Abstract

We demonstrate theoretically and experimentally a novel in-fiber Mach-Zehnder interferometer (MZI) with piecewise interference spectrum. The interferometer is constructed by splicing a short section of single eccentric hole-assisted dual-core fiber (SEHADCF) to two single mode fibers (SMFs) with a lateral-offset. Due to the offset splicing and the small distance between cores, different core modes in two cores of the SEHADCF can be excited to form interference at the different wavelength ranges. The discontinuous region of the interference spectrum can be employed as a mark to identify the order of the interference valley. The in-fiber MZI is experimentally investigated as a refractive index sensor, the sensitivity of 353.9 nm/RIU is obtained in the RI range of 1.335 ~1.395. The in-fiber MZI with a high sensitivity has a great potential in biological and chemical applications. Especially, due to the ability to identify the order of interference valleys by the discontinuous region, the proposed in-fiber MZI can improve the reliability of fiber sensors in remote monitoring applications.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

Corrections

J. Yang, M. Yang, C. Y. Guan, J. H. Shi, Z. Zhu, P. Li, P. F. Wang, J. Yang, and L. B. Yuan, "In-fiber Mach-Zehnder interferometer with piecewise interference spectrum based on hole-assisted dual-core fiber for refractive index sensing: erratum," Opt. Express 26, 28078-28079 (2018)
https://www.osapublishing.org/oe/abstract.cfm?uri=oe-26-21-28078

OSA Recommended Articles
Magnetic field sensing based on magnetic-fluid-clad fiber-optic structure with taper-like and lateral-offset fusion splicing

Shaohua Dong, Shengli Pu, and Haotian Wang
Opt. Express 22(16) 19108-19116 (2014)

Single S-tapered fiber Mach–Zehnder interferometers

Rui Yang, Yong-Sen Yu, Yang Xue, Chao Chen, Qi-Dai Chen, and Hong-Bo Sun
Opt. Lett. 36(23) 4482-4484 (2011)

Polarimetric multi-mode tilted fiber grating sensors

Tuan Guo, Fu Liu, Bai-Ou Guan, and Jacques Albert
Opt. Express 22(6) 7330-7336 (2014)

