Abstract

We investigate the chiroptical response of a single plasmonic nanohelix interacting with a weakly focused circularly polarized Gaussian beam. The optical scattering at the fundamental resonance is characterized experimentally and numerically. The angularly resolved scattering of the excited nanohelix is verified experimentally and it validates the numerical results. We employ a multipole decomposition analysis to study the fundamental and first higher-order resonance of the nanohelix, explaining their chiral properties in terms of the formation of chiral dipoles.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Numerical study of tunable enhanced chirality in multilayer stack achiral phase-change metamaterials

Tun Cao, Yang Li, Chen-Wei Wei, and Yi-mei Qiu
Opt. Express 25(9) 9911-9925 (2017)

Three dimensional chiral plasmon rulers based on silver nanorod trimers

Chunrui Han, Lechen Yang, Piao Ye, Edward P. J. Parrott, Emma Pickwell-Macpherson, and Wing Yim Tam
Opt. Express 26(8) 10315-10325 (2018)

References

  • View by:
  • |
  • |
  • |

  1. L. D. Barron, Molecular Light Scattering and Optical Activity, (Cambridge University, 2009).
  2. B. Ranjbar and P. Gill, “Circular dichroism techniques: biomolecular and nanostructural analyses-a review,” Chem. Biol. Drug Des. 74(2), 101–120 (2009).
    [Crossref] [PubMed]
  3. E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol. 5, 783–787 (2010).
    [Crossref] [PubMed]
  4. Y. Zhao, L. Xu, W. Ma, L. Wang, H. Kuang, C. Xu, and N. A. Kotov, “Shell-engineered chiroplasmonic assemblies of nanoparticles for zeptomolar DNA detection,” Nano Lett. 14(7), 3908–3913 (2014).
    [Crossref] [PubMed]
  5. C. Jack, A. S. Karimullah, R. Leyman, R. Tullius, V. M. Rotello, G. Cooke, N. Gadegaard, L. D. Barron, and M. Kadodwala, “Biomacromolecular stereostructure mediates mode hybridization in chiral plasmonic nanostructures,” Nano Lett. 16(9), 5806–5814 (2016).
    [Crossref] [PubMed]
  6. Y. Zhao, A. N. Askarpour, L. Sun, J. Shi, X. Li, and A. Alù, “Chirality detection of enantiomers using twisted optical metamaterials,” Nat. Commun. 8, 14180 (2017).
    [Crossref] [PubMed]
  7. B. Wang, J. Zhou, T. Koschny, M. Kafesaki, and C. S. Soukoulis, “Chiral metamaterials: simulations and experiments,” J. Opt. A: Pure Appl. Opt. 11(11), 114003 (2009).
    [Crossref]
  8. V. K. Valev, J. J. Baumberg, C. Sibilia, and T. Verbiest, “Chirality and chiroptical effects in plasmonic nanostructures: fundamentals, recent progress, and outlook,” Adv. Mater. 25(18), 2517–2534 (2013).
    [Crossref] [PubMed]
  9. S. S. Oh and O. Hess, “Chiral metamaterials: enhancement and control of optical activity and circular dichroism,” Nano Convergence 2(1), 24 (2015).
    [Crossref] [PubMed]
  10. Z. Wang, F. Cheng, T. Winsor, and Y. Liu, “Optical chiral metamaterials: a review of the fundamentals, fabrication methods and applications,” Nanotechnology 27(41), 412001 (2016).
    [Crossref] [PubMed]
  11. M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, “Giant optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett. 95(22), 227401 (2005).
    [Crossref] [PubMed]
  12. A. V. Rogacheva, V. A. Fedotov, A. S. Schwanecke, and N. I. Zheludev, “Giant gyrotropy due to electromagnetic-field coupling in a bilayered chiral structure,” Phys. Rev. Lett. 97(17), 177401 (2006).
    [Crossref] [PubMed]
  13. J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
    [Crossref] [PubMed]
  14. C. E. Román-Velázquez, C. Noguez, and I. L. Garzón, “Circular dichroism simulated spectra of chiral gold nanoclusters: a dipole approximation,” J. Phys. Chem. B 107(44), 12035–12038 (2003).
    [Crossref]
  15. Z. Fan and A. O. Govorov, “Plasmonic circular dichroism of chiral metal nanoparticle assemblies,” Nano Lett. 10(7), 2580–2587 (2010).
    [Crossref] [PubMed]
  16. Z. Fan and A. O. Govorov, “Helical metal nanoparticle assemblies with defects: plasmonic chirality and circular dichroism,” J. Phys. Chem. C 115(27), 13254–13261 (2011).
    [Crossref]
  17. A. Kuzyk, R. Schreiber, Z. Fan, G. Pardatscher, E.-M. Roller, A. Högele, F. C. Simmel, A. O. Govorov, and T. Liedl, “DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response,” Nature 483(7389), 311–314 (2012).
    [Crossref] [PubMed]
  18. M. Hentschel, M. Schäferling, B. Metzger, and H. Giessen, “Plasmonic diastereomers: adding up chiral centers,” Nano Lett. 13(2), 600–606 (2013).
    [Crossref] [PubMed]
  19. M. Decker, M. Ruther, C. E. Kriegler, J. Zhou, C. M. Soukoulis, S. Linden, and M. Wegener, “Strong optical activity from twisted-cross photonic metamaterials,” Opt. Lett. 34(16), 2501–2503 (2009).
    [Crossref] [PubMed]
  20. M. J. Huttunen, G. Bautista, M. Decker, S. Linden, M. Wegener, and M. Kauranen, “Nonlinear chiral imaging of subwavelength-sized twisted-cross gold nanodimers,” Opt. Mater. Express 1(1), 46–56 (2011).
    [Crossref]
  21. Y. Zhao, M. A. Belkin, A. Alù, X. Yu, and H. Li, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers,” Nat. Commun. 3, 870 (2012).
    [Crossref] [PubMed]
  22. P. Banzer, P. Woźniak, U. Mick, I. De Leon, and R. W. Boyd, “Chiral optical response of planar and symmetric nanotrimers enabled by heteromaterial selection,” Nat. Commun. 7, 13117 (2016).
    [Crossref] [PubMed]
  23. E. Plum, X. X. Liu, V. A. Fedotov, Y. Chen, D. P. Tsai, and N. I. Zheludev, “Metamaterials: optical activity without chirality,” Phys. Rev. Lett. 18(11), 113902 (2009).
    [Crossref]
  24. E. Plum, V. A. Fedotov, and N. I. Zheludev, “Extrinsic electromagnetic chirality in metamaterials,” J. Opt. A: Pure Appl. Opt. 11(7), 074009 (2009).
    [Crossref]
  25. I. Sersic, C. Tuambilangana, C. Kampfrath, and A. F. Koenderink, “Magnetoelectric point scattering theory for metamaterial scatterers,” Phys. Rev. B 83(24), 247401 (2011).
    [Crossref]
  26. I. Sersic, M. A. van de Haar, F. B. Arango, and A. F. Koenderink, “Ubiquity of optical activity in planar metamaterial scatterers,” Phys. Rev. Lett. 108(22), 223903 (2012).
    [Crossref] [PubMed]
  27. I. De Leon, M. J. Horton, S. A. Schulz, J. Upham, P. Banzer, and R. W. Boyd, “Strong, spectrally-tunable chirality in diffractive metasurfaces,” Sci. Rep. 5, 13034 (2015).
    [Crossref] [PubMed]
  28. Y. Cui, L. Kang, S. Lan, S. Rodrigues, and W. Cai, “Giant chiral optical response from a twisted-arc metamaterial,” Nano Lett. 14(2), 1021–1025 (2014).
    [Crossref] [PubMed]
  29. V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett. 97, 167401 (2006).
    [Crossref] [PubMed]
  30. C. Pfeiffer, C. Zhang, V. Ray, L. Jay Guo, and A. Grbic, “High performance bianisotropic metasurfaces: asymmetric transmission of light,” Phys. Rev. Lett. 113(2), 023902 (2014).
    [Crossref] [PubMed]
  31. J. B. Pendry, “A chiral route to negative refraction,” Science 306(5700), 1353–1355 (2004).
    [Crossref] [PubMed]
  32. S. Zhang, Y.-S. Park, J. Li, X. Lu, W. Zhang, and W. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett. 102(2), 023901 (2009).
    [Crossref] [PubMed]
  33. E. Plum, J. Zhou, L. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, “Metamaterial with negative index due to chirality,” Phys. Rev. B 79(3), 035407 (2009).
    [Crossref]
  34. C. Wu, H. Li, Z. Wei, X. Yu, and C. T. Chan, “Theory and experimental realization of negative refraction in a metallic helix array,” Phys. Rev. Lett. 105(24), 247401 (2010).
    [Crossref]
  35. M. Schäferling, D. Dregely, M. Hentschel, and Harald Giessen, “Tailoring enhanced optical chirality: design principles for chiral plasmonic nanostructures,” Phys. Rev. X 2(3), 031010 (2012).
  36. L. Kang, Q. Ren, and D. H. Werner, “Leveraging superchiral light for manipulation of optical chirality in the near-field of plasmonic metamaterials,” ACS Photonics 4(6), 1298–1305 (2017).
    [Crossref]
  37. M. Ren, E. Plum, J. Xu, and N. I. Zheludev, “Giant nonlinear optical activity in a plasmonic metamaterial,” Nat. Commun. 3, 833 (2012).
    [Crossref] [PubMed]
  38. S. Zhang, J. Zhou, Y.-S. Park, J. Rho, R. Singh, S. Nam, A. K. Azad, H.-T. Chen, X. Yin, A. J. Taylor, and X. Zhang, “Photoinduced handedness switching in terahertz chiral metamolecules,” Nat. Commun. 3, 942 (2012).
    [Crossref] [PubMed]
  39. M. Esposito, V. Tasco, F. Todisco, A. Benedetti, I. Tarantini, M. Cuscunà, L. Dominici, D. De Giorgi, and A. Passaseo, “Tailoring chiro-optical effects by helical nanowire arrangement,” Nanoscale 7(7), 18081–18088 (2015).
    [Crossref] [PubMed]
  40. D. Kosters, A. de Hoogh, H. Zeijlemaker, H. Acar, H. N. Rotenberg, and L. Kuipers, “Core-shell plasmonic nanohelices,” ACS Photonics 4(7), 1858–1863 (2017).
    [Crossref] [PubMed]
  41. J. K. Gansel, M. Latzel, A. Frölich, J. Kaschke, M. Thiel, and M. Wegener, “Tapered gold-helix metamaterials as improved circular polarizers,” Appl. Phys. Lett. 100(10), 101109 (2012).
    [Crossref]
  42. J. G. Gibbs, A. G. Mark, S. Eslami, and P. Fischer, “Plasmonic nanohelix metamaterials with tailorable giant circular dichroism,” Appl. Phys. Lett. 103, 213101 (2013).
    [Crossref]
  43. Z. Y. Yang, M. Zhao, P. X. Lu, and Y. F. Lu, “Ultrabroadband optical circular polarizers consisting of double-helical nanowire structures,” Opt. Lett. 35(15), 2588–2590 (2010).
    [Crossref] [PubMed]
  44. M. Esposito, V. Tasco, M. Cuscunà, F. Todisco, A. Benedetti, I. Tarantini, M. D. Giorgi, D. Sanvitto, and A. Passaseo, “Nanoscale 3D chiral plasmonic helices with circular dichroism at visible frequencies,” ACS Photonics 2(1), 105–114 (2015).
    [Crossref]
  45. A. G. Mark, J. G. Gibbs, T.-C. Lee, and P. Fischer, “Hybrid nanocolloids with programmed three-dimensional shape and material composition,” Nat. Mater. 12(9), 802–807 (2013).
    [Crossref] [PubMed]
  46. C. Song, M. G. Blaber, G. Zhao, P. Zhang, H. C. Fry, G. C. Schatz, and N. L. Rosi, “Tailorable plasmonic circular dichroism properties of helical nanoparticle superstructures,” Nano Lett. 13(7), 3256–3261 (2013).
    [Crossref] [PubMed]
  47. B. Frank, X. Yin, M. Schäferling, J. Zhao, S. M. Hein, P. V. Braun, and H. Giessen, “Large-area 3D chiral plasmonic structures,” ACS Nano 7(7), 6321–6329 (2013).
    [Crossref] [PubMed]
  48. G. K. Larsen, Y. He, J. Wang, and Y. Zhao, “Scalable fabrication of composite Ti/Ag plasmonic helices: controlling morphology and optical activity by tailoring material properties,” Adv. Opt. Mater. 2(3), 245–249 (2014).
    [Crossref]
  49. J. Hu, X. Zhao, R. Li, A. Zhu, L. Chen, Y. Lin, B. Cao, X. Zhu, and C. Wang, “Broadband circularly polarizing dichroism with high efficient plasmonic helical surface,” Opt. Express 24(10), 11023–11032 (2016).
    [Crossref] [PubMed]
  50. P. Banzer, U. Peschel, S. Quabis, and G. Leuchs, “On the experimental investigation of the electric and magnetic response of a single nano-structure,” Opt. Express 18(10), 10905–10923 (2010).
    [Crossref] [PubMed]
  51. P. Woźniak, P. Banzer, and G. Leuchs, “Selective switching of individual multipole resonances in single dielectric nanoparticles,” Laser Photonics Rev. 9(2), 231–240 (2015).
    [Crossref]
  52. W. Kuhn, “The physical significance of optical rotatory power,” J. Chem. Soc. Faraday Trans. 26, 293–308 (1930).
    [Crossref]
  53. X. Yin, M. Schäferling, B. Metzger, and H. Giessen, “Interpreting chiral nanophotonic spectra: the plasmonic Born-Kuhn model,” Nano Lett. 13(12), 6238–6243 (2013).
    [Crossref] [PubMed]
  54. J. K. Gansel, M. Wegener, S. Burger, and S. Linden, “Gold helix photonic metamaterials: a numerical parameter study,” Opt. Express 18(2), 1059–1069 (2010).
    [Crossref] [PubMed]
  55. M. Fruhnert, I. Fernandez-Corbaton, V. Yannopapas, and C. Rockstuhl, “Computing the T-matrix of a scattering object with multiple plane wave illuminations,” Beilstein J. Nanotechnol. 8(1), 614–626 (2017).
    [Crossref] [PubMed]
  56. L. Barron, “Parity and optical activity,” Nature 238(5358), 17–19 (1972).
    [Crossref] [PubMed]
  57. D. L. Jaggard, A. R. Mickelson, and C. H. Papas, “On electromagnetic waves in chiral media,” Appl. Phys. 18(2), 211–216 (1979).
    [Crossref]
  58. L. Hu, Y. Huang, L. Pan, and Y. Fang, “Analyzing intrinsic plasmonic chirality by tracking the interplay of electric and magnetic dipole modes,” Sci. Rep. 7, 11151 (2017).
    [Crossref] [PubMed]
  59. R.-L. Chern, “Wave propagation in chiral media: composite Fresnel equations,” J. Opt. 15(7), 075702 (2013).
    [Crossref]
  60. W. Lukosz and R. E. Kunz, “Light emission by magnetic and electric dipoles close to a plane interface I Total radiated power,” J. Opt. Soc. Am. 67(12), 1607–1615 (1977).
    [Crossref]
  61. W. Lukosz and R. E. Kunz, “Light emission by magnetic and electric dipoles close to a plane dielectric interface II Radiation patterns of perpendicular oriented dipoles,” J. Opt. Soc. Am. 67(12), 1615–1619 (1977).
    [Crossref]
  62. M. Neugebauer, T. Bauer, P. Banzer, and G. Leuchs, “Polarization tailored light driven directional optical nanobeacon,” Nano Lett. 14(5), 2546–2551 (2014).
    [Crossref] [PubMed]
  63. K. Höflich, R. B. Yang, A. Berger, G. Leuchs, and S. Christiansen, “The direct writing of plasmonic gold nanostructures by electron-beam-induced deposition,” Adv. Mater. 23, 2657–2661 (2011).
    [Crossref] [PubMed]
  64. P. Woźniak, K. Höflich, G. Brönstrup, P. Banzer, S. Christiansen, and G. Leuchs, “Unveiling the optical properties of a metamaterial synthesized by electron-beam-induced deposition,” Nanotechnology 27(2), 025705 (2015).
    [Crossref]
  65. T. Bret, S. Mauron, I. Utke, and P. Hoffmann, “Characterization of focused electron beam induced carbon deposits from organic precursors,” Microelectron. Eng. 78–79, 300–306 (2005).
    [Crossref]
  66. C. Haverkamp, K. Höflich, S. Jäckle, A. Manzoni, and S. Christiansen, “Plasmonic gold helices for the visible range fabricated by oxygen plasma purification of electron beam induced deposits,” Nanotechnology 28(5), 055303 (2017).
    [Crossref]
  67. L. Novotny and B. Hecht, Principles of Nano-optics, (Cambridge University, 2012).
    [Crossref]
  68. S. C. Tidwell, D. H. Ford, and W. D. Kimura, “Transporting and focusing radially polarized laser beams,” Opt. Eng. 31(7), 1527–1531 (1992).
    [Crossref]
  69. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
    [Crossref]
  70. J. A. Stratton, Electromagnetic Theory (McGraw-Hill Companies, 1941).
  71. A. B. Evlyukhin, T. Fischer, C. Reinhardt, and B. N. Chichkov, “Optical theorem and multipole scattering of light by arbitrarily shaped nanoparticles,” Phys. Rev. B 94(20), 205434 (2016).
    [Crossref]
  72. R. Alaee, C. Rockstuhl, and I. Fernandez-Corbaton, “An electromagnetic multipole expansion beyond the long-wavelength approximation,” Opt. Commun. 407(15), 17–21 (2018).
    [Crossref]
  73. N. Katsarakis, T. Koschny, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Electric coupling to the magnetic resonance of split ring resonators,” Appl. Phys. Lett. 84(15), 2943–2945 (2004).
    [Crossref]
  74. J. Petschulat, J. Yang, C. Menzel, C. Rockstuhl, A. Chipouline, P. Lalanne, A. Tüennermann, F. Lederer, and T. Pertsch, “Understanding the electric and magnetic response of isolated metaatoms by means of a multipolar field decomposition,” Opt. Express 18(14), 14454–14466 (2010).
    [Crossref] [PubMed]
  75. A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, V. Viswanathan, M. Rahmani, V. Valuckas, Z. Y. Pan, Y. Kivshar, D. S. Pickard, and B. Luk’yanchuk, “Split-ball resonator as a three-dimensional analogue of planar split-rings,” Nat. Commun. 5, 3104 (2014).
    [Crossref] [PubMed]

