Abstract

We experimentally investigate high-order modes (HOMs) generating at the wavelength of 1.0 μm in all-fiber Yb-doped lasers based on mode-selective couplers (MSCs). Broadband MSCs for HOMs conversion are achieved by optimizing the phase-matching condition at 1.0 μm. Efficient generation of HOMs is demonstrated with the MSCs inserted both into continuous-wave and mode-locked fiber lasers. The slope efficiencies of HOMs (LP11, LP02 and LP21) are presented and discussed. Additionally, cylindrical vector and orbital angular momentum beams are produced out of the MSCs by controlling the polarization states. The results show proof-of-concept implementation of the MSCs, which enables high efficiency of HOMs generation especially in pulsed fiber lasers and holds promising applications in laser material processing.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Dispersion-managed, high-order mode emission, Tm/Ho-co-doped fiber laser based on a mode-selective coupler

Su Chen, Yang Xu, Yu Cai, Jianping Shen, and Zuxing Zhang
J. Opt. Soc. Am. B 36(10) 2688-2693 (2019)

High efficiency mode-locked, cylindrical vector beam fiber laser based on a mode selective coupler

Hongdan Wan, Jie Wang, Zuxing Zhang, Yu Cai, Bin Sun, and Lin Zhang
Opt. Express 25(10) 11444-11451 (2017)

High-order mode direct oscillation of few-mode fiber laser for high-quality cylindrical vector beams

Teng Wang, Fan Shi, Yiping Huang, Jianxiang Wen, Zhengqian Luo, Fufei Pang, Tingyun Wang, and Xianglong Zeng
Opt. Express 26(9) 11850-11858 (2018)