References

  • View by:
  • |
  • |
  • |

  1. W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(15), 151122 (2005).
    [Crossref]
  2. P. Zhang, G. Yan, S. Gao, S. He, B. Kim, J. Im, and Y. Chung, “Microfluidic refractive-index sensors based on small-hole microstructured optical fiber Bragg gratings,” Appl. Phys. Lett. 98(22), 221109 (2011).
    [Crossref]
  3. V. Bhatia and A. M. Vengsarkar, “Optical fiber long-period grating sensors,” Opt. Lett. 21(9), 692–694 (1996).
    [Crossref] [PubMed]
  4. F. Esposito, R. Ranjan, S. Campopiano, and A. Iadicicco, “Experimental study of the refractive index sensitivity in arc-induced long period gratings,” IEEE Photonics J. 9(1), 1–10 (2017).
    [Crossref]
  5. P. Bhatia and B. D. Gupta, “Surface-plasmon-resonance-based fiber-optic refractive index sensor: sensitivity enhancement,” Appl. Opt. 50(14), 2032–2036 (2011).
    [Crossref] [PubMed]
  6. Z. Ding, T. Lang, Y. Wang, and C. Zhao, “Surface plasmon resonance refractive index sensor based on tapered coreless optical fiber structure,” J. Lightwave Technol. 35(21), 4734–4739 (2017).
    [Crossref]
  7. A. Zhou, G. Li, Y. Zhang, Y. Wang, C. Guan, J. Yang, and L. Yuan, “Asymmetrical twin-core fiber based Michelson interferometer for refractive index sensing,” J. Lightwave Technol. 29(19), 2985–2991 (2011).
    [Crossref]
  8. J. Tian, Z. Lu, M. Quan, Y. Jiao, and Y. Yao, “Fast response Fabry-Perot interferometer microfluidic refractive index fiber sensor based on concave-core photonic crystal fiber,” Opt. Express 24(18), 20132–20142 (2016).
    [Crossref] [PubMed]
  9. P. Lu, L. Men, K. Sooley, and Q. Chen, “Tapered fiber Mach-Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett. 94(13), 131110 (2009).
    [Crossref]
  10. Z. Tian, S. S. Yam, and H. Loock, “Single-mode fiber refractive index sensor based on core-offset attenuators,” IEEE Photonics Technol. Lett. 20(16), 1387–1389 (2008).
    [Crossref]
  11. Y. Zhao, X. Li, and L. Cai, “A highly sensitive Mach-Zehnder interferometric refractive index sensor based on core-offset single mode fiber,” Sens. Actuators A Phys. 223, 119–124 (2015).
    [Crossref]
  12. R. Yang, Y. S. Yu, Y. Xue, C. Chen, Q. D. Chen, and H. B. Sun, “Single S-tapered fiber Mach-Zehnder interferometers,” Opt. Lett. 36(23), 4482–4484 (2011).
    [Crossref] [PubMed]
  13. V. Bhardwaj and V. K. Singh, “Fabrication and characterization of cascaded tapered Mach-Zehnder interferometer for refractive index sensing,” Sens. Actuators A Phys. 244, 30–34 (2016).
    [Crossref]
  14. Y. Zhao, X. Li, L. Cai, and Y. Yang, “Refractive index sensing based on photonic crystal fiber interferometer structure with up-tapered joints,” Sens. Actuators B Chem. 221, 406–410 (2015).
    [Crossref]
  15. Y. Wang, M. Yang, D. N. Wang, S. Liu, and P. Lu, “Fiber in-line Mach-Zehnder interferometer fabricated by femtosecond laser micromachining for refractive index measurement with high sensitivity,” J. Opt. Soc. Am. B 27(3), 370–374 (2010).
    [Crossref]
  16. X. Sun, X. Dong, Y. Hu, H. Li, D. Chu, J. Zhou, C. Wang, and J. Duan, “A robust high refractive index sensitivity fiber Mach-Zehnder interferometer fabricated by femtosecond laser machining and chemical etching,” Sens. Actuators A Phys. 230, 111–116 (2015).
    [Crossref]
  17. Q. Wang, L. Kong, Y. Dang, F. Xia, Y. Zhang, Y. Zhao, H. Hu, and J. Li, “High sensitivity refractive index sensor based on splicing points tapered SMF-PCF-SMF structure Mach-Zehnder mode interferometer,” Sens. Actuators B Chem. 225, 213–220 (2016).
    [Crossref]
  18. M. Shao, X. Qiao, H. Fu, H. Li, Z. Jia, and H. Zhou, “Refractive index sensing of SMS fiber structure based Mach-Zehnder interferometer,” IEEE Photonics Technol. Lett. 26(5), 437–439 (2014).
    [Crossref]
  19. J. Yang, L. Jiang, S. Wang, B. Li, M. Wang, H. Xiao, Y. Lu, and H. Tsai, “High sensitivity of taper-based Mach-Zehnder interferometer embedded in a thinned optical fiber for refractive index sensing,” Appl. Opt. 50(28), 5503–5507 (2011).
    [Crossref] [PubMed]
  20. H. Luo, Q. Sun, X. Li, Z. Yan, Y. Li, D. Liu, and L. Zhang, “Refractive index sensitivity characteristics near the dispersion turning point of the multimode microfiber-based Mach-Zehnder interferometer,” Opt. Lett. 40(21), 5042–5045 (2015).
    [Crossref] [PubMed]
  21. J. Yang, C. Guan, P. Tian, T. Yuan, Z. Zhu, P. Li, J. Shi, J. Yang, and L. Yuan, “In-fiber refractive index sensor based on single eccentric hole-assisted dual-core fiber,” Opt. Lett. 42(21), 4470–4473 (2017).
    [Crossref] [PubMed]
  22. G. Kweon and I. Park, “Splicing losses between dissimilar optical waveguides,” J. Lightwave Technol. 17(4), 690–703 (1999).
    [Crossref]
  23. X. Shu, L. Zhang, and I. Bennion, “Sensitivity characteristics of long-period fiber gratings,” J. Lightwave Technol. 20(2), 255–266 (2002).
    [Crossref]

2017 (3)

2016 (3)

