Abstract

We demonstrate a single photon compressive imaging system with the image plane up to the entire digital micro-mirror device (DMD) work area. A parallel light source is designed to reduce the influence of light scattering on imaging resolution and a photon counting photomultiplier tube (PMT) with a large photosensitive area is used to effectively collect light reflected from the full screen of DMD. A control and counting circuit, based on Field-Programmable Gate Array (FPGA), is developed to load binary random matrix into the DMD controller for each measurement, and to count single-photon pulse output from PMT simultaneously. To reduce imaging time and huge memory occupation for image reconstruction, a multiple micro-mirrors combination imaging method is proposed. The signal-to-noise ratio and detection limit of the imaging system is theoretically deduced. Theoretical analysis and experimental results show that micro-mirrors combination imaging method is more suitable for faster imaging in a weaker-light-level environment. In order to achieve high imaging quality, the size of the combined pixels and the average time of each measurement should be moderate, so that the impact of Poisson shot noise is minimized.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Quantum limit of photon-counting imaging based on compressed sensing

Xue-Feng Liu, Xu-Ri Yao, Chao Wang, Xiao-Yong Guo, and Guang-Jie Zhai
Opt. Express 25(4) 3286-3296 (2017)

Adaptive compressed photon counting 3D imaging based on wavelet trees and depth map sparse representation

Huidong Dai, Guohua Gu, Weiji He, Ling Ye, Tianyi Mao, and Qian Chen
Opt. Express 24(23) 26080-26096 (2016)

Short-wave infrared compressive imaging of single photons

Thomas Gerrits, Daniel J. Lum, Varun Verma, John Howell, Richard P. Mirin, and Sae Woo Nam
Opt. Express 26(12) 15519-15527 (2018)

References

  • View by:
  • |
  • |
  • |

  1. R. S. Bennink, S. J. Bentley, R. W. Boyd, and J. C. Howell, “Quantum and classical coincidence imaging,” Phys. Rev. Lett. 92(3), 033601 (2004).
    [Crossref] [PubMed]
  2. V. Studer, J. Bobin, M. Chahid, H. S. Mousavi, E. Candes, and M. Dahan, “Compressive fluorescence microscopy for biological and hyperspectral imaging,” Proc. Natl. Acad. Sci. U.S.A. 109(26), E1679–E1687 (2012).
    [Crossref] [PubMed]
  3. X. Shi, H. Li, Y. Bai, and X. Fu, “Negative influence of detector noise on ghost imaging based on the photon counting technique at low light levels,” Appl. Opt. 56(26), 7320–7326 (2017).
    [Crossref] [PubMed]
  4. K. Zang, X. Jiang, Y. Huo, X. Ding, M. Morea, X. Chen, C. Y. Lu, J. Ma, M. Zhou, Z. Xia, Z. Yu, T. I. Kamins, Q. Zhang, and J. S. Harris, “Silicon single-photon avalanche diodes with nano-structured light trapping,” Nat. Commun. 8(1), 628–633 (2017).
    [Crossref] [PubMed]
  5. K. Taguchi and J. S. Iwanczyk, “Vision 20/20: Single photon counting x-ray detectors in medical imaging,” Med. Phys. 40(10), 100901 (2013).
    [Crossref] [PubMed]
  6. Y. Yang, J. Shi, F. Cao, J. Peng, and G. Zeng, “Computational imaging based on time-correlated single-photon-counting technique at low light level,” Appl. Opt. 54(31), 9277–9283 (2015).
    [Crossref] [PubMed]
  7. R. M. Willett, M. F. Duarte, M. A. Davenport, and R. G. Baraniuk, “Sparsity and structure in hyperspectral imaging,” IEEE Signal Process. Mag. 31(1), 116–126 (2014).
    [Crossref]
  8. P. A. Morris, R. S. Aspden, J. E. Bell, R. W. Boyd, and M. J. Padgett, “Imaging with a small number of photons,” Nat. Commun. 6(1), 5913 (2015).
    [Crossref] [PubMed]
  9. B. F. Aull, D. R. Schuette, D. J. Young, D. M. Craig, B. J. Felton, and K. Warner, “A Study of Crosstalk in a 256×256 Photon Counting Imager Based on Silicon Geiger-Mode Avalanche Photodiodes,” IEEE Sens. J. 15(4), 2123–2132 (2015).
    [Crossref]
  10. C. Scarcella, A. Tosi, F. Villa, S. Tisa, and F. Zappa, “Low-noise low-jitter 32-pixels CMOS single-photon avalanche diodes array for single-photon counting from 300 nm to 900 nm,” Rev. Sci. Instrum. 84(12), 123112 (2013).
    [Crossref] [PubMed]
  11. M. Vitali, D. Bronzi, A. J. Krmpot, S. N. Nikolić, F. J. Schmitt, C. Junghans, S. Tisa, T. Friedrich, V. Vukojević, L. Terenius, F. Zappa, and R. Rigler, “A single-photon avalanche camera for fluorescence lifetime imaging microscopy and correlation spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 20(6), 344–353 (2014).
    [Crossref]
  12. W. K. Yu, “Application of Compressed Sensing in Super-sensitivity Time-resolved Spectral Imaging,” Beijing: University of Chinese Academy of Sciences, 2015.
  13. Y. Zhi, R. Lu, B. Wang, Q. Zhang, and X. Yao, “Rapid super-resolution line-scanning microscopy through virtually structured detection,” Opt. Lett. 40(8), 1683–1686 (2015).
    [Crossref] [PubMed]
  14. Y. Liu, J. Shi, and G. Zeng, “Single-photon-counting polarization ghost imaging,” Appl. Opt. 55(36), 10347–10351 (2016).
    [Crossref] [PubMed]
  15. J. Romberg, “Imaging via compressive sampling,” IEEE Signal Process. Mag. 25(2), 14–20 (2008).
    [Crossref]
  16. M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25(2), 83–91 (2008).
    [Crossref]
  17. R. G. Baraniuk, “Compressive sensing [lecture notes],” IEEE Signal Process. Mag. 24(4), 118–121 (2007).
    [Crossref]
  18. W. K. Yu, X. F. Liu, X. R. Yao, C. Wang, G. J. Zhai, and Q. Zhao, “Single-photon compressive imaging with some performance benefits over raster scanning,” Phys. Lett. A 378(45), 3406–3411 (2014).
    [Crossref]
  19. Q. Tong, Y. L. Jiang, H. Y. Wang, and L. M. Guo, “Image reconstruction of dynamic infrared single-pixel imaging system,” Opt. Commun. 410, 35–39 (2018).
    [Crossref]
  20. W. K. Yu, X. F. Liu, X. R. Yao, C. Wang, S. Q. Gao, G. J. Zhai, Q. Zhao, and M. L. Ge, “Single photon counting imaging system via compressive sensing,” Preprint arXiv:1202.5866 , (2012).
  21. Z. Zhang, X. Ma, and J. Zhong, “Single-pixel imaging by means of Fourier spectrum acquisition,” Nat. Commun. 6(1), 6225 (2015).
    [Crossref] [PubMed]
  22. M. J. Sun, M. P. Edgar, G. M. Gibson, B. Sun, N. Radwell, R. Lamb, and M. J. Padgett, “Single-pixel three-dimensional imaging with time-based depth resolution,” Nat. Commun. 7, 12010 (2016).
    [Crossref] [PubMed]
  23. G. A. Howland, P. B. Dixon, and J. C. Howell, “Photon-counting compressive sensing laser radar for 3D imaging,” Appl. Opt. 50(31), 5917–5920 (2011).
    [Crossref] [PubMed]
  24. G. A. Howland, D. J. Lum, M. R. Ware, and J. C. Howell, “Photon counting compressive depth mapping,” Opt. Express 21(20), 23822–23837 (2013).
    [Crossref] [PubMed]
  25. A. Colaço, A. Kirmani, G. A. Howland, J. C. Howell, and V. K. Goyal, “Compressive depth map acquisition using a single photon-counting detector: Parametric signal processing meets sparsity,” In CVPR, 2012 IEEE Conference on. IEEE, 96–102 (2012).
    [Crossref]
  26. Q. R. Yan, “Research on time-correlated single photon counting techniques based on MCP position sensitive anode detector,” PhD Thesis, Xi’an: Xi’an Institute of Optics and Precision Mechanics of CAS, (2012).
  27. C. B. Li, “An Efficient Algorithm for Total Variation Regularization with Applications to the Single Pixel Camera and Compressive Sensing,” M.S. thesis, Dept. Comput. Appl. Math., Rice Univ., Houston, TX, (2009).
  28. C. Li, W. Yin, and Y. Zhang, “User’s guide for TVAL3: TV minimization by augmented lagrangian and alternating direction algorithms,” CAAM report 20, 46–47 (2009).
  29. C. Li, W. Yin, H. Jiang, and Y. Zhang, “An efficient augmented Lagrangian method with applications to total variation minimization,” Comput. Optim. Appl. 56(3), 507–530 (2013).
    [Crossref]