References

  • View by:
  • |
  • |
  • |

  1. L. G. Wright, D. N. Christodoulides, and F. W. Wise, “Spatiotemporal mode-locking in multimode fiber lasers,” Science 358(6359), 94–97 (2017).
    [Crossref] [PubMed]
  2. L. G. Wright, Z. M. Ziegler, P. M. Lushnikov, Z. Zhu, M. A. Eftekhar, D. N. Christodoulides, and F. W. Wise, “Multimode Nonlinear Fiber Optics: Massively Parallel Numerical Solver, Tutorial, and Outlook,” IEEE J. Sel. Top. Quant. 24(3), 1–16 (2018).
    [Crossref]
  3. J. Lægsgaard, “Efficient simulation of multimodal nonlinear propagation in step-index fibers,” J. Opt. Soc. Am. B 34(10), 2266–2273 (2017).
    [Crossref]
  4. A. M. Yao and M. J. Padgett, “Orbital angular momentum: origins, behavior and applications,” Adv. Opt. Photonics 3(2), 161–204 (2011).
    [Crossref]
  5. L. Allen, M. J. Padgett, and M. Babiker, “IV The orbital angular momentum of light,” Prog. Opt. 39, 291–372 (1999).
    [Crossref]
  6. L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86(23), 5251–5254 (2001).
    [Crossref] [PubMed]
  7. K. Toyoda, F. Takahashi, S. Takizawa, Y. Tokizane, K. Miyamoto, R. Morita, and T. Omatsu, “Transfer of light helicity to nanostructures,” Phys. Rev. Lett. 110(14), 143603 (2013).
    [Crossref] [PubMed]
  8. A. Nicolas, L. Veissier, L. Giner, E. Giacobino, D. Maxein, and J. Laurat, “A quantum memory for orbital angular momentum photonic qubits,” Nat. Photonics 8(3), 234–238 (2014).
    [Crossref]
  9. N. P. Robins, C. Figl, M. Jeppesen, G. R. Dennis, and J. D. Close, “A pumped atom laser,” Nat. Phys. 4(9), 731–736 (2008).
    [Crossref]
  10. G. Molina-Terriza, J. P. Torres, and L. Torner, “Twisted photons,” Nat. Phys. 3(5), 305–310 (2007).
    [Crossref]
  11. G. Milione, T. Wang, J. Han, and L. Bai, “Remotely sensing an object’s rotational orientation using the orbital angular momentum of light,” Chin. Opt. Lett. 15(3), 030012 (2017).
    [Crossref]
  12. N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
    [Crossref] [PubMed]
  13. V. Sizyuk, A. Hassanein, and T. Sizyuk, “Hollow laser self-confined plasma for extreme ultraviolet lithography and other applications,” Laser Part. Beams 25(1), 143–154 (2007).
    [Crossref]
  14. J. Hamazaki, R. Morita, K. Chujo, Y. Kobayashi, S. Tanda, and T. Omatsu, “Optical-vortex laser ablation,” Opt. Express 18(3), 2144–2151 (2010).
    [Crossref] [PubMed]
  15. R. Zhou, J. W. Haus, P. E. Powers, and Q. Zhan, “Vectorial fiber laser using intracavity axial birefringence,” Opt. Express 18(10), 10839–10847 (2010).
    [Crossref] [PubMed]
  16. B. Piccirillo, V. D’Ambrosio, S. Slussarenko, L. Marrucci, and E. Santamato, “Photon spin-to-orbital angular momentum conversion via an electrically tunable q-plate,” Appl. Phys. Lett. 97(24), 241104 (2010).
    [Crossref]
  17. D. Lin, K. Xia, J. Li, R. Li, K. Ueda, G. Li, and X. Li, “Efficient, high-power, and radially polarized fiber laser,” Opt. Lett. 35(13), 2290–2292 (2010).
    [Crossref] [PubMed]
  18. L. Li, Z. Ren, X. Chen, M. Qi, X. Zheng, J. Bai, and Z. Sun, “Passively mode-locked radially polarized Nd-doped yttrium aluminum garnet laser based on graphene-based saturable absorber,” Appl. Phys. Express 6(8), 082701 (2013).
    [Crossref]
  19. Y. Zhou, J. Lin, X. Zhang, L. Xu, C. Gu, B. Sun, A. Wang, and Q. Zhan, “Self-starting passively mode-locked all fiber laser based on carbon nanotubes with radially polarized emission,” Photon. Res. 4(6), 327–330 (2016).
    [Crossref]
  20. Y. Zhou, A. Wang, C. Gu, B. Sun, L. Xu, F. Li, D. Chung, and Q. Zhan, “Actively mode-locked all fiber laser with cylindrical vector beam output,” Opt. Lett. 41(3), 548–550 (2016).
    [Crossref] [PubMed]
  21. T. Liu, S. P. Chen, and J. Hou, “Selective transverse mode operation of an all-fiber laser with a mode-selective fiber bragg grating pair,” Opt. Lett. 41(24), 5692–5695 (2016).
    [Crossref] [PubMed]
  22. L. Li, M. Wang, T. Liu, J. Leng, P. Zhou, and J. Chen, “High-power, cladding-pumped all-fiber laser with selective transverse mode generation property,” Appl. Opt. 56(17), 4967–4970 (2017).
    [Crossref] [PubMed]
  23. T. Liu, S. Chen, X. Qi, and J. Hou, “High-power transverse-mode-switchable all-fiber picosecond MOPA,” Opt. Express 24(24), 27821–27827 (2016).
    [Crossref] [PubMed]
  24. X. Yang, Z. H. Xu, S. P. Chen, and Z. F. Jiang, “High power LP11 mode supercontinuum generation from an all-fiber MOPA,” Opt. Express 26(11), 13740–13745 (2018).
    [Crossref] [PubMed]
  25. T. Wang, F. Wang, F. Shi, F. Pang, S. Huang, T. Wang, and X. Zeng, “Generation of femtosecond optical vortex beams in all-fiber mode-locked fiber laser using mode selective coupler,” J. Lightwave Technol. 35(11), 2161–2166 (2017).
    [Crossref]
  26. F. Wang, F. Shi, T. Wang, F. Pang, T. Wang, and X. Zeng, “Method of generating femtosecond cylindrical vector beams using broadband mode converter,” IEEE Photonics Technol. Lett. 29(9), 747–750 (2017).
    [Crossref]
  27. D. Mao, Z. He, H. Lu, M. Li, W. Zhang, X. Cui, B. Jiang, and J. Zhao, “All-fiber radially/azimuthally polarized lasers based on mode coupling of tapered fibers,” Opt. Lett. 43(7), 1590–1593 (2018).
    [Crossref] [PubMed]
  28. J. Zheng, A. Yang, T. Wang, X. Zeng, N. Cao, M. Liu, and T. Wang, “Wavelength-switchable vortex beams based on a polarization-dependent microknot resonator,” Photon. Res. 6(5), 396–402 (2018).
    [Crossref]
  29. X. Liu, J. Lagsgaard, and D. Turchinovich, “Monolithic highly stable Yb-doped femtosecond fiber lasers for applications in practical biophotonics,” IEEE. J. Sel. Top. Quant. 18(4), 1439–1450 (2012).
    [Crossref]
  30. M. Koyama, T. Hirose, M. Okida, K. Miyamoto, and T. Omatsu, “Power scaling of a picosecond vortex laser based on a stressed Yb-doped fiber amplifier,” Opt. Express 19(2), 994–999 (2011).
    [Crossref] [PubMed]
  31. N. Riesen, J. D. Love, and J. W. Arkwright, “Few-core spatial-mode multiplexers/demultiplexers based on evanescent coupling,” IEEE Photonics Technol. Lett. 25(14), 1324–1327 (2013).
    [Crossref]
  32. N. Riesen and J. D. Love, “Weakly-guiding mode-selective fiber couplers,” IEEE J. Sel. Top. Quant. 48(7), 941–945 (2012).
    [Crossref]
  33. A. W. Snyder, “Coupled-mode theory for optical fibers,” J. Opt. Soc. Am. A 62(11), 1267–1277 (1972).
    [Crossref]
  34. B. Sun, A. Wang, L. Xu, C. Gu, Z. Lin, H. Ming, and Q. Zhan, “Low-threshold single-wavelength all-fiber laser generating cylindrical vector beams using a few-mode fiber Bragg grating,” Opt. Lett. 37(4), 464–466 (2012).
    [Crossref] [PubMed]
  35. K. Toyoda, K. Miyamoto, N. Aoki, R. Morita, and T. Omatsu, “Using optical vortex to control the chirality of twisted metal nanostructures,” Nano Lett. 12(7), 3645–3649 (2012).
    [Crossref] [PubMed]
  36. S. Araki, K. Ando, K. Miyamoto, and T. Omatsu, “Ultra-widely tunable mid-infrared (6-18 μm) optical vortex source,” Appl. Opt. 57(4), 620–624 (2018).
    [Crossref] [PubMed]
  37. D. McGloin, N. B. Simpson, and M. J. Padgett, “Transfer of orbital angular momentum from a stressed fiber-optic waveguide to a light beam,” Appl. Opt. 37(3), 469–472 (1998).
    [Crossref] [PubMed]
  38. L. Huang, J. Xu, J. Ye, X. Liu, H. Zhang, X. Wang, and P. Zhou, “Power scaling of linearly polarized random fiber laser,” IEEE J. Sel. Top. Quant. 24(3), 1–8 (2018).

2018 (6)

2017 (6)

2016 (4)

2014 (1)

A. Nicolas, L. Veissier, L. Giner, E. Giacobino, D. Maxein, and J. Laurat, “A quantum memory for orbital angular momentum photonic qubits,” Nat. Photonics 8(3), 234–238 (2014).
[Crossref]

2013 (4)

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

K. Toyoda, F. Takahashi, S. Takizawa, Y. Tokizane, K. Miyamoto, R. Morita, and T. Omatsu, “Transfer of light helicity to nanostructures,” Phys. Rev. Lett. 110(14), 143603 (2013).
[Crossref] [PubMed]

L. Li, Z. Ren, X. Chen, M. Qi, X. Zheng, J. Bai, and Z. Sun, “Passively mode-locked radially polarized Nd-doped yttrium aluminum garnet laser based on graphene-based saturable absorber,” Appl. Phys. Express 6(8), 082701 (2013).
[Crossref]

