Abstract

By using the natural birefringence of crystalline quartz, the switching of a 1568 nm laser with polarization parallel to the Z optical indicatrix axis to a 1556 nm laser with polarization parallel to the Y optical indicatrix axis was observed in both continuous-wave and acousto-optic Q-switched pulse lasers based on an X-cut Er:Yb:LaMgB5O10 crystal, when the alignment of the output mirror in a 976 nm diode-end-pumped plano-concave resonator was precisely tilted. For the continuous-wave regime, a 1568 nm laser with a maximum output power of 500 mW and slope efficiency of 16%, as well as a 1556 nm laser with a maximum output power of 400 mW and slope efficiency of 13.5% were realized, respectively. For the Q-switched regime, a 1568 nm pulse laser with an energy of 144 μJ and width of 300 ns, as well as a 1556 nm pulse laser with an energy of 168 μJ and width of 270 ns, were obtained respectively by precisely tilting the alignment of the output mirror, when the absorbed pump power was 4.0 W and pulse repetition frequency was 0.5 kHz.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Efficient continuous-wave diode-pumped Er3+:Yb3+:LaMgB5O10 laser with sapphire cooling at 1.57 μm

Yujin Chen, Qi Hou, Yisheng Huang, Yanfu Lin, Jianhua Huang, Xinghong Gong, Zundu Luo, Zhoubin Lin, and Yidong Huang
Opt. Express 25(16) 19320-19325 (2017)

Comparative study on the acousto-optic Q-switched pulse performances of 1520 and 1560 nm lasers in Er:Yb:RAl3(BO3)4 (R = Y and Lu) crystals

Yujin Chen, Yanfu Lin, Jianhua Huang, Xinghong Gong, Zundu Luo, and Yidong Huang
Opt. Express 21(16) 18919-18926 (2013)

Exploring the mode-locking laser performance of Yb:LaMgB5O10 crystal

Fei Lou, Baitao Zhang, Yisheng Huang, Bing Teng, Jieyu Jiang, Guanghai Guo, Shuaiyi Zhang, Shijia Sun, Xia Wang, Jingliang He, and Zhoubin Lin
Opt. Mater. Express 7(11) 4183-4191 (2017)

References

  • View by:
  • |
  • |
  • |

  1. B. Denker, B. Galagan, S. Sverchkov, and A. Prokhorov, “Erbium (Er) glass lasers,” in Handbook of Solid-State Lasers, B. Denker and E. Shklovsky, eds. (Woodhead, 2013).
  2. Y. H. Tsang and D. J. Binks, “Record performance from a Q-switched Er3+:Yb3+:YVO4 laser,” Appl. Phys. B 96(1), 11–17 (2009).
    [Crossref]
  3. G. Karlsson, V. Pasiskevicius, F. Laurell, and J. A. Tellefsen, “Q-switching of an Er-Yb:glass microchip laser using an acousto-optical modulator,” Opt. Commun. 217(1–6), 317–324 (2003).
    [Crossref]
  4. M. Wang, L. Zhu, J. Zhou, W. Chen, and D. Fan, “Performance of an actively Q-switched Er3+:Yb3+:YVO4 laser,” Laser Phys. Lett. 10(8), 085806 (2013).
    [Crossref]
  5. Y. J. Chen, Y. F. Lin, J. H. Huang, X. H. Gong, Z. D. Luo, and Y. D. Huang, “Efficient diode-pumped acousto-optic Q-switched Er:Yb:GdAl3(BO3)4 pulse laser at 1522 nm,” Opt. Lett. 40(21), 4927–4930 (2015).
    [Crossref] [PubMed]
  6. S. Taccheo, P. Laporta, S. Longhi, O. Svelto, and C. Svelto, “Diode-pumped bulk erbium-ytterbium lasers,” Appl. Phys. B 63(5), 425–436 (1996).
    [Crossref]
  7. N. D. Lai, M. Brunel, F. Bretenaker, B. Ferrand, and L. Fulbert, “Two-frequency Er-Yb:glass microchip laser passively Q switched by a Co:ASL saturable absorber,” Opt. Lett. 28(5), 328–330 (2003).
    [Crossref] [PubMed]
  8. Y. Huang, S. Sun, F. Yuan, L. Zhang, and Z. Lin, “Spectroscopic properties and continuous-wave laser operation of Er3+:Yb3+:LaMgB5O10 crystal,” J. Alloys Compd. 695, 215–220 (2017).
    [Crossref]
  9. Y. Chen, Q. Hou, Y. Huang, Y. Lin, J. Huang, X. Gong, Z. Luo, Z. Lin, and Y. Huang, “Efficient continuous-wave diode-pumped Er3+:Yb3+:LaMgB5O10 laser with sapphire cooling at 1.57 μm,” Opt. Express 25(16), 19320–19325 (2017).
    [Crossref] [PubMed]
  10. Y. Li, J. Feng, P. Li, K. Zhang, Y. Chen, Y. Lin, and Y. Huang, “400 mW low noise continuous-wave single-frequency Er,Yb:YAl3(BO3)4 laser at 1.55 μm,” Opt. Express 21(5), 6082–6090 (2013).
    [Crossref] [PubMed]
  11. H. Liang, F. Chang, T. Wu, C. Sung, and Y. Chen, “Generation of orthogonally polarized mode-locked lasers at wavelength of 1342 nm,” IEEE Photonics J. 9(5), 1504908 (2017).
    [Crossref]
  12. S. M. Link, A. Klenner, M. Mangold, C. A. Zaugg, M. Golling, B. W. Tilma, and U. Keller, “Dual-comb modelocked laser,” Opt. Express 23(5), 5521–5531 (2015).
    [Crossref] [PubMed]
  13. P. Tuan, M. Tsai, and Y. Chen, “Exploiting birefringent thermal lensing effect to manipulate polarization states of an Nd:YVO4 self-mode-locked laser,” Opt. Express 25(23), 29000–29009 (2017).
    [Crossref]