2018 (1)

Q. Tong, Y. L. Jiang, H. Y. Wang, and L. M. Guo, “Image reconstruction of dynamic infrared single-pixel imaging system,” Opt. Commun. 410, 35–39 (2018).
[Crossref]

2017 (2)

X. Shi, H. Li, Y. Bai, and X. Fu, “Negative influence of detector noise on ghost imaging based on the photon counting technique at low light levels,” Appl. Opt. 56(26), 7320–7326 (2017).
[Crossref] [PubMed]

K. Zang, X. Jiang, Y. Huo, X. Ding, M. Morea, X. Chen, C. Y. Lu, J. Ma, M. Zhou, Z. Xia, Z. Yu, T. I. Kamins, Q. Zhang, and J. S. Harris, “Silicon single-photon avalanche diodes with nano-structured light trapping,” Nat. Commun. 8(1), 628–633 (2017).
[Crossref] [PubMed]

2016 (2)

Y. Liu, J. Shi, and G. Zeng, “Single-photon-counting polarization ghost imaging,” Appl. Opt. 55(36), 10347–10351 (2016).
[Crossref] [PubMed]

M. J. Sun, M. P. Edgar, G. M. Gibson, B. Sun, N. Radwell, R. Lamb, and M. J. Padgett, “Single-pixel three-dimensional imaging with time-based depth resolution,” Nat. Commun. 7, 12010 (2016).
[Crossref] [PubMed]

2015 (5)

Z. Zhang, X. Ma, and J. Zhong, “Single-pixel imaging by means of Fourier spectrum acquisition,” Nat. Commun. 6(1), 6225 (2015).
[Crossref] [PubMed]

Y. Zhi, R. Lu, B. Wang, Q. Zhang, and X. Yao, “Rapid super-resolution line-scanning microscopy through virtually structured detection,” Opt. Lett. 40(8), 1683–1686 (2015).
[Crossref] [PubMed]

Y. Yang, J. Shi, F. Cao, J. Peng, and G. Zeng, “Computational imaging based on time-correlated single-photon-counting technique at low light level,” Appl. Opt. 54(31), 9277–9283 (2015).
[Crossref] [PubMed]

P. A. Morris, R. S. Aspden, J. E. Bell, R. W. Boyd, and M. J. Padgett, “Imaging with a small number of photons,” Nat. Commun. 6(1), 5913 (2015).
[Crossref] [PubMed]

B. F. Aull, D. R. Schuette, D. J. Young, D. M. Craig, B. J. Felton, and K. Warner, “A Study of Crosstalk in a 256×256 Photon Counting Imager Based on Silicon Geiger-Mode Avalanche Photodiodes,” IEEE Sens. J. 15(4), 2123–2132 (2015).
[Crossref]

2014 (3)

R. M. Willett, M. F. Duarte, M. A. Davenport, and R. G. Baraniuk, “Sparsity and structure in hyperspectral imaging,” IEEE Signal Process. Mag. 31(1), 116–126 (2014).
[Crossref]

M. Vitali, D. Bronzi, A. J. Krmpot, S. N. Nikolić, F. J. Schmitt, C. Junghans, S. Tisa, T. Friedrich, V. Vukojević, L. Terenius, F. Zappa, and R. Rigler, “A single-photon avalanche camera for fluorescence lifetime imaging microscopy and correlation spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 20(6), 344–353 (2014).
[Crossref]

W. K. Yu, X. F. Liu, X. R. Yao, C. Wang, G. J. Zhai, and Q. Zhao, “Single-photon compressive imaging with some performance benefits over raster scanning,” Phys. Lett. A 378(45), 3406–3411 (2014).
[Crossref]

2013 (4)

G. A. Howland, D. J. Lum, M. R. Ware, and J. C. Howell, “Photon counting compressive depth mapping,” Opt. Express 21(20), 23822–23837 (2013).
[Crossref] [PubMed]

C. Li, W. Yin, H. Jiang, and Y. Zhang, “An efficient augmented Lagrangian method with applications to total variation minimization,” Comput. Optim. Appl. 56(3), 507–530 (2013).
[Crossref]