N. Riesen, J. D. Love, and J. W. Arkwright, “Few-core spatial-mode multiplexers/demultiplexers based on evanescent coupling,” IEEE Photonics Technol. Lett. 25(14), 1324–1327 (2013).
[Crossref]

2012 (4)

N. Riesen and J. D. Love, “Weakly-guiding mode-selective fiber couplers,” IEEE J. Sel. Top. Quant. 48(7), 941–945 (2012).
[Crossref]

B. Sun, A. Wang, L. Xu, C. Gu, Z. Lin, H. Ming, and Q. Zhan, “Low-threshold single-wavelength all-fiber laser generating cylindrical vector beams using a few-mode fiber Bragg grating,” Opt. Lett. 37(4), 464–466 (2012).
[Crossref] [PubMed]

K. Toyoda, K. Miyamoto, N. Aoki, R. Morita, and T. Omatsu, “Using optical vortex to control the chirality of twisted metal nanostructures,” Nano Lett. 12(7), 3645–3649 (2012).
[Crossref] [PubMed]

X. Liu, J. Lagsgaard, and D. Turchinovich, “Monolithic highly stable Yb-doped femtosecond fiber lasers for applications in practical biophotonics,” IEEE. J. Sel. Top. Quant. 18(4), 1439–1450 (2012).
[Crossref]

2011 (2)

2010 (4)

2008 (1)

N. P. Robins, C. Figl, M. Jeppesen, G. R. Dennis, and J. D. Close, “A pumped atom laser,” Nat. Phys. 4(9), 731–736 (2008).
[Crossref]

2007 (2)

G. Molina-Terriza, J. P. Torres, and L. Torner, “Twisted photons,” Nat. Phys. 3(5), 305–310 (2007).
[Crossref]

V. Sizyuk, A. Hassanein, and T. Sizyuk, “Hollow laser self-confined plasma for extreme ultraviolet lithography and other applications,” Laser Part. Beams 25(1), 143–154 (2007).
[Crossref]

2001 (1)

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86(23), 5251–5254 (2001).
[Crossref] [PubMed]

1999 (1)

L. Allen, M. J. Padgett, and M. Babiker, “IV The orbital angular momentum of light,” Prog. Opt. 39, 291–372 (1999).
[Crossref]

1998 (1)

1972 (1)

A. W. Snyder, “Coupled-mode theory for optical fibers,” J. Opt. Soc. Am. A 62(11), 1267–1277 (1972).
[Crossref]

Allen, L.

L. Allen, M. J. Padgett, and M. Babiker, “IV The orbital angular momentum of light,” Prog. Opt. 39, 291–372 (1999).
[Crossref]

Ando, K.

Aoki, N.

K. Toyoda, K. Miyamoto, N. Aoki, R. Morita, and T. Omatsu, “Using optical vortex to control the chirality of twisted metal nanostructures,” Nano Lett. 12(7), 3645–3649 (2012).
[Crossref] [PubMed]

Araki, S.

Arkwright, J. W.

N. Riesen, J. D. Love, and J. W. Arkwright, “Few-core spatial-mode multiplexers/demultiplexers based on evanescent coupling,” IEEE Photonics Technol. Lett. 25(14), 1324–1327 (2013).
[Crossref]

Babiker, M.

L. Allen, M. J. Padgett, and M. Babiker, “IV The orbital angular momentum of light,” Prog. Opt. 39, 291–372 (1999).
[Crossref]

Bai, J.

L. Li, Z. Ren, X. Chen, M. Qi, X. Zheng, J. Bai, and Z. Sun, “Passively mode-locked radially polarized Nd-doped yttrium aluminum garnet laser based on graphene-based saturable absorber,” Appl. Phys. Express 6(8), 082701 (2013).
[Crossref]

Bai, L.

Beversluis, M. R.

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86(23), 5251–5254 (2001).
[Crossref] [PubMed]

Bozinovic, N.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

Brown, T. G.

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86(23), 5251–5254 (2001).
[Crossref] [PubMed]

Cao, N.

Chen, J.

Chen, S.

Chen, S. P.

Chen, X.

L. Li, Z. Ren, X. Chen, M. Qi, X. Zheng, J. Bai, and Z. Sun, “Passively mode-locked radially polarized Nd-doped yttrium aluminum garnet laser based on graphene-based saturable absorber,” Appl. Phys. Express 6(8), 082701 (2013).
[Crossref]

Christodoulides, D. N.

L. G. Wright, Z. M. Ziegler, P. M. Lushnikov, Z. Zhu, M. A. Eftekhar, D. N. Christodoulides, and F. W. Wise, “Multimode Nonlinear Fiber Optics: Massively Parallel Numerical Solver, Tutorial, and Outlook,” IEEE J. Sel. Top. Quant. 24(3), 1–16 (2018).
[Crossref]

L. G. Wright, D. N. Christodoulides, and F. W. Wise, “Spatiotemporal mode-locking in multimode fiber lasers,” Science 358(6359), 94–97 (2017).
[Crossref] [PubMed]

Chujo, K.

Chung, D.

Close, J. D.

N. P. Robins, C. Figl, M. Jeppesen, G. R. Dennis, and J. D. Close, “A pumped atom laser,” Nat. Phys. 4(9), 731–736 (2008).
[Crossref]

Cui, X.

D’Ambrosio, V.

B. Piccirillo, V. D’Ambrosio, S. Slussarenko, L. Marrucci, and E. Santamato, “Photon spin-to-orbital angular momentum conversion via an electrically tunable q-plate,” Appl. Phys. Lett. 97(24), 241104 (2010).
[Crossref]

Dennis, G. R.

N. P. Robins, C. Figl, M. Jeppesen, G. R. Dennis, and J. D. Close, “A pumped atom laser,” Nat. Phys. 4(9), 731–736 (2008).
[Crossref]

Eftekhar, M. A.

L. G. Wright, Z. M. Ziegler, P. M. Lushnikov, Z. Zhu, M. A. Eftekhar, D. N. Christodoulides, and F. W. Wise, “Multimode Nonlinear Fiber Optics: Massively Parallel Numerical Solver, Tutorial, and Outlook,” IEEE J. Sel. Top. Quant. 24(3), 1–16 (2018).
[Crossref]

Figl, C.