J. Tian, Z. Lu, M. Quan, Y. Jiao, and Y. Yao, “Fast response Fabry-Perot interferometer microfluidic refractive index fiber sensor based on concave-core photonic crystal fiber,” Opt. Express 24(18), 20132–20142 (2016).
[Crossref] [PubMed]

V. Bhardwaj and V. K. Singh, “Fabrication and characterization of cascaded tapered Mach-Zehnder interferometer for refractive index sensing,” Sens. Actuators A Phys. 244, 30–34 (2016).
[Crossref]

Q. Wang, L. Kong, Y. Dang, F. Xia, Y. Zhang, Y. Zhao, H. Hu, and J. Li, “High sensitivity refractive index sensor based on splicing points tapered SMF-PCF-SMF structure Mach-Zehnder mode interferometer,” Sens. Actuators B Chem. 225, 213–220 (2016).
[Crossref]

2015 (4)

Y. Zhao, X. Li, L. Cai, and Y. Yang, “Refractive index sensing based on photonic crystal fiber interferometer structure with up-tapered joints,” Sens. Actuators B Chem. 221, 406–410 (2015).
[Crossref]

X. Sun, X. Dong, Y. Hu, H. Li, D. Chu, J. Zhou, C. Wang, and J. Duan, “A robust high refractive index sensitivity fiber Mach-Zehnder interferometer fabricated by femtosecond laser machining and chemical etching,” Sens. Actuators A Phys. 230, 111–116 (2015).
[Crossref]

Y. Zhao, X. Li, and L. Cai, “A highly sensitive Mach-Zehnder interferometric refractive index sensor based on core-offset single mode fiber,” Sens. Actuators A Phys. 223, 119–124 (2015).
[Crossref]

H. Luo, Q. Sun, X. Li, Z. Yan, Y. Li, D. Liu, and L. Zhang, “Refractive index sensitivity characteristics near the dispersion turning point of the multimode microfiber-based Mach-Zehnder interferometer,” Opt. Lett. 40(21), 5042–5045 (2015).
[Crossref] [PubMed]

2014 (1)

M. Shao, X. Qiao, H. Fu, H. Li, Z. Jia, and H. Zhou, “Refractive index sensing of SMS fiber structure based Mach-Zehnder interferometer,” IEEE Photonics Technol. Lett. 26(5), 437–439 (2014).
[Crossref]

2011 (5)

2010 (1)

2009 (1)

P. Lu, L. Men, K. Sooley, and Q. Chen, “Tapered fiber Mach-Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett. 94(13), 131110 (2009).
[Crossref]

2008 (1)

Z. Tian, S. S. Yam, and H. Loock, “Single-mode fiber refractive index sensor based on core-offset attenuators,” IEEE Photonics Technol. Lett. 20(16), 1387–1389 (2008).
[Crossref]

2005 (1)

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(15), 151122 (2005).
[Crossref]

2002 (1)

1999 (1)

1996 (1)

Bennion, I.

Bhardwaj, V.

V. Bhardwaj and V. K. Singh, “Fabrication and characterization of cascaded tapered Mach-Zehnder interferometer for refractive index sensing,” Sens. Actuators A Phys. 244, 30–34 (2016).
[Crossref]

Bhatia, P.

Bhatia, V.

Cai, L.

Y. Zhao, X. Li, L. Cai, and Y. Yang, “Refractive index sensing based on photonic crystal fiber interferometer structure with up-tapered joints,” Sens. Actuators B Chem. 221, 406–410 (2015).
[Crossref]

Y. Zhao, X. Li, and L. Cai, “A highly sensitive Mach-Zehnder interferometric refractive index sensor based on core-offset single mode fiber,” Sens. Actuators A Phys. 223, 119–124 (2015).
[Crossref]

Campopiano, S.

F. Esposito, R. Ranjan, S. Campopiano, and A. Iadicicco, “Experimental study of the refractive index sensitivity in arc-induced long period gratings,” IEEE Photonics J. 9(1), 1–10 (2017).
[Crossref]

Chen, C.

Chen, Q.

P. Lu, L. Men, K. Sooley, and Q. Chen, “Tapered fiber Mach-Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett. 94(13), 131110 (2009).
[Crossref]

Chen, Q. D.

Chu, D.