C. Scarcella, A. Tosi, F. Villa, S. Tisa, and F. Zappa, “Low-noise low-jitter 32-pixels CMOS single-photon avalanche diodes array for single-photon counting from 300 nm to 900 nm,” Rev. Sci. Instrum. 84(12), 123112 (2013).
[Crossref] [PubMed]

K. Taguchi and J. S. Iwanczyk, “Vision 20/20: Single photon counting x-ray detectors in medical imaging,” Med. Phys. 40(10), 100901 (2013).
[Crossref] [PubMed]

2012 (1)

V. Studer, J. Bobin, M. Chahid, H. S. Mousavi, E. Candes, and M. Dahan, “Compressive fluorescence microscopy for biological and hyperspectral imaging,” Proc. Natl. Acad. Sci. U.S.A. 109(26), E1679–E1687 (2012).
[Crossref] [PubMed]

2011 (1)

2008 (2)

J. Romberg, “Imaging via compressive sampling,” IEEE Signal Process. Mag. 25(2), 14–20 (2008).
[Crossref]

M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25(2), 83–91 (2008).
[Crossref]

2007 (1)

R. G. Baraniuk, “Compressive sensing [lecture notes],” IEEE Signal Process. Mag. 24(4), 118–121 (2007).
[Crossref]

2004 (1)

R. S. Bennink, S. J. Bentley, R. W. Boyd, and J. C. Howell, “Quantum and classical coincidence imaging,” Phys. Rev. Lett. 92(3), 033601 (2004).
[Crossref] [PubMed]

Aspden, R. S.

P. A. Morris, R. S. Aspden, J. E. Bell, R. W. Boyd, and M. J. Padgett, “Imaging with a small number of photons,” Nat. Commun. 6(1), 5913 (2015).
[Crossref] [PubMed]

Aull, B. F.

B. F. Aull, D. R. Schuette, D. J. Young, D. M. Craig, B. J. Felton, and K. Warner, “A Study of Crosstalk in a 256×256 Photon Counting Imager Based on Silicon Geiger-Mode Avalanche Photodiodes,” IEEE Sens. J. 15(4), 2123–2132 (2015).
[Crossref]

Bai, Y.

Baraniuk, R. G.

R. M. Willett, M. F. Duarte, M. A. Davenport, and R. G. Baraniuk, “Sparsity and structure in hyperspectral imaging,” IEEE Signal Process. Mag. 31(1), 116–126 (2014).
[Crossref]

M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25(2), 83–91 (2008).
[Crossref]

R. G. Baraniuk, “Compressive sensing [lecture notes],” IEEE Signal Process. Mag. 24(4), 118–121 (2007).
[Crossref]

Bell, J. E.

P. A. Morris, R. S. Aspden, J. E. Bell, R. W. Boyd, and M. J. Padgett, “Imaging with a small number of photons,” Nat. Commun. 6(1), 5913 (2015).
[Crossref] [PubMed]

Bennink, R. S.

R. S. Bennink, S. J. Bentley, R. W. Boyd, and J. C. Howell, “Quantum and classical coincidence imaging,” Phys. Rev. Lett. 92(3), 033601 (2004).
[Crossref] [PubMed]

Bentley, S. J.

R. S. Bennink, S. J. Bentley, R. W. Boyd, and J. C. Howell, “Quantum and classical coincidence imaging,” Phys. Rev. Lett. 92(3), 033601 (2004).
[Crossref] [PubMed]

Bobin, J.

V. Studer, J. Bobin, M. Chahid, H. S. Mousavi, E. Candes, and M. Dahan, “Compressive fluorescence microscopy for biological and hyperspectral imaging,” Proc. Natl. Acad. Sci. U.S.A. 109(26), E1679–E1687 (2012).
[Crossref] [PubMed]

Boyd, R. W.

P. A. Morris, R. S. Aspden, J. E. Bell, R. W. Boyd, and M. J. Padgett, “Imaging with a small number of photons,” Nat. Commun. 6(1), 5913 (2015).
[Crossref] [PubMed]

R. S. Bennink, S. J. Bentley, R. W. Boyd, and J. C. Howell, “Quantum and classical coincidence imaging,” Phys. Rev. Lett. 92(3), 033601 (2004).
[Crossref] [PubMed]

Bronzi, D.

M. Vitali, D. Bronzi, A. J. Krmpot, S. N. Nikolić, F. J. Schmitt, C. Junghans, S. Tisa, T. Friedrich, V. Vukojević, L. Terenius, F. Zappa, and R. Rigler, “A single-photon avalanche camera for fluorescence lifetime imaging microscopy and correlation spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 20(6), 344–353 (2014).
[Crossref]

Candes, E.

V. Studer, J. Bobin, M. Chahid, H. S. Mousavi, E. Candes, and M. Dahan, “Compressive fluorescence microscopy for biological and hyperspectral imaging,” Proc. Natl. Acad. Sci. U.S.A. 109(26), E1679–E1687 (2012).
[Crossref] [PubMed]

Cao, F.

Chahid, M.

V. Studer, J. Bobin, M. Chahid, H. S. Mousavi, E. Candes, and M. Dahan, “Compressive fluorescence microscopy for biological and hyperspectral imaging,” Proc. Natl. Acad. Sci. U.S.A. 109(26), E1679–E1687 (2012).
[Crossref] [PubMed]

Chen, X.

K. Zang, X. Jiang, Y. Huo, X. Ding, M. Morea, X. Chen, C. Y. Lu, J. Ma, M. Zhou, Z. Xia, Z. Yu, T. I. Kamins, Q. Zhang, and J. S. Harris, “Silicon single-photon avalanche diodes with nano-structured light trapping,” Nat. Commun. 8(1), 628–633 (2017).
[Crossref] [PubMed]

Craig, D. M.

B. F. Aull, D. R. Schuette, D. J. Young, D. M. Craig, B. J. Felton, and K. Warner, “A Study of Crosstalk in a 256×256 Photon Counting Imager Based on Silicon Geiger-Mode Avalanche Photodiodes,” IEEE Sens. J. 15(4), 2123–2132 (2015).
[Crossref]

Dahan, M.

V. Studer, J. Bobin, M. Chahid, H. S. Mousavi, E. Candes, and M. Dahan, “Compressive fluorescence microscopy for biological and hyperspectral imaging,” Proc. Natl. Acad. Sci. U.S.A. 109(26), E1679–E1687 (2012).
[Crossref] [PubMed]

Davenport, M. A.