N. P. Robins, C. Figl, M. Jeppesen, G. R. Dennis, and J. D. Close, “A pumped atom laser,” Nat. Phys. 4(9), 731–736 (2008).
[Crossref]

Giacobino, E.

A. Nicolas, L. Veissier, L. Giner, E. Giacobino, D. Maxein, and J. Laurat, “A quantum memory for orbital angular momentum photonic qubits,” Nat. Photonics 8(3), 234–238 (2014).
[Crossref]

Giner, L.

A. Nicolas, L. Veissier, L. Giner, E. Giacobino, D. Maxein, and J. Laurat, “A quantum memory for orbital angular momentum photonic qubits,” Nat. Photonics 8(3), 234–238 (2014).
[Crossref]

Gu, C.

Hamazaki, J.

Han, J.

Hassanein, A.

V. Sizyuk, A. Hassanein, and T. Sizyuk, “Hollow laser self-confined plasma for extreme ultraviolet lithography and other applications,” Laser Part. Beams 25(1), 143–154 (2007).
[Crossref]

Haus, J. W.

He, Z.

Hirose, T.

Hou, J.

Huang, H.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

Huang, L.

L. Huang, J. Xu, J. Ye, X. Liu, H. Zhang, X. Wang, and P. Zhou, “Power scaling of linearly polarized random fiber laser,” IEEE J. Sel. Top. Quant. 24(3), 1–8 (2018).

Huang, S.

Jeppesen, M.

N. P. Robins, C. Figl, M. Jeppesen, G. R. Dennis, and J. D. Close, “A pumped atom laser,” Nat. Phys. 4(9), 731–736 (2008).
[Crossref]

Jiang, B.

Jiang, Z. F.

Kobayashi, Y.

Koyama, M.

Kristensen, P.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

Lægsgaard, J.

Lagsgaard, J.

X. Liu, J. Lagsgaard, and D. Turchinovich, “Monolithic highly stable Yb-doped femtosecond fiber lasers for applications in practical biophotonics,” IEEE. J. Sel. Top. Quant. 18(4), 1439–1450 (2012).
[Crossref]

Laurat, J.

A. Nicolas, L. Veissier, L. Giner, E. Giacobino, D. Maxein, and J. Laurat, “A quantum memory for orbital angular momentum photonic qubits,” Nat. Photonics 8(3), 234–238 (2014).
[Crossref]

Leng, J.

Li, F.

Li, G.

Li, J.

Li, L.

L. Li, M. Wang, T. Liu, J. Leng, P. Zhou, and J. Chen, “High-power, cladding-pumped all-fiber laser with selective transverse mode generation property,” Appl. Opt. 56(17), 4967–4970 (2017).
[Crossref] [PubMed]

L. Li, Z. Ren, X. Chen, M. Qi, X. Zheng, J. Bai, and Z. Sun, “Passively mode-locked radially polarized Nd-doped yttrium aluminum garnet laser based on graphene-based saturable absorber,” Appl. Phys. Express 6(8), 082701 (2013).
[Crossref]

Li, M.

Li, R.

Li, X.

Lin, D.

Lin, J.

Lin, Z.

Liu, M.

Liu, T.

Liu, X.

L. Huang, J. Xu, J. Ye, X. Liu, H. Zhang, X. Wang, and P. Zhou, “Power scaling of linearly polarized random fiber laser,” IEEE J. Sel. Top. Quant. 24(3), 1–8 (2018).

X. Liu, J. Lagsgaard, and D. Turchinovich, “Monolithic highly stable Yb-doped femtosecond fiber lasers for applications in practical biophotonics,” IEEE. J. Sel. Top. Quant. 18(4), 1439–1450 (2012).
[Crossref]

Love, J. D.

N. Riesen, J. D. Love, and J. W. Arkwright, “Few-core spatial-mode multiplexers/demultiplexers based on evanescent coupling,” IEEE Photonics Technol. Lett. 25(14), 1324–1327 (2013).
[Crossref]

N. Riesen and J. D. Love, “Weakly-guiding mode-selective fiber couplers,” IEEE J. Sel. Top. Quant. 48(7), 941–945 (2012).
[Crossref]

Lu, H.

Lushnikov, P. M.

L. G. Wright, Z. M. Ziegler, P. M. Lushnikov, Z. Zhu, M. A. Eftekhar, D. N. Christodoulides, and F. W. Wise, “Multimode Nonlinear Fiber Optics: Massively Parallel Numerical Solver, Tutorial, and Outlook,” IEEE J. Sel. Top. Quant. 24(3), 1–16 (2018).
[Crossref]

Mao, D.

Marrucci, L.

B. Piccirillo, V. D’Ambrosio, S. Slussarenko, L. Marrucci, and E. Santamato, “Photon spin-to-orbital angular momentum conversion via an electrically tunable q-plate,” Appl. Phys. Lett. 97(24), 241104 (2010).
[Crossref]

Maxein, D.

A. Nicolas, L. Veissier, L. Giner, E. Giacobino, D. Maxein, and J. Laurat, “A quantum memory for orbital angular momentum photonic qubits,” Nat. Photonics 8(3), 234–238 (2014).
[Crossref]

McGloin, D.

Milione, G.

Ming, H.

Miyamoto, K.

S. Araki, K. Ando, K. Miyamoto, and T. Omatsu, “Ultra-widely tunable mid-infrared (6-18 μm) optical vortex source,” Appl. Opt. 57(4), 620–624 (2018).
[Crossref] [PubMed]

K. Toyoda, F. Takahashi, S. Takizawa, Y. Tokizane, K. Miyamoto, R. Morita, and T. Omatsu, “Transfer of light helicity to nanostructures,” Phys. Rev. Lett. 110(14), 143603 (2013).
[Crossref] [PubMed]

K. Toyoda, K. Miyamoto, N. Aoki, R. Morita, and T. Omatsu, “Using optical vortex to control the chirality of twisted metal nanostructures,” Nano Lett. 12(7), 3645–3649 (2012).
[Crossref] [PubMed]

M. Koyama, T. Hirose, M. Okida, K. Miyamoto, and T. Omatsu, “Power scaling of a picosecond vortex laser based on a stressed Yb-doped fiber amplifier,” Opt. Express 19(2), 994–999 (2011).
[Crossref] [PubMed]

Molina-Terriza, G.

