Abstract

We experimentally demonstrate light-flow interaction, in which the angular momentum of circulating light excites micro-vortices. In contrast with the solid-phase of matter, where one has to overcome static friction in order to start motion, liquids have no “static drag.” Relevant to almost all optofluidic micro-systems hence, μWatt optical power is sufficient to start flows, even in liquids 50 times more viscous than water. We map the flows to be three-dimensional (3D) by using a technique based on fluorescent nano-emitters; to reveal, as expected, flow speeds proportional to power divided by viscosity.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Whispering gallery mode sensors

Matthew R. Foreman, Jon D. Swaim, and Frank Vollmer
Adv. Opt. Photon. 7(2) 168-240 (2015)

Lasing of whispering gallery modes in optofluidic microcapillaries

Alexandre François, Nicolas Riesen, Kirsty Gardner, Tanya M. Monro, and Al Meldrum
Opt. Express 24(12) 12466-12477 (2016)

Liquid whispering-gallery-mode resonator as a humidity sensor

Lucía Labrador-Páez, Kevin Soler-Carracedo, Miguel Hernández-Rodríguez, Inocencio R. Martín, Tal Carmon, and Leopoldo L. Martin
Opt. Express 25(2) 1165-1172 (2017)

References

  • View by:
  • |
  • |
  • |

  1. F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: Label-free detection down to single molecules,” Nat. Methods 5(7), 591–596 (2008).
    [Crossref] [PubMed]
  2. C. Y. Fainman, L. Lee, D. Psaltis, and C. Yang, Optofluidics : Fundamentals, Devices, and Applications (McGraw-Hill, 2009).
  3. X. Fan and I. M. White, “Optofluidic microsystems for chemical and biological analysis,” Nat. Photonics 5(10), 591–597 (2011).
    [Crossref] [PubMed]
  4. F. Vollmer and L. Yang, “Label-free detection with high-Q microcavities: a review of biosensing mechanisms for integrated devices,” Nanophotonics 1(3-4), 267–291 (2012).
    [Crossref] [PubMed]
  5. S. Arnold, M. Khoshsima, I. Teraoka, S. Holler, and F. Vollmer, “Shift of whispering-gallery modes in microspheres by protein adsorption,” Opt. Lett. 28(4), 272–274 (2003).
    [Crossref] [PubMed]
  6. G. Yang, I. M. White, and X. Fan, “An opto-fluidic ring resonator biosensor for the detection of organophosphorus pesticides,” Sens. Actuators B Chem. 133(1), 105–112 (2008).
    [Crossref]
  7. T. Lu, H. Lee, T. Chen, S. Herchak, J.-H. Kim, S. E. Fraser, R. C. Flagan, and K. Vahala, “High sensitivity nanoparticle detection using optical microcavities,” Proc. Natl. Acad. Sci. U.S.A. 108(15), 5976–5979 (2011).
    [Crossref] [PubMed]
  8. L. He, Ş. K. Özdemir, J. Zhu, W. Kim, and L. Yang, “Detecting single viruses and nanoparticles using whispering gallery microlasers,” Nat. Nanotechnol. 6(7), 428–432 (2011).
    [Crossref] [PubMed]
  9. A. M. Armani, D. K. Armani, B. Min, K. J. Vahala, and S. M. Spillane, “Ultra-high-Q microcavity operation in H2O and D2O,” Appl. Phys. Lett. 87(15), 151118 (2005).
    [Crossref]
  10. M. Sumetsky, Y. Dulashko, and R. S. Windeler, “Optical microbubble resonator,” Opt. Lett. 35(7), 898–900 (2010).
    [Crossref] [PubMed]
  11. K. Hyun Kim, G. Bahl, W. Lee, J. Liu, M. Tomes, X. Fan, and T. Carmon, “Cavity optomechanics on a microfluidic resonator with water and viscous liquids,” Light Sci. Appl. 2(11), 110 (2013).
    [Crossref]
  12. A. Watkins, J. Ward, Y. Wu, and S. N. Chormaic, “Single-input spherical microbubble resonator,” Opt. Lett. 36(11), 2113–2115 (2011).
    [Crossref] [PubMed]