R. M. Willett, M. F. Duarte, M. A. Davenport, and R. G. Baraniuk, “Sparsity and structure in hyperspectral imaging,” IEEE Signal Process. Mag. 31(1), 116–126 (2014).
[Crossref]

M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25(2), 83–91 (2008).
[Crossref]

Ding, X.

K. Zang, X. Jiang, Y. Huo, X. Ding, M. Morea, X. Chen, C. Y. Lu, J. Ma, M. Zhou, Z. Xia, Z. Yu, T. I. Kamins, Q. Zhang, and J. S. Harris, “Silicon single-photon avalanche diodes with nano-structured light trapping,” Nat. Commun. 8(1), 628–633 (2017).
[Crossref] [PubMed]

Dixon, P. B.

Duarte, M. F.

R. M. Willett, M. F. Duarte, M. A. Davenport, and R. G. Baraniuk, “Sparsity and structure in hyperspectral imaging,” IEEE Signal Process. Mag. 31(1), 116–126 (2014).
[Crossref]

M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25(2), 83–91 (2008).
[Crossref]

Edgar, M. P.

M. J. Sun, M. P. Edgar, G. M. Gibson, B. Sun, N. Radwell, R. Lamb, and M. J. Padgett, “Single-pixel three-dimensional imaging with time-based depth resolution,” Nat. Commun. 7, 12010 (2016).
[Crossref] [PubMed]

Felton, B. J.

B. F. Aull, D. R. Schuette, D. J. Young, D. M. Craig, B. J. Felton, and K. Warner, “A Study of Crosstalk in a 256×256 Photon Counting Imager Based on Silicon Geiger-Mode Avalanche Photodiodes,” IEEE Sens. J. 15(4), 2123–2132 (2015).
[Crossref]

Friedrich, T.

M. Vitali, D. Bronzi, A. J. Krmpot, S. N. Nikolić, F. J. Schmitt, C. Junghans, S. Tisa, T. Friedrich, V. Vukojević, L. Terenius, F. Zappa, and R. Rigler, “A single-photon avalanche camera for fluorescence lifetime imaging microscopy and correlation spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 20(6), 344–353 (2014).
[Crossref]

Fu, X.

Gibson, G. M.

M. J. Sun, M. P. Edgar, G. M. Gibson, B. Sun, N. Radwell, R. Lamb, and M. J. Padgett, “Single-pixel three-dimensional imaging with time-based depth resolution,” Nat. Commun. 7, 12010 (2016).
[Crossref] [PubMed]

Guo, L. M.

Q. Tong, Y. L. Jiang, H. Y. Wang, and L. M. Guo, “Image reconstruction of dynamic infrared single-pixel imaging system,” Opt. Commun. 410, 35–39 (2018).
[Crossref]

Harris, J. S.

K. Zang, X. Jiang, Y. Huo, X. Ding, M. Morea, X. Chen, C. Y. Lu, J. Ma, M. Zhou, Z. Xia, Z. Yu, T. I. Kamins, Q. Zhang, and J. S. Harris, “Silicon single-photon avalanche diodes with nano-structured light trapping,” Nat. Commun. 8(1), 628–633 (2017).
[Crossref] [PubMed]

Howell, J. C.

Howland, G. A.

Huo, Y.

K. Zang, X. Jiang, Y. Huo, X. Ding, M. Morea, X. Chen, C. Y. Lu, J. Ma, M. Zhou, Z. Xia, Z. Yu, T. I. Kamins, Q. Zhang, and J. S. Harris, “Silicon single-photon avalanche diodes with nano-structured light trapping,” Nat. Commun. 8(1), 628–633 (2017).
[Crossref] [PubMed]

Iwanczyk, J. S.

K. Taguchi and J. S. Iwanczyk, “Vision 20/20: Single photon counting x-ray detectors in medical imaging,” Med. Phys. 40(10), 100901 (2013).
[Crossref] [PubMed]

Jiang, H.

C. Li, W. Yin, H. Jiang, and Y. Zhang, “An efficient augmented Lagrangian method with applications to total variation minimization,” Comput. Optim. Appl. 56(3), 507–530 (2013).
[Crossref]

Jiang, X.

K. Zang, X. Jiang, Y. Huo, X. Ding, M. Morea, X. Chen, C. Y. Lu, J. Ma, M. Zhou, Z. Xia, Z. Yu, T. I. Kamins, Q. Zhang, and J. S. Harris, “Silicon single-photon avalanche diodes with nano-structured light trapping,” Nat. Commun. 8(1), 628–633 (2017).
[Crossref] [PubMed]

Jiang, Y. L.

Q. Tong, Y. L. Jiang, H. Y. Wang, and L. M. Guo, “Image reconstruction of dynamic infrared single-pixel imaging system,” Opt. Commun. 410, 35–39 (2018).
[Crossref]

Junghans, C.

M. Vitali, D. Bronzi, A. J. Krmpot, S. N. Nikolić, F. J. Schmitt, C. Junghans, S. Tisa, T. Friedrich, V. Vukojević, L. Terenius, F. Zappa, and R. Rigler, “A single-photon avalanche camera for fluorescence lifetime imaging microscopy and correlation spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 20(6), 344–353 (2014).
[Crossref]

Kamins, T. I.

K. Zang, X. Jiang, Y. Huo, X. Ding, M. Morea, X. Chen, C. Y. Lu, J. Ma, M. Zhou, Z. Xia, Z. Yu, T. I. Kamins, Q. Zhang, and J. S. Harris, “Silicon single-photon avalanche diodes with nano-structured light trapping,” Nat. Commun. 8(1), 628–633 (2017).
[Crossref] [PubMed]

Kelly, K. F.

M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25(2), 83–91 (2008).
[Crossref]

Krmpot, A. J.

M. Vitali, D. Bronzi, A. J. Krmpot, S. N. Nikolić, F. J. Schmitt, C. Junghans, S. Tisa, T. Friedrich, V. Vukojević, L. Terenius, F. Zappa, and R. Rigler, “A single-photon avalanche camera for fluorescence lifetime imaging microscopy and correlation spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 20(6), 344–353 (2014).
[Crossref]

Lamb, R.

M. J. Sun, M. P. Edgar, G. M. Gibson, B. Sun, N. Radwell, R. Lamb, and M. J. Padgett, “Single-pixel three-dimensional imaging with time-based depth resolution,” Nat. Commun. 7, 12010 (2016).
[Crossref] [PubMed]

Laska, J. N.

M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25(2), 83–91 (2008).
[Crossref]

Li, C.