G. Molina-Terriza, J. P. Torres, and L. Torner, “Twisted photons,” Nat. Phys. 3(5), 305–310 (2007).
[Crossref]

Morita, R.

K. Toyoda, F. Takahashi, S. Takizawa, Y. Tokizane, K. Miyamoto, R. Morita, and T. Omatsu, “Transfer of light helicity to nanostructures,” Phys. Rev. Lett. 110(14), 143603 (2013).
[Crossref] [PubMed]

K. Toyoda, K. Miyamoto, N. Aoki, R. Morita, and T. Omatsu, “Using optical vortex to control the chirality of twisted metal nanostructures,” Nano Lett. 12(7), 3645–3649 (2012).
[Crossref] [PubMed]

J. Hamazaki, R. Morita, K. Chujo, Y. Kobayashi, S. Tanda, and T. Omatsu, “Optical-vortex laser ablation,” Opt. Express 18(3), 2144–2151 (2010).
[Crossref] [PubMed]

Nicolas, A.

A. Nicolas, L. Veissier, L. Giner, E. Giacobino, D. Maxein, and J. Laurat, “A quantum memory for orbital angular momentum photonic qubits,” Nat. Photonics 8(3), 234–238 (2014).
[Crossref]

Novotny, L.

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86(23), 5251–5254 (2001).
[Crossref] [PubMed]

Okida, M.

Omatsu, T.

Padgett, M. J.

A. M. Yao and M. J. Padgett, “Orbital angular momentum: origins, behavior and applications,” Adv. Opt. Photonics 3(2), 161–204 (2011).
[Crossref]

L. Allen, M. J. Padgett, and M. Babiker, “IV The orbital angular momentum of light,” Prog. Opt. 39, 291–372 (1999).
[Crossref]

D. McGloin, N. B. Simpson, and M. J. Padgett, “Transfer of orbital angular momentum from a stressed fiber-optic waveguide to a light beam,” Appl. Opt. 37(3), 469–472 (1998).
[Crossref] [PubMed]

Pang, F.

F. Wang, F. Shi, T. Wang, F. Pang, T. Wang, and X. Zeng, “Method of generating femtosecond cylindrical vector beams using broadband mode converter,” IEEE Photonics Technol. Lett. 29(9), 747–750 (2017).
[Crossref]

T. Wang, F. Wang, F. Shi, F. Pang, S. Huang, T. Wang, and X. Zeng, “Generation of femtosecond optical vortex beams in all-fiber mode-locked fiber laser using mode selective coupler,” J. Lightwave Technol. 35(11), 2161–2166 (2017).
[Crossref]

Piccirillo, B.

B. Piccirillo, V. D’Ambrosio, S. Slussarenko, L. Marrucci, and E. Santamato, “Photon spin-to-orbital angular momentum conversion via an electrically tunable q-plate,” Appl. Phys. Lett. 97(24), 241104 (2010).
[Crossref]

Powers, P. E.

Qi, M.

L. Li, Z. Ren, X. Chen, M. Qi, X. Zheng, J. Bai, and Z. Sun, “Passively mode-locked radially polarized Nd-doped yttrium aluminum garnet laser based on graphene-based saturable absorber,” Appl. Phys. Express 6(8), 082701 (2013).
[Crossref]

Qi, X.

Ramachandran, S.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

Ren, Y.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

Ren, Z.

L. Li, Z. Ren, X. Chen, M. Qi, X. Zheng, J. Bai, and Z. Sun, “Passively mode-locked radially polarized Nd-doped yttrium aluminum garnet laser based on graphene-based saturable absorber,” Appl. Phys. Express 6(8), 082701 (2013).
[Crossref]

Riesen, N.

N. Riesen, J. D. Love, and J. W. Arkwright, “Few-core spatial-mode multiplexers/demultiplexers based on evanescent coupling,” IEEE Photonics Technol. Lett. 25(14), 1324–1327 (2013).
[Crossref]

N. Riesen and J. D. Love, “Weakly-guiding mode-selective fiber couplers,” IEEE J. Sel. Top. Quant. 48(7), 941–945 (2012).
[Crossref]

Robins, N. P.

N. P. Robins, C. Figl, M. Jeppesen, G. R. Dennis, and J. D. Close, “A pumped atom laser,” Nat. Phys. 4(9), 731–736 (2008).
[Crossref]

Santamato, E.

B. Piccirillo, V. D’Ambrosio, S. Slussarenko, L. Marrucci, and E. Santamato, “Photon spin-to-orbital angular momentum conversion via an electrically tunable q-plate,” Appl. Phys. Lett. 97(24), 241104 (2010).
[Crossref]

Shi, F.

F. Wang, F. Shi, T. Wang, F. Pang, T. Wang, and X. Zeng, “Method of generating femtosecond cylindrical vector beams using broadband mode converter,” IEEE Photonics Technol. Lett. 29(9), 747–750 (2017).
[Crossref]

T. Wang, F. Wang, F. Shi, F. Pang, S. Huang, T. Wang, and X. Zeng, “Generation of femtosecond optical vortex beams in all-fiber mode-locked fiber laser using mode selective coupler,” J. Lightwave Technol. 35(11), 2161–2166 (2017).
[Crossref]

Simpson, N. B.

Sizyuk, T.

V. Sizyuk, A. Hassanein, and T. Sizyuk, “Hollow laser self-confined plasma for extreme ultraviolet lithography and other applications,” Laser Part. Beams 25(1), 143–154 (2007).
[Crossref]

Sizyuk, V.

V. Sizyuk, A. Hassanein, and T. Sizyuk, “Hollow laser self-confined plasma for extreme ultraviolet lithography and other applications,” Laser Part. Beams 25(1), 143–154 (2007).
[Crossref]

Slussarenko, S.