  13. A. Ashkin and J. M. Dziedzic, “Observation of Resonances in the Radiation Pressure on Dielectric Spheres,” Phys. Rev. Lett. 38(23), 1351–1354 (1977).
    [Crossref]
  14. J. B. Snow, S.-X. Qian, and R. K. Chang, “Stimulated Raman scattering from individual water and ethanol droplets at morphology-dependent resonances,” Opt. Lett. 10(1), 37–39 (1985).
    [Crossref] [PubMed]
  15. M. Hossein-Zadeh and K. J. Vahala, “Fiber-taper coupling to Whispering-Gallery modes of fluidic resonators embedded in a liquid medium,” Opt. Express 14(22), 10800–10810 (2006).
    [Crossref] [PubMed]
  16. A. Jonáš, Y. Karadag, M. Mestre, and A. Kiraz, “Probing of ultrahigh optical Q-factors of individual liquid microdroplets on superhydrophobic surfaces using tapered optical fiber waveguides,” J. Opt. Soc. Am. B 29(12), 3240 (2012).
    [Crossref]
  17. S. Kaminski, L. L. Martin, and T. Carmon, “Tweezers controlled resonator,” Opt. Express 23(22), 28914–28919 (2015).
    [Crossref] [PubMed]
  18. R. Zullo, A. Giorgini, S. Avino, P. Malara, P. De Natale, and G. Gagliardi, “Laser-frequency locking to a whispering-gallery-mode cavity by spatial interference of scattered light,” Opt. Lett. 41(3), 650–652 (2016).
    [Crossref] [PubMed]
  19. S. Maayani, L. L. Martin, and T. Carmon, “Water-walled microfluidics for high-optical finesse cavities,” Nat. Commun. 7, 10435 (2016).
    [Crossref] [PubMed]
  20. S. T. Attar, V. Shuvayev, L. Deych, L. L. Martin, and T. Carmon, “Level-crossing and modal structure in microdroplet resonators,” Opt. Express 24(12), 13134–13141 (2016).
    [Crossref] [PubMed]
  21. R. Dahan, L. L. Martin, and T. Carmon, “Droplet optomechanics,” Optica 3(2), 175 (2016).
    [Crossref]
  22. S. Kaminski, L. L. Martin, S. Maayani, and T. Carmon, “Ripplon laser through stimulated emission mediated by water waves,” Nat. Photonics 10(12), 758–761 (2016).
    [Crossref]
  23. S. Maayani, L. L. Martin, S. Kaminski, and T. Carmon, “Cavity optocapillaries,” Optica 3(5), 552 (2016).
    [Crossref]
  24. S. Arnold, D. Keng, S. I. Shopova, S. Holler, W. Zurawsky, and F. Vollmer, “Whispering gallery mode Carousel-a photonic mechanism for enhanced nanoparticle detection in biosensing,” Opt. Express 17(8), 6230–6238 (2009).
    [Crossref] [PubMed]
  25. A. Matsko, Practical Applications of Microresonators in Optics and Photonics (CRC Press, 2010), p. 588.
  26. L. A. Weinstein, Open Resonators and Open Waveguides (Golem Press, 1969).
  27. M. Tomes, K. J. Vahala, and T. Carmon, “Direct imaging of tunneling from a potential well,” Opt. Express 17(21), 19160–19165 (2009).
    [Crossref] [PubMed]
  28. J. C. Knight, G. Cheung, F. Jacques, and T. A. Birks, “Phase-matched excitation of whispering-gallery-mode resonances by a fiber taper,” Opt. Lett. 22(15), 1129–1131 (1997).
    [Crossref] [PubMed]
  29. M. Cai, O. Painter, and K. J. Vahala, “Observation of Critical Coupling in a Fiber Taper to a Silica-Microsphere Whispering-Gallery Mode System,” Phys. Rev. Lett. 85(1), 74–77 (2000).
    [Crossref] [PubMed]
  30. S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, “Ideality in a Fiber-Taper-Coupled Microresonator System for Application to Cavity Quantum Electrodynamics,” Phys. Rev. Lett. 91(4), 043902 (2003).
    [Crossref] [PubMed]
  31. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, Wiley Series in Pure and Applied Optics (John Wiley & Sons, Inc., 1991).
  32. P. G. D. Gennes, F. Brochard-Wyart, and D. Quéré, Capillarity and Wetting Phenomena : Drops, Bubbles, Pearls, Waves (Springer, 2003).
  33. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1998).