2018 (1)

R. Alaee, C. Rockstuhl, and I. Fernandez-Corbaton, “An electromagnetic multipole expansion beyond the long-wavelength approximation,” Opt. Commun. 407(15), 17–21 (2018).
[Crossref]

2017 (6)

Y. Zhao, A. N. Askarpour, L. Sun, J. Shi, X. Li, and A. Alù, “Chirality detection of enantiomers using twisted optical metamaterials,” Nat. Commun. 8, 14180 (2017).
[Crossref] [PubMed]

L. Kang, Q. Ren, and D. H. Werner, “Leveraging superchiral light for manipulation of optical chirality in the near-field of plasmonic metamaterials,” ACS Photonics 4(6), 1298–1305 (2017).
[Crossref]

D. Kosters, A. de Hoogh, H. Zeijlemaker, H. Acar, H. N. Rotenberg, and L. Kuipers, “Core-shell plasmonic nanohelices,” ACS Photonics 4(7), 1858–1863 (2017).
[Crossref] [PubMed]

M. Fruhnert, I. Fernandez-Corbaton, V. Yannopapas, and C. Rockstuhl, “Computing the T-matrix of a scattering object with multiple plane wave illuminations,” Beilstein J. Nanotechnol. 8(1), 614–626 (2017).
[Crossref] [PubMed]

L. Hu, Y. Huang, L. Pan, and Y. Fang, “Analyzing intrinsic plasmonic chirality by tracking the interplay of electric and magnetic dipole modes,” Sci. Rep. 7, 11151 (2017).
[Crossref] [PubMed]

C. Haverkamp, K. Höflich, S. Jäckle, A. Manzoni, and S. Christiansen, “Plasmonic gold helices for the visible range fabricated by oxygen plasma purification of electron beam induced deposits,” Nanotechnology 28(5), 055303 (2017).
[Crossref]

2016 (5)

A. B. Evlyukhin, T. Fischer, C. Reinhardt, and B. N. Chichkov, “Optical theorem and multipole scattering of light by arbitrarily shaped nanoparticles,” Phys. Rev. B 94(20), 205434 (2016).
[Crossref]

J. Hu, X. Zhao, R. Li, A. Zhu, L. Chen, Y. Lin, B. Cao, X. Zhu, and C. Wang, “Broadband circularly polarizing dichroism with high efficient plasmonic helical surface,” Opt. Express 24(10), 11023–11032 (2016).
[Crossref] [PubMed]

C. Jack, A. S. Karimullah, R. Leyman, R. Tullius, V. M. Rotello, G. Cooke, N. Gadegaard, L. D. Barron, and M. Kadodwala, “Biomacromolecular stereostructure mediates mode hybridization in chiral plasmonic nanostructures,” Nano Lett. 16(9), 5806–5814 (2016).
[Crossref] [PubMed]

Z. Wang, F. Cheng, T. Winsor, and Y. Liu, “Optical chiral metamaterials: a review of the fundamentals, fabrication methods and applications,” Nanotechnology 27(41), 412001 (2016).
[Crossref] [PubMed]

P. Banzer, P. Woźniak, U. Mick, I. De Leon, and R. W. Boyd, “Chiral optical response of planar and symmetric nanotrimers enabled by heteromaterial selection,” Nat. Commun. 7, 13117 (2016).
[Crossref] [PubMed]

2015 (6)

I. De Leon, M. J. Horton, S. A. Schulz, J. Upham, P. Banzer, and R. W. Boyd, “Strong, spectrally-tunable chirality in diffractive metasurfaces,” Sci. Rep. 5, 13034 (2015).
[Crossref] [PubMed]

S. S. Oh and O. Hess, “Chiral metamaterials: enhancement and control of optical activity and circular dichroism,” Nano Convergence 2(1), 24 (2015).
[Crossref] [PubMed]

P. Woźniak, P. Banzer, and G. Leuchs, “Selective switching of individual multipole resonances in single dielectric nanoparticles,” Laser Photonics Rev. 9(2), 231–240 (2015).
[Crossref]

M. Esposito, V. Tasco, F. Todisco, A. Benedetti, I. Tarantini, M. Cuscunà, L. Dominici, D. De Giorgi, and A. Passaseo, “Tailoring chiro-optical effects by helical nanowire arrangement,” Nanoscale 7(7), 18081–18088 (2015).
[Crossref] [PubMed]

M. Esposito, V. Tasco, M. Cuscunà, F. Todisco, A. Benedetti, I. Tarantini, M. D. Giorgi, D. Sanvitto, and A. Passaseo, “Nanoscale 3D chiral plasmonic helices with circular dichroism at visible frequencies,” ACS Photonics 2(1), 105–114 (2015).
[Crossref]

P. Woźniak, K. Höflich, G. Brönstrup, P. Banzer, S. Christiansen, and G. Leuchs, “Unveiling the optical properties of a metamaterial synthesized by electron-beam-induced deposition,” Nanotechnology 27(2), 025705 (2015).
[Crossref]

2014 (6)

M. Neugebauer, T. Bauer, P. Banzer, and G. Leuchs, “Polarization tailored light driven directional optical nanobeacon,” Nano Lett. 14(5), 2546–2551 (2014).
[Crossref] [PubMed]

G. K. Larsen, Y. He, J. Wang, and Y. Zhao, “Scalable fabrication of composite Ti/Ag plasmonic helices: controlling morphology and optical activity by tailoring material properties,” Adv. Opt. Mater. 2(3), 245–249 (2014).
[Crossref]

Y. Zhao, L. Xu, W. Ma, L. Wang, H. Kuang, C. Xu, and N. A. Kotov, “Shell-engineered chiroplasmonic assemblies of nanoparticles for zeptomolar DNA detection,” Nano Lett. 14(7), 3908–3913 (2014).
[Crossref] [PubMed]

Y. Cui, L. Kang, S. Lan, S. Rodrigues, and W. Cai, “Giant chiral optical response from a twisted-arc metamaterial,” Nano Lett. 14(2), 1021–1025 (2014).
[Crossref] [PubMed]

C. Pfeiffer, C. Zhang, V. Ray, L. Jay Guo, and A. Grbic, “High performance bianisotropic metasurfaces: asymmetric transmission of light,” Phys. Rev. Lett. 113(2), 023902 (2014).
[Crossref] [PubMed]

A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, V. Viswanathan, M. Rahmani, V. Valuckas, Z. Y. Pan, Y. Kivshar, D. S. Pickard, and B. Luk’yanchuk, “Split-ball resonator as a three-dimensional analogue of planar split-rings,” Nat. Commun. 5, 3104 (2014).
[Crossref] [PubMed]

2013 (8)

M. Hentschel, M. Schäferling, B. Metzger, and H. Giessen, “Plasmonic diastereomers: adding up chiral centers,” Nano Lett. 13(2), 600–606 (2013).
[Crossref] [PubMed]

V. K. Valev, J. J. Baumberg, C. Sibilia, and T. Verbiest, “Chirality and chiroptical effects in plasmonic nanostructures: fundamentals, recent progress, and outlook,” Adv. Mater. 25(18), 2517–2534 (2013).
[Crossref] [PubMed]

J. G. Gibbs, A. G. Mark, S. Eslami, and P. Fischer, “Plasmonic nanohelix metamaterials with tailorable giant circular dichroism,” Appl. Phys. Lett. 103, 213101 (2013).
[Crossref]

A. G. Mark, J. G. Gibbs, T.-C. Lee, and P. Fischer, “Hybrid nanocolloids with programmed three-dimensional shape and material composition,” Nat. Mater. 12(9), 802–807 (2013).
[Crossref] [PubMed]

C. Song, M. G. Blaber, G. Zhao, P. Zhang, H. C. Fry, G. C. Schatz, and N. L. Rosi, “Tailorable plasmonic circular dichroism properties of helical nanoparticle superstructures,” Nano Lett. 13(7), 3256–3261 (2013).
[Crossref] [PubMed]

B. Frank, X. Yin, M. Schäferling, J. Zhao, S. M. Hein, P. V. Braun, and H. Giessen, “Large-area 3D chiral plasmonic structures,” ACS Nano 7(7), 6321–6329 (2013).
[Crossref] [PubMed]

R.-L. Chern, “Wave propagation in chiral media: composite Fresnel equations,” J. Opt. 15(7), 075702 (2013).
[Crossref]

X. Yin, M. Schäferling, B. Metzger, and H. Giessen, “Interpreting chiral nanophotonic spectra: the plasmonic Born-Kuhn model,” Nano Lett. 13(12), 6238–6243 (2013).
[Crossref] [PubMed]

2012 (7)

J. K. Gansel, M. Latzel, A. Frölich, J. Kaschke, M. Thiel, and M. Wegener, “Tapered gold-helix metamaterials as improved circular polarizers,” Appl. Phys. Lett. 100(10), 101109 (2012).
[Crossref]

M. Ren, E. Plum, J. Xu, and N. I. Zheludev, “Giant nonlinear optical activity in a plasmonic metamaterial,” Nat. Commun. 3, 833 (2012).
[Crossref] [PubMed]

S. Zhang, J. Zhou, Y.-S. Park, J. Rho, R. Singh, S. Nam, A. K. Azad, H.-T. Chen, X. Yin, A. J. Taylor, and X. Zhang, “Photoinduced handedness switching in terahertz chiral metamolecules,” Nat. Commun. 3, 942 (2012).
[Crossref] [PubMed]

A. Kuzyk, R. Schreiber, Z. Fan, G. Pardatscher, E.-M. Roller, A. Högele, F. C. Simmel, A. O. Govorov, and T. Liedl, “DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response,” Nature 483(7389), 311–314 (2012).
[Crossref] [PubMed]

Y. Zhao, M. A. Belkin, A. Alù, X. Yu, and H. Li, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers,” Nat. Commun. 3, 870 (2012).
[Crossref] [PubMed]

I. Sersic, M. A. van de Haar, F. B. Arango, and A. F. Koenderink, “Ubiquity of optical activity in planar metamaterial scatterers,” Phys. Rev. Lett. 108(22), 223903 (2012).
[Crossref] [PubMed]

M. Schäferling, D. Dregely, M. Hentschel, and Harald Giessen, “Tailoring enhanced optical chirality: design principles for chiral plasmonic nanostructures,” Phys. Rev. X 2(3), 031010 (2012).

2011 (4)

I. Sersic, C. Tuambilangana, C. Kampfrath, and A. F. Koenderink, “Magnetoelectric point scattering theory for metamaterial scatterers,” Phys. Rev. B 83(24), 247401 (2011).
[Crossref]

M. J. Huttunen, G. Bautista, M. Decker, S. Linden, M. Wegener, and M. Kauranen, “Nonlinear chiral imaging of subwavelength-sized twisted-cross gold nanodimers,” Opt. Mater. Express 1(1), 46–56 (2011).
[Crossref]

Z. Fan and A. O. Govorov, “Helical metal nanoparticle assemblies with defects: plasmonic chirality and circular dichroism,” J. Phys. Chem. C 115(27), 13254–13261 (2011).
[Crossref]

K. Höflich, R. B. Yang, A. Berger, G. Leuchs, and S. Christiansen, “The direct writing of plasmonic gold nanostructures by electron-beam-induced deposition,” Adv. Mater. 23, 2657–2661 (2011).
[Crossref] [PubMed]

2010 (7)

J. K. Gansel, M. Wegener, S. Burger, and S. Linden, “Gold helix photonic metamaterials: a numerical parameter study,” Opt. Express 18(2), 1059–1069 (2010).
[Crossref] [PubMed]

Z. Y. Yang, M. Zhao, P. X. Lu, and Y. F. Lu, “Ultrabroadband optical circular polarizers consisting of double-helical nanowire structures,” Opt. Lett. 35(15), 2588–2590 (2010).
[Crossref] [PubMed]

P. Banzer, U. Peschel, S. Quabis, and G. Leuchs, “On the experimental investigation of the electric and magnetic response of a single nano-structure,” Opt. Express 18(10), 10905–10923 (2010).
[Crossref] [PubMed]

Z. Fan and A. O. Govorov, “Plasmonic circular dichroism of chiral metal nanoparticle assemblies,” Nano Lett. 10(7), 2580–2587 (2010).
[Crossref] [PubMed]

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol. 5, 783–787 (2010).
[Crossref] [PubMed]

C. Wu, H. Li, Z. Wei, X. Yu, and C. T. Chan, “Theory and experimental realization of negative refraction in a metallic helix array,” Phys. Rev. Lett. 105(24), 247401 (2010).
[Crossref]

J. Petschulat, J. Yang, C. Menzel, C. Rockstuhl, A. Chipouline, P. Lalanne, A. Tüennermann, F. Lederer, and T. Pertsch, “Understanding the electric and magnetic response of isolated metaatoms by means of a multipolar field decomposition,” Opt. Express 18(14), 14454–14466 (2010).
[Crossref] [PubMed]

2009 (8)

S. Zhang, Y.-S. Park, J. Li, X. Lu, W. Zhang, and W. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett. 102(2), 023901 (2009).
[Crossref] [PubMed]

E. Plum, J. Zhou, L. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, “Metamaterial with negative index due to chirality,” Phys. Rev. B 79(3), 035407 (2009).
[Crossref]

M. Decker, M. Ruther, C. E. Kriegler, J. Zhou, C. M. Soukoulis, S. Linden, and M. Wegener, “Strong optical activity from twisted-cross photonic metamaterials,” Opt. Lett. 34(16), 2501–2503 (2009).
[Crossref] [PubMed]

E. Plum, X. X. Liu, V. A. Fedotov, Y. Chen, D. P. Tsai, and N. I. Zheludev, “Metamaterials: optical activity without chirality,” Phys. Rev. Lett. 18(11), 113902 (2009).
[Crossref]

E. Plum, V. A. Fedotov, and N. I. Zheludev, “Extrinsic electromagnetic chirality in metamaterials,” J. Opt. A: Pure Appl. Opt. 11(7), 074009 (2009).
[Crossref]

B. Ranjbar and P. Gill, “Circular dichroism techniques: biomolecular and nanostructural analyses-a review,” Chem. Biol. Drug Des. 74(2), 101–120 (2009).
[Crossref] [PubMed]

B. Wang, J. Zhou, T. Koschny, M. Kafesaki, and C. S. Soukoulis, “Chiral metamaterials: simulations and experiments,” J. Opt. A: Pure Appl. Opt. 11(11), 114003 (2009).
[Crossref]

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

2006 (2)

A. V. Rogacheva, V. A. Fedotov, A. S. Schwanecke, and N. I. Zheludev, “Giant gyrotropy due to electromagnetic-field coupling in a bilayered chiral structure,” Phys. Rev. Lett. 97(17), 177401 (2006).
[Crossref] [PubMed]

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett. 97, 167401 (2006).
[Crossref] [PubMed]

2005 (2)

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, “Giant optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett. 95(22), 227401 (2005).
[Crossref] [PubMed]

T. Bret, S. Mauron, I. Utke, and P. Hoffmann, “Characterization of focused electron beam induced carbon deposits from organic precursors,” Microelectron. Eng. 78–79, 300–306 (2005).
[Crossref]

2004 (2)

J. B. Pendry, “A chiral route to negative refraction,” Science 306(5700), 1353–1355 (2004).
[Crossref] [PubMed]

N. Katsarakis, T. Koschny, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Electric coupling to the magnetic resonance of split ring resonators,” Appl. Phys. Lett. 84(15), 2943–2945 (2004).
[Crossref]

2003 (1)

C. E. Román-Velázquez, C. Noguez, and I. L. Garzón, “Circular dichroism simulated spectra of chiral gold nanoclusters: a dipole approximation,” J. Phys. Chem. B 107(44), 12035–12038 (2003).
[Crossref]

1992 (1)

S. C. Tidwell, D. H. Ford, and W. D. Kimura, “Transporting and focusing radially polarized laser beams,” Opt. Eng. 31(7), 1527–1531 (1992).
[Crossref]

1979 (1)

D. L. Jaggard, A. R. Mickelson, and C. H. Papas, “On electromagnetic waves in chiral media,” Appl. Phys. 18(2), 211–216 (1979).
[Crossref]

1977 (2)

1972 (2)

L. Barron, “Parity and optical activity,” Nature 238(5358), 17–19 (1972).
[Crossref] [PubMed]

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

1930 (1)

W. Kuhn, “The physical significance of optical rotatory power,” J. Chem. Soc. Faraday Trans. 26, 293–308 (1930).
[Crossref]

Acar, H.