B. Piccirillo, V. D’Ambrosio, S. Slussarenko, L. Marrucci, and E. Santamato, “Photon spin-to-orbital angular momentum conversion via an electrically tunable q-plate,” Appl. Phys. Lett. 97(24), 241104 (2010).
[Crossref]

Snyder, A. W.

A. W. Snyder, “Coupled-mode theory for optical fibers,” J. Opt. Soc. Am. A 62(11), 1267–1277 (1972).
[Crossref]

Sun, B.

Sun, Z.

L. Li, Z. Ren, X. Chen, M. Qi, X. Zheng, J. Bai, and Z. Sun, “Passively mode-locked radially polarized Nd-doped yttrium aluminum garnet laser based on graphene-based saturable absorber,” Appl. Phys. Express 6(8), 082701 (2013).
[Crossref]

Takahashi, F.

K. Toyoda, F. Takahashi, S. Takizawa, Y. Tokizane, K. Miyamoto, R. Morita, and T. Omatsu, “Transfer of light helicity to nanostructures,” Phys. Rev. Lett. 110(14), 143603 (2013).
[Crossref] [PubMed]

Takizawa, S.

K. Toyoda, F. Takahashi, S. Takizawa, Y. Tokizane, K. Miyamoto, R. Morita, and T. Omatsu, “Transfer of light helicity to nanostructures,” Phys. Rev. Lett. 110(14), 143603 (2013).
[Crossref] [PubMed]

Tanda, S.

Tokizane, Y.

K. Toyoda, F. Takahashi, S. Takizawa, Y. Tokizane, K. Miyamoto, R. Morita, and T. Omatsu, “Transfer of light helicity to nanostructures,” Phys. Rev. Lett. 110(14), 143603 (2013).
[Crossref] [PubMed]

Torner, L.

G. Molina-Terriza, J. P. Torres, and L. Torner, “Twisted photons,” Nat. Phys. 3(5), 305–310 (2007).
[Crossref]

Torres, J. P.

G. Molina-Terriza, J. P. Torres, and L. Torner, “Twisted photons,” Nat. Phys. 3(5), 305–310 (2007).
[Crossref]

Toyoda, K.

K. Toyoda, F. Takahashi, S. Takizawa, Y. Tokizane, K. Miyamoto, R. Morita, and T. Omatsu, “Transfer of light helicity to nanostructures,” Phys. Rev. Lett. 110(14), 143603 (2013).
[Crossref] [PubMed]

K. Toyoda, K. Miyamoto, N. Aoki, R. Morita, and T. Omatsu, “Using optical vortex to control the chirality of twisted metal nanostructures,” Nano Lett. 12(7), 3645–3649 (2012).
[Crossref] [PubMed]

Tur, M.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

Turchinovich, D.

X. Liu, J. Lagsgaard, and D. Turchinovich, “Monolithic highly stable Yb-doped femtosecond fiber lasers for applications in practical biophotonics,” IEEE. J. Sel. Top. Quant. 18(4), 1439–1450 (2012).
[Crossref]

Ueda, K.

Veissier, L.

A. Nicolas, L. Veissier, L. Giner, E. Giacobino, D. Maxein, and J. Laurat, “A quantum memory for orbital angular momentum photonic qubits,” Nat. Photonics 8(3), 234–238 (2014).
[Crossref]

Wang, A.

Wang, F.

F. Wang, F. Shi, T. Wang, F. Pang, T. Wang, and X. Zeng, “Method of generating femtosecond cylindrical vector beams using broadband mode converter,” IEEE Photonics Technol. Lett. 29(9), 747–750 (2017).
[Crossref]

T. Wang, F. Wang, F. Shi, F. Pang, S. Huang, T. Wang, and X. Zeng, “Generation of femtosecond optical vortex beams in all-fiber mode-locked fiber laser using mode selective coupler,” J. Lightwave Technol. 35(11), 2161–2166 (2017).
[Crossref]

Wang, M.

Wang, T.

J. Zheng, A. Yang, T. Wang, X. Zeng, N. Cao, M. Liu, and T. Wang, “Wavelength-switchable vortex beams based on a polarization-dependent microknot resonator,” Photon. Res. 6(5), 396–402 (2018).
[Crossref]

J. Zheng, A. Yang, T. Wang, X. Zeng, N. Cao, M. Liu, and T. Wang, “Wavelength-switchable vortex beams based on a polarization-dependent microknot resonator,” Photon. Res. 6(5), 396–402 (2018).
[Crossref]

T. Wang, F. Wang, F. Shi, F. Pang, S. Huang, T. Wang, and X. Zeng, “Generation of femtosecond optical vortex beams in all-fiber mode-locked fiber laser using mode selective coupler,” J. Lightwave Technol. 35(11), 2161–2166 (2017).
[Crossref]

T. Wang, F. Wang, F. Shi, F. Pang, S. Huang, T. Wang, and X. Zeng, “Generation of femtosecond optical vortex beams in all-fiber mode-locked fiber laser using mode selective coupler,” J. Lightwave Technol. 35(11), 2161–2166 (2017).
[Crossref]

F. Wang, F. Shi, T. Wang, F. Pang, T. Wang, and X. Zeng, “Method of generating femtosecond cylindrical vector beams using broadband mode converter,” IEEE Photonics Technol. Lett. 29(9), 747–750 (2017).
[Crossref]

F. Wang, F. Shi, T. Wang, F. Pang, T. Wang, and X. Zeng, “Method of generating femtosecond cylindrical vector beams using broadband mode converter,” IEEE Photonics Technol. Lett. 29(9), 747–750 (2017).
[Crossref]

G. Milione, T. Wang, J. Han, and L. Bai, “Remotely sensing an object’s rotational orientation using the orbital angular momentum of light,” Chin. Opt. Lett. 15(3), 030012 (2017).
[Crossref]

Wang, X.

L. Huang, J. Xu, J. Ye, X. Liu, H. Zhang, X. Wang, and P. Zhou, “Power scaling of linearly polarized random fiber laser,” IEEE J. Sel. Top. Quant. 24(3), 1–8 (2018).