2016 (6)

2015 (1)

2013 (1)

K. Hyun Kim, G. Bahl, W. Lee, J. Liu, M. Tomes, X. Fan, and T. Carmon, “Cavity optomechanics on a microfluidic resonator with water and viscous liquids,” Light Sci. Appl. 2(11), 110 (2013).
[Crossref]

2012 (2)

2011 (4)

X. Fan and I. M. White, “Optofluidic microsystems for chemical and biological analysis,” Nat. Photonics 5(10), 591–597 (2011).
[Crossref] [PubMed]

T. Lu, H. Lee, T. Chen, S. Herchak, J.-H. Kim, S. E. Fraser, R. C. Flagan, and K. Vahala, “High sensitivity nanoparticle detection using optical microcavities,” Proc. Natl. Acad. Sci. U.S.A. 108(15), 5976–5979 (2011).
[Crossref] [PubMed]

L. He, Ş. K. Özdemir, J. Zhu, W. Kim, and L. Yang, “Detecting single viruses and nanoparticles using whispering gallery microlasers,” Nat. Nanotechnol. 6(7), 428–432 (2011).
[Crossref] [PubMed]

A. Watkins, J. Ward, Y. Wu, and S. N. Chormaic, “Single-input spherical microbubble resonator,” Opt. Lett. 36(11), 2113–2115 (2011).
[Crossref] [PubMed]

2010 (1)

2009 (2)

2008 (2)

G. Yang, I. M. White, and X. Fan, “An opto-fluidic ring resonator biosensor for the detection of organophosphorus pesticides,” Sens. Actuators B Chem. 133(1), 105–112 (2008).
[Crossref]

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: Label-free detection down to single molecules,” Nat. Methods 5(7), 591–596 (2008).
[Crossref] [PubMed]

2006 (1)

2005 (1)

A. M. Armani, D. K. Armani, B. Min, K. J. Vahala, and S. M. Spillane, “Ultra-high-Q microcavity operation in H2O and D2O,” Appl. Phys. Lett. 87(15), 151118 (2005).
[Crossref]

2003 (2)

S. Arnold, M. Khoshsima, I. Teraoka, S. Holler, and F. Vollmer, “Shift of whispering-gallery modes in microspheres by protein adsorption,” Opt. Lett. 28(4), 272–274 (2003).
[Crossref] [PubMed]

S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, “Ideality in a Fiber-Taper-Coupled Microresonator System for Application to Cavity Quantum Electrodynamics,” Phys. Rev. Lett. 91(4), 043902 (2003).
[Crossref] [PubMed]

2000 (1)

M. Cai, O. Painter, and K. J. Vahala, “Observation of Critical Coupling in a Fiber Taper to a Silica-Microsphere Whispering-Gallery Mode System,” Phys. Rev. Lett. 85(1), 74–77 (2000).
[Crossref] [PubMed]

1997 (1)

1985 (1)

1977 (1)

A. Ashkin and J. M. Dziedzic, “Observation of Resonances in the Radiation Pressure on Dielectric Spheres,” Phys. Rev. Lett. 38(23), 1351–1354 (1977).
[Crossref]

Armani, A. M.

A. M. Armani, D. K. Armani, B. Min, K. J. Vahala, and S. M. Spillane, “Ultra-high-Q microcavity operation in H2O and D2O,” Appl. Phys. Lett. 87(15), 151118 (2005).
[Crossref]

Armani, D. K.

A. M. Armani, D. K. Armani, B. Min, K. J. Vahala, and S. M. Spillane, “Ultra-high-Q microcavity operation in H2O and D2O,” Appl. Phys. Lett. 87(15), 151118 (2005).
[Crossref]

Arnold, S.

Ashkin, A.

A. Ashkin and J. M. Dziedzic, “Observation of Resonances in the Radiation Pressure on Dielectric Spheres,” Phys. Rev. Lett. 38(23), 1351–1354 (1977).
[Crossref]

Attar, S. T.

Avino, S.

Bahl, G.

K. Hyun Kim, G. Bahl, W. Lee, J. Liu, M. Tomes, X. Fan, and T. Carmon, “Cavity optomechanics on a microfluidic resonator with water and viscous liquids,” Light Sci. Appl. 2(11), 110 (2013).
[Crossref]

Birks, T. A.

Cai, M.