D. Kosters, A. de Hoogh, H. Zeijlemaker, H. Acar, H. N. Rotenberg, and L. Kuipers, “Core-shell plasmonic nanohelices,” ACS Photonics 4(7), 1858–1863 (2017).
[Crossref] [PubMed]

Alaee, R.

R. Alaee, C. Rockstuhl, and I. Fernandez-Corbaton, “An electromagnetic multipole expansion beyond the long-wavelength approximation,” Opt. Commun. 407(15), 17–21 (2018).
[Crossref]

Alù, A.

Y. Zhao, A. N. Askarpour, L. Sun, J. Shi, X. Li, and A. Alù, “Chirality detection of enantiomers using twisted optical metamaterials,” Nat. Commun. 8, 14180 (2017).
[Crossref] [PubMed]

Y. Zhao, M. A. Belkin, A. Alù, X. Yu, and H. Li, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers,” Nat. Commun. 3, 870 (2012).
[Crossref] [PubMed]

Arango, F. B.

I. Sersic, M. A. van de Haar, F. B. Arango, and A. F. Koenderink, “Ubiquity of optical activity in planar metamaterial scatterers,” Phys. Rev. Lett. 108(22), 223903 (2012).
[Crossref] [PubMed]

Askarpour, A. N.

Y. Zhao, A. N. Askarpour, L. Sun, J. Shi, X. Li, and A. Alù, “Chirality detection of enantiomers using twisted optical metamaterials,” Nat. Commun. 8, 14180 (2017).
[Crossref] [PubMed]

Azad, A. K.

S. Zhang, J. Zhou, Y.-S. Park, J. Rho, R. Singh, S. Nam, A. K. Azad, H.-T. Chen, X. Yin, A. J. Taylor, and X. Zhang, “Photoinduced handedness switching in terahertz chiral metamolecules,” Nat. Commun. 3, 942 (2012).
[Crossref] [PubMed]

Bade, K.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Banzer, P.

P. Banzer, P. Woźniak, U. Mick, I. De Leon, and R. W. Boyd, “Chiral optical response of planar and symmetric nanotrimers enabled by heteromaterial selection,” Nat. Commun. 7, 13117 (2016).
[Crossref] [PubMed]

I. De Leon, M. J. Horton, S. A. Schulz, J. Upham, P. Banzer, and R. W. Boyd, “Strong, spectrally-tunable chirality in diffractive metasurfaces,” Sci. Rep. 5, 13034 (2015).
[Crossref] [PubMed]

P. Woźniak, K. Höflich, G. Brönstrup, P. Banzer, S. Christiansen, and G. Leuchs, “Unveiling the optical properties of a metamaterial synthesized by electron-beam-induced deposition,” Nanotechnology 27(2), 025705 (2015).
[Crossref]

P. Woźniak, P. Banzer, and G. Leuchs, “Selective switching of individual multipole resonances in single dielectric nanoparticles,” Laser Photonics Rev. 9(2), 231–240 (2015).
[Crossref]

M. Neugebauer, T. Bauer, P. Banzer, and G. Leuchs, “Polarization tailored light driven directional optical nanobeacon,” Nano Lett. 14(5), 2546–2551 (2014).
[Crossref] [PubMed]

P. Banzer, U. Peschel, S. Quabis, and G. Leuchs, “On the experimental investigation of the electric and magnetic response of a single nano-structure,” Opt. Express 18(10), 10905–10923 (2010).
[Crossref] [PubMed]

Barron, L.

L. Barron, “Parity and optical activity,” Nature 238(5358), 17–19 (1972).
[Crossref] [PubMed]

Barron, L. D.

C. Jack, A. S. Karimullah, R. Leyman, R. Tullius, V. M. Rotello, G. Cooke, N. Gadegaard, L. D. Barron, and M. Kadodwala, “Biomacromolecular stereostructure mediates mode hybridization in chiral plasmonic nanostructures,” Nano Lett. 16(9), 5806–5814 (2016).
[Crossref] [PubMed]

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol. 5, 783–787 (2010).
[Crossref] [PubMed]

L. D. Barron, Molecular Light Scattering and Optical Activity, (Cambridge University, 2009).

Bauer, T.

M. Neugebauer, T. Bauer, P. Banzer, and G. Leuchs, “Polarization tailored light driven directional optical nanobeacon,” Nano Lett. 14(5), 2546–2551 (2014).
[Crossref] [PubMed]

Baumberg, J. J.

V. K. Valev, J. J. Baumberg, C. Sibilia, and T. Verbiest, “Chirality and chiroptical effects in plasmonic nanostructures: fundamentals, recent progress, and outlook,” Adv. Mater. 25(18), 2517–2534 (2013).
[Crossref] [PubMed]

Bautista, G.

Belkin, M. A.

Y. Zhao, M. A. Belkin, A. Alù, X. Yu, and H. Li, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers,” Nat. Commun. 3, 870 (2012).
[Crossref] [PubMed]

Benedetti, A.

M. Esposito, V. Tasco, F. Todisco, A. Benedetti, I. Tarantini, M. Cuscunà, L. Dominici, D. De Giorgi, and A. Passaseo, “Tailoring chiro-optical effects by helical nanowire arrangement,” Nanoscale 7(7), 18081–18088 (2015).
[Crossref] [PubMed]

M. Esposito, V. Tasco, M. Cuscunà, F. Todisco, A. Benedetti, I. Tarantini, M. D. Giorgi, D. Sanvitto, and A. Passaseo, “Nanoscale 3D chiral plasmonic helices with circular dichroism at visible frequencies,” ACS Photonics 2(1), 105–114 (2015).
[Crossref]

Berger, A.

K. Höflich, R. B. Yang, A. Berger, G. Leuchs, and S. Christiansen, “The direct writing of plasmonic gold nanostructures by electron-beam-induced deposition,” Adv. Mater. 23, 2657–2661 (2011).
[Crossref] [PubMed]

Blaber, M. G.

C. Song, M. G. Blaber, G. Zhao, P. Zhang, H. C. Fry, G. C. Schatz, and N. L. Rosi, “Tailorable plasmonic circular dichroism properties of helical nanoparticle superstructures,” Nano Lett. 13(7), 3256–3261 (2013).
[Crossref] [PubMed]

Boyd, R. W.

P. Banzer, P. Woźniak, U. Mick, I. De Leon, and R. W. Boyd, “Chiral optical response of planar and symmetric nanotrimers enabled by heteromaterial selection,” Nat. Commun. 7, 13117 (2016).
[Crossref] [PubMed]

I. De Leon, M. J. Horton, S. A. Schulz, J. Upham, P. Banzer, and R. W. Boyd, “Strong, spectrally-tunable chirality in diffractive metasurfaces,” Sci. Rep. 5, 13034 (2015).
[Crossref] [PubMed]

Braun, P. V.

B. Frank, X. Yin, M. Schäferling, J. Zhao, S. M. Hein, P. V. Braun, and H. Giessen, “Large-area 3D chiral plasmonic structures,” ACS Nano 7(7), 6321–6329 (2013).
[Crossref] [PubMed]

Bret, T.

T. Bret, S. Mauron, I. Utke, and P. Hoffmann, “Characterization of focused electron beam induced carbon deposits from organic precursors,” Microelectron. Eng. 78–79, 300–306 (2005).
[Crossref]

Brönstrup, G.

P. Woźniak, K. Höflich, G. Brönstrup, P. Banzer, S. Christiansen, and G. Leuchs, “Unveiling the optical properties of a metamaterial synthesized by electron-beam-induced deposition,” Nanotechnology 27(2), 025705 (2015).
[Crossref]

Burger, S.

Cai, W.

Y. Cui, L. Kang, S. Lan, S. Rodrigues, and W. Cai, “Giant chiral optical response from a twisted-arc metamaterial,” Nano Lett. 14(2), 1021–1025 (2014).
[Crossref] [PubMed]

Cao, B.

Carpy, T.

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol. 5, 783–787 (2010).
[Crossref] [PubMed]

Chan, C. T.

C. Wu, H. Li, Z. Wei, X. Yu, and C. T. Chan, “Theory and experimental realization of negative refraction in a metallic helix array,” Phys. Rev. Lett. 105(24), 247401 (2010).
[Crossref]

Chen, H.-T.

S. Zhang, J. Zhou, Y.-S. Park, J. Rho, R. Singh, S. Nam, A. K. Azad, H.-T. Chen, X. Yin, A. J. Taylor, and X. Zhang, “Photoinduced handedness switching in terahertz chiral metamolecules,” Nat. Commun. 3, 942 (2012).
[Crossref] [PubMed]

Chen, L.

Chen, Y.

E. Plum, X. X. Liu, V. A. Fedotov, Y. Chen, D. P. Tsai, and N. I. Zheludev, “Metamaterials: optical activity without chirality,” Phys. Rev. Lett. 18(11), 113902 (2009).
[Crossref]

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett. 97, 167401 (2006).
[Crossref] [PubMed]

Cheng, F.

Z. Wang, F. Cheng, T. Winsor, and Y. Liu, “Optical chiral metamaterials: a review of the fundamentals, fabrication methods and applications,” Nanotechnology 27(41), 412001 (2016).
[Crossref] [PubMed]

Chern, R.-L.

R.-L. Chern, “Wave propagation in chiral media: composite Fresnel equations,” J. Opt. 15(7), 075702 (2013).
[Crossref]

Chichkov, B. N.

A. B. Evlyukhin, T. Fischer, C. Reinhardt, and B. N. Chichkov, “Optical theorem and multipole scattering of light by arbitrarily shaped nanoparticles,” Phys. Rev. B 94(20), 205434 (2016).
[Crossref]

Chipouline, A.

Christiansen, S.

C. Haverkamp, K. Höflich, S. Jäckle, A. Manzoni, and S. Christiansen, “Plasmonic gold helices for the visible range fabricated by oxygen plasma purification of electron beam induced deposits,” Nanotechnology 28(5), 055303 (2017).
[Crossref]

P. Woźniak, K. Höflich, G. Brönstrup, P. Banzer, S. Christiansen, and G. Leuchs, “Unveiling the optical properties of a metamaterial synthesized by electron-beam-induced deposition,” Nanotechnology 27(2), 025705 (2015).
[Crossref]

K. Höflich, R. B. Yang, A. Berger, G. Leuchs, and S. Christiansen, “The direct writing of plasmonic gold nanostructures by electron-beam-induced deposition,” Adv. Mater. 23, 2657–2661 (2011).
[Crossref] [PubMed]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Cooke, G.

C. Jack, A. S. Karimullah, R. Leyman, R. Tullius, V. M. Rotello, G. Cooke, N. Gadegaard, L. D. Barron, and M. Kadodwala, “Biomacromolecular stereostructure mediates mode hybridization in chiral plasmonic nanostructures,” Nano Lett. 16(9), 5806–5814 (2016).
[Crossref] [PubMed]

Cui, Y.

Y. Cui, L. Kang, S. Lan, S. Rodrigues, and W. Cai, “Giant chiral optical response from a twisted-arc metamaterial,” Nano Lett. 14(2), 1021–1025 (2014).
[Crossref] [PubMed]

Cuscunà, M.

M. Esposito, V. Tasco, M. Cuscunà, F. Todisco, A. Benedetti, I. Tarantini, M. D. Giorgi, D. Sanvitto, and A. Passaseo, “Nanoscale 3D chiral plasmonic helices with circular dichroism at visible frequencies,” ACS Photonics 2(1), 105–114 (2015).
[Crossref]

M. Esposito, V. Tasco, F. Todisco, A. Benedetti, I. Tarantini, M. Cuscunà, L. Dominici, D. De Giorgi, and A. Passaseo, “Tailoring chiro-optical effects by helical nanowire arrangement,” Nanoscale 7(7), 18081–18088 (2015).
[Crossref] [PubMed]

De Giorgi, D.

M. Esposito, V. Tasco, F. Todisco, A. Benedetti, I. Tarantini, M. Cuscunà, L. Dominici, D. De Giorgi, and A. Passaseo, “Tailoring chiro-optical effects by helical nanowire arrangement,” Nanoscale 7(7), 18081–18088 (2015).
[Crossref] [PubMed]

de Hoogh, A.

D. Kosters, A. de Hoogh, H. Zeijlemaker, H. Acar, H. N. Rotenberg, and L. Kuipers, “Core-shell plasmonic nanohelices,” ACS Photonics 4(7), 1858–1863 (2017).
[Crossref] [PubMed]

De Leon, I.

P. Banzer, P. Woźniak, U. Mick, I. De Leon, and R. W. Boyd, “Chiral optical response of planar and symmetric nanotrimers enabled by heteromaterial selection,” Nat. Commun. 7, 13117 (2016).
[Crossref] [PubMed]

I. De Leon, M. J. Horton, S. A. Schulz, J. Upham, P. Banzer, and R. W. Boyd, “Strong, spectrally-tunable chirality in diffractive metasurfaces,” Sci. Rep. 5, 13034 (2015).
[Crossref] [PubMed]

Decker, M.

Dominici, L.

M. Esposito, V. Tasco, F. Todisco, A. Benedetti, I. Tarantini, M. Cuscunà, L. Dominici, D. De Giorgi, and A. Passaseo, “Tailoring chiro-optical effects by helical nanowire arrangement,” Nanoscale 7(7), 18081–18088 (2015).
[Crossref] [PubMed]

Dong, L.

E. Plum, J. Zhou, L. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, “Metamaterial with negative index due to chirality,” Phys. Rev. B 79(3), 035407 (2009).
[Crossref]

Dregely, D.

M. Schäferling, D. Dregely, M. Hentschel, and Harald Giessen, “Tailoring enhanced optical chirality: design principles for chiral plasmonic nanostructures,” Phys. Rev. X 2(3), 031010 (2012).

Economou, E. N.

N. Katsarakis, T. Koschny, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Electric coupling to the magnetic resonance of split ring resonators,” Appl. Phys. Lett. 84(15), 2943–2945 (2004).
[Crossref]

Eslami, S.

J. G. Gibbs, A. G. Mark, S. Eslami, and P. Fischer, “Plasmonic nanohelix metamaterials with tailorable giant circular dichroism,” Appl. Phys. Lett. 103, 213101 (2013).
[Crossref]

Esposito, M.

M. Esposito, V. Tasco, M. Cuscunà, F. Todisco, A. Benedetti, I. Tarantini, M. D. Giorgi, D. Sanvitto, and A. Passaseo, “Nanoscale 3D chiral plasmonic helices with circular dichroism at visible frequencies,” ACS Photonics 2(1), 105–114 (2015).
[Crossref]

M. Esposito, V. Tasco, F. Todisco, A. Benedetti, I. Tarantini, M. Cuscunà, L. Dominici, D. De Giorgi, and A. Passaseo, “Tailoring chiro-optical effects by helical nanowire arrangement,” Nanoscale 7(7), 18081–18088 (2015).
[Crossref] [PubMed]

Evlyukhin, A. B.

A. B. Evlyukhin, T. Fischer, C. Reinhardt, and B. N. Chichkov, “Optical theorem and multipole scattering of light by arbitrarily shaped nanoparticles,” Phys. Rev. B 94(20), 205434 (2016).
[Crossref]

Fan, Z.

A. Kuzyk, R. Schreiber, Z. Fan, G. Pardatscher, E.-M. Roller, A. Högele, F. C. Simmel, A. O. Govorov, and T. Liedl, “DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response,” Nature 483(7389), 311–314 (2012).
[Crossref] [PubMed]

Z. Fan and A. O. Govorov, “Helical metal nanoparticle assemblies with defects: plasmonic chirality and circular dichroism,” J. Phys. Chem. C 115(27), 13254–13261 (2011).
[Crossref]

Z. Fan and A. O. Govorov, “Plasmonic circular dichroism of chiral metal nanoparticle assemblies,” Nano Lett. 10(7), 2580–2587 (2010).
[Crossref] [PubMed]

Fang, Y.