X. Sun, X. Dong, Y. Hu, H. Li, D. Chu, J. Zhou, C. Wang, and J. Duan, “A robust high refractive index sensitivity fiber Mach-Zehnder interferometer fabricated by femtosecond laser machining and chemical etching,” Sens. Actuators A Phys. 230, 111–116 (2015).
[Crossref]

Chung, Y.

P. Zhang, G. Yan, S. Gao, S. He, B. Kim, J. Im, and Y. Chung, “Microfluidic refractive-index sensors based on small-hole microstructured optical fiber Bragg gratings,” Appl. Phys. Lett. 98(22), 221109 (2011).
[Crossref]

Dang, Y.

Q. Wang, L. Kong, Y. Dang, F. Xia, Y. Zhang, Y. Zhao, H. Hu, and J. Li, “High sensitivity refractive index sensor based on splicing points tapered SMF-PCF-SMF structure Mach-Zehnder mode interferometer,” Sens. Actuators B Chem. 225, 213–220 (2016).
[Crossref]

Ding, Z.

Dong, X.

X. Sun, X. Dong, Y. Hu, H. Li, D. Chu, J. Zhou, C. Wang, and J. Duan, “A robust high refractive index sensitivity fiber Mach-Zehnder interferometer fabricated by femtosecond laser machining and chemical etching,” Sens. Actuators A Phys. 230, 111–116 (2015).
[Crossref]

Duan, J.

X. Sun, X. Dong, Y. Hu, H. Li, D. Chu, J. Zhou, C. Wang, and J. Duan, “A robust high refractive index sensitivity fiber Mach-Zehnder interferometer fabricated by femtosecond laser machining and chemical etching,” Sens. Actuators A Phys. 230, 111–116 (2015).
[Crossref]

Esposito, F.

F. Esposito, R. Ranjan, S. Campopiano, and A. Iadicicco, “Experimental study of the refractive index sensitivity in arc-induced long period gratings,” IEEE Photonics J. 9(1), 1–10 (2017).
[Crossref]

Fu, H.

M. Shao, X. Qiao, H. Fu, H. Li, Z. Jia, and H. Zhou, “Refractive index sensing of SMS fiber structure based Mach-Zehnder interferometer,” IEEE Photonics Technol. Lett. 26(5), 437–439 (2014).
[Crossref]

Gao, S.

P. Zhang, G. Yan, S. Gao, S. He, B. Kim, J. Im, and Y. Chung, “Microfluidic refractive-index sensors based on small-hole microstructured optical fiber Bragg gratings,” Appl. Phys. Lett. 98(22), 221109 (2011).
[Crossref]

Guan, C.

Gupta, B. D.

He, S.

P. Zhang, G. Yan, S. Gao, S. He, B. Kim, J. Im, and Y. Chung, “Microfluidic refractive-index sensors based on small-hole microstructured optical fiber Bragg gratings,” Appl. Phys. Lett. 98(22), 221109 (2011).
[Crossref]

Hu, H.

Q. Wang, L. Kong, Y. Dang, F. Xia, Y. Zhang, Y. Zhao, H. Hu, and J. Li, “High sensitivity refractive index sensor based on splicing points tapered SMF-PCF-SMF structure Mach-Zehnder mode interferometer,” Sens. Actuators B Chem. 225, 213–220 (2016).
[Crossref]

Hu, Y.

X. Sun, X. Dong, Y. Hu, H. Li, D. Chu, J. Zhou, C. Wang, and J. Duan, “A robust high refractive index sensitivity fiber Mach-Zehnder interferometer fabricated by femtosecond laser machining and chemical etching,” Sens. Actuators A Phys. 230, 111–116 (2015).
[Crossref]

Huang, Y.

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(15), 151122 (2005).
[Crossref]

Iadicicco, A.

F. Esposito, R. Ranjan, S. Campopiano, and A. Iadicicco, “Experimental study of the refractive index sensitivity in arc-induced long period gratings,” IEEE Photonics J. 9(1), 1–10 (2017).
[Crossref]

Im, J.

P. Zhang, G. Yan, S. Gao, S. He, B. Kim, J. Im, and Y. Chung, “Microfluidic refractive-index sensors based on small-hole microstructured optical fiber Bragg gratings,” Appl. Phys. Lett. 98(22), 221109 (2011).
[Crossref]

Jia, Z.