Willner, A. E.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

Wise, F. W.

L. G. Wright, Z. M. Ziegler, P. M. Lushnikov, Z. Zhu, M. A. Eftekhar, D. N. Christodoulides, and F. W. Wise, “Multimode Nonlinear Fiber Optics: Massively Parallel Numerical Solver, Tutorial, and Outlook,” IEEE J. Sel. Top. Quant. 24(3), 1–16 (2018).
[Crossref]

L. G. Wright, D. N. Christodoulides, and F. W. Wise, “Spatiotemporal mode-locking in multimode fiber lasers,” Science 358(6359), 94–97 (2017).
[Crossref] [PubMed]

Wright, L. G.

L. G. Wright, Z. M. Ziegler, P. M. Lushnikov, Z. Zhu, M. A. Eftekhar, D. N. Christodoulides, and F. W. Wise, “Multimode Nonlinear Fiber Optics: Massively Parallel Numerical Solver, Tutorial, and Outlook,” IEEE J. Sel. Top. Quant. 24(3), 1–16 (2018).
[Crossref]

L. G. Wright, D. N. Christodoulides, and F. W. Wise, “Spatiotemporal mode-locking in multimode fiber lasers,” Science 358(6359), 94–97 (2017).
[Crossref] [PubMed]

Xia, K.

Xu, J.

L. Huang, J. Xu, J. Ye, X. Liu, H. Zhang, X. Wang, and P. Zhou, “Power scaling of linearly polarized random fiber laser,” IEEE J. Sel. Top. Quant. 24(3), 1–8 (2018).

Xu, L.

Xu, Z. H.

Yang, A.

Yang, X.

Yao, A. M.

A. M. Yao and M. J. Padgett, “Orbital angular momentum: origins, behavior and applications,” Adv. Opt. Photonics 3(2), 161–204 (2011).
[Crossref]

Ye, J.

L. Huang, J. Xu, J. Ye, X. Liu, H. Zhang, X. Wang, and P. Zhou, “Power scaling of linearly polarized random fiber laser,” IEEE J. Sel. Top. Quant. 24(3), 1–8 (2018).

Youngworth, K. S.

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86(23), 5251–5254 (2001).
[Crossref] [PubMed]

Yue, Y.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

Zeng, X.

Zhan, Q.

Zhang, H.

L. Huang, J. Xu, J. Ye, X. Liu, H. Zhang, X. Wang, and P. Zhou, “Power scaling of linearly polarized random fiber laser,” IEEE J. Sel. Top. Quant. 24(3), 1–8 (2018).

Zhang, W.

Zhang, X.

Zhao, J.

Zheng, J.

Zheng, X.

L. Li, Z. Ren, X. Chen, M. Qi, X. Zheng, J. Bai, and Z. Sun, “Passively mode-locked radially polarized Nd-doped yttrium aluminum garnet laser based on graphene-based saturable absorber,” Appl. Phys. Express 6(8), 082701 (2013).
[Crossref]

Zhou, P.

L. Huang, J. Xu, J. Ye, X. Liu, H. Zhang, X. Wang, and P. Zhou, “Power scaling of linearly polarized random fiber laser,” IEEE J. Sel. Top. Quant. 24(3), 1–8 (2018).

L. Li, M. Wang, T. Liu, J. Leng, P. Zhou, and J. Chen, “High-power, cladding-pumped all-fiber laser with selective transverse mode generation property,” Appl. Opt. 56(17), 4967–4970 (2017).
[Crossref] [PubMed]

Zhou, R.

Zhou, Y.

Zhu, Z.

L. G. Wright, Z. M. Ziegler, P. M. Lushnikov, Z. Zhu, M. A. Eftekhar, D. N. Christodoulides, and F. W. Wise, “Multimode Nonlinear Fiber Optics: Massively Parallel Numerical Solver, Tutorial, and Outlook,” IEEE J. Sel. Top. Quant. 24(3), 1–16 (2018).
[Crossref]

Ziegler, Z. M.

L. G. Wright, Z. M. Ziegler, P. M. Lushnikov, Z. Zhu, M. A. Eftekhar, D. N. Christodoulides, and F. W. Wise, “Multimode Nonlinear Fiber Optics: Massively Parallel Numerical Solver, Tutorial, and Outlook,” IEEE J. Sel. Top. Quant. 24(3), 1–16 (2018).
[Crossref]

Adv. Opt. Photonics (1)

A. M. Yao and M. J. Padgett, “Orbital angular momentum: origins, behavior and applications,” Adv. Opt. Photonics 3(2), 161–204 (2011).
[Crossref]

Appl. Opt. (3)

Appl. Phys. Express (1)

L. Li, Z. Ren, X. Chen, M. Qi, X. Zheng, J. Bai, and Z. Sun, “Passively mode-locked radially polarized Nd-doped yttrium aluminum garnet laser based on graphene-based saturable absorber,” Appl. Phys. Express 6(8), 082701 (2013).
[Crossref]

Appl. Phys. Lett. (1)

B. Piccirillo, V. D’Ambrosio, S. Slussarenko, L. Marrucci, and E. Santamato, “Photon spin-to-orbital angular momentum conversion via an electrically tunable q-plate,” Appl. Phys. Lett. 97(24), 241104 (2010).
[Crossref]

Chin. Opt. Lett. (1)

IEEE J. Sel. Top. Quant. (3)

L. Huang, J. Xu, J. Ye, X. Liu, H. Zhang, X. Wang, and P. Zhou, “Power scaling of linearly polarized random fiber laser,” IEEE J. Sel. Top. Quant. 24(3), 1–8 (2018).