M. Cai, O. Painter, and K. J. Vahala, “Observation of Critical Coupling in a Fiber Taper to a Silica-Microsphere Whispering-Gallery Mode System,” Phys. Rev. Lett. 85(1), 74–77 (2000).
[Crossref] [PubMed]

Carmon, T.

S. Maayani, L. L. Martin, and T. Carmon, “Water-walled microfluidics for high-optical finesse cavities,” Nat. Commun. 7, 10435 (2016).
[Crossref] [PubMed]

S. Kaminski, L. L. Martin, S. Maayani, and T. Carmon, “Ripplon laser through stimulated emission mediated by water waves,” Nat. Photonics 10(12), 758–761 (2016).
[Crossref]

R. Dahan, L. L. Martin, and T. Carmon, “Droplet optomechanics,” Optica 3(2), 175 (2016).
[Crossref]

S. Maayani, L. L. Martin, S. Kaminski, and T. Carmon, “Cavity optocapillaries,” Optica 3(5), 552 (2016).
[Crossref]

S. T. Attar, V. Shuvayev, L. Deych, L. L. Martin, and T. Carmon, “Level-crossing and modal structure in microdroplet resonators,” Opt. Express 24(12), 13134–13141 (2016).
[Crossref] [PubMed]

S. Kaminski, L. L. Martin, and T. Carmon, “Tweezers controlled resonator,” Opt. Express 23(22), 28914–28919 (2015).
[Crossref] [PubMed]

K. Hyun Kim, G. Bahl, W. Lee, J. Liu, M. Tomes, X. Fan, and T. Carmon, “Cavity optomechanics on a microfluidic resonator with water and viscous liquids,” Light Sci. Appl. 2(11), 110 (2013).
[Crossref]

M. Tomes, K. J. Vahala, and T. Carmon, “Direct imaging of tunneling from a potential well,” Opt. Express 17(21), 19160–19165 (2009).
[Crossref] [PubMed]

Chang, R. K.

Chen, T.

T. Lu, H. Lee, T. Chen, S. Herchak, J.-H. Kim, S. E. Fraser, R. C. Flagan, and K. Vahala, “High sensitivity nanoparticle detection using optical microcavities,” Proc. Natl. Acad. Sci. U.S.A. 108(15), 5976–5979 (2011).
[Crossref] [PubMed]

Cheung, G.

Chormaic, S. N.

Dahan, R.

De Natale, P.

Deych, L.

Dulashko, Y.

Dziedzic, J. M.

A. Ashkin and J. M. Dziedzic, “Observation of Resonances in the Radiation Pressure on Dielectric Spheres,” Phys. Rev. Lett. 38(23), 1351–1354 (1977).
[Crossref]

Fan, X.

K. Hyun Kim, G. Bahl, W. Lee, J. Liu, M. Tomes, X. Fan, and T. Carmon, “Cavity optomechanics on a microfluidic resonator with water and viscous liquids,” Light Sci. Appl. 2(11), 110 (2013).
[Crossref]

X. Fan and I. M. White, “Optofluidic microsystems for chemical and biological analysis,” Nat. Photonics 5(10), 591–597 (2011).
[Crossref] [PubMed]

G. Yang, I. M. White, and X. Fan, “An opto-fluidic ring resonator biosensor for the detection of organophosphorus pesticides,” Sens. Actuators B Chem. 133(1), 105–112 (2008).
[Crossref]

Flagan, R. C.

T. Lu, H. Lee, T. Chen, S. Herchak, J.-H. Kim, S. E. Fraser, R. C. Flagan, and K. Vahala, “High sensitivity nanoparticle detection using optical microcavities,” Proc. Natl. Acad. Sci. U.S.A. 108(15), 5976–5979 (2011).
[Crossref] [PubMed]

Fraser, S. E.

T. Lu, H. Lee, T. Chen, S. Herchak, J.-H. Kim, S. E. Fraser, R. C. Flagan, and K. Vahala, “High sensitivity nanoparticle detection using optical microcavities,” Proc. Natl. Acad. Sci. U.S.A. 108(15), 5976–5979 (2011).
[Crossref] [PubMed]

Gagliardi, G.

Giorgini, A.

He, L.

L. He, Ş. K. Özdemir, J. Zhu, W. Kim, and L. Yang, “Detecting single viruses and nanoparticles using whispering gallery microlasers,” Nat. Nanotechnol. 6(7), 428–432 (2011).
[Crossref] [PubMed]

Herchak, S.