M. Shao, X. Qiao, H. Fu, H. Li, Z. Jia, and H. Zhou, “Refractive index sensing of SMS fiber structure based Mach-Zehnder interferometer,” IEEE Photonics Technol. Lett. 26(5), 437–439 (2014).
[Crossref]

Jiang, L.

Jiao, Y.

Kim, B.

P. Zhang, G. Yan, S. Gao, S. He, B. Kim, J. Im, and Y. Chung, “Microfluidic refractive-index sensors based on small-hole microstructured optical fiber Bragg gratings,” Appl. Phys. Lett. 98(22), 221109 (2011).
[Crossref]

Kong, L.

Q. Wang, L. Kong, Y. Dang, F. Xia, Y. Zhang, Y. Zhao, H. Hu, and J. Li, “High sensitivity refractive index sensor based on splicing points tapered SMF-PCF-SMF structure Mach-Zehnder mode interferometer,” Sens. Actuators B Chem. 225, 213–220 (2016).
[Crossref]

Kweon, G.

Lang, T.

Lee, R. K.

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(15), 151122 (2005).
[Crossref]

Li, B.

Li, G.

Li, H.

X. Sun, X. Dong, Y. Hu, H. Li, D. Chu, J. Zhou, C. Wang, and J. Duan, “A robust high refractive index sensitivity fiber Mach-Zehnder interferometer fabricated by femtosecond laser machining and chemical etching,” Sens. Actuators A Phys. 230, 111–116 (2015).
[Crossref]

M. Shao, X. Qiao, H. Fu, H. Li, Z. Jia, and H. Zhou, “Refractive index sensing of SMS fiber structure based Mach-Zehnder interferometer,” IEEE Photonics Technol. Lett. 26(5), 437–439 (2014).
[Crossref]

Li, J.

Q. Wang, L. Kong, Y. Dang, F. Xia, Y. Zhang, Y. Zhao, H. Hu, and J. Li, “High sensitivity refractive index sensor based on splicing points tapered SMF-PCF-SMF structure Mach-Zehnder mode interferometer,” Sens. Actuators B Chem. 225, 213–220 (2016).
[Crossref]

Li, P.

Li, X.

H. Luo, Q. Sun, X. Li, Z. Yan, Y. Li, D. Liu, and L. Zhang, “Refractive index sensitivity characteristics near the dispersion turning point of the multimode microfiber-based Mach-Zehnder interferometer,” Opt. Lett. 40(21), 5042–5045 (2015).
[Crossref] [PubMed]

Y. Zhao, X. Li, L. Cai, and Y. Yang, “Refractive index sensing based on photonic crystal fiber interferometer structure with up-tapered joints,” Sens. Actuators B Chem. 221, 406–410 (2015).
[Crossref]

Y. Zhao, X. Li, and L. Cai, “A highly sensitive Mach-Zehnder interferometric refractive index sensor based on core-offset single mode fiber,” Sens. Actuators A Phys. 223, 119–124 (2015).
[Crossref]

Li, Y.

Liang, W.

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(15), 151122 (2005).
[Crossref]

Liu, D.

Liu, S.

Loock, H.

Z. Tian, S. S. Yam, and H. Loock, “Single-mode fiber refractive index sensor based on core-offset attenuators,” IEEE Photonics Technol. Lett. 20(16), 1387–1389 (2008).
[Crossref]

Lu, P.

Y. Wang, M. Yang, D. N. Wang, S. Liu, and P. Lu, “Fiber in-line Mach-Zehnder interferometer fabricated by femtosecond laser micromachining for refractive index measurement with high sensitivity,” J. Opt. Soc. Am. B 27(3), 370–374 (2010).
[Crossref]

P. Lu, L. Men, K. Sooley, and Q. Chen, “Tapered fiber Mach-Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett. 94(13), 131110 (2009).
[Crossref]

Lu, Y.

Lu, Z.

Luo, H.

Men, L.

P. Lu, L. Men, K. Sooley, and Q. Chen, “Tapered fiber Mach-Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett. 94(13), 131110 (2009).
[Crossref]

Park, I.

Qiao, X.

