E. Artigau, J. Maire, R. Doyon, J.-F. Lavigne, and J. Larkin, “GPI – Cryogenic Spectrograph Optics Performances,” Proc. SPIE 7735, 77351N (2010).

J. E. Larkin, “Diffraction Limited Integral Field Spectrographs for Large Telescopes,” Proc. SPIE 9192, 91920C (2014).

S. Thibault, “Cryogenic Lens Design Case Study: Gemini Planet Imager Spectrograph,” Proc. SPIE 8128, 812802 (2011).

J. E. Larkin, A. Quirrenbach, A. Krabbe, T. Aliado, M. Barczys, G. Brims, J. Canfield, T. Gasaway, D. L. Freniere, N. Magnone, G. Skulason, M. Spencer, D. Sprayberry, and J. Weiss, “OSIRIS, An Infrared Integral Field Spectrograph for the Keck Adaptive Optics System,” Proc. SPIE 4841, 1600–1610 (2003).

J. Larkin, M. Barczys, A. Krabbe, S. Adkins, T. Aliado, and P. Amico, “OSIRIS: A Diffraction Limited Integral Field Spectrograph for Keck,” Proc. SPIE 6269, 62691A (2006).

A. Krabbe, J. E. Larkin, C. Iserlohe, M. Barczys, A. Quirrenbach, M. McElwain, J. Weiss, and S. A. Wright, “First results with OSIRIS: NIR-imaging spectroscopy at the diffraction limit,” Proc. SPIE 6269, 62694Q (2006).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1 Principle of the lenslet-array IFS.
Fig. 2
Fig. 2 Schematic of the micro-pupil.
Fig. 3
Fig. 3 Simulation of amplitude (left) and light intensity (right) at the focal plane behind the lenslet array. Size of the lenslet p is 280μm, and F/# is 4.
Fig. 4
Fig. 4 Simulation of the micro-pupil intensity using the mathematical calculation software (left) and the optical design software (right). The input parameters of the lenslet array are the same: p = 280μm, F/# = 4. And the results are the same.
Fig. 5
Fig. 5 Different F/# of the lenslet at fixed diameter. When we fix the size of the lenslet and decrease the F/# of the lenslet, the lenslet crosstalk increases.
Fig. 6
Fig. 6 Simulation of the crosstalk for different diameters of the lenslet at fixed F/#. From the simulation results, when increasing the micro-pupil separation by increasing the pitch while holding the lenslet f-number fixed, the lenslet crosstalk decreases.
Fig. 7
Fig. 7 Pupil matching of the lenslet array and the spectrograph.
Fig. 8
Fig. 8 Optical path of the spectrograph.
Fig. 9
Fig. 9 Modulation transfer function of the spectrograph.
Fig. 10
Fig. 10 Spot of the spectrograph.
Fig. 11
Fig. 11 Aberration curve of the spectrograph.
Fig. 12
Fig. 12 Optical design of the IFS system.
Fig. 13
Fig. 13 Resolution of the IFS system.
Fig. 14
Fig. 14 Spot diagram under different lenslet parameters.

Tables (2)

Tables Icon

Table 1 Specifications of the spectrograph system

Equations (23)

Equations on this page are rendered with MathJax. Learn more.

{ sin θ = p 2 R α = i + w n 2 .
sin i = n sin i ' .
i ' + i ' ' = θ .
{ n sin i ' ' = sin i ' ' ' n sin α ' ' = sin α ' ' ' .
h 1 = f tan i ' ' ' .
h 2 = f tan α ' ' ' .
h 3 = t ( tan i ' ' tan α ' ' ) .
t = T p 2 tan [ a r c sin ( p 2 R ) ] .
φ / 2 = h 1 h 2 + h 3 . = 2 f tan { a r c sin [ n sin ( θ a r c sin sin i n ) ] } 2 f tan { a r c sin [ n sin ( θ a r c sin sin ( i + w n 2 ) n ) ] } + 2 t tan ( θ a r c sin sin i n ) 2 t tan θ a r c sin sin ( i + w n 2 ) n ) .
α θ n 2 .
2 w = 2 arc tan ( h 2 f ' ) / γ .
E ˜ ( x , y ) = exp ( i k z ) i λ z exp ( i k x 2 + y 2 2 z ) + E ˜ 0 ( x 1 , y 1 ) × exp [ i k 2 z ( x 1 2 + y 1 2 ) ] × exp [ i 2 π λ z ( x x 1 2 + y y 1 2 ) ] d x 1 d y 1 .
E ˜ ( x , y ) = exp ( i k z 1 ) i λ z 1 + E ˜ ( x 1 , y 1 ) exp { i k 2 z 1 [ ( x x 1 ) 2 + ( y y 1 ) 2 ] } d x 1 d y 1 .
E ˜ ( x 1 , y 1 ) = E ˜ 0 ( x 1 , y 1 ) t ˜ ( x 1 , y 1 ) .
t ˜ ( x 1 , y 1 ) = P ( x 1 , y 1 ) exp ( i k x 1 2 + y 1 2 2 f ) .
P ( x 1 , y 1 ) = r e c t ( x 1 a ) r e c t ( y 1 b ) = { a | x 1 | a 2 | y 1 | b 2 0   o t h e r s } .
t ( x 1 , y 1 ) = n = 1 N t 0 ( x 1 ξ n , y 1 η n ) .
t ( x 1 , y 1 ) = t 0 ( x 1 , y 1 ) n = 1 N δ ( x 1 ξ n , y 1 η n ) .
t ( x 1 , y 1 ) = P ( x 1 , y 1 ) exp ( i k x 1 2 + y 1 2 2 f ) n = 1 N δ ( x 1 ξ n , y 1 η n )
E ˜ ( x , y ) = exp ( i k z 1 ) i λ z 1 + [ r e c t ( x 1 a ) r e c t ( y 1 b ) exp ( i k x 1 2 + y 1 2 2 f ) ] . n = 1 N δ ( x 1 ξ n , y 1 η n ) exp { i k 2 z 1 [ ( x x 1 ) 2 + ( y y 1 ) 2 ] } d x 1 d y 1 .
i ' ' ' = arc tan ( ϕ 2 f ) .
m = h q / x p .
u ' = u / m .

Metrics