T. Lu, H. Lee, T. Chen, S. Herchak, J.-H. Kim, S. E. Fraser, R. C. Flagan, and K. Vahala, “High sensitivity nanoparticle detection using optical microcavities,” Proc. Natl. Acad. Sci. U.S.A. 108(15), 5976–5979 (2011).
[Crossref] [PubMed]

Holler, S.

Hossein-Zadeh, M.

Hyun Kim, K.

K. Hyun Kim, G. Bahl, W. Lee, J. Liu, M. Tomes, X. Fan, and T. Carmon, “Cavity optomechanics on a microfluidic resonator with water and viscous liquids,” Light Sci. Appl. 2(11), 110 (2013).
[Crossref]

Jacques, F.

Jonáš, A.

Kaminski, S.

Karadag, Y.

Keng, D.

Khoshsima, M.

Kim, J.-H.

T. Lu, H. Lee, T. Chen, S. Herchak, J.-H. Kim, S. E. Fraser, R. C. Flagan, and K. Vahala, “High sensitivity nanoparticle detection using optical microcavities,” Proc. Natl. Acad. Sci. U.S.A. 108(15), 5976–5979 (2011).
[Crossref] [PubMed]

Kim, W.

L. He, Ş. K. Özdemir, J. Zhu, W. Kim, and L. Yang, “Detecting single viruses and nanoparticles using whispering gallery microlasers,” Nat. Nanotechnol. 6(7), 428–432 (2011).
[Crossref] [PubMed]

Kippenberg, T. J.

S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, “Ideality in a Fiber-Taper-Coupled Microresonator System for Application to Cavity Quantum Electrodynamics,” Phys. Rev. Lett. 91(4), 043902 (2003).
[Crossref] [PubMed]

Kiraz, A.

Knight, J. C.

Lee, H.

T. Lu, H. Lee, T. Chen, S. Herchak, J.-H. Kim, S. E. Fraser, R. C. Flagan, and K. Vahala, “High sensitivity nanoparticle detection using optical microcavities,” Proc. Natl. Acad. Sci. U.S.A. 108(15), 5976–5979 (2011).
[Crossref] [PubMed]

Lee, W.

K. Hyun Kim, G. Bahl, W. Lee, J. Liu, M. Tomes, X. Fan, and T. Carmon, “Cavity optomechanics on a microfluidic resonator with water and viscous liquids,” Light Sci. Appl. 2(11), 110 (2013).
[Crossref]

Liu, J.

K. Hyun Kim, G. Bahl, W. Lee, J. Liu, M. Tomes, X. Fan, and T. Carmon, “Cavity optomechanics on a microfluidic resonator with water and viscous liquids,” Light Sci. Appl. 2(11), 110 (2013).
[Crossref]

Lu, T.

T. Lu, H. Lee, T. Chen, S. Herchak, J.-H. Kim, S. E. Fraser, R. C. Flagan, and K. Vahala, “High sensitivity nanoparticle detection using optical microcavities,” Proc. Natl. Acad. Sci. U.S.A. 108(15), 5976–5979 (2011).
[Crossref] [PubMed]

Maayani, S.

S. Maayani, L. L. Martin, and T. Carmon, “Water-walled microfluidics for high-optical finesse cavities,” Nat. Commun. 7, 10435 (2016).
[Crossref] [PubMed]

S. Kaminski, L. L. Martin, S. Maayani, and T. Carmon, “Ripplon laser through stimulated emission mediated by water waves,” Nat. Photonics 10(12), 758–761 (2016).
[Crossref]

S. Maayani, L. L. Martin, S. Kaminski, and T. Carmon, “Cavity optocapillaries,” Optica 3(5), 552 (2016).
[Crossref]

Malara, P.

Martin, L. L.

Mestre, M.

Min, B.

A. M. Armani, D. K. Armani, B. Min, K. J. Vahala, and S. M. Spillane, “Ultra-high-Q microcavity operation in H2O and D2O,” Appl. Phys. Lett. 87(15), 151118 (2005).
[Crossref]

Özdemir, S. K.

L. He, Ş. K. Özdemir, J. Zhu, W. Kim, and L. Yang, “Detecting single viruses and nanoparticles using whispering gallery microlasers,” Nat. Nanotechnol. 6(7), 428–432 (2011).
[Crossref] [PubMed]

Painter, O.