C. Li, W. Yin, H. Jiang, and Y. Zhang, “An efficient augmented Lagrangian method with applications to total variation minimization,” Comput. Optim. Appl. 56(3), 507–530 (2013).
[Crossref]

Li, H.

Liu, X. F.

W. K. Yu, X. F. Liu, X. R. Yao, C. Wang, G. J. Zhai, and Q. Zhao, “Single-photon compressive imaging with some performance benefits over raster scanning,” Phys. Lett. A 378(45), 3406–3411 (2014).
[Crossref]

Liu, Y.

Lu, C. Y.

K. Zang, X. Jiang, Y. Huo, X. Ding, M. Morea, X. Chen, C. Y. Lu, J. Ma, M. Zhou, Z. Xia, Z. Yu, T. I. Kamins, Q. Zhang, and J. S. Harris, “Silicon single-photon avalanche diodes with nano-structured light trapping,” Nat. Commun. 8(1), 628–633 (2017).
[Crossref] [PubMed]

Lu, R.

Lum, D. J.

Ma, J.

K. Zang, X. Jiang, Y. Huo, X. Ding, M. Morea, X. Chen, C. Y. Lu, J. Ma, M. Zhou, Z. Xia, Z. Yu, T. I. Kamins, Q. Zhang, and J. S. Harris, “Silicon single-photon avalanche diodes with nano-structured light trapping,” Nat. Commun. 8(1), 628–633 (2017).
[Crossref] [PubMed]

Ma, X.

Z. Zhang, X. Ma, and J. Zhong, “Single-pixel imaging by means of Fourier spectrum acquisition,” Nat. Commun. 6(1), 6225 (2015).
[Crossref] [PubMed]

Morea, M.

K. Zang, X. Jiang, Y. Huo, X. Ding, M. Morea, X. Chen, C. Y. Lu, J. Ma, M. Zhou, Z. Xia, Z. Yu, T. I. Kamins, Q. Zhang, and J. S. Harris, “Silicon single-photon avalanche diodes with nano-structured light trapping,” Nat. Commun. 8(1), 628–633 (2017).
[Crossref] [PubMed]

Morris, P. A.

P. A. Morris, R. S. Aspden, J. E. Bell, R. W. Boyd, and M. J. Padgett, “Imaging with a small number of photons,” Nat. Commun. 6(1), 5913 (2015).
[Crossref] [PubMed]

Mousavi, H. S.

V. Studer, J. Bobin, M. Chahid, H. S. Mousavi, E. Candes, and M. Dahan, “Compressive fluorescence microscopy for biological and hyperspectral imaging,” Proc. Natl. Acad. Sci. U.S.A. 109(26), E1679–E1687 (2012).
[Crossref] [PubMed]

Nikolic, S. N.

M. Vitali, D. Bronzi, A. J. Krmpot, S. N. Nikolić, F. J. Schmitt, C. Junghans, S. Tisa, T. Friedrich, V. Vukojević, L. Terenius, F. Zappa, and R. Rigler, “A single-photon avalanche camera for fluorescence lifetime imaging microscopy and correlation spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 20(6), 344–353 (2014).
[Crossref]

Padgett, M. J.

M. J. Sun, M. P. Edgar, G. M. Gibson, B. Sun, N. Radwell, R. Lamb, and M. J. Padgett, “Single-pixel three-dimensional imaging with time-based depth resolution,” Nat. Commun. 7, 12010 (2016).
[Crossref] [PubMed]

P. A. Morris, R. S. Aspden, J. E. Bell, R. W. Boyd, and M. J. Padgett, “Imaging with a small number of photons,” Nat. Commun. 6(1), 5913 (2015).
[Crossref] [PubMed]

Peng, J.

Radwell, N.

M. J. Sun, M. P. Edgar, G. M. Gibson, B. Sun, N. Radwell, R. Lamb, and M. J. Padgett, “Single-pixel three-dimensional imaging with time-based depth resolution,” Nat. Commun. 7, 12010 (2016).
[Crossref] [PubMed]

Rigler, R.

M. Vitali, D. Bronzi, A. J. Krmpot, S. N. Nikolić, F. J. Schmitt, C. Junghans, S. Tisa, T. Friedrich, V. Vukojević, L. Terenius, F. Zappa, and R. Rigler, “A single-photon avalanche camera for fluorescence lifetime imaging microscopy and correlation spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 20(6), 344–353 (2014).
[Crossref]

Romberg, J.

J. Romberg, “Imaging via compressive sampling,” IEEE Signal Process. Mag. 25(2), 14–20 (2008).
[Crossref]

Scarcella, C.

C. Scarcella, A. Tosi, F. Villa, S. Tisa, and F. Zappa, “Low-noise low-jitter 32-pixels CMOS single-photon avalanche diodes array for single-photon counting from 300 nm to 900 nm,” Rev. Sci. Instrum. 84(12), 123112 (2013).
[Crossref] [PubMed]

Schmitt, F. J.

M. Vitali, D. Bronzi, A. J. Krmpot, S. N. Nikolić, F. J. Schmitt, C. Junghans, S. Tisa, T. Friedrich, V. Vukojević, L. Terenius, F. Zappa, and R. Rigler, “A single-photon avalanche camera for fluorescence lifetime imaging microscopy and correlation spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 20(6), 344–353 (2014).
[Crossref]

Schuette, D. R.

B. F. Aull, D. R. Schuette, D. J. Young, D. M. Craig, B. J. Felton, and K. Warner, “A Study of Crosstalk in a 256×256 Photon Counting Imager Based on Silicon Geiger-Mode Avalanche Photodiodes,” IEEE Sens. J. 15(4), 2123–2132 (2015).
[Crossref]

Shi, J.

Shi, X.

Studer, V.

V. Studer, J. Bobin, M. Chahid, H. S. Mousavi, E. Candes, and M. Dahan, “Compressive fluorescence microscopy for biological and hyperspectral imaging,” Proc. Natl. Acad. Sci. U.S.A. 109(26), E1679–E1687 (2012).
[Crossref] [PubMed]

Sun, B.

M. J. Sun, M. P. Edgar, G. M. Gibson, B. Sun, N. Radwell, R. Lamb, and M. J. Padgett, “Single-pixel three-dimensional imaging with time-based depth resolution,” Nat. Commun. 7, 12010 (2016).
[Crossref] [PubMed]

Sun, M. J.