L. G. Wright, Z. M. Ziegler, P. M. Lushnikov, Z. Zhu, M. A. Eftekhar, D. N. Christodoulides, and F. W. Wise, “Multimode Nonlinear Fiber Optics: Massively Parallel Numerical Solver, Tutorial, and Outlook,” IEEE J. Sel. Top. Quant. 24(3), 1–16 (2018).
[Crossref]

N. Riesen and J. D. Love, “Weakly-guiding mode-selective fiber couplers,” IEEE J. Sel. Top. Quant. 48(7), 941–945 (2012).
[Crossref]

IEEE Photonics Technol. Lett. (2)

F. Wang, F. Shi, T. Wang, F. Pang, T. Wang, and X. Zeng, “Method of generating femtosecond cylindrical vector beams using broadband mode converter,” IEEE Photonics Technol. Lett. 29(9), 747–750 (2017).
[Crossref]

N. Riesen, J. D. Love, and J. W. Arkwright, “Few-core spatial-mode multiplexers/demultiplexers based on evanescent coupling,” IEEE Photonics Technol. Lett. 25(14), 1324–1327 (2013).
[Crossref]

IEEE. J. Sel. Top. Quant. (1)

X. Liu, J. Lagsgaard, and D. Turchinovich, “Monolithic highly stable Yb-doped femtosecond fiber lasers for applications in practical biophotonics,” IEEE. J. Sel. Top. Quant. 18(4), 1439–1450 (2012).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. A (1)

A. W. Snyder, “Coupled-mode theory for optical fibers,” J. Opt. Soc. Am. A 62(11), 1267–1277 (1972).
[Crossref]

J. Opt. Soc. Am. B (1)

Laser Part. Beams (1)

V. Sizyuk, A. Hassanein, and T. Sizyuk, “Hollow laser self-confined plasma for extreme ultraviolet lithography and other applications,” Laser Part. Beams 25(1), 143–154 (2007).
[Crossref]

Nano Lett. (1)

K. Toyoda, K. Miyamoto, N. Aoki, R. Morita, and T. Omatsu, “Using optical vortex to control the chirality of twisted metal nanostructures,” Nano Lett. 12(7), 3645–3649 (2012).
[Crossref] [PubMed]

Nat. Photonics (1)

A. Nicolas, L. Veissier, L. Giner, E. Giacobino, D. Maxein, and J. Laurat, “A quantum memory for orbital angular momentum photonic qubits,” Nat. Photonics 8(3), 234–238 (2014).
[Crossref]

Nat. Phys. (2)

N. P. Robins, C. Figl, M. Jeppesen, G. R. Dennis, and J. D. Close, “A pumped atom laser,” Nat. Phys. 4(9), 731–736 (2008).
[Crossref]

G. Molina-Terriza, J. P. Torres, and L. Torner, “Twisted photons,” Nat. Phys. 3(5), 305–310 (2007).
[Crossref]

Opt. Express (5)

Opt. Lett. (5)

Photon. Res. (2)

Phys. Rev. Lett. (2)

L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86(23), 5251–5254 (2001).
[Crossref] [PubMed]

K. Toyoda, F. Takahashi, S. Takizawa, Y. Tokizane, K. Miyamoto, R. Morita, and T. Omatsu, “Transfer of light helicity to nanostructures,” Phys. Rev. Lett. 110(14), 143603 (2013).
[Crossref] [PubMed]

Prog. Opt. (1)

L. Allen, M. J. Padgett, and M. Babiker, “IV The orbital angular momentum of light,” Prog. Opt. 39, 291–372 (1999).
[Crossref]

Science (2)

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

L. G. Wright, D. N. Christodoulides, and F. W. Wise, “Spatiotemporal mode-locking in multimode fiber lasers,” Science 358(6359), 94–97 (2017).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 (a) Schematic of the MSC. The LP01 mode at 1.0 μm is lunched into the SMF input port (blue) and one of HOMs is excited at the FMF output port (red). The microscopic images of the coupling region are inserted. (b) Mode conversion evolution of LP01 to LP11, LP21, LP02 and LP31 modes in the simulation and the experimental intensity profiles of corresponding high-order modes.
Fig. 2
Fig. 2 Coupling efficiency (CE) and insert loss (IL) of (a) LP11 and (c) LP02 MSCs as a function of the diameter of the pre-tapered SMF. The corresponding transmission spectra of (b) LP11 and (d) LP02 MSCs at the wavelength of 1.0 μm.
Fig. 3
Fig. 3 (a) Experimental setup of a continuous-wave HOMs laser. (b) Output spectra for different CRs (17%, 33%, 55%, 70% and 89%). (c) Output power (green point) and the corresponding SBR (blue point) of LP11 MSCs inside a CW laser cavity for different CR. (d) Spectrum from a LP11 MSC with the CR of 89% after attenuation. FBG: Fiber Bragg grating; WDM: Wavelength Division Multiplexing coupler; PC: Polarization Controller; YDF: ytterbium-doped Fiber; CCD: Charge Coupled Device, infrared camera.
Fig. 4
Fig. 4 HOMs (LP11, LP02 and LP21) output power and slope efficiency (SE) versus the pump power for different CRs of the MSCs. Insert figures are near-field intensity distribution of HOMs.
Fig. 5
Fig. 5 Near-field distribution of (a) CVBs and (b) OAMs output from the CW laser. The first column of (a): the vector modes with donut-shape intensity profiles. The second, third, fourth and fifth columns are the near-field distributions of each vector modes with a polarizer placed in front of the CCD. (b): Near-field distribution of LP modes, donut-shape OAM patterns and spiral interferograms of OAM+1, OAM-1, OAM+2 and OAM-2.
Fig. 6
Fig. 6 Experimental setup of mode-locked HOM laser. PD-ISO: Polarization dependent Isolator; OSC: Oscilloscope; OSA: Optical Spectrum Analyzer.
Fig. 7
Fig. 7 Characteristics of HOMs output from Yb-doped MLFL. The output spectra, mode-locked pulse trains and output power versus pump power are measured when (a, b, c) a LP11 MSC with the CR of 17%, (d, e, f) a LP02 MSC with the CR of 21%, (g, h, i) a LP21 MSC with the CR of 15% are inserted in the resonant cavity, respectively.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

|A(z) | 2 =1k sin 2 (Dz)
|B(z) | 2 =k sin 2 (Dz)
z= z c = (2n1)π 2c k
k [1+ ( β A β B ) 2 4 c 2 ] 1

Metrics