M. Cai, O. Painter, and K. J. Vahala, “Observation of Critical Coupling in a Fiber Taper to a Silica-Microsphere Whispering-Gallery Mode System,” Phys. Rev. Lett. 85(1), 74–77 (2000).
[Crossref] [PubMed]

Painter, O. J.

S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, “Ideality in a Fiber-Taper-Coupled Microresonator System for Application to Cavity Quantum Electrodynamics,” Phys. Rev. Lett. 91(4), 043902 (2003).
[Crossref] [PubMed]

Qian, S.-X.

Shopova, S. I.

Shuvayev, V.

Snow, J. B.

Spillane, S. M.

A. M. Armani, D. K. Armani, B. Min, K. J. Vahala, and S. M. Spillane, “Ultra-high-Q microcavity operation in H2O and D2O,” Appl. Phys. Lett. 87(15), 151118 (2005).
[Crossref]

S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, “Ideality in a Fiber-Taper-Coupled Microresonator System for Application to Cavity Quantum Electrodynamics,” Phys. Rev. Lett. 91(4), 043902 (2003).
[Crossref] [PubMed]

Sumetsky, M.

Teraoka, I.

Tomes, M.

K. Hyun Kim, G. Bahl, W. Lee, J. Liu, M. Tomes, X. Fan, and T. Carmon, “Cavity optomechanics on a microfluidic resonator with water and viscous liquids,” Light Sci. Appl. 2(11), 110 (2013).
[Crossref]

M. Tomes, K. J. Vahala, and T. Carmon, “Direct imaging of tunneling from a potential well,” Opt. Express 17(21), 19160–19165 (2009).
[Crossref] [PubMed]

Vahala, K.

T. Lu, H. Lee, T. Chen, S. Herchak, J.-H. Kim, S. E. Fraser, R. C. Flagan, and K. Vahala, “High sensitivity nanoparticle detection using optical microcavities,” Proc. Natl. Acad. Sci. U.S.A. 108(15), 5976–5979 (2011).
[Crossref] [PubMed]

Vahala, K. J.

M. Tomes, K. J. Vahala, and T. Carmon, “Direct imaging of tunneling from a potential well,” Opt. Express 17(21), 19160–19165 (2009).
[Crossref] [PubMed]

M. Hossein-Zadeh and K. J. Vahala, “Fiber-taper coupling to Whispering-Gallery modes of fluidic resonators embedded in a liquid medium,” Opt. Express 14(22), 10800–10810 (2006).
[Crossref] [PubMed]

A. M. Armani, D. K. Armani, B. Min, K. J. Vahala, and S. M. Spillane, “Ultra-high-Q microcavity operation in H2O and D2O,” Appl. Phys. Lett. 87(15), 151118 (2005).
[Crossref]

S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, “Ideality in a Fiber-Taper-Coupled Microresonator System for Application to Cavity Quantum Electrodynamics,” Phys. Rev. Lett. 91(4), 043902 (2003).
[Crossref] [PubMed]

M. Cai, O. Painter, and K. J. Vahala, “Observation of Critical Coupling in a Fiber Taper to a Silica-Microsphere Whispering-Gallery Mode System,” Phys. Rev. Lett. 85(1), 74–77 (2000).
[Crossref] [PubMed]

Vollmer, F.

F. Vollmer and L. Yang, “Label-free detection with high-Q microcavities: a review of biosensing mechanisms for integrated devices,” Nanophotonics 1(3-4), 267–291 (2012).
[Crossref] [PubMed]

S. Arnold, D. Keng, S. I. Shopova, S. Holler, W. Zurawsky, and F. Vollmer, “Whispering gallery mode Carousel-a photonic mechanism for enhanced nanoparticle detection in biosensing,” Opt. Express 17(8), 6230–6238 (2009).
[Crossref] [PubMed]

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: Label-free detection down to single molecules,” Nat. Methods 5(7), 591–596 (2008).
[Crossref] [PubMed]

S. Arnold, M. Khoshsima, I. Teraoka, S. Holler, and F. Vollmer, “Shift of whispering-gallery modes in microspheres by protein adsorption,” Opt. Lett. 28(4), 272–274 (2003).
[Crossref] [PubMed]

Ward, J.

Watkins, A.

White, I. M.