M. J. Sun, M. P. Edgar, G. M. Gibson, B. Sun, N. Radwell, R. Lamb, and M. J. Padgett, “Single-pixel three-dimensional imaging with time-based depth resolution,” Nat. Commun. 7, 12010 (2016).
[Crossref] [PubMed]

Sun, T.

M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25(2), 83–91 (2008).
[Crossref]

Taguchi, K.

K. Taguchi and J. S. Iwanczyk, “Vision 20/20: Single photon counting x-ray detectors in medical imaging,” Med. Phys. 40(10), 100901 (2013).
[Crossref] [PubMed]

Takhar, D.

M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25(2), 83–91 (2008).
[Crossref]

Terenius, L.

M. Vitali, D. Bronzi, A. J. Krmpot, S. N. Nikolić, F. J. Schmitt, C. Junghans, S. Tisa, T. Friedrich, V. Vukojević, L. Terenius, F. Zappa, and R. Rigler, “A single-photon avalanche camera for fluorescence lifetime imaging microscopy and correlation spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 20(6), 344–353 (2014).
[Crossref]

Tisa, S.

M. Vitali, D. Bronzi, A. J. Krmpot, S. N. Nikolić, F. J. Schmitt, C. Junghans, S. Tisa, T. Friedrich, V. Vukojević, L. Terenius, F. Zappa, and R. Rigler, “A single-photon avalanche camera for fluorescence lifetime imaging microscopy and correlation spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 20(6), 344–353 (2014).
[Crossref]

C. Scarcella, A. Tosi, F. Villa, S. Tisa, and F. Zappa, “Low-noise low-jitter 32-pixels CMOS single-photon avalanche diodes array for single-photon counting from 300 nm to 900 nm,” Rev. Sci. Instrum. 84(12), 123112 (2013).
[Crossref] [PubMed]

Tong, Q.

Q. Tong, Y. L. Jiang, H. Y. Wang, and L. M. Guo, “Image reconstruction of dynamic infrared single-pixel imaging system,” Opt. Commun. 410, 35–39 (2018).
[Crossref]

Tosi, A.

C. Scarcella, A. Tosi, F. Villa, S. Tisa, and F. Zappa, “Low-noise low-jitter 32-pixels CMOS single-photon avalanche diodes array for single-photon counting from 300 nm to 900 nm,” Rev. Sci. Instrum. 84(12), 123112 (2013).
[Crossref] [PubMed]

Villa, F.

C. Scarcella, A. Tosi, F. Villa, S. Tisa, and F. Zappa, “Low-noise low-jitter 32-pixels CMOS single-photon avalanche diodes array for single-photon counting from 300 nm to 900 nm,” Rev. Sci. Instrum. 84(12), 123112 (2013).
[Crossref] [PubMed]

Vitali, M.

M. Vitali, D. Bronzi, A. J. Krmpot, S. N. Nikolić, F. J. Schmitt, C. Junghans, S. Tisa, T. Friedrich, V. Vukojević, L. Terenius, F. Zappa, and R. Rigler, “A single-photon avalanche camera for fluorescence lifetime imaging microscopy and correlation spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 20(6), 344–353 (2014).
[Crossref]

Vukojevic, V.

M. Vitali, D. Bronzi, A. J. Krmpot, S. N. Nikolić, F. J. Schmitt, C. Junghans, S. Tisa, T. Friedrich, V. Vukojević, L. Terenius, F. Zappa, and R. Rigler, “A single-photon avalanche camera for fluorescence lifetime imaging microscopy and correlation spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 20(6), 344–353 (2014).
[Crossref]

Wang, B.

Wang, C.

W. K. Yu, X. F. Liu, X. R. Yao, C. Wang, G. J. Zhai, and Q. Zhao, “Single-photon compressive imaging with some performance benefits over raster scanning,” Phys. Lett. A 378(45), 3406–3411 (2014).
[Crossref]

Wang, H. Y.

Q. Tong, Y. L. Jiang, H. Y. Wang, and L. M. Guo, “Image reconstruction of dynamic infrared single-pixel imaging system,” Opt. Commun. 410, 35–39 (2018).
[Crossref]

Ware, M. R.

Warner, K.

B. F. Aull, D. R. Schuette, D. J. Young, D. M. Craig, B. J. Felton, and K. Warner, “A Study of Crosstalk in a 256×256 Photon Counting Imager Based on Silicon Geiger-Mode Avalanche Photodiodes,” IEEE Sens. J. 15(4), 2123–2132 (2015).
[Crossref]

Willett, R. M.

R. M. Willett, M. F. Duarte, M. A. Davenport, and R. G. Baraniuk, “Sparsity and structure in hyperspectral imaging,” IEEE Signal Process. Mag. 31(1), 116–126 (2014).
[Crossref]

Xia, Z.

K. Zang, X. Jiang, Y. Huo, X. Ding, M. Morea, X. Chen, C. Y. Lu, J. Ma, M. Zhou, Z. Xia, Z. Yu, T. I. Kamins, Q. Zhang, and J. S. Harris, “Silicon single-photon avalanche diodes with nano-structured light trapping,” Nat. Commun. 8(1), 628–633 (2017).
[Crossref] [PubMed]

Yang, Y.

Yao, X.

Yao, X. R.

W. K. Yu, X. F. Liu, X. R. Yao, C. Wang, G. J. Zhai, and Q. Zhao, “Single-photon compressive imaging with some performance benefits over raster scanning,” Phys. Lett. A 378(45), 3406–3411 (2014).
[Crossref]

Yin, W.

C. Li, W. Yin, H. Jiang, and Y. Zhang, “An efficient augmented Lagrangian method with applications to total variation minimization,” Comput. Optim. Appl. 56(3), 507–530 (2013).
[Crossref]

Young, D. J.

B. F. Aull, D. R. Schuette, D. J. Young, D. M. Craig, B. J. Felton, and K. Warner, “A Study of Crosstalk in a 256×256 Photon Counting Imager Based on Silicon Geiger-Mode Avalanche Photodiodes,” IEEE Sens. J. 15(4), 2123–2132 (2015).
[Crossref]

Yu, W. K.

W. K. Yu, X. F. Liu, X. R. Yao, C. Wang, G. J. Zhai, and Q. Zhao, “Single-photon compressive imaging with some performance benefits over raster scanning,” Phys. Lett. A 378(45), 3406–3411 (2014).
[Crossref]

Yu, Z.

K. Zang, X. Jiang, Y. Huo, X. Ding, M. Morea, X. Chen, C. Y. Lu, J. Ma, M. Zhou, Z. Xia, Z. Yu, T. I. Kamins, Q. Zhang, and J. S. Harris, “Silicon single-photon avalanche diodes with nano-structured light trapping,” Nat. Commun. 8(1), 628–633 (2017).
[Crossref] [PubMed]

Zang, K.