2017 (4)

Y. Huang, S. Sun, F. Yuan, L. Zhang, and Z. Lin, “Spectroscopic properties and continuous-wave laser operation of Er3+:Yb3+:LaMgB5O10 crystal,” J. Alloys Compd. 695, 215–220 (2017).
[Crossref]

Y. Chen, Q. Hou, Y. Huang, Y. Lin, J. Huang, X. Gong, Z. Luo, Z. Lin, and Y. Huang, “Efficient continuous-wave diode-pumped Er3+:Yb3+:LaMgB5O10 laser with sapphire cooling at 1.57 μm,” Opt. Express 25(16), 19320–19325 (2017).
[Crossref] [PubMed]

H. Liang, F. Chang, T. Wu, C. Sung, and Y. Chen, “Generation of orthogonally polarized mode-locked lasers at wavelength of 1342 nm,” IEEE Photonics J. 9(5), 1504908 (2017).
[Crossref]

P. Tuan, M. Tsai, and Y. Chen, “Exploiting birefringent thermal lensing effect to manipulate polarization states of an Nd:YVO4 self-mode-locked laser,” Opt. Express 25(23), 29000–29009 (2017).
[Crossref]

2015 (2)

S. M. Link, A. Klenner, M. Mangold, C. A. Zaugg, M. Golling, B. W. Tilma, and U. Keller, “Dual-comb modelocked laser,” Opt. Express 23(5), 5521–5531 (2015).
[Crossref] [PubMed]

Y. J. Chen, Y. F. Lin, J. H. Huang, X. H. Gong, Z. D. Luo, and Y. D. Huang, “Efficient diode-pumped acousto-optic Q-switched Er:Yb:GdAl3(BO3)4 pulse laser at 1522 nm,” Opt. Lett. 40(21), 4927–4930 (2015).
[Crossref] [PubMed]

2013 (2)

Y. Li, J. Feng, P. Li, K. Zhang, Y. Chen, Y. Lin, and Y. Huang, “400 mW low noise continuous-wave single-frequency Er,Yb:YAl3(BO3)4 laser at 1.55 μm,” Opt. Express 21(5), 6082–6090 (2013).
[Crossref] [PubMed]

M. Wang, L. Zhu, J. Zhou, W. Chen, and D. Fan, “Performance of an actively Q-switched Er3+:Yb3+:YVO4 laser,” Laser Phys. Lett. 10(8), 085806 (2013).
[Crossref]

2009 (1)

Y. H. Tsang and D. J. Binks, “Record performance from a Q-switched Er3+:Yb3+:YVO4 laser,” Appl. Phys. B 96(1), 11–17 (2009).
[Crossref]

2003 (2)

G. Karlsson, V. Pasiskevicius, F. Laurell, and J. A. Tellefsen, “Q-switching of an Er-Yb:glass microchip laser using an acousto-optical modulator,” Opt. Commun. 217(1–6), 317–324 (2003).
[Crossref]

N. D. Lai, M. Brunel, F. Bretenaker, B. Ferrand, and L. Fulbert, “Two-frequency Er-Yb:glass microchip laser passively Q switched by a Co:ASL saturable absorber,” Opt. Lett. 28(5), 328–330 (2003).
[Crossref] [PubMed]

1996 (1)

S. Taccheo, P. Laporta, S. Longhi, O. Svelto, and C. Svelto, “Diode-pumped bulk erbium-ytterbium lasers,” Appl. Phys. B 63(5), 425–436 (1996).
[Crossref]

Binks, D. J.