L. Hu, Y. Huang, L. Pan, and Y. Fang, “Analyzing intrinsic plasmonic chirality by tracking the interplay of electric and magnetic dipole modes,” Sci. Rep. 7, 11151 (2017).
[Crossref] [PubMed]

Fedotov, V. A.

E. Plum, X. X. Liu, V. A. Fedotov, Y. Chen, D. P. Tsai, and N. I. Zheludev, “Metamaterials: optical activity without chirality,” Phys. Rev. Lett. 18(11), 113902 (2009).
[Crossref]

E. Plum, V. A. Fedotov, and N. I. Zheludev, “Extrinsic electromagnetic chirality in metamaterials,” J. Opt. A: Pure Appl. Opt. 11(7), 074009 (2009).
[Crossref]

E. Plum, J. Zhou, L. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, “Metamaterial with negative index due to chirality,” Phys. Rev. B 79(3), 035407 (2009).
[Crossref]

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett. 97, 167401 (2006).
[Crossref] [PubMed]

A. V. Rogacheva, V. A. Fedotov, A. S. Schwanecke, and N. I. Zheludev, “Giant gyrotropy due to electromagnetic-field coupling in a bilayered chiral structure,” Phys. Rev. Lett. 97(17), 177401 (2006).
[Crossref] [PubMed]

Fernandez-Corbaton, I.

R. Alaee, C. Rockstuhl, and I. Fernandez-Corbaton, “An electromagnetic multipole expansion beyond the long-wavelength approximation,” Opt. Commun. 407(15), 17–21 (2018).
[Crossref]

M. Fruhnert, I. Fernandez-Corbaton, V. Yannopapas, and C. Rockstuhl, “Computing the T-matrix of a scattering object with multiple plane wave illuminations,” Beilstein J. Nanotechnol. 8(1), 614–626 (2017).
[Crossref] [PubMed]

Fischer, P.

A. G. Mark, J. G. Gibbs, T.-C. Lee, and P. Fischer, “Hybrid nanocolloids with programmed three-dimensional shape and material composition,” Nat. Mater. 12(9), 802–807 (2013).
[Crossref] [PubMed]

J. G. Gibbs, A. G. Mark, S. Eslami, and P. Fischer, “Plasmonic nanohelix metamaterials with tailorable giant circular dichroism,” Appl. Phys. Lett. 103, 213101 (2013).
[Crossref]

Fischer, T.

A. B. Evlyukhin, T. Fischer, C. Reinhardt, and B. N. Chichkov, “Optical theorem and multipole scattering of light by arbitrarily shaped nanoparticles,” Phys. Rev. B 94(20), 205434 (2016).
[Crossref]

Ford, D. H.

S. C. Tidwell, D. H. Ford, and W. D. Kimura, “Transporting and focusing radially polarized laser beams,” Opt. Eng. 31(7), 1527–1531 (1992).
[Crossref]

Frank, B.

B. Frank, X. Yin, M. Schäferling, J. Zhao, S. M. Hein, P. V. Braun, and H. Giessen, “Large-area 3D chiral plasmonic structures,” ACS Nano 7(7), 6321–6329 (2013).
[Crossref] [PubMed]

Frölich, A.

J. K. Gansel, M. Latzel, A. Frölich, J. Kaschke, M. Thiel, and M. Wegener, “Tapered gold-helix metamaterials as improved circular polarizers,” Appl. Phys. Lett. 100(10), 101109 (2012).
[Crossref]

Fruhnert, M.

M. Fruhnert, I. Fernandez-Corbaton, V. Yannopapas, and C. Rockstuhl, “Computing the T-matrix of a scattering object with multiple plane wave illuminations,” Beilstein J. Nanotechnol. 8(1), 614–626 (2017).
[Crossref] [PubMed]

Fry, H. C.

C. Song, M. G. Blaber, G. Zhao, P. Zhang, H. C. Fry, G. C. Schatz, and N. L. Rosi, “Tailorable plasmonic circular dichroism properties of helical nanoparticle superstructures,” Nano Lett. 13(7), 3256–3261 (2013).
[Crossref] [PubMed]

Fu, Y. H.

A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, V. Viswanathan, M. Rahmani, V. Valuckas, Z. Y. Pan, Y. Kivshar, D. S. Pickard, and B. Luk’yanchuk, “Split-ball resonator as a three-dimensional analogue of planar split-rings,” Nat. Commun. 5, 3104 (2014).
[Crossref] [PubMed]

Gadegaard, N.

C. Jack, A. S. Karimullah, R. Leyman, R. Tullius, V. M. Rotello, G. Cooke, N. Gadegaard, L. D. Barron, and M. Kadodwala, “Biomacromolecular stereostructure mediates mode hybridization in chiral plasmonic nanostructures,” Nano Lett. 16(9), 5806–5814 (2016).
[Crossref] [PubMed]

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol. 5, 783–787 (2010).
[Crossref] [PubMed]

Gansel, J. K.

J. K. Gansel, M. Latzel, A. Frölich, J. Kaschke, M. Thiel, and M. Wegener, “Tapered gold-helix metamaterials as improved circular polarizers,” Appl. Phys. Lett. 100(10), 101109 (2012).
[Crossref]

J. K. Gansel, M. Wegener, S. Burger, and S. Linden, “Gold helix photonic metamaterials: a numerical parameter study,” Opt. Express 18(2), 1059–1069 (2010).
[Crossref] [PubMed]

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Garzón, I. L.

C. E. Román-Velázquez, C. Noguez, and I. L. Garzón, “Circular dichroism simulated spectra of chiral gold nanoclusters: a dipole approximation,” J. Phys. Chem. B 107(44), 12035–12038 (2003).
[Crossref]

Gibbs, J. G.

J. G. Gibbs, A. G. Mark, S. Eslami, and P. Fischer, “Plasmonic nanohelix metamaterials with tailorable giant circular dichroism,” Appl. Phys. Lett. 103, 213101 (2013).
[Crossref]

A. G. Mark, J. G. Gibbs, T.-C. Lee, and P. Fischer, “Hybrid nanocolloids with programmed three-dimensional shape and material composition,” Nat. Mater. 12(9), 802–807 (2013).
[Crossref] [PubMed]

Giessen, H.

B. Frank, X. Yin, M. Schäferling, J. Zhao, S. M. Hein, P. V. Braun, and H. Giessen, “Large-area 3D chiral plasmonic structures,” ACS Nano 7(7), 6321–6329 (2013).
[Crossref] [PubMed]

M. Hentschel, M. Schäferling, B. Metzger, and H. Giessen, “Plasmonic diastereomers: adding up chiral centers,” Nano Lett. 13(2), 600–606 (2013).
[Crossref] [PubMed]

X. Yin, M. Schäferling, B. Metzger, and H. Giessen, “Interpreting chiral nanophotonic spectra: the plasmonic Born-Kuhn model,” Nano Lett. 13(12), 6238–6243 (2013).
[Crossref] [PubMed]

Giessen, Harald

M. Schäferling, D. Dregely, M. Hentschel, and Harald Giessen, “Tailoring enhanced optical chirality: design principles for chiral plasmonic nanostructures,” Phys. Rev. X 2(3), 031010 (2012).

Gill, P.

B. Ranjbar and P. Gill, “Circular dichroism techniques: biomolecular and nanostructural analyses-a review,” Chem. Biol. Drug Des. 74(2), 101–120 (2009).
[Crossref] [PubMed]

Giorgi, M. D.

M. Esposito, V. Tasco, M. Cuscunà, F. Todisco, A. Benedetti, I. Tarantini, M. D. Giorgi, D. Sanvitto, and A. Passaseo, “Nanoscale 3D chiral plasmonic helices with circular dichroism at visible frequencies,” ACS Photonics 2(1), 105–114 (2015).
[Crossref]

Govorov, A. O.

A. Kuzyk, R. Schreiber, Z. Fan, G. Pardatscher, E.-M. Roller, A. Högele, F. C. Simmel, A. O. Govorov, and T. Liedl, “DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response,” Nature 483(7389), 311–314 (2012).
[Crossref] [PubMed]

Z. Fan and A. O. Govorov, “Helical metal nanoparticle assemblies with defects: plasmonic chirality and circular dichroism,” J. Phys. Chem. C 115(27), 13254–13261 (2011).
[Crossref]

Z. Fan and A. O. Govorov, “Plasmonic circular dichroism of chiral metal nanoparticle assemblies,” Nano Lett. 10(7), 2580–2587 (2010).
[Crossref] [PubMed]

Grbic, A.

C. Pfeiffer, C. Zhang, V. Ray, L. Jay Guo, and A. Grbic, “High performance bianisotropic metasurfaces: asymmetric transmission of light,” Phys. Rev. Lett. 113(2), 023902 (2014).
[Crossref] [PubMed]

Haverkamp, C.

C. Haverkamp, K. Höflich, S. Jäckle, A. Manzoni, and S. Christiansen, “Plasmonic gold helices for the visible range fabricated by oxygen plasma purification of electron beam induced deposits,” Nanotechnology 28(5), 055303 (2017).
[Crossref]

He, Y.

G. K. Larsen, Y. He, J. Wang, and Y. Zhao, “Scalable fabrication of composite Ti/Ag plasmonic helices: controlling morphology and optical activity by tailoring material properties,” Adv. Opt. Mater. 2(3), 245–249 (2014).
[Crossref]

Hecht, B.

L. Novotny and B. Hecht, Principles of Nano-optics, (Cambridge University, 2012).
[Crossref]

Hein, S. M.

B. Frank, X. Yin, M. Schäferling, J. Zhao, S. M. Hein, P. V. Braun, and H. Giessen, “Large-area 3D chiral plasmonic structures,” ACS Nano 7(7), 6321–6329 (2013).
[Crossref] [PubMed]

Hendry, E.

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol. 5, 783–787 (2010).
[Crossref] [PubMed]

Hentschel, M.

M. Hentschel, M. Schäferling, B. Metzger, and H. Giessen, “Plasmonic diastereomers: adding up chiral centers,” Nano Lett. 13(2), 600–606 (2013).
[Crossref] [PubMed]

M. Schäferling, D. Dregely, M. Hentschel, and Harald Giessen, “Tailoring enhanced optical chirality: design principles for chiral plasmonic nanostructures,” Phys. Rev. X 2(3), 031010 (2012).

Hess, O.

S. S. Oh and O. Hess, “Chiral metamaterials: enhancement and control of optical activity and circular dichroism,” Nano Convergence 2(1), 24 (2015).
[Crossref] [PubMed]

Hoffmann, P.

T. Bret, S. Mauron, I. Utke, and P. Hoffmann, “Characterization of focused electron beam induced carbon deposits from organic precursors,” Microelectron. Eng. 78–79, 300–306 (2005).
[Crossref]

Höflich, K.

C. Haverkamp, K. Höflich, S. Jäckle, A. Manzoni, and S. Christiansen, “Plasmonic gold helices for the visible range fabricated by oxygen plasma purification of electron beam induced deposits,” Nanotechnology 28(5), 055303 (2017).
[Crossref]

P. Woźniak, K. Höflich, G. Brönstrup, P. Banzer, S. Christiansen, and G. Leuchs, “Unveiling the optical properties of a metamaterial synthesized by electron-beam-induced deposition,” Nanotechnology 27(2), 025705 (2015).
[Crossref]

K. Höflich, R. B. Yang, A. Berger, G. Leuchs, and S. Christiansen, “The direct writing of plasmonic gold nanostructures by electron-beam-induced deposition,” Adv. Mater. 23, 2657–2661 (2011).
[Crossref] [PubMed]

Högele, A.

A. Kuzyk, R. Schreiber, Z. Fan, G. Pardatscher, E.-M. Roller, A. Högele, F. C. Simmel, A. O. Govorov, and T. Liedl, “DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response,” Nature 483(7389), 311–314 (2012).
[Crossref] [PubMed]

Horton, M. J.

I. De Leon, M. J. Horton, S. A. Schulz, J. Upham, P. Banzer, and R. W. Boyd, “Strong, spectrally-tunable chirality in diffractive metasurfaces,” Sci. Rep. 5, 13034 (2015).
[Crossref] [PubMed]

Hu, J.

Hu, L.

L. Hu, Y. Huang, L. Pan, and Y. Fang, “Analyzing intrinsic plasmonic chirality by tracking the interplay of electric and magnetic dipole modes,” Sci. Rep. 7, 11151 (2017).
[Crossref] [PubMed]

Huang, Y.

L. Hu, Y. Huang, L. Pan, and Y. Fang, “Analyzing intrinsic plasmonic chirality by tracking the interplay of electric and magnetic dipole modes,” Sci. Rep. 7, 11151 (2017).
[Crossref] [PubMed]

Huttunen, M. J.

Ino, Y.

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, “Giant optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett. 95(22), 227401 (2005).
[Crossref] [PubMed]

Jack, C.

C. Jack, A. S. Karimullah, R. Leyman, R. Tullius, V. M. Rotello, G. Cooke, N. Gadegaard, L. D. Barron, and M. Kadodwala, “Biomacromolecular stereostructure mediates mode hybridization in chiral plasmonic nanostructures,” Nano Lett. 16(9), 5806–5814 (2016).
[Crossref] [PubMed]

Jäckle, S.

C. Haverkamp, K. Höflich, S. Jäckle, A. Manzoni, and S. Christiansen, “Plasmonic gold helices for the visible range fabricated by oxygen plasma purification of electron beam induced deposits,” Nanotechnology 28(5), 055303 (2017).
[Crossref]

Jaggard, D. L.

D. L. Jaggard, A. R. Mickelson, and C. H. Papas, “On electromagnetic waves in chiral media,” Appl. Phys. 18(2), 211–216 (1979).
[Crossref]

Jay Guo, L.

C. Pfeiffer, C. Zhang, V. Ray, L. Jay Guo, and A. Grbic, “High performance bianisotropic metasurfaces: asymmetric transmission of light,” Phys. Rev. Lett. 113(2), 023902 (2014).
[Crossref] [PubMed]

Jefimovs, K.

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, “Giant optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett. 95(22), 227401 (2005).
[Crossref] [PubMed]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Johnston, J.

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol. 5, 783–787 (2010).
[Crossref] [PubMed]

Kadodwala, M.

C. Jack, A. S. Karimullah, R. Leyman, R. Tullius, V. M. Rotello, G. Cooke, N. Gadegaard, L. D. Barron, and M. Kadodwala, “Biomacromolecular stereostructure mediates mode hybridization in chiral plasmonic nanostructures,” Nano Lett. 16(9), 5806–5814 (2016).
[Crossref] [PubMed]

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol. 5, 783–787 (2010).
[Crossref] [PubMed]

Kafesaki, M.

B. Wang, J. Zhou, T. Koschny, M. Kafesaki, and C. S. Soukoulis, “Chiral metamaterials: simulations and experiments,” J. Opt. A: Pure Appl. Opt. 11(11), 114003 (2009).
[Crossref]

N. Katsarakis, T. Koschny, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Electric coupling to the magnetic resonance of split ring resonators,” Appl. Phys. Lett. 84(15), 2943–2945 (2004).
[Crossref]

Kampfrath, C.

I. Sersic, C. Tuambilangana, C. Kampfrath, and A. F. Koenderink, “Magnetoelectric point scattering theory for metamaterial scatterers,” Phys. Rev. B 83(24), 247401 (2011).
[Crossref]

Kang, L.

L. Kang, Q. Ren, and D. H. Werner, “Leveraging superchiral light for manipulation of optical chirality in the near-field of plasmonic metamaterials,” ACS Photonics 4(6), 1298–1305 (2017).
[Crossref]

Y. Cui, L. Kang, S. Lan, S. Rodrigues, and W. Cai, “Giant chiral optical response from a twisted-arc metamaterial,” Nano Lett. 14(2), 1021–1025 (2014).
[Crossref] [PubMed]

Karimullah, A. S.

C. Jack, A. S. Karimullah, R. Leyman, R. Tullius, V. M. Rotello, G. Cooke, N. Gadegaard, L. D. Barron, and M. Kadodwala, “Biomacromolecular stereostructure mediates mode hybridization in chiral plasmonic nanostructures,” Nano Lett. 16(9), 5806–5814 (2016).
[Crossref] [PubMed]

Kaschke, J.

J. K. Gansel, M. Latzel, A. Frölich, J. Kaschke, M. Thiel, and M. Wegener, “Tapered gold-helix metamaterials as improved circular polarizers,” Appl. Phys. Lett. 100(10), 101109 (2012).
[Crossref]

Katsarakis, N.

N. Katsarakis, T. Koschny, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Electric coupling to the magnetic resonance of split ring resonators,” Appl. Phys. Lett. 84(15), 2943–2945 (2004).
[Crossref]

Kauranen, M.

M. J. Huttunen, G. Bautista, M. Decker, S. Linden, M. Wegener, and M. Kauranen, “Nonlinear chiral imaging of subwavelength-sized twisted-cross gold nanodimers,” Opt. Mater. Express 1(1), 46–56 (2011).
[Crossref]

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, “Giant optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett. 95(22), 227401 (2005).
[Crossref] [PubMed]

Kelly, S. M.