K. Zang, X. Jiang, Y. Huo, X. Ding, M. Morea, X. Chen, C. Y. Lu, J. Ma, M. Zhou, Z. Xia, Z. Yu, T. I. Kamins, Q. Zhang, and J. S. Harris, “Silicon single-photon avalanche diodes with nano-structured light trapping,” Nat. Commun. 8(1), 628–633 (2017).
[Crossref] [PubMed]

Zappa, F.

M. Vitali, D. Bronzi, A. J. Krmpot, S. N. Nikolić, F. J. Schmitt, C. Junghans, S. Tisa, T. Friedrich, V. Vukojević, L. Terenius, F. Zappa, and R. Rigler, “A single-photon avalanche camera for fluorescence lifetime imaging microscopy and correlation spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 20(6), 344–353 (2014).
[Crossref]

C. Scarcella, A. Tosi, F. Villa, S. Tisa, and F. Zappa, “Low-noise low-jitter 32-pixels CMOS single-photon avalanche diodes array for single-photon counting from 300 nm to 900 nm,” Rev. Sci. Instrum. 84(12), 123112 (2013).
[Crossref] [PubMed]

Zeng, G.

Zhai, G. J.

W. K. Yu, X. F. Liu, X. R. Yao, C. Wang, G. J. Zhai, and Q. Zhao, “Single-photon compressive imaging with some performance benefits over raster scanning,” Phys. Lett. A 378(45), 3406–3411 (2014).
[Crossref]

Zhang, Q.

K. Zang, X. Jiang, Y. Huo, X. Ding, M. Morea, X. Chen, C. Y. Lu, J. Ma, M. Zhou, Z. Xia, Z. Yu, T. I. Kamins, Q. Zhang, and J. S. Harris, “Silicon single-photon avalanche diodes with nano-structured light trapping,” Nat. Commun. 8(1), 628–633 (2017).
[Crossref] [PubMed]

Y. Zhi, R. Lu, B. Wang, Q. Zhang, and X. Yao, “Rapid super-resolution line-scanning microscopy through virtually structured detection,” Opt. Lett. 40(8), 1683–1686 (2015).
[Crossref] [PubMed]

Zhang, Y.

C. Li, W. Yin, H. Jiang, and Y. Zhang, “An efficient augmented Lagrangian method with applications to total variation minimization,” Comput. Optim. Appl. 56(3), 507–530 (2013).
[Crossref]

Zhang, Z.

Z. Zhang, X. Ma, and J. Zhong, “Single-pixel imaging by means of Fourier spectrum acquisition,” Nat. Commun. 6(1), 6225 (2015).
[Crossref] [PubMed]

Zhao, Q.

W. K. Yu, X. F. Liu, X. R. Yao, C. Wang, G. J. Zhai, and Q. Zhao, “Single-photon compressive imaging with some performance benefits over raster scanning,” Phys. Lett. A 378(45), 3406–3411 (2014).
[Crossref]

Zhi, Y.

Zhong, J.

Z. Zhang, X. Ma, and J. Zhong, “Single-pixel imaging by means of Fourier spectrum acquisition,” Nat. Commun. 6(1), 6225 (2015).
[Crossref] [PubMed]

Zhou, M.

K. Zang, X. Jiang, Y. Huo, X. Ding, M. Morea, X. Chen, C. Y. Lu, J. Ma, M. Zhou, Z. Xia, Z. Yu, T. I. Kamins, Q. Zhang, and J. S. Harris, “Silicon single-photon avalanche diodes with nano-structured light trapping,” Nat. Commun. 8(1), 628–633 (2017).
[Crossref] [PubMed]

Appl. Opt. (4)

Comput. Optim. Appl. (1)

C. Li, W. Yin, H. Jiang, and Y. Zhang, “An efficient augmented Lagrangian method with applications to total variation minimization,” Comput. Optim. Appl. 56(3), 507–530 (2013).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

M. Vitali, D. Bronzi, A. J. Krmpot, S. N. Nikolić, F. J. Schmitt, C. Junghans, S. Tisa, T. Friedrich, V. Vukojević, L. Terenius, F. Zappa, and R. Rigler, “A single-photon avalanche camera for fluorescence lifetime imaging microscopy and correlation spectroscopy,” IEEE J. Sel. Top. Quantum Electron. 20(6), 344–353 (2014).
[Crossref]

IEEE Sens. J. (1)

B. F. Aull, D. R. Schuette, D. J. Young, D. M. Craig, B. J. Felton, and K. Warner, “A Study of Crosstalk in a 256×256 Photon Counting Imager Based on Silicon Geiger-Mode Avalanche Photodiodes,” IEEE Sens. J. 15(4), 2123–2132 (2015).
[Crossref]

IEEE Signal Process. Mag. (4)

R. M. Willett, M. F. Duarte, M. A. Davenport, and R. G. Baraniuk, “Sparsity and structure in hyperspectral imaging,” IEEE Signal Process. Mag. 31(1), 116–126 (2014).
[Crossref]

J. Romberg, “Imaging via compressive sampling,” IEEE Signal Process. Mag. 25(2), 14–20 (2008).
[Crossref]

M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T. Sun, K. F. Kelly, and R. G. Baraniuk, “Single-pixel imaging via compressive sampling,” IEEE Signal Process. Mag. 25(2), 83–91 (2008).
[Crossref]

R. G. Baraniuk, “Compressive sensing [lecture notes],” IEEE Signal Process. Mag. 24(4), 118–121 (2007).
[Crossref]

Med. Phys. (1)

K. Taguchi and J. S. Iwanczyk, “Vision 20/20: Single photon counting x-ray detectors in medical imaging,” Med. Phys. 40(10), 100901 (2013).
[Crossref] [PubMed]

Nat. Commun. (4)

P. A. Morris, R. S. Aspden, J. E. Bell, R. W. Boyd, and M. J. Padgett, “Imaging with a small number of photons,” Nat. Commun. 6(1), 5913 (2015).
[Crossref] [PubMed]

K. Zang, X. Jiang, Y. Huo, X. Ding, M. Morea, X. Chen, C. Y. Lu, J. Ma, M. Zhou, Z. Xia, Z. Yu, T. I. Kamins, Q. Zhang, and J. S. Harris, “Silicon single-photon avalanche diodes with nano-structured light trapping,” Nat. Commun. 8(1), 628–633 (2017).
[Crossref] [PubMed]