M. Shao, X. Qiao, H. Fu, H. Li, Z. Jia, and H. Zhou, “Refractive index sensing of SMS fiber structure based Mach-Zehnder interferometer,” IEEE Photonics Technol. Lett. 26(5), 437–439 (2014).
[Crossref]

Quan, M.

Ranjan, R.

F. Esposito, R. Ranjan, S. Campopiano, and A. Iadicicco, “Experimental study of the refractive index sensitivity in arc-induced long period gratings,” IEEE Photonics J. 9(1), 1–10 (2017).
[Crossref]

Shao, M.

M. Shao, X. Qiao, H. Fu, H. Li, Z. Jia, and H. Zhou, “Refractive index sensing of SMS fiber structure based Mach-Zehnder interferometer,” IEEE Photonics Technol. Lett. 26(5), 437–439 (2014).
[Crossref]

Shi, J.

Shu, X.

Singh, V. K.

V. Bhardwaj and V. K. Singh, “Fabrication and characterization of cascaded tapered Mach-Zehnder interferometer for refractive index sensing,” Sens. Actuators A Phys. 244, 30–34 (2016).
[Crossref]

Sooley, K.

P. Lu, L. Men, K. Sooley, and Q. Chen, “Tapered fiber Mach-Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett. 94(13), 131110 (2009).
[Crossref]

Sun, H. B.

Sun, Q.

Sun, X.

X. Sun, X. Dong, Y. Hu, H. Li, D. Chu, J. Zhou, C. Wang, and J. Duan, “A robust high refractive index sensitivity fiber Mach-Zehnder interferometer fabricated by femtosecond laser machining and chemical etching,” Sens. Actuators A Phys. 230, 111–116 (2015).
[Crossref]

Tian, J.

Tian, P.

Tian, Z.

Z. Tian, S. S. Yam, and H. Loock, “Single-mode fiber refractive index sensor based on core-offset attenuators,” IEEE Photonics Technol. Lett. 20(16), 1387–1389 (2008).
[Crossref]

Tsai, H.

Vengsarkar, A. M.

Wang, C.

X. Sun, X. Dong, Y. Hu, H. Li, D. Chu, J. Zhou, C. Wang, and J. Duan, “A robust high refractive index sensitivity fiber Mach-Zehnder interferometer fabricated by femtosecond laser machining and chemical etching,” Sens. Actuators A Phys. 230, 111–116 (2015).
[Crossref]

Wang, D. N.

Wang, M.

Wang, Q.

Q. Wang, L. Kong, Y. Dang, F. Xia, Y. Zhang, Y. Zhao, H. Hu, and J. Li, “High sensitivity refractive index sensor based on splicing points tapered SMF-PCF-SMF structure Mach-Zehnder mode interferometer,” Sens. Actuators B Chem. 225, 213–220 (2016).
[Crossref]

Wang, S.

Wang, Y.

Xia, F.

Q. Wang, L. Kong, Y. Dang, F. Xia, Y. Zhang, Y. Zhao, H. Hu, and J. Li, “High sensitivity refractive index sensor based on splicing points tapered SMF-PCF-SMF structure Mach-Zehnder mode interferometer,” Sens. Actuators B Chem. 225, 213–220 (2016).
[Crossref]

Xiao, H.

Xu, Y.

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(15), 151122 (2005).
[Crossref]

Xue, Y.

Yam, S. S.

Z. Tian, S. S. Yam, and H. Loock, “Single-mode fiber refractive index sensor based on core-offset attenuators,” IEEE Photonics Technol. Lett. 20(16), 1387–1389 (2008).
[Crossref]

Yan, G.

P. Zhang, G. Yan, S. Gao, S. He, B. Kim, J. Im, and Y. Chung, “Microfluidic refractive-index sensors based on small-hole microstructured optical fiber Bragg gratings,” Appl. Phys. Lett. 98(22), 221109 (2011).
[Crossref]

Yan, Z.

Yang, J.

Yang, M.

Yang, R.

Yang, Y.

Y. Zhao, X. Li, L. Cai, and Y. Yang, “Refractive index sensing based on photonic crystal fiber interferometer structure with up-tapered joints,” Sens. Actuators B Chem. 221, 406–410 (2015).
[Crossref]

Yao, Y.