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol. 5, 783–787 (2010).
[Crossref] [PubMed]

Kimura, W. D.

S. C. Tidwell, D. H. Ford, and W. D. Kimura, “Transporting and focusing radially polarized laser beams,” Opt. Eng. 31(7), 1527–1531 (1992).
[Crossref]

Kivshar, Y.

A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, V. Viswanathan, M. Rahmani, V. Valuckas, Z. Y. Pan, Y. Kivshar, D. S. Pickard, and B. Luk’yanchuk, “Split-ball resonator as a three-dimensional analogue of planar split-rings,” Nat. Commun. 5, 3104 (2014).
[Crossref] [PubMed]

Koenderink, A. F.

I. Sersic, M. A. van de Haar, F. B. Arango, and A. F. Koenderink, “Ubiquity of optical activity in planar metamaterial scatterers,” Phys. Rev. Lett. 108(22), 223903 (2012).
[Crossref] [PubMed]

I. Sersic, C. Tuambilangana, C. Kampfrath, and A. F. Koenderink, “Magnetoelectric point scattering theory for metamaterial scatterers,” Phys. Rev. B 83(24), 247401 (2011).
[Crossref]

Koschny, T.

B. Wang, J. Zhou, T. Koschny, M. Kafesaki, and C. S. Soukoulis, “Chiral metamaterials: simulations and experiments,” J. Opt. A: Pure Appl. Opt. 11(11), 114003 (2009).
[Crossref]

E. Plum, J. Zhou, L. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, “Metamaterial with negative index due to chirality,” Phys. Rev. B 79(3), 035407 (2009).
[Crossref]

N. Katsarakis, T. Koschny, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Electric coupling to the magnetic resonance of split ring resonators,” Appl. Phys. Lett. 84(15), 2943–2945 (2004).
[Crossref]

Kosters, D.

D. Kosters, A. de Hoogh, H. Zeijlemaker, H. Acar, H. N. Rotenberg, and L. Kuipers, “Core-shell plasmonic nanohelices,” ACS Photonics 4(7), 1858–1863 (2017).
[Crossref] [PubMed]

Kotov, N. A.

Y. Zhao, L. Xu, W. Ma, L. Wang, H. Kuang, C. Xu, and N. A. Kotov, “Shell-engineered chiroplasmonic assemblies of nanoparticles for zeptomolar DNA detection,” Nano Lett. 14(7), 3908–3913 (2014).
[Crossref] [PubMed]

Kriegler, C. E.

Kuang, H.

Y. Zhao, L. Xu, W. Ma, L. Wang, H. Kuang, C. Xu, and N. A. Kotov, “Shell-engineered chiroplasmonic assemblies of nanoparticles for zeptomolar DNA detection,” Nano Lett. 14(7), 3908–3913 (2014).
[Crossref] [PubMed]

Kuhn, W.

W. Kuhn, “The physical significance of optical rotatory power,” J. Chem. Soc. Faraday Trans. 26, 293–308 (1930).
[Crossref]

Kuipers, L.

D. Kosters, A. de Hoogh, H. Zeijlemaker, H. Acar, H. N. Rotenberg, and L. Kuipers, “Core-shell plasmonic nanohelices,” ACS Photonics 4(7), 1858–1863 (2017).
[Crossref] [PubMed]

Kunz, R. E.

Kuwata-Gonokami, M.

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, “Giant optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett. 95(22), 227401 (2005).
[Crossref] [PubMed]

Kuznetsov, A. I.

A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, V. Viswanathan, M. Rahmani, V. Valuckas, Z. Y. Pan, Y. Kivshar, D. S. Pickard, and B. Luk’yanchuk, “Split-ball resonator as a three-dimensional analogue of planar split-rings,” Nat. Commun. 5, 3104 (2014).
[Crossref] [PubMed]

Kuzyk, A.

A. Kuzyk, R. Schreiber, Z. Fan, G. Pardatscher, E.-M. Roller, A. Högele, F. C. Simmel, A. O. Govorov, and T. Liedl, “DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response,” Nature 483(7389), 311–314 (2012).
[Crossref] [PubMed]

Lalanne, P.

Lan, S.

Y. Cui, L. Kang, S. Lan, S. Rodrigues, and W. Cai, “Giant chiral optical response from a twisted-arc metamaterial,” Nano Lett. 14(2), 1021–1025 (2014).
[Crossref] [PubMed]

Lapthorn, A. J.

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol. 5, 783–787 (2010).
[Crossref] [PubMed]

Larsen, G. K.

G. K. Larsen, Y. He, J. Wang, and Y. Zhao, “Scalable fabrication of composite Ti/Ag plasmonic helices: controlling morphology and optical activity by tailoring material properties,” Adv. Opt. Mater. 2(3), 245–249 (2014).
[Crossref]

Latzel, M.

J. K. Gansel, M. Latzel, A. Frölich, J. Kaschke, M. Thiel, and M. Wegener, “Tapered gold-helix metamaterials as improved circular polarizers,” Appl. Phys. Lett. 100(10), 101109 (2012).
[Crossref]

Lederer, F.

Lee, T.-C.

A. G. Mark, J. G. Gibbs, T.-C. Lee, and P. Fischer, “Hybrid nanocolloids with programmed three-dimensional shape and material composition,” Nat. Mater. 12(9), 802–807 (2013).
[Crossref] [PubMed]

Leuchs, G.

P. Woźniak, K. Höflich, G. Brönstrup, P. Banzer, S. Christiansen, and G. Leuchs, “Unveiling the optical properties of a metamaterial synthesized by electron-beam-induced deposition,” Nanotechnology 27(2), 025705 (2015).
[Crossref]

P. Woźniak, P. Banzer, and G. Leuchs, “Selective switching of individual multipole resonances in single dielectric nanoparticles,” Laser Photonics Rev. 9(2), 231–240 (2015).
[Crossref]

M. Neugebauer, T. Bauer, P. Banzer, and G. Leuchs, “Polarization tailored light driven directional optical nanobeacon,” Nano Lett. 14(5), 2546–2551 (2014).
[Crossref] [PubMed]

K. Höflich, R. B. Yang, A. Berger, G. Leuchs, and S. Christiansen, “The direct writing of plasmonic gold nanostructures by electron-beam-induced deposition,” Adv. Mater. 23, 2657–2661 (2011).
[Crossref] [PubMed]

P. Banzer, U. Peschel, S. Quabis, and G. Leuchs, “On the experimental investigation of the electric and magnetic response of a single nano-structure,” Opt. Express 18(10), 10905–10923 (2010).
[Crossref] [PubMed]

Leyman, R.

C. Jack, A. S. Karimullah, R. Leyman, R. Tullius, V. M. Rotello, G. Cooke, N. Gadegaard, L. D. Barron, and M. Kadodwala, “Biomacromolecular stereostructure mediates mode hybridization in chiral plasmonic nanostructures,” Nano Lett. 16(9), 5806–5814 (2016).
[Crossref] [PubMed]

Li, H.

Y. Zhao, M. A. Belkin, A. Alù, X. Yu, and H. Li, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers,” Nat. Commun. 3, 870 (2012).
[Crossref] [PubMed]

C. Wu, H. Li, Z. Wei, X. Yu, and C. T. Chan, “Theory and experimental realization of negative refraction in a metallic helix array,” Phys. Rev. Lett. 105(24), 247401 (2010).
[Crossref]

Li, J.

S. Zhang, Y.-S. Park, J. Li, X. Lu, W. Zhang, and W. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett. 102(2), 023901 (2009).
[Crossref] [PubMed]

Li, R.

Li, X.

Y. Zhao, A. N. Askarpour, L. Sun, J. Shi, X. Li, and A. Alù, “Chirality detection of enantiomers using twisted optical metamaterials,” Nat. Commun. 8, 14180 (2017).
[Crossref] [PubMed]

Liedl, T.

A. Kuzyk, R. Schreiber, Z. Fan, G. Pardatscher, E.-M. Roller, A. Högele, F. C. Simmel, A. O. Govorov, and T. Liedl, “DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response,” Nature 483(7389), 311–314 (2012).
[Crossref] [PubMed]

Lin, Y.

Linden, S.

Liu, X. X.

E. Plum, X. X. Liu, V. A. Fedotov, Y. Chen, D. P. Tsai, and N. I. Zheludev, “Metamaterials: optical activity without chirality,” Phys. Rev. Lett. 18(11), 113902 (2009).
[Crossref]

Liu, Y.

Z. Wang, F. Cheng, T. Winsor, and Y. Liu, “Optical chiral metamaterials: a review of the fundamentals, fabrication methods and applications,” Nanotechnology 27(41), 412001 (2016).
[Crossref] [PubMed]

Lu, P. X.

Lu, X.

S. Zhang, Y.-S. Park, J. Li, X. Lu, W. Zhang, and W. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett. 102(2), 023901 (2009).
[Crossref] [PubMed]

Lu, Y. F.

Luk’yanchuk, B.

A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, V. Viswanathan, M. Rahmani, V. Valuckas, Z. Y. Pan, Y. Kivshar, D. S. Pickard, and B. Luk’yanchuk, “Split-ball resonator as a three-dimensional analogue of planar split-rings,” Nat. Commun. 5, 3104 (2014).
[Crossref] [PubMed]

Lukosz, W.

Ma, W.

Y. Zhao, L. Xu, W. Ma, L. Wang, H. Kuang, C. Xu, and N. A. Kotov, “Shell-engineered chiroplasmonic assemblies of nanoparticles for zeptomolar DNA detection,” Nano Lett. 14(7), 3908–3913 (2014).
[Crossref] [PubMed]

Manzoni, A.

C. Haverkamp, K. Höflich, S. Jäckle, A. Manzoni, and S. Christiansen, “Plasmonic gold helices for the visible range fabricated by oxygen plasma purification of electron beam induced deposits,” Nanotechnology 28(5), 055303 (2017).
[Crossref]

Mark, A. G.

A. G. Mark, J. G. Gibbs, T.-C. Lee, and P. Fischer, “Hybrid nanocolloids with programmed three-dimensional shape and material composition,” Nat. Mater. 12(9), 802–807 (2013).
[Crossref] [PubMed]

J. G. Gibbs, A. G. Mark, S. Eslami, and P. Fischer, “Plasmonic nanohelix metamaterials with tailorable giant circular dichroism,” Appl. Phys. Lett. 103, 213101 (2013).
[Crossref]

Mauron, S.

T. Bret, S. Mauron, I. Utke, and P. Hoffmann, “Characterization of focused electron beam induced carbon deposits from organic precursors,” Microelectron. Eng. 78–79, 300–306 (2005).
[Crossref]

Menzel, C.

Metzger, B.

X. Yin, M. Schäferling, B. Metzger, and H. Giessen, “Interpreting chiral nanophotonic spectra: the plasmonic Born-Kuhn model,” Nano Lett. 13(12), 6238–6243 (2013).
[Crossref] [PubMed]

M. Hentschel, M. Schäferling, B. Metzger, and H. Giessen, “Plasmonic diastereomers: adding up chiral centers,” Nano Lett. 13(2), 600–606 (2013).
[Crossref] [PubMed]

Mick, U.

P. Banzer, P. Woźniak, U. Mick, I. De Leon, and R. W. Boyd, “Chiral optical response of planar and symmetric nanotrimers enabled by heteromaterial selection,” Nat. Commun. 7, 13117 (2016).
[Crossref] [PubMed]

Mickelson, A. R.

D. L. Jaggard, A. R. Mickelson, and C. H. Papas, “On electromagnetic waves in chiral media,” Appl. Phys. 18(2), 211–216 (1979).
[Crossref]

Mikhaylovskiy, R. V.

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol. 5, 783–787 (2010).
[Crossref] [PubMed]

Miroshnichenko, A. E.

A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, V. Viswanathan, M. Rahmani, V. Valuckas, Z. Y. Pan, Y. Kivshar, D. S. Pickard, and B. Luk’yanchuk, “Split-ball resonator as a three-dimensional analogue of planar split-rings,” Nat. Commun. 5, 3104 (2014).
[Crossref] [PubMed]

Mladyonov, P. L.

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett. 97, 167401 (2006).
[Crossref] [PubMed]

Nam, S.

S. Zhang, J. Zhou, Y.-S. Park, J. Rho, R. Singh, S. Nam, A. K. Azad, H.-T. Chen, X. Yin, A. J. Taylor, and X. Zhang, “Photoinduced handedness switching in terahertz chiral metamolecules,” Nat. Commun. 3, 942 (2012).
[Crossref] [PubMed]

Neugebauer, M.

M. Neugebauer, T. Bauer, P. Banzer, and G. Leuchs, “Polarization tailored light driven directional optical nanobeacon,” Nano Lett. 14(5), 2546–2551 (2014).
[Crossref] [PubMed]

Noguez, C.

C. E. Román-Velázquez, C. Noguez, and I. L. Garzón, “Circular dichroism simulated spectra of chiral gold nanoclusters: a dipole approximation,” J. Phys. Chem. B 107(44), 12035–12038 (2003).
[Crossref]

Novotny, L.

L. Novotny and B. Hecht, Principles of Nano-optics, (Cambridge University, 2012).
[Crossref]

Oh, S. S.

S. S. Oh and O. Hess, “Chiral metamaterials: enhancement and control of optical activity and circular dichroism,” Nano Convergence 2(1), 24 (2015).
[Crossref] [PubMed]

Pan, L.

L. Hu, Y. Huang, L. Pan, and Y. Fang, “Analyzing intrinsic plasmonic chirality by tracking the interplay of electric and magnetic dipole modes,” Sci. Rep. 7, 11151 (2017).
[Crossref] [PubMed]

Pan, Z. Y.

A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, V. Viswanathan, M. Rahmani, V. Valuckas, Z. Y. Pan, Y. Kivshar, D. S. Pickard, and B. Luk’yanchuk, “Split-ball resonator as a three-dimensional analogue of planar split-rings,” Nat. Commun. 5, 3104 (2014).
[Crossref] [PubMed]

Papas, C. H.

D. L. Jaggard, A. R. Mickelson, and C. H. Papas, “On electromagnetic waves in chiral media,” Appl. Phys. 18(2), 211–216 (1979).
[Crossref]

Pardatscher, G.

A. Kuzyk, R. Schreiber, Z. Fan, G. Pardatscher, E.-M. Roller, A. Högele, F. C. Simmel, A. O. Govorov, and T. Liedl, “DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response,” Nature 483(7389), 311–314 (2012).
[Crossref] [PubMed]

Park, Y.-S.

S. Zhang, J. Zhou, Y.-S. Park, J. Rho, R. Singh, S. Nam, A. K. Azad, H.-T. Chen, X. Yin, A. J. Taylor, and X. Zhang, “Photoinduced handedness switching in terahertz chiral metamolecules,” Nat. Commun. 3, 942 (2012).
[Crossref] [PubMed]

S. Zhang, Y.-S. Park, J. Li, X. Lu, W. Zhang, and W. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett. 102(2), 023901 (2009).
[Crossref] [PubMed]

Passaseo, A.

M. Esposito, V. Tasco, F. Todisco, A. Benedetti, I. Tarantini, M. Cuscunà, L. Dominici, D. De Giorgi, and A. Passaseo, “Tailoring chiro-optical effects by helical nanowire arrangement,” Nanoscale 7(7), 18081–18088 (2015).
[Crossref] [PubMed]

M. Esposito, V. Tasco, M. Cuscunà, F. Todisco, A. Benedetti, I. Tarantini, M. D. Giorgi, D. Sanvitto, and A. Passaseo, “Nanoscale 3D chiral plasmonic helices with circular dichroism at visible frequencies,” ACS Photonics 2(1), 105–114 (2015).
[Crossref]

Pendry, J. B.

J. B. Pendry, “A chiral route to negative refraction,” Science 306(5700), 1353–1355 (2004).
[Crossref] [PubMed]

Pertsch, T.

Peschel, U.

Petschulat, J.

Pfeiffer, C.

C. Pfeiffer, C. Zhang, V. Ray, L. Jay Guo, and A. Grbic, “High performance bianisotropic metasurfaces: asymmetric transmission of light,” Phys. Rev. Lett. 113(2), 023902 (2014).
[Crossref] [PubMed]

Pickard, D. S.

A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, V. Viswanathan, M. Rahmani, V. Valuckas, Z. Y. Pan, Y. Kivshar, D. S. Pickard, and B. Luk’yanchuk, “Split-ball resonator as a three-dimensional analogue of planar split-rings,” Nat. Commun. 5, 3104 (2014).
[Crossref] [PubMed]

Plum, E.