X. Fan and I. M. White, “Optofluidic microsystems for chemical and biological analysis,” Nat. Photonics 5(10), 591–597 (2011).
[Crossref] [PubMed]

G. Yang, I. M. White, and X. Fan, “An opto-fluidic ring resonator biosensor for the detection of organophosphorus pesticides,” Sens. Actuators B Chem. 133(1), 105–112 (2008).
[Crossref]

Windeler, R. S.

Wu, Y.

Yang, G.

G. Yang, I. M. White, and X. Fan, “An opto-fluidic ring resonator biosensor for the detection of organophosphorus pesticides,” Sens. Actuators B Chem. 133(1), 105–112 (2008).
[Crossref]

Yang, L.

F. Vollmer and L. Yang, “Label-free detection with high-Q microcavities: a review of biosensing mechanisms for integrated devices,” Nanophotonics 1(3-4), 267–291 (2012).
[Crossref] [PubMed]

L. He, Ş. K. Özdemir, J. Zhu, W. Kim, and L. Yang, “Detecting single viruses and nanoparticles using whispering gallery microlasers,” Nat. Nanotechnol. 6(7), 428–432 (2011).
[Crossref] [PubMed]

Zhu, J.

L. He, Ş. K. Özdemir, J. Zhu, W. Kim, and L. Yang, “Detecting single viruses and nanoparticles using whispering gallery microlasers,” Nat. Nanotechnol. 6(7), 428–432 (2011).
[Crossref] [PubMed]

Zullo, R.

Zurawsky, W.

Appl. Phys. Lett. (1)

A. M. Armani, D. K. Armani, B. Min, K. J. Vahala, and S. M. Spillane, “Ultra-high-Q microcavity operation in H2O and D2O,” Appl. Phys. Lett. 87(15), 151118 (2005).
[Crossref]

J. Opt. Soc. Am. B (1)

Light Sci. Appl. (1)

K. Hyun Kim, G. Bahl, W. Lee, J. Liu, M. Tomes, X. Fan, and T. Carmon, “Cavity optomechanics on a microfluidic resonator with water and viscous liquids,” Light Sci. Appl. 2(11), 110 (2013).
[Crossref]

Nanophotonics (1)

F. Vollmer and L. Yang, “Label-free detection with high-Q microcavities: a review of biosensing mechanisms for integrated devices,” Nanophotonics 1(3-4), 267–291 (2012).
[Crossref] [PubMed]

Nat. Commun. (1)

S. Maayani, L. L. Martin, and T. Carmon, “Water-walled microfluidics for high-optical finesse cavities,” Nat. Commun. 7, 10435 (2016).
[Crossref] [PubMed]

Nat. Methods (1)

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: Label-free detection down to single molecules,” Nat. Methods 5(7), 591–596 (2008).
[Crossref] [PubMed]

Nat. Nanotechnol. (1)

L. He, Ş. K. Özdemir, J. Zhu, W. Kim, and L. Yang, “Detecting single viruses and nanoparticles using whispering gallery microlasers,” Nat. Nanotechnol. 6(7), 428–432 (2011).
[Crossref] [PubMed]

Nat. Photonics (2)

X. Fan and I. M. White, “Optofluidic microsystems for chemical and biological analysis,” Nat. Photonics 5(10), 591–597 (2011).
[Crossref] [PubMed]

S. Kaminski, L. L. Martin, S. Maayani, and T. Carmon, “Ripplon laser through stimulated emission mediated by water waves,” Nat. Photonics 10(12), 758–761 (2016).
[Crossref]

Opt. Express (5)

Opt. Lett. (6)

Optica (2)

Phys. Rev. Lett. (3)

A. Ashkin and J. M. Dziedzic, “Observation of Resonances in the Radiation Pressure on Dielectric Spheres,” Phys. Rev. Lett. 38(23), 1351–1354 (1977).
[Crossref]

M. Cai, O. Painter, and K. J. Vahala, “Observation of Critical Coupling in a Fiber Taper to a Silica-Microsphere Whispering-Gallery Mode System,” Phys. Rev. Lett. 85(1), 74–77 (2000).
[Crossref] [PubMed]

S. M. Spillane, T. J. Kippenberg, O. J. Painter, and K. J. Vahala, “Ideality in a Fiber-Taper-Coupled Microresonator System for Application to Cavity Quantum Electrodynamics,” Phys. Rev. Lett. 91(4), 043902 (2003).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