Yariv, A.

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(15), 151122 (2005).
[Crossref]

Yu, Y. S.

Yuan, L.

Yuan, T.

Zhang, L.

Zhang, P.

P. Zhang, G. Yan, S. Gao, S. He, B. Kim, J. Im, and Y. Chung, “Microfluidic refractive-index sensors based on small-hole microstructured optical fiber Bragg gratings,” Appl. Phys. Lett. 98(22), 221109 (2011).
[Crossref]

Zhang, Y.

Q. Wang, L. Kong, Y. Dang, F. Xia, Y. Zhang, Y. Zhao, H. Hu, and J. Li, “High sensitivity refractive index sensor based on splicing points tapered SMF-PCF-SMF structure Mach-Zehnder mode interferometer,” Sens. Actuators B Chem. 225, 213–220 (2016).
[Crossref]

A. Zhou, G. Li, Y. Zhang, Y. Wang, C. Guan, J. Yang, and L. Yuan, “Asymmetrical twin-core fiber based Michelson interferometer for refractive index sensing,” J. Lightwave Technol. 29(19), 2985–2991 (2011).
[Crossref]

Zhao, C.

Zhao, Y.

Q. Wang, L. Kong, Y. Dang, F. Xia, Y. Zhang, Y. Zhao, H. Hu, and J. Li, “High sensitivity refractive index sensor based on splicing points tapered SMF-PCF-SMF structure Mach-Zehnder mode interferometer,” Sens. Actuators B Chem. 225, 213–220 (2016).
[Crossref]

Y. Zhao, X. Li, and L. Cai, “A highly sensitive Mach-Zehnder interferometric refractive index sensor based on core-offset single mode fiber,” Sens. Actuators A Phys. 223, 119–124 (2015).
[Crossref]

Y. Zhao, X. Li, L. Cai, and Y. Yang, “Refractive index sensing based on photonic crystal fiber interferometer structure with up-tapered joints,” Sens. Actuators B Chem. 221, 406–410 (2015).
[Crossref]

Zhou, A.

Zhou, H.

M. Shao, X. Qiao, H. Fu, H. Li, Z. Jia, and H. Zhou, “Refractive index sensing of SMS fiber structure based Mach-Zehnder interferometer,” IEEE Photonics Technol. Lett. 26(5), 437–439 (2014).
[Crossref]

Zhou, J.

X. Sun, X. Dong, Y. Hu, H. Li, D. Chu, J. Zhou, C. Wang, and J. Duan, “A robust high refractive index sensitivity fiber Mach-Zehnder interferometer fabricated by femtosecond laser machining and chemical etching,” Sens. Actuators A Phys. 230, 111–116 (2015).
[Crossref]

Zhu, Z.

Appl. Opt. (2)

Appl. Phys. Lett. (3)

W. Liang, Y. Huang, Y. Xu, R. K. Lee, and A. Yariv, “Highly sensitive fiber Bragg grating refractive index sensors,” Appl. Phys. Lett. 86(15), 151122 (2005).
[Crossref]

P. Zhang, G. Yan, S. Gao, S. He, B. Kim, J. Im, and Y. Chung, “Microfluidic refractive-index sensors based on small-hole microstructured optical fiber Bragg gratings,” Appl. Phys. Lett. 98(22), 221109 (2011).
[Crossref]

P. Lu, L. Men, K. Sooley, and Q. Chen, “Tapered fiber Mach-Zehnder interferometer for simultaneous measurement of refractive index and temperature,” Appl. Phys. Lett. 94(13), 131110 (2009).
[Crossref]

IEEE Photonics J. (1)

F. Esposito, R. Ranjan, S. Campopiano, and A. Iadicicco, “Experimental study of the refractive index sensitivity in arc-induced long period gratings,” IEEE Photonics J. 9(1), 1–10 (2017).
[Crossref]

IEEE Photonics Technol. Lett. (2)

M. Shao, X. Qiao, H. Fu, H. Li, Z. Jia, and H. Zhou, “Refractive index sensing of SMS fiber structure based Mach-Zehnder interferometer,” IEEE Photonics Technol. Lett. 26(5), 437–439 (2014).
[Crossref]