M. Ren, E. Plum, J. Xu, and N. I. Zheludev, “Giant nonlinear optical activity in a plasmonic metamaterial,” Nat. Commun. 3, 833 (2012).
[Crossref] [PubMed]

E. Plum, J. Zhou, L. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, “Metamaterial with negative index due to chirality,” Phys. Rev. B 79(3), 035407 (2009).
[Crossref]

E. Plum, V. A. Fedotov, and N. I. Zheludev, “Extrinsic electromagnetic chirality in metamaterials,” J. Opt. A: Pure Appl. Opt. 11(7), 074009 (2009).
[Crossref]

E. Plum, X. X. Liu, V. A. Fedotov, Y. Chen, D. P. Tsai, and N. I. Zheludev, “Metamaterials: optical activity without chirality,” Phys. Rev. Lett. 18(11), 113902 (2009).
[Crossref]

Popland, M.

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol. 5, 783–787 (2010).
[Crossref] [PubMed]

Prosvirnin, S. L.

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett. 97, 167401 (2006).
[Crossref] [PubMed]

Quabis, S.

Rahmani, M.

A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, V. Viswanathan, M. Rahmani, V. Valuckas, Z. Y. Pan, Y. Kivshar, D. S. Pickard, and B. Luk’yanchuk, “Split-ball resonator as a three-dimensional analogue of planar split-rings,” Nat. Commun. 5, 3104 (2014).
[Crossref] [PubMed]

Ranjbar, B.

B. Ranjbar and P. Gill, “Circular dichroism techniques: biomolecular and nanostructural analyses-a review,” Chem. Biol. Drug Des. 74(2), 101–120 (2009).
[Crossref] [PubMed]

Ray, V.

C. Pfeiffer, C. Zhang, V. Ray, L. Jay Guo, and A. Grbic, “High performance bianisotropic metasurfaces: asymmetric transmission of light,” Phys. Rev. Lett. 113(2), 023902 (2014).
[Crossref] [PubMed]

Reinhardt, C.

A. B. Evlyukhin, T. Fischer, C. Reinhardt, and B. N. Chichkov, “Optical theorem and multipole scattering of light by arbitrarily shaped nanoparticles,” Phys. Rev. B 94(20), 205434 (2016).
[Crossref]

Ren, M.

M. Ren, E. Plum, J. Xu, and N. I. Zheludev, “Giant nonlinear optical activity in a plasmonic metamaterial,” Nat. Commun. 3, 833 (2012).
[Crossref] [PubMed]

Ren, Q.

L. Kang, Q. Ren, and D. H. Werner, “Leveraging superchiral light for manipulation of optical chirality in the near-field of plasmonic metamaterials,” ACS Photonics 4(6), 1298–1305 (2017).
[Crossref]

Rho, J.

S. Zhang, J. Zhou, Y.-S. Park, J. Rho, R. Singh, S. Nam, A. K. Azad, H.-T. Chen, X. Yin, A. J. Taylor, and X. Zhang, “Photoinduced handedness switching in terahertz chiral metamolecules,” Nat. Commun. 3, 942 (2012).
[Crossref] [PubMed]

Rill, M. S.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Rockstuhl, C.

R. Alaee, C. Rockstuhl, and I. Fernandez-Corbaton, “An electromagnetic multipole expansion beyond the long-wavelength approximation,” Opt. Commun. 407(15), 17–21 (2018).
[Crossref]

M. Fruhnert, I. Fernandez-Corbaton, V. Yannopapas, and C. Rockstuhl, “Computing the T-matrix of a scattering object with multiple plane wave illuminations,” Beilstein J. Nanotechnol. 8(1), 614–626 (2017).
[Crossref] [PubMed]

J. Petschulat, J. Yang, C. Menzel, C. Rockstuhl, A. Chipouline, P. Lalanne, A. Tüennermann, F. Lederer, and T. Pertsch, “Understanding the electric and magnetic response of isolated metaatoms by means of a multipolar field decomposition,” Opt. Express 18(14), 14454–14466 (2010).
[Crossref] [PubMed]

Rodrigues, S.

Y. Cui, L. Kang, S. Lan, S. Rodrigues, and W. Cai, “Giant chiral optical response from a twisted-arc metamaterial,” Nano Lett. 14(2), 1021–1025 (2014).
[Crossref] [PubMed]

Rogacheva, A. V.

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett. 97, 167401 (2006).
[Crossref] [PubMed]

A. V. Rogacheva, V. A. Fedotov, A. S. Schwanecke, and N. I. Zheludev, “Giant gyrotropy due to electromagnetic-field coupling in a bilayered chiral structure,” Phys. Rev. Lett. 97(17), 177401 (2006).
[Crossref] [PubMed]

Roller, E.-M.

A. Kuzyk, R. Schreiber, Z. Fan, G. Pardatscher, E.-M. Roller, A. Högele, F. C. Simmel, A. O. Govorov, and T. Liedl, “DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response,” Nature 483(7389), 311–314 (2012).
[Crossref] [PubMed]

Román-Velázquez, C. E.

C. E. Román-Velázquez, C. Noguez, and I. L. Garzón, “Circular dichroism simulated spectra of chiral gold nanoclusters: a dipole approximation,” J. Phys. Chem. B 107(44), 12035–12038 (2003).
[Crossref]

Rosi, N. L.

C. Song, M. G. Blaber, G. Zhao, P. Zhang, H. C. Fry, G. C. Schatz, and N. L. Rosi, “Tailorable plasmonic circular dichroism properties of helical nanoparticle superstructures,” Nano Lett. 13(7), 3256–3261 (2013).
[Crossref] [PubMed]

Rotello, V. M.

C. Jack, A. S. Karimullah, R. Leyman, R. Tullius, V. M. Rotello, G. Cooke, N. Gadegaard, L. D. Barron, and M. Kadodwala, “Biomacromolecular stereostructure mediates mode hybridization in chiral plasmonic nanostructures,” Nano Lett. 16(9), 5806–5814 (2016).
[Crossref] [PubMed]

Rotenberg, H. N.

D. Kosters, A. de Hoogh, H. Zeijlemaker, H. Acar, H. N. Rotenberg, and L. Kuipers, “Core-shell plasmonic nanohelices,” ACS Photonics 4(7), 1858–1863 (2017).
[Crossref] [PubMed]

Ruther, M.

Saile, V.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Saito, N.

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, “Giant optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett. 95(22), 227401 (2005).
[Crossref] [PubMed]

Sanvitto, D.

M. Esposito, V. Tasco, M. Cuscunà, F. Todisco, A. Benedetti, I. Tarantini, M. D. Giorgi, D. Sanvitto, and A. Passaseo, “Nanoscale 3D chiral plasmonic helices with circular dichroism at visible frequencies,” ACS Photonics 2(1), 105–114 (2015).
[Crossref]

Schäferling, M.

B. Frank, X. Yin, M. Schäferling, J. Zhao, S. M. Hein, P. V. Braun, and H. Giessen, “Large-area 3D chiral plasmonic structures,” ACS Nano 7(7), 6321–6329 (2013).
[Crossref] [PubMed]

M. Hentschel, M. Schäferling, B. Metzger, and H. Giessen, “Plasmonic diastereomers: adding up chiral centers,” Nano Lett. 13(2), 600–606 (2013).
[Crossref] [PubMed]

X. Yin, M. Schäferling, B. Metzger, and H. Giessen, “Interpreting chiral nanophotonic spectra: the plasmonic Born-Kuhn model,” Nano Lett. 13(12), 6238–6243 (2013).
[Crossref] [PubMed]

M. Schäferling, D. Dregely, M. Hentschel, and Harald Giessen, “Tailoring enhanced optical chirality: design principles for chiral plasmonic nanostructures,” Phys. Rev. X 2(3), 031010 (2012).

Schatz, G. C.

C. Song, M. G. Blaber, G. Zhao, P. Zhang, H. C. Fry, G. C. Schatz, and N. L. Rosi, “Tailorable plasmonic circular dichroism properties of helical nanoparticle superstructures,” Nano Lett. 13(7), 3256–3261 (2013).
[Crossref] [PubMed]

Schreiber, R.

A. Kuzyk, R. Schreiber, Z. Fan, G. Pardatscher, E.-M. Roller, A. Högele, F. C. Simmel, A. O. Govorov, and T. Liedl, “DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response,” Nature 483(7389), 311–314 (2012).
[Crossref] [PubMed]

Schulz, S. A.

I. De Leon, M. J. Horton, S. A. Schulz, J. Upham, P. Banzer, and R. W. Boyd, “Strong, spectrally-tunable chirality in diffractive metasurfaces,” Sci. Rep. 5, 13034 (2015).
[Crossref] [PubMed]

Schwanecke, A. S.

A. V. Rogacheva, V. A. Fedotov, A. S. Schwanecke, and N. I. Zheludev, “Giant gyrotropy due to electromagnetic-field coupling in a bilayered chiral structure,” Phys. Rev. Lett. 97(17), 177401 (2006).
[Crossref] [PubMed]

Sersic, I.

I. Sersic, M. A. van de Haar, F. B. Arango, and A. F. Koenderink, “Ubiquity of optical activity in planar metamaterial scatterers,” Phys. Rev. Lett. 108(22), 223903 (2012).
[Crossref] [PubMed]

I. Sersic, C. Tuambilangana, C. Kampfrath, and A. F. Koenderink, “Magnetoelectric point scattering theory for metamaterial scatterers,” Phys. Rev. B 83(24), 247401 (2011).
[Crossref]

Shi, J.

Y. Zhao, A. N. Askarpour, L. Sun, J. Shi, X. Li, and A. Alù, “Chirality detection of enantiomers using twisted optical metamaterials,” Nat. Commun. 8, 14180 (2017).
[Crossref] [PubMed]

Sibilia, C.

V. K. Valev, J. J. Baumberg, C. Sibilia, and T. Verbiest, “Chirality and chiroptical effects in plasmonic nanostructures: fundamentals, recent progress, and outlook,” Adv. Mater. 25(18), 2517–2534 (2013).
[Crossref] [PubMed]

Simmel, F. C.

A. Kuzyk, R. Schreiber, Z. Fan, G. Pardatscher, E.-M. Roller, A. Högele, F. C. Simmel, A. O. Govorov, and T. Liedl, “DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response,” Nature 483(7389), 311–314 (2012).
[Crossref] [PubMed]

Singh, R.

S. Zhang, J. Zhou, Y.-S. Park, J. Rho, R. Singh, S. Nam, A. K. Azad, H.-T. Chen, X. Yin, A. J. Taylor, and X. Zhang, “Photoinduced handedness switching in terahertz chiral metamolecules,” Nat. Commun. 3, 942 (2012).
[Crossref] [PubMed]

Song, C.

C. Song, M. G. Blaber, G. Zhao, P. Zhang, H. C. Fry, G. C. Schatz, and N. L. Rosi, “Tailorable plasmonic circular dichroism properties of helical nanoparticle superstructures,” Nano Lett. 13(7), 3256–3261 (2013).
[Crossref] [PubMed]

Soukoulis, C. M.

E. Plum, J. Zhou, L. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, “Metamaterial with negative index due to chirality,” Phys. Rev. B 79(3), 035407 (2009).
[Crossref]

M. Decker, M. Ruther, C. E. Kriegler, J. Zhou, C. M. Soukoulis, S. Linden, and M. Wegener, “Strong optical activity from twisted-cross photonic metamaterials,” Opt. Lett. 34(16), 2501–2503 (2009).
[Crossref] [PubMed]

N. Katsarakis, T. Koschny, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Electric coupling to the magnetic resonance of split ring resonators,” Appl. Phys. Lett. 84(15), 2943–2945 (2004).
[Crossref]

Soukoulis, C. S.

B. Wang, J. Zhou, T. Koschny, M. Kafesaki, and C. S. Soukoulis, “Chiral metamaterials: simulations and experiments,” J. Opt. A: Pure Appl. Opt. 11(11), 114003 (2009).
[Crossref]

Stratton, J. A.

J. A. Stratton, Electromagnetic Theory (McGraw-Hill Companies, 1941).

Sun, L.

Y. Zhao, A. N. Askarpour, L. Sun, J. Shi, X. Li, and A. Alù, “Chirality detection of enantiomers using twisted optical metamaterials,” Nat. Commun. 8, 14180 (2017).
[Crossref] [PubMed]

Svirko, Y.

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, “Giant optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett. 95(22), 227401 (2005).
[Crossref] [PubMed]

Tarantini, I.

M. Esposito, V. Tasco, F. Todisco, A. Benedetti, I. Tarantini, M. Cuscunà, L. Dominici, D. De Giorgi, and A. Passaseo, “Tailoring chiro-optical effects by helical nanowire arrangement,” Nanoscale 7(7), 18081–18088 (2015).
[Crossref] [PubMed]

M. Esposito, V. Tasco, M. Cuscunà, F. Todisco, A. Benedetti, I. Tarantini, M. D. Giorgi, D. Sanvitto, and A. Passaseo, “Nanoscale 3D chiral plasmonic helices with circular dichroism at visible frequencies,” ACS Photonics 2(1), 105–114 (2015).
[Crossref]

Tasco, V.

M. Esposito, V. Tasco, M. Cuscunà, F. Todisco, A. Benedetti, I. Tarantini, M. D. Giorgi, D. Sanvitto, and A. Passaseo, “Nanoscale 3D chiral plasmonic helices with circular dichroism at visible frequencies,” ACS Photonics 2(1), 105–114 (2015).
[Crossref]

M. Esposito, V. Tasco, F. Todisco, A. Benedetti, I. Tarantini, M. Cuscunà, L. Dominici, D. De Giorgi, and A. Passaseo, “Tailoring chiro-optical effects by helical nanowire arrangement,” Nanoscale 7(7), 18081–18088 (2015).
[Crossref] [PubMed]

Taylor, A. J.

S. Zhang, J. Zhou, Y.-S. Park, J. Rho, R. Singh, S. Nam, A. K. Azad, H.-T. Chen, X. Yin, A. J. Taylor, and X. Zhang, “Photoinduced handedness switching in terahertz chiral metamolecules,” Nat. Commun. 3, 942 (2012).
[Crossref] [PubMed]

Thiel, M.

J. K. Gansel, M. Latzel, A. Frölich, J. Kaschke, M. Thiel, and M. Wegener, “Tapered gold-helix metamaterials as improved circular polarizers,” Appl. Phys. Lett. 100(10), 101109 (2012).
[Crossref]

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Tidwell, S. C.

S. C. Tidwell, D. H. Ford, and W. D. Kimura, “Transporting and focusing radially polarized laser beams,” Opt. Eng. 31(7), 1527–1531 (1992).
[Crossref]

Todisco, F.

M. Esposito, V. Tasco, M. Cuscunà, F. Todisco, A. Benedetti, I. Tarantini, M. D. Giorgi, D. Sanvitto, and A. Passaseo, “Nanoscale 3D chiral plasmonic helices with circular dichroism at visible frequencies,” ACS Photonics 2(1), 105–114 (2015).
[Crossref]

M. Esposito, V. Tasco, F. Todisco, A. Benedetti, I. Tarantini, M. Cuscunà, L. Dominici, D. De Giorgi, and A. Passaseo, “Tailoring chiro-optical effects by helical nanowire arrangement,” Nanoscale 7(7), 18081–18088 (2015).
[Crossref] [PubMed]

Tsai, D. P.

E. Plum, X. X. Liu, V. A. Fedotov, Y. Chen, D. P. Tsai, and N. I. Zheludev, “Metamaterials: optical activity without chirality,” Phys. Rev. Lett. 18(11), 113902 (2009).
[Crossref]

Tuambilangana, C.

I. Sersic, C. Tuambilangana, C. Kampfrath, and A. F. Koenderink, “Magnetoelectric point scattering theory for metamaterial scatterers,” Phys. Rev. B 83(24), 247401 (2011).
[Crossref]

Tüennermann, A.

Tullius, R.

C. Jack, A. S. Karimullah, R. Leyman, R. Tullius, V. M. Rotello, G. Cooke, N. Gadegaard, L. D. Barron, and M. Kadodwala, “Biomacromolecular stereostructure mediates mode hybridization in chiral plasmonic nanostructures,” Nano Lett. 16(9), 5806–5814 (2016).
[Crossref] [PubMed]

Turunen, J.

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, “Giant optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett. 95(22), 227401 (2005).
[Crossref] [PubMed]

Upham, J.

I. De Leon, M. J. Horton, S. A. Schulz, J. Upham, P. Banzer, and R. W. Boyd, “Strong, spectrally-tunable chirality in diffractive metasurfaces,” Sci. Rep. 5, 13034 (2015).
[Crossref] [PubMed]

Utke, I.

T. Bret, S. Mauron, I. Utke, and P. Hoffmann, “Characterization of focused electron beam induced carbon deposits from organic precursors,” Microelectron. Eng. 78–79, 300–306 (2005).
[Crossref]

Valev, V. K.

V. K. Valev, J. J. Baumberg, C. Sibilia, and T. Verbiest, “Chirality and chiroptical effects in plasmonic nanostructures: fundamentals, recent progress, and outlook,” Adv. Mater. 25(18), 2517–2534 (2013).
[Crossref] [PubMed]

Vallius, T.

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, “Giant optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett. 95(22), 227401 (2005).
[Crossref] [PubMed]

Valuckas, V.