T. Lu, H. Lee, T. Chen, S. Herchak, J.-H. Kim, S. E. Fraser, R. C. Flagan, and K. Vahala, “High sensitivity nanoparticle detection using optical microcavities,” Proc. Natl. Acad. Sci. U.S.A. 108(15), 5976–5979 (2011).
[Crossref] [PubMed]

Sens. Actuators B Chem. (1)

G. Yang, I. M. White, and X. Fan, “An opto-fluidic ring resonator biosensor for the detection of organophosphorus pesticides,” Sens. Actuators B Chem. 133(1), 105–112 (2008).
[Crossref]

Other (6)

C. Y. Fainman, L. Lee, D. Psaltis, and C. Yang, Optofluidics : Fundamentals, Devices, and Applications (McGraw-Hill, 2009).

B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, Wiley Series in Pure and Applied Optics (John Wiley & Sons, Inc., 1991).

P. G. D. Gennes, F. Brochard-Wyart, and D. Quéré, Capillarity and Wetting Phenomena : Drops, Bubbles, Pearls, Waves (Springer, 2003).

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1998).

A. Matsko, Practical Applications of Microresonators in Optics and Photonics (CRC Press, 2010), p. 588.

L. A. Weinstein, Open Resonators and Open Waveguides (Golem Press, 1969).

Supplementary Material (2)

NameDescription
» Visualization 1       Path of a nanosphere in a resonator
» Visualization 2       Path of a nanosphere in a a non-axially symmetric droplet

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Experimental setup for measuring light induced flows. (a) Circular flows (green) are excited by the droplets’ optical-resonance (red). Streamlines are monitored by filming the tracks of fluorescent nanoparticles (yellow) while the optical resonances are excited using a tapered-fiber coupler. (b) Enlarged drawing of the coupling region where the typical gap between the taper and resonator is 500 nm. (c) The mechanism that holds and aligns the droplet resonator.
Fig. 2
Fig. 2 Optically induced vortices are faster in small resonators. Flow speed as a function of the input optical power in droplets 10 cSt in kinematic viscosity and different diameters of 100μm and 200μm. The violet (green) curve is the fitted linear line to the measured speeds in the 100 μm (200 μm) with an R2 = 0.978 (0.981). The flow velocity was calculated by averaging three measurements, and the error bar of the velocity is the standard deviation. Inset: transmission dip at resonance, as measured by scanning the laser frequency though resonance while monitoring the output power (using the detector in Fig. 1).
Fig. 3
Fig. 3 Optically induced vortices slows down with viscosity. Flow speed as a function of optical power for droplets of two different viscosities. The blue (red) curve represents a linear fit to the measured velocity for a droplet having a 10 cSt (50 cSt) viscosity with an R2 = 0.992 (0.988). The error bar was calculated as explained in Fig. 2 caption.
Fig. 4
Fig. 4 (a) Calibration: the blue curve shows the fluorescent nanoparticle image diameter as a function of the distance along the optical axis of the microscope. (b) Merging of video frames showing the path of a nanosphere during half round in a droplet with a diameter of 100 μm presented in Visualization 1.
Fig. 5
Fig. 5 3D map of optically induced flows in a circular droplet exhibit a circular flow. Fluorescent particles path of three successive rounds in a silicone oil droplet with a diameter of 100μm form the video in Visualization 1. (a) XY plane for each rotation. (b) XZ plane for each rotation. The blue curve is the path of each lap, and the red line is a guide for the eye. Deviation of the droplet’s equatorial-line shape from a circle is smaller than 0.5%.
Fig. 6
Fig. 6 3D map of optically induced flows in a non-circular droplet exhibit non-circular flows (a) A micrograph of a silica micro stem holding a non-axially symmetric silicon oil droplet (b) A frame from a video (Visualization 2) showing the path of fluorescent nanospheres in a non-axially symmetric resonator. (c) Three dimension representation of droplet instabilities with a large diameter of 250μm. Each continuous line represents the path of a different fluorescent nanoparticle and accompanied by its projections on the XY, XZ and YZ planes.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

F 0 = nP c .
F s =μA u y ,
u= yn μAc P.
σ sca = 2 λ 2 3π α 6 | m 2 1 m 2 +2 |,
I= FP A m ,
F scat = 2 σ sca I n 1 c .
F d =6πμrv,

Metrics