Z. Tian, S. S. Yam, and H. Loock, “Single-mode fiber refractive index sensor based on core-offset attenuators,” IEEE Photonics Technol. Lett. 20(16), 1387–1389 (2008).
[Crossref]

J. Lightwave Technol. (4)

J. Opt. Soc. Am. B (1)

Opt. Express (1)

Opt. Lett. (4)

Sens. Actuators A Phys. (3)

V. Bhardwaj and V. K. Singh, “Fabrication and characterization of cascaded tapered Mach-Zehnder interferometer for refractive index sensing,” Sens. Actuators A Phys. 244, 30–34 (2016).
[Crossref]

X. Sun, X. Dong, Y. Hu, H. Li, D. Chu, J. Zhou, C. Wang, and J. Duan, “A robust high refractive index sensitivity fiber Mach-Zehnder interferometer fabricated by femtosecond laser machining and chemical etching,” Sens. Actuators A Phys. 230, 111–116 (2015).
[Crossref]

Y. Zhao, X. Li, and L. Cai, “A highly sensitive Mach-Zehnder interferometric refractive index sensor based on core-offset single mode fiber,” Sens. Actuators A Phys. 223, 119–124 (2015).
[Crossref]

Sens. Actuators B Chem. (2)

Q. Wang, L. Kong, Y. Dang, F. Xia, Y. Zhang, Y. Zhao, H. Hu, and J. Li, “High sensitivity refractive index sensor based on splicing points tapered SMF-PCF-SMF structure Mach-Zehnder mode interferometer,” Sens. Actuators B Chem. 225, 213–220 (2016).
[Crossref]

Y. Zhao, X. Li, L. Cai, and Y. Yang, “Refractive index sensing based on photonic crystal fiber interferometer structure with up-tapered joints,” Sens. Actuators B Chem. 221, 406–410 (2015).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 The schematic diagram of the SEHADCF-based MZI. Insets: The top and bottom insets are the cross-section of the SEHADCF sample and the micrograph of an etched microhole, respectively.
Fig. 2
Fig. 2 The dispersion curves for different modes and typical field distributions in the SEHADCF. (a) The effective RI of modes in the SEHADCF at different wavelengths. (b) - (i) Field distributions of different modes in the SEHADCF. (b) and (c) LP01 and LP11 modes of the center core at 980 nm. (d) and (e) LP01 and LP11 modes of the suspended core at 980 nm. (f) LP21 mode at 940 nm. (g) and (h) LP01 mode of the center and suspended cores at 1310 nm. (i) LP11 mode of the suspended core at 1310 nm.
Fig. 3
Fig. 3 The relationship between excitation coefficients of modes of the SEHADCF and the lateral-offset of the spicing point for different wavelengths. (a) 980 nm. (b) 1310 nm.
Fig. 4
Fig. 4 Transmission spectra of SEHADCF-based MZI. (a) The transmission spectrum of SEHADCF-based MZI in the wavelength range from 600 to 1600 nm. The light source is an ultra-continuous spectrum fiber laser (SC-5, Yangtze Soton Laser Co., Ltd.), and the OSA is AQ6370C (YOKOGAWA Inc.). The bottom-left inset is the micrograph of the splicing point between the SMF and the SEHADCF. (b) The transmission spectrum of SEHADCF-based MZI with the wavelength range from 1200 to 2400 nm. The light source is an ultra-continuous spectrum fiber laser (SuperK Compact, NKT Photonics Inc.), and the OSA is AQ6375B (YOKOGAWA Inc.).
Fig. 5
Fig. 5 The RI response of the sensor. (a) The transmission spectra of the sensor injected solutions with different RIs. (b) and (c) are partial zoomed views of the transmission spectra in the wavelength range from 1415 to 1455 nm and from 1495 to 1530 nm, respectively. (d) and (e) are the relationships between wavelengths of the 5th and the 13th interference valley and RI, respectively. Inset: the field distribution of the excited high-order cladding mode by simulating calculation.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

I = I cc + I sc + 2 I cc I sc cos Δ φ
λ m = 2 Δ n eff L 2 m + 1
FSR = λ 2 Δ n eff L
b = 1 4 ( E m × H n * + E n * × H m ) z dxdy

Metrics