A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, V. Viswanathan, M. Rahmani, V. Valuckas, Z. Y. Pan, Y. Kivshar, D. S. Pickard, and B. Luk’yanchuk, “Split-ball resonator as a three-dimensional analogue of planar split-rings,” Nat. Commun. 5, 3104 (2014).
[Crossref] [PubMed]

van de Haar, M. A.

I. Sersic, M. A. van de Haar, F. B. Arango, and A. F. Koenderink, “Ubiquity of optical activity in planar metamaterial scatterers,” Phys. Rev. Lett. 108(22), 223903 (2012).
[Crossref] [PubMed]

Verbiest, T.

V. K. Valev, J. J. Baumberg, C. Sibilia, and T. Verbiest, “Chirality and chiroptical effects in plasmonic nanostructures: fundamentals, recent progress, and outlook,” Adv. Mater. 25(18), 2517–2534 (2013).
[Crossref] [PubMed]

Viswanathan, V.

A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, V. Viswanathan, M. Rahmani, V. Valuckas, Z. Y. Pan, Y. Kivshar, D. S. Pickard, and B. Luk’yanchuk, “Split-ball resonator as a three-dimensional analogue of planar split-rings,” Nat. Commun. 5, 3104 (2014).
[Crossref] [PubMed]

von Freymann, G.

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Wang, B.

B. Wang, J. Zhou, T. Koschny, M. Kafesaki, and C. S. Soukoulis, “Chiral metamaterials: simulations and experiments,” J. Opt. A: Pure Appl. Opt. 11(11), 114003 (2009).
[Crossref]

Wang, C.

Wang, J.

G. K. Larsen, Y. He, J. Wang, and Y. Zhao, “Scalable fabrication of composite Ti/Ag plasmonic helices: controlling morphology and optical activity by tailoring material properties,” Adv. Opt. Mater. 2(3), 245–249 (2014).
[Crossref]

Wang, L.

Y. Zhao, L. Xu, W. Ma, L. Wang, H. Kuang, C. Xu, and N. A. Kotov, “Shell-engineered chiroplasmonic assemblies of nanoparticles for zeptomolar DNA detection,” Nano Lett. 14(7), 3908–3913 (2014).
[Crossref] [PubMed]

Wang, Z.

Z. Wang, F. Cheng, T. Winsor, and Y. Liu, “Optical chiral metamaterials: a review of the fundamentals, fabrication methods and applications,” Nanotechnology 27(41), 412001 (2016).
[Crossref] [PubMed]

Wegener, M.

Wei, Z.

C. Wu, H. Li, Z. Wei, X. Yu, and C. T. Chan, “Theory and experimental realization of negative refraction in a metallic helix array,” Phys. Rev. Lett. 105(24), 247401 (2010).
[Crossref]

Werner, D. H.

L. Kang, Q. Ren, and D. H. Werner, “Leveraging superchiral light for manipulation of optical chirality in the near-field of plasmonic metamaterials,” ACS Photonics 4(6), 1298–1305 (2017).
[Crossref]

Winsor, T.

Z. Wang, F. Cheng, T. Winsor, and Y. Liu, “Optical chiral metamaterials: a review of the fundamentals, fabrication methods and applications,” Nanotechnology 27(41), 412001 (2016).
[Crossref] [PubMed]

Wozniak, P.

P. Banzer, P. Woźniak, U. Mick, I. De Leon, and R. W. Boyd, “Chiral optical response of planar and symmetric nanotrimers enabled by heteromaterial selection,” Nat. Commun. 7, 13117 (2016).
[Crossref] [PubMed]

P. Woźniak, K. Höflich, G. Brönstrup, P. Banzer, S. Christiansen, and G. Leuchs, “Unveiling the optical properties of a metamaterial synthesized by electron-beam-induced deposition,” Nanotechnology 27(2), 025705 (2015).
[Crossref]

P. Woźniak, P. Banzer, and G. Leuchs, “Selective switching of individual multipole resonances in single dielectric nanoparticles,” Laser Photonics Rev. 9(2), 231–240 (2015).
[Crossref]

Wu, C.

C. Wu, H. Li, Z. Wei, X. Yu, and C. T. Chan, “Theory and experimental realization of negative refraction in a metallic helix array,” Phys. Rev. Lett. 105(24), 247401 (2010).
[Crossref]

Xu, C.

Y. Zhao, L. Xu, W. Ma, L. Wang, H. Kuang, C. Xu, and N. A. Kotov, “Shell-engineered chiroplasmonic assemblies of nanoparticles for zeptomolar DNA detection,” Nano Lett. 14(7), 3908–3913 (2014).
[Crossref] [PubMed]

Xu, J.

M. Ren, E. Plum, J. Xu, and N. I. Zheludev, “Giant nonlinear optical activity in a plasmonic metamaterial,” Nat. Commun. 3, 833 (2012).
[Crossref] [PubMed]

Xu, L.

Y. Zhao, L. Xu, W. Ma, L. Wang, H. Kuang, C. Xu, and N. A. Kotov, “Shell-engineered chiroplasmonic assemblies of nanoparticles for zeptomolar DNA detection,” Nano Lett. 14(7), 3908–3913 (2014).
[Crossref] [PubMed]

Yang, J.

Yang, R. B.

K. Höflich, R. B. Yang, A. Berger, G. Leuchs, and S. Christiansen, “The direct writing of plasmonic gold nanostructures by electron-beam-induced deposition,” Adv. Mater. 23, 2657–2661 (2011).
[Crossref] [PubMed]

Yang, Z. Y.

Yannopapas, V.

M. Fruhnert, I. Fernandez-Corbaton, V. Yannopapas, and C. Rockstuhl, “Computing the T-matrix of a scattering object with multiple plane wave illuminations,” Beilstein J. Nanotechnol. 8(1), 614–626 (2017).
[Crossref] [PubMed]

Yin, X.

X. Yin, M. Schäferling, B. Metzger, and H. Giessen, “Interpreting chiral nanophotonic spectra: the plasmonic Born-Kuhn model,” Nano Lett. 13(12), 6238–6243 (2013).
[Crossref] [PubMed]

B. Frank, X. Yin, M. Schäferling, J. Zhao, S. M. Hein, P. V. Braun, and H. Giessen, “Large-area 3D chiral plasmonic structures,” ACS Nano 7(7), 6321–6329 (2013).
[Crossref] [PubMed]

S. Zhang, J. Zhou, Y.-S. Park, J. Rho, R. Singh, S. Nam, A. K. Azad, H.-T. Chen, X. Yin, A. J. Taylor, and X. Zhang, “Photoinduced handedness switching in terahertz chiral metamolecules,” Nat. Commun. 3, 942 (2012).
[Crossref] [PubMed]

Yu, X.

Y. Zhao, M. A. Belkin, A. Alù, X. Yu, and H. Li, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers,” Nat. Commun. 3, 870 (2012).
[Crossref] [PubMed]

C. Wu, H. Li, Z. Wei, X. Yu, and C. T. Chan, “Theory and experimental realization of negative refraction in a metallic helix array,” Phys. Rev. Lett. 105(24), 247401 (2010).
[Crossref]

Zeijlemaker, H.

D. Kosters, A. de Hoogh, H. Zeijlemaker, H. Acar, H. N. Rotenberg, and L. Kuipers, “Core-shell plasmonic nanohelices,” ACS Photonics 4(7), 1858–1863 (2017).
[Crossref] [PubMed]

Zhang, C.

C. Pfeiffer, C. Zhang, V. Ray, L. Jay Guo, and A. Grbic, “High performance bianisotropic metasurfaces: asymmetric transmission of light,” Phys. Rev. Lett. 113(2), 023902 (2014).
[Crossref] [PubMed]

Zhang, P.

C. Song, M. G. Blaber, G. Zhao, P. Zhang, H. C. Fry, G. C. Schatz, and N. L. Rosi, “Tailorable plasmonic circular dichroism properties of helical nanoparticle superstructures,” Nano Lett. 13(7), 3256–3261 (2013).
[Crossref] [PubMed]

Zhang, S.

S. Zhang, J. Zhou, Y.-S. Park, J. Rho, R. Singh, S. Nam, A. K. Azad, H.-T. Chen, X. Yin, A. J. Taylor, and X. Zhang, “Photoinduced handedness switching in terahertz chiral metamolecules,” Nat. Commun. 3, 942 (2012).
[Crossref] [PubMed]

S. Zhang, Y.-S. Park, J. Li, X. Lu, W. Zhang, and W. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett. 102(2), 023901 (2009).
[Crossref] [PubMed]

Zhang, W.

S. Zhang, Y.-S. Park, J. Li, X. Lu, W. Zhang, and W. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett. 102(2), 023901 (2009).
[Crossref] [PubMed]

S. Zhang, Y.-S. Park, J. Li, X. Lu, W. Zhang, and W. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett. 102(2), 023901 (2009).
[Crossref] [PubMed]

Zhang, X.

S. Zhang, J. Zhou, Y.-S. Park, J. Rho, R. Singh, S. Nam, A. K. Azad, H.-T. Chen, X. Yin, A. J. Taylor, and X. Zhang, “Photoinduced handedness switching in terahertz chiral metamolecules,” Nat. Commun. 3, 942 (2012).
[Crossref] [PubMed]

Zhao, G.

C. Song, M. G. Blaber, G. Zhao, P. Zhang, H. C. Fry, G. C. Schatz, and N. L. Rosi, “Tailorable plasmonic circular dichroism properties of helical nanoparticle superstructures,” Nano Lett. 13(7), 3256–3261 (2013).
[Crossref] [PubMed]

Zhao, J.

B. Frank, X. Yin, M. Schäferling, J. Zhao, S. M. Hein, P. V. Braun, and H. Giessen, “Large-area 3D chiral plasmonic structures,” ACS Nano 7(7), 6321–6329 (2013).
[Crossref] [PubMed]

Zhao, M.

Zhao, X.

Zhao, Y.

Y. Zhao, A. N. Askarpour, L. Sun, J. Shi, X. Li, and A. Alù, “Chirality detection of enantiomers using twisted optical metamaterials,” Nat. Commun. 8, 14180 (2017).
[Crossref] [PubMed]

Y. Zhao, L. Xu, W. Ma, L. Wang, H. Kuang, C. Xu, and N. A. Kotov, “Shell-engineered chiroplasmonic assemblies of nanoparticles for zeptomolar DNA detection,” Nano Lett. 14(7), 3908–3913 (2014).
[Crossref] [PubMed]

G. K. Larsen, Y. He, J. Wang, and Y. Zhao, “Scalable fabrication of composite Ti/Ag plasmonic helices: controlling morphology and optical activity by tailoring material properties,” Adv. Opt. Mater. 2(3), 245–249 (2014).
[Crossref]

Y. Zhao, M. A. Belkin, A. Alù, X. Yu, and H. Li, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers,” Nat. Commun. 3, 870 (2012).
[Crossref] [PubMed]

Zheludev, N. I.

M. Ren, E. Plum, J. Xu, and N. I. Zheludev, “Giant nonlinear optical activity in a plasmonic metamaterial,” Nat. Commun. 3, 833 (2012).
[Crossref] [PubMed]

E. Plum, J. Zhou, L. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, “Metamaterial with negative index due to chirality,” Phys. Rev. B 79(3), 035407 (2009).
[Crossref]

E. Plum, X. X. Liu, V. A. Fedotov, Y. Chen, D. P. Tsai, and N. I. Zheludev, “Metamaterials: optical activity without chirality,” Phys. Rev. Lett. 18(11), 113902 (2009).
[Crossref]

E. Plum, V. A. Fedotov, and N. I. Zheludev, “Extrinsic electromagnetic chirality in metamaterials,” J. Opt. A: Pure Appl. Opt. 11(7), 074009 (2009).
[Crossref]

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett. 97, 167401 (2006).
[Crossref] [PubMed]

A. V. Rogacheva, V. A. Fedotov, A. S. Schwanecke, and N. I. Zheludev, “Giant gyrotropy due to electromagnetic-field coupling in a bilayered chiral structure,” Phys. Rev. Lett. 97(17), 177401 (2006).
[Crossref] [PubMed]

Zhou, J.

S. Zhang, J. Zhou, Y.-S. Park, J. Rho, R. Singh, S. Nam, A. K. Azad, H.-T. Chen, X. Yin, A. J. Taylor, and X. Zhang, “Photoinduced handedness switching in terahertz chiral metamolecules,” Nat. Commun. 3, 942 (2012).
[Crossref] [PubMed]

E. Plum, J. Zhou, L. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, “Metamaterial with negative index due to chirality,” Phys. Rev. B 79(3), 035407 (2009).
[Crossref]

B. Wang, J. Zhou, T. Koschny, M. Kafesaki, and C. S. Soukoulis, “Chiral metamaterials: simulations and experiments,” J. Opt. A: Pure Appl. Opt. 11(11), 114003 (2009).
[Crossref]

M. Decker, M. Ruther, C. E. Kriegler, J. Zhou, C. M. Soukoulis, S. Linden, and M. Wegener, “Strong optical activity from twisted-cross photonic metamaterials,” Opt. Lett. 34(16), 2501–2503 (2009).
[Crossref] [PubMed]

Zhu, A.

Zhu, X.

ACS Nano (1)

B. Frank, X. Yin, M. Schäferling, J. Zhao, S. M. Hein, P. V. Braun, and H. Giessen, “Large-area 3D chiral plasmonic structures,” ACS Nano 7(7), 6321–6329 (2013).
[Crossref] [PubMed]

ACS Photonics (3)

D. Kosters, A. de Hoogh, H. Zeijlemaker, H. Acar, H. N. Rotenberg, and L. Kuipers, “Core-shell plasmonic nanohelices,” ACS Photonics 4(7), 1858–1863 (2017).
[Crossref] [PubMed]

M. Esposito, V. Tasco, M. Cuscunà, F. Todisco, A. Benedetti, I. Tarantini, M. D. Giorgi, D. Sanvitto, and A. Passaseo, “Nanoscale 3D chiral plasmonic helices with circular dichroism at visible frequencies,” ACS Photonics 2(1), 105–114 (2015).
[Crossref]

L. Kang, Q. Ren, and D. H. Werner, “Leveraging superchiral light for manipulation of optical chirality in the near-field of plasmonic metamaterials,” ACS Photonics 4(6), 1298–1305 (2017).
[Crossref]

Adv. Mater. (2)

V. K. Valev, J. J. Baumberg, C. Sibilia, and T. Verbiest, “Chirality and chiroptical effects in plasmonic nanostructures: fundamentals, recent progress, and outlook,” Adv. Mater. 25(18), 2517–2534 (2013).
[Crossref] [PubMed]

K. Höflich, R. B. Yang, A. Berger, G. Leuchs, and S. Christiansen, “The direct writing of plasmonic gold nanostructures by electron-beam-induced deposition,” Adv. Mater. 23, 2657–2661 (2011).
[Crossref] [PubMed]

Adv. Opt. Mater. (1)

G. K. Larsen, Y. He, J. Wang, and Y. Zhao, “Scalable fabrication of composite Ti/Ag plasmonic helices: controlling morphology and optical activity by tailoring material properties,” Adv. Opt. Mater. 2(3), 245–249 (2014).
[Crossref]

Appl. Phys. (1)

D. L. Jaggard, A. R. Mickelson, and C. H. Papas, “On electromagnetic waves in chiral media,” Appl. Phys. 18(2), 211–216 (1979).
[Crossref]

Appl. Phys. Lett. (3)

N. Katsarakis, T. Koschny, M. Kafesaki, E. N. Economou, and C. M. Soukoulis, “Electric coupling to the magnetic resonance of split ring resonators,” Appl. Phys. Lett. 84(15), 2943–2945 (2004).
[Crossref]

J. K. Gansel, M. Latzel, A. Frölich, J. Kaschke, M. Thiel, and M. Wegener, “Tapered gold-helix metamaterials as improved circular polarizers,” Appl. Phys. Lett. 100(10), 101109 (2012).
[Crossref]

J. G. Gibbs, A. G. Mark, S. Eslami, and P. Fischer, “Plasmonic nanohelix metamaterials with tailorable giant circular dichroism,” Appl. Phys. Lett. 103, 213101 (2013).
[Crossref]

Beilstein J. Nanotechnol. (1)

M. Fruhnert, I. Fernandez-Corbaton, V. Yannopapas, and C. Rockstuhl, “Computing the T-matrix of a scattering object with multiple plane wave illuminations,” Beilstein J. Nanotechnol. 8(1), 614–626 (2017).
[Crossref] [PubMed]

Chem. Biol. Drug Des. (1)

B. Ranjbar and P. Gill, “Circular dichroism techniques: biomolecular and nanostructural analyses-a review,” Chem. Biol. Drug Des. 74(2), 101–120 (2009).
[Crossref] [PubMed]

J. Chem. Soc. Faraday Trans. (1)

W. Kuhn, “The physical significance of optical rotatory power,” J. Chem. Soc. Faraday Trans. 26, 293–308 (1930).
[Crossref]