Z. Zhang, X. Ma, and J. Zhong, “Single-pixel imaging by means of Fourier spectrum acquisition,” Nat. Commun. 6(1), 6225 (2015).
[Crossref] [PubMed]

M. J. Sun, M. P. Edgar, G. M. Gibson, B. Sun, N. Radwell, R. Lamb, and M. J. Padgett, “Single-pixel three-dimensional imaging with time-based depth resolution,” Nat. Commun. 7, 12010 (2016).
[Crossref] [PubMed]

Opt. Commun. (1)

Q. Tong, Y. L. Jiang, H. Y. Wang, and L. M. Guo, “Image reconstruction of dynamic infrared single-pixel imaging system,” Opt. Commun. 410, 35–39 (2018).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Phys. Lett. A (1)

W. K. Yu, X. F. Liu, X. R. Yao, C. Wang, G. J. Zhai, and Q. Zhao, “Single-photon compressive imaging with some performance benefits over raster scanning,” Phys. Lett. A 378(45), 3406–3411 (2014).
[Crossref]

Phys. Rev. Lett. (1)

R. S. Bennink, S. J. Bentley, R. W. Boyd, and J. C. Howell, “Quantum and classical coincidence imaging,” Phys. Rev. Lett. 92(3), 033601 (2004).
[Crossref] [PubMed]

Proc. Natl. Acad. Sci. U.S.A. (1)

V. Studer, J. Bobin, M. Chahid, H. S. Mousavi, E. Candes, and M. Dahan, “Compressive fluorescence microscopy for biological and hyperspectral imaging,” Proc. Natl. Acad. Sci. U.S.A. 109(26), E1679–E1687 (2012).
[Crossref] [PubMed]

Rev. Sci. Instrum. (1)

C. Scarcella, A. Tosi, F. Villa, S. Tisa, and F. Zappa, “Low-noise low-jitter 32-pixels CMOS single-photon avalanche diodes array for single-photon counting from 300 nm to 900 nm,” Rev. Sci. Instrum. 84(12), 123112 (2013).
[Crossref] [PubMed]

Other (6)

W. K. Yu, “Application of Compressed Sensing in Super-sensitivity Time-resolved Spectral Imaging,” Beijing: University of Chinese Academy of Sciences, 2015.

A. Colaço, A. Kirmani, G. A. Howland, J. C. Howell, and V. K. Goyal, “Compressive depth map acquisition using a single photon-counting detector: Parametric signal processing meets sparsity,” In CVPR, 2012 IEEE Conference on. IEEE, 96–102 (2012).
[Crossref]

Q. R. Yan, “Research on time-correlated single photon counting techniques based on MCP position sensitive anode detector,” PhD Thesis, Xi’an: Xi’an Institute of Optics and Precision Mechanics of CAS, (2012).

C. B. Li, “An Efficient Algorithm for Total Variation Regularization with Applications to the Single Pixel Camera and Compressive Sensing,” M.S. thesis, Dept. Comput. Appl. Math., Rice Univ., Houston, TX, (2009).

C. Li, W. Yin, and Y. Zhang, “User’s guide for TVAL3: TV minimization by augmented lagrangian and alternating direction algorithms,” CAAM report 20, 46–47 (2009).

W. K. Yu, X. F. Liu, X. R. Yao, C. Wang, S. Q. Gao, G. J. Zhai, Q. Zhao, and M. L. Ge, “Single photon counting imaging system via compressive sensing,” Preprint arXiv:1202.5866 , (2012).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Experimental apparatus for large-area single photon compressive imaging. LED: led lamp, DMD: digital micromirror device, PMT: photomultiplier, FPGA: field programmable gate array, PC: personal computer.
Fig. 2
Fig. 2 Block schematic for the control and counting circuit based on FPGA, including a synchronization control pulse generator, pulse stretching, a gated photon counter, a measurement matrix generator, a measurement matrix loader and two USB interfaces.
Fig. 3
Fig. 3 Timing diagram for generating the synchronization control signal. Tn: A period of the sampling frequency signal. TnH: The high-level duration of one period of the sampled frequency signal. Delay t 1 , t 2 must satisfy: T nH < t 1 < T n and T nH < t 2 < T n .
Fig. 4
Fig. 4 Schematics of multiple micro-mirrors combination imaging method. (a) The division of the full screen of DMD when the resolution of reconstructed image is P × Q. (b), (c), and (d) is the modulation effect when the sizes of combined pixel are 32 × 24, 16 × 12, and 8 × 6 respectively.
Fig. 5
Fig. 5 Imaging results with the same acquisition time but different sizes of combined pixel. (a) Image resolution of 32 × 32 with each combined pixel of 32 × 24 (b) Image resolution of 64 × 64 with each combined pixel of 16 × 12 (c) Image resolution of 128 × 128 with each combined pixel of 8 × 6. All acquisition time is 2048 s and all sampling ratios are 0.5.
Fig. 6
Fig. 6 Experimental results with the same acquisition time but different number of measurements. All acquisition time is 600s and the image resolution is 64 × 64 with each combined pixel of 16 × 12. (a) Imaging results with the same acquisition time but different number of measurements. M is the number of measurements, t is the average time of each measurement. (b) MSE, PSNR and MSSIM of reconstructed images versus the number of measurements.

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

N ph = I ph t
n RS 2 = ( N ph + N b + N d ) 2 + ( N b + N d ) 2
SN R RS = N ph n RS = I ph t I ph t+2( I b t+ I d t ) = I ph t I ph +2( I b + I d )
T=Nt
I ph = 1+ 1+8( I b + I d ) 2 2( I b + I d )
N s =m I ph it,
P(i)= C K m i μ i (1μ) K m i ( μ K m ) i e ( μ K m ) i!
N s = i=1 M ( μ K m ) i e ( μ K m ) i! m I ph tim I ph tμ K m .
n CS 2 = i=1 M ( μ K m ) i e ( μK ) i! ( m I ph ti+2( I b t+ I d t) ) 2 =m I ph tμ K m +2( I b t+ I d t).
SN R CS = N s n CS = m I ph μ K m t m I ph μ K m +2( I b + I d ) .
T=Mt
I ph = 2( I b + I d ) mμ K m = 2( I b + I d ) μK
t= T M = T N m α = Tm Nα .
SN R CS = N s n CS = I ph μK Tm Nα I ph μK+2( I b + I d ) .
t= T M .
SN R CS = N s n CS = I ph μK T M I ph μK+2( I b + I d ) .