J. Opt. (1)

R.-L. Chern, “Wave propagation in chiral media: composite Fresnel equations,” J. Opt. 15(7), 075702 (2013).
[Crossref]

J. Opt. A: Pure Appl. Opt. (2)

B. Wang, J. Zhou, T. Koschny, M. Kafesaki, and C. S. Soukoulis, “Chiral metamaterials: simulations and experiments,” J. Opt. A: Pure Appl. Opt. 11(11), 114003 (2009).
[Crossref]

E. Plum, V. A. Fedotov, and N. I. Zheludev, “Extrinsic electromagnetic chirality in metamaterials,” J. Opt. A: Pure Appl. Opt. 11(7), 074009 (2009).
[Crossref]

J. Opt. Soc. Am. (2)

J. Phys. Chem. B (1)

C. E. Román-Velázquez, C. Noguez, and I. L. Garzón, “Circular dichroism simulated spectra of chiral gold nanoclusters: a dipole approximation,” J. Phys. Chem. B 107(44), 12035–12038 (2003).
[Crossref]

J. Phys. Chem. C (1)

Z. Fan and A. O. Govorov, “Helical metal nanoparticle assemblies with defects: plasmonic chirality and circular dichroism,” J. Phys. Chem. C 115(27), 13254–13261 (2011).
[Crossref]

Laser Photonics Rev. (1)

P. Woźniak, P. Banzer, and G. Leuchs, “Selective switching of individual multipole resonances in single dielectric nanoparticles,” Laser Photonics Rev. 9(2), 231–240 (2015).
[Crossref]

Microelectron. Eng. (1)

T. Bret, S. Mauron, I. Utke, and P. Hoffmann, “Characterization of focused electron beam induced carbon deposits from organic precursors,” Microelectron. Eng. 78–79, 300–306 (2005).
[Crossref]

Nano Convergence (1)

S. S. Oh and O. Hess, “Chiral metamaterials: enhancement and control of optical activity and circular dichroism,” Nano Convergence 2(1), 24 (2015).
[Crossref] [PubMed]

Nano Lett. (8)

Y. Zhao, L. Xu, W. Ma, L. Wang, H. Kuang, C. Xu, and N. A. Kotov, “Shell-engineered chiroplasmonic assemblies of nanoparticles for zeptomolar DNA detection,” Nano Lett. 14(7), 3908–3913 (2014).
[Crossref] [PubMed]

C. Jack, A. S. Karimullah, R. Leyman, R. Tullius, V. M. Rotello, G. Cooke, N. Gadegaard, L. D. Barron, and M. Kadodwala, “Biomacromolecular stereostructure mediates mode hybridization in chiral plasmonic nanostructures,” Nano Lett. 16(9), 5806–5814 (2016).
[Crossref] [PubMed]

M. Hentschel, M. Schäferling, B. Metzger, and H. Giessen, “Plasmonic diastereomers: adding up chiral centers,” Nano Lett. 13(2), 600–606 (2013).
[Crossref] [PubMed]

Z. Fan and A. O. Govorov, “Plasmonic circular dichroism of chiral metal nanoparticle assemblies,” Nano Lett. 10(7), 2580–2587 (2010).
[Crossref] [PubMed]

Y. Cui, L. Kang, S. Lan, S. Rodrigues, and W. Cai, “Giant chiral optical response from a twisted-arc metamaterial,” Nano Lett. 14(2), 1021–1025 (2014).
[Crossref] [PubMed]

M. Neugebauer, T. Bauer, P. Banzer, and G. Leuchs, “Polarization tailored light driven directional optical nanobeacon,” Nano Lett. 14(5), 2546–2551 (2014).
[Crossref] [PubMed]

C. Song, M. G. Blaber, G. Zhao, P. Zhang, H. C. Fry, G. C. Schatz, and N. L. Rosi, “Tailorable plasmonic circular dichroism properties of helical nanoparticle superstructures,” Nano Lett. 13(7), 3256–3261 (2013).
[Crossref] [PubMed]

X. Yin, M. Schäferling, B. Metzger, and H. Giessen, “Interpreting chiral nanophotonic spectra: the plasmonic Born-Kuhn model,” Nano Lett. 13(12), 6238–6243 (2013).
[Crossref] [PubMed]

Nanoscale (1)

M. Esposito, V. Tasco, F. Todisco, A. Benedetti, I. Tarantini, M. Cuscunà, L. Dominici, D. De Giorgi, and A. Passaseo, “Tailoring chiro-optical effects by helical nanowire arrangement,” Nanoscale 7(7), 18081–18088 (2015).
[Crossref] [PubMed]

Nanotechnology (3)

Z. Wang, F. Cheng, T. Winsor, and Y. Liu, “Optical chiral metamaterials: a review of the fundamentals, fabrication methods and applications,” Nanotechnology 27(41), 412001 (2016).
[Crossref] [PubMed]

P. Woźniak, K. Höflich, G. Brönstrup, P. Banzer, S. Christiansen, and G. Leuchs, “Unveiling the optical properties of a metamaterial synthesized by electron-beam-induced deposition,” Nanotechnology 27(2), 025705 (2015).
[Crossref]

C. Haverkamp, K. Höflich, S. Jäckle, A. Manzoni, and S. Christiansen, “Plasmonic gold helices for the visible range fabricated by oxygen plasma purification of electron beam induced deposits,” Nanotechnology 28(5), 055303 (2017).
[Crossref]

Nat. Commun. (6)

Y. Zhao, A. N. Askarpour, L. Sun, J. Shi, X. Li, and A. Alù, “Chirality detection of enantiomers using twisted optical metamaterials,” Nat. Commun. 8, 14180 (2017).
[Crossref] [PubMed]

M. Ren, E. Plum, J. Xu, and N. I. Zheludev, “Giant nonlinear optical activity in a plasmonic metamaterial,” Nat. Commun. 3, 833 (2012).
[Crossref] [PubMed]

S. Zhang, J. Zhou, Y.-S. Park, J. Rho, R. Singh, S. Nam, A. K. Azad, H.-T. Chen, X. Yin, A. J. Taylor, and X. Zhang, “Photoinduced handedness switching in terahertz chiral metamolecules,” Nat. Commun. 3, 942 (2012).
[Crossref] [PubMed]

Y. Zhao, M. A. Belkin, A. Alù, X. Yu, and H. Li, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers,” Nat. Commun. 3, 870 (2012).
[Crossref] [PubMed]

P. Banzer, P. Woźniak, U. Mick, I. De Leon, and R. W. Boyd, “Chiral optical response of planar and symmetric nanotrimers enabled by heteromaterial selection,” Nat. Commun. 7, 13117 (2016).
[Crossref] [PubMed]

A. I. Kuznetsov, A. E. Miroshnichenko, Y. H. Fu, V. Viswanathan, M. Rahmani, V. Valuckas, Z. Y. Pan, Y. Kivshar, D. S. Pickard, and B. Luk’yanchuk, “Split-ball resonator as a three-dimensional analogue of planar split-rings,” Nat. Commun. 5, 3104 (2014).
[Crossref] [PubMed]

Nat. Mater. (1)

A. G. Mark, J. G. Gibbs, T.-C. Lee, and P. Fischer, “Hybrid nanocolloids with programmed three-dimensional shape and material composition,” Nat. Mater. 12(9), 802–807 (2013).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol. 5, 783–787 (2010).
[Crossref] [PubMed]

Nature (2)

A. Kuzyk, R. Schreiber, Z. Fan, G. Pardatscher, E.-M. Roller, A. Högele, F. C. Simmel, A. O. Govorov, and T. Liedl, “DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response,” Nature 483(7389), 311–314 (2012).
[Crossref] [PubMed]

L. Barron, “Parity and optical activity,” Nature 238(5358), 17–19 (1972).
[Crossref] [PubMed]

Opt. Commun. (1)

R. Alaee, C. Rockstuhl, and I. Fernandez-Corbaton, “An electromagnetic multipole expansion beyond the long-wavelength approximation,” Opt. Commun. 407(15), 17–21 (2018).
[Crossref]

Opt. Eng. (1)

S. C. Tidwell, D. H. Ford, and W. D. Kimura, “Transporting and focusing radially polarized laser beams,” Opt. Eng. 31(7), 1527–1531 (1992).
[Crossref]

Opt. Express (4)

Opt. Lett. (2)

Opt. Mater. Express (1)

Phys. Rev. B (4)

E. Plum, J. Zhou, L. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, “Metamaterial with negative index due to chirality,” Phys. Rev. B 79(3), 035407 (2009).
[Crossref]

I. Sersic, C. Tuambilangana, C. Kampfrath, and A. F. Koenderink, “Magnetoelectric point scattering theory for metamaterial scatterers,” Phys. Rev. B 83(24), 247401 (2011).
[Crossref]

A. B. Evlyukhin, T. Fischer, C. Reinhardt, and B. N. Chichkov, “Optical theorem and multipole scattering of light by arbitrarily shaped nanoparticles,” Phys. Rev. B 94(20), 205434 (2016).
[Crossref]

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972).
[Crossref]

Phys. Rev. Lett. (8)

I. Sersic, M. A. van de Haar, F. B. Arango, and A. F. Koenderink, “Ubiquity of optical activity in planar metamaterial scatterers,” Phys. Rev. Lett. 108(22), 223903 (2012).
[Crossref] [PubMed]

V. A. Fedotov, P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, “Asymmetric propagation of electromagnetic waves through a planar chiral structure,” Phys. Rev. Lett. 97, 167401 (2006).
[Crossref] [PubMed]

C. Pfeiffer, C. Zhang, V. Ray, L. Jay Guo, and A. Grbic, “High performance bianisotropic metasurfaces: asymmetric transmission of light,” Phys. Rev. Lett. 113(2), 023902 (2014).
[Crossref] [PubMed]

C. Wu, H. Li, Z. Wei, X. Yu, and C. T. Chan, “Theory and experimental realization of negative refraction in a metallic helix array,” Phys. Rev. Lett. 105(24), 247401 (2010).
[Crossref]

E. Plum, X. X. Liu, V. A. Fedotov, Y. Chen, D. P. Tsai, and N. I. Zheludev, “Metamaterials: optical activity without chirality,” Phys. Rev. Lett. 18(11), 113902 (2009).
[Crossref]

S. Zhang, Y.-S. Park, J. Li, X. Lu, W. Zhang, and W. Zhang, “Negative refractive index in chiral metamaterials,” Phys. Rev. Lett. 102(2), 023901 (2009).
[Crossref] [PubMed]

M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, and Y. Svirko, “Giant optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett. 95(22), 227401 (2005).
[Crossref] [PubMed]

A. V. Rogacheva, V. A. Fedotov, A. S. Schwanecke, and N. I. Zheludev, “Giant gyrotropy due to electromagnetic-field coupling in a bilayered chiral structure,” Phys. Rev. Lett. 97(17), 177401 (2006).
[Crossref] [PubMed]

Phys. Rev. X (1)

M. Schäferling, D. Dregely, M. Hentschel, and Harald Giessen, “Tailoring enhanced optical chirality: design principles for chiral plasmonic nanostructures,” Phys. Rev. X 2(3), 031010 (2012).

Sci. Rep. (2)

I. De Leon, M. J. Horton, S. A. Schulz, J. Upham, P. Banzer, and R. W. Boyd, “Strong, spectrally-tunable chirality in diffractive metasurfaces,” Sci. Rep. 5, 13034 (2015).
[Crossref] [PubMed]

L. Hu, Y. Huang, L. Pan, and Y. Fang, “Analyzing intrinsic plasmonic chirality by tracking the interplay of electric and magnetic dipole modes,” Sci. Rep. 7, 11151 (2017).
[Crossref] [PubMed]

Science (2)

J. B. Pendry, “A chiral route to negative refraction,” Science 306(5700), 1353–1355 (2004).
[Crossref] [PubMed]

J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009).
[Crossref] [PubMed]

Other (3)

L. D. Barron, Molecular Light Scattering and Optical Activity, (Cambridge University, 2009).

J. A. Stratton, Electromagnetic Theory (McGraw-Hill Companies, 1941).

L. Novotny and B. Hecht, Principles of Nano-optics, (Cambridge University, 2012).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1 Investigated nanostructure and experimental set-up. (a) Schematic illustration and scanning-electron micrograph (inset) of the investigated gold-coated nanohelix on a glass substrate. (b) Simplified sketch of the experimental set-up utilized for the measurement of the nanohelix. A circularly polarized Gaussian beam is focused onto the nanohelix by a microscope objective with NA of 0.9. The incoming beam only partially fills the back focal plane of the focusing lens and decreases the effective focusing NAeff down to 0.5. The same objective collects the reflected and the back-scattered light within a large solid angle equivalent to the NA of 0.9. Implementation of a 3D-piezo-stage allows for precise positioning of the structure on the optical axis in the focal plane. The transmitted and forward-scattered light is collected by a second immersion-type microscope objective with an NA of 1.3 which is located below the sample. In both directions, the total power is measured with photo-diodes.
Fig. 2
Fig. 2 Measurements and numerical simulations of the chiroptical response of a single plasmonic nanohelix. Reflectance and transmittance spectra are shown at the top. The corresponding absorbance spectra for both polarization states of the incoming light are shown at the bottom. The resulting differential absorption (CD) is presented in the same graph.
Fig. 3
Fig. 3 FDTD-retrieved dipolar response of the nanohelix. Magnitudes and phases of the components of the electric p and magnetic m dipole moments for the right-handed helix under RCP illumination. The blue-shaded range spans over the spectral range of the experiment.
Fig. 4
Fig. 4 Optical response of a single nanohelix at the fundamental resonance, excited with right-handed circularly polarized light. (a) The helix can be described as a system of coupled electric and magnetic dipoles of ellipticities and oscillating with a phase delay of π/2. Both dipoles have a strong component along the z-axis (the inset shows the projections of the retrieved dipoles on the xy-, xz- and yz-planes). (b) Distributions of the charge and current densities on the helix surface for two different snapshots in time. Effectively, the structure acts as a nanoLC-circuit accessible for only one handedness of the incoming light (here RCP) depending on its own geometrical twist.
Fig. 5
Fig. 5 Far-field scattering of a single nanohelix at the wavelength of its fundamental resonance. The forward-scattered light observed experimentally in the back focal plane is mostly radially polarized. The analytical prediction based on point-like dipole moments retrieved from the FDTD simulations near a dielectric substrate resembles well the experimentally acquired intensity patterns.
Fig. 6
Fig. 6 Dipolar representation of the first higher-order resonance. Same as Fig. 4, but for λ = 840 nm.
Fig. 7
Fig. 7 Broadband FDTD simulations of the chiroptical response of the investigated nanohelix. Dispersion of the differential absorption (CD) for RCP and LCP light by the nanohelix depicted in Fig. 1(a) in the main text. The absorbance of light is determined from the acquired reflectance and transmittance spectra in the spectral range between 450 nm and 1900 nm. The first two CD resonances are determined to be at 1450 nm and at 840 nm. The blue-shaded spectral range spans over the spectral range of the experiment.
Fig. 8
Fig. 8 Magnitudes and phases of the components of the electric p and magnetic m dipole moments of the helix under LCP illumination.
Fig. 9
Fig. 9 Magnitudes of the components of the magnetic Qm and electric Qe quadrupoles of the helix under RCP illumination.
Fig. 10
Fig. 10 The same as Fig. 9, but for an LCP excitation.
Fig. 11
Fig. 11 Parity (P) and time (T) inversions of a point-like system of coupled electric and magnetic dipoles of (a) parallel and (b) perpendicular orientations.
Fig. 12
Fig. 12 Far-field forward-scattering of the nanohelix at the wavelength of its fundamental resonance under RCP and LCP illumination.
Fig. 13
Fig. 13 Distributions of the focal electric energy densities (top) and the relative phases (bottom) of a weakly focused (NAeff = 0.5) RCP Gaussian beam (λ = 1450 nm). The individual electric field intensity maps are normalized to the maximum value of total electric energy density (0/2) |E|2. The dashed circle outlines the outer contour of the nanohelix.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

CD = A RCP A LCP .
p = P ( r ) d r ,
m = i ω 2 [ r P ( r ) + P ( r ) r 2 3 [ r P ( r ) U ] ] d r .
Q e = 3 [ r P ( r ) + P ( r ) r 2 3 [ r P ( r ) U ] ] d r .
Q m = ω 3 i ( [ r × P ( r ) ] r + r [ r × P ( r ) ] ) d r ,
E TM = E TM p + E TM m , E TE = E TE p + E TE m ,
( E TM p E TE p ) = C F t M p ( p x p y p y )
( E TM m E TE m ) = C c 0 F t M m ( m x m y m y )
C = e i | k | nr | k | 2 | k | 2 n 2 k 2 4 π r 0 κ z e i κ z d .
F t = ( t TM 0 0 t TE )
M p = ( k x k z k | k | k y k x k | k | k | k | k y k k x k 0 ) M m = ( k y k k x k 0 k x k z k k y k z k | k | k | k | ) .

Metrics