Y. H. Tsang and D. J. Binks, “Record performance from a Q-switched Er3+:Yb3+:YVO4 laser,” Appl. Phys. B 96(1), 11–17 (2009).
[Crossref]

Bretenaker, F.

N. D. Lai, M. Brunel, F. Bretenaker, B. Ferrand, and L. Fulbert, “Two-frequency Er-Yb:glass microchip laser passively Q switched by a Co:ASL saturable absorber,” Opt. Lett. 28(5), 328–330 (2003).
[Crossref] [PubMed]

Brunel, M.

N. D. Lai, M. Brunel, F. Bretenaker, B. Ferrand, and L. Fulbert, “Two-frequency Er-Yb:glass microchip laser passively Q switched by a Co:ASL saturable absorber,” Opt. Lett. 28(5), 328–330 (2003).
[Crossref] [PubMed]

Chang, F.

H. Liang, F. Chang, T. Wu, C. Sung, and Y. Chen, “Generation of orthogonally polarized mode-locked lasers at wavelength of 1342 nm,” IEEE Photonics J. 9(5), 1504908 (2017).
[Crossref]

Chen, W.

M. Wang, L. Zhu, J. Zhou, W. Chen, and D. Fan, “Performance of an actively Q-switched Er3+:Yb3+:YVO4 laser,” Laser Phys. Lett. 10(8), 085806 (2013).
[Crossref]

Chen, Y.

Y. Chen, Q. Hou, Y. Huang, Y. Lin, J. Huang, X. Gong, Z. Luo, Z. Lin, and Y. Huang, “Efficient continuous-wave diode-pumped Er3+:Yb3+:LaMgB5O10 laser with sapphire cooling at 1.57 μm,” Opt. Express 25(16), 19320–19325 (2017).
[Crossref] [PubMed]

H. Liang, F. Chang, T. Wu, C. Sung, and Y. Chen, “Generation of orthogonally polarized mode-locked lasers at wavelength of 1342 nm,” IEEE Photonics J. 9(5), 1504908 (2017).
[Crossref]

P. Tuan, M. Tsai, and Y. Chen, “Exploiting birefringent thermal lensing effect to manipulate polarization states of an Nd:YVO4 self-mode-locked laser,” Opt. Express 25(23), 29000–29009 (2017).
[Crossref]

Y. Li, J. Feng, P. Li, K. Zhang, Y. Chen, Y. Lin, and Y. Huang, “400 mW low noise continuous-wave single-frequency Er,Yb:YAl3(BO3)4 laser at 1.55 μm,” Opt. Express 21(5), 6082–6090 (2013).
[Crossref] [PubMed]

Chen, Y. J.

Y. J. Chen, Y. F. Lin, J. H. Huang, X. H. Gong, Z. D. Luo, and Y. D. Huang, “Efficient diode-pumped acousto-optic Q-switched Er:Yb:GdAl3(BO3)4 pulse laser at 1522 nm,” Opt. Lett. 40(21), 4927–4930 (2015).
[Crossref] [PubMed]

Fan, D.

M. Wang, L. Zhu, J. Zhou, W. Chen, and D. Fan, “Performance of an actively Q-switched Er3+:Yb3+:YVO4 laser,” Laser Phys. Lett. 10(8), 085806 (2013).
[Crossref]

Feng, J.

Y. Li, J. Feng, P. Li, K. Zhang, Y. Chen, Y. Lin, and Y. Huang, “400 mW low noise continuous-wave single-frequency Er,Yb:YAl3(BO3)4 laser at 1.55 μm,” Opt. Express 21(5), 6082–6090 (2013).
[Crossref] [PubMed]

Ferrand, B.

N. D. Lai, M. Brunel, F. Bretenaker, B. Ferrand, and L. Fulbert, “Two-frequency Er-Yb:glass microchip laser passively Q switched by a Co:ASL saturable absorber,” Opt. Lett. 28(5), 328–330 (2003).
[Crossref] [PubMed]

Fulbert, L.

N. D. Lai, M. Brunel, F. Bretenaker, B. Ferrand, and L. Fulbert, “Two-frequency Er-Yb:glass microchip laser passively Q switched by a Co:ASL saturable absorber,” Opt. Lett. 28(5), 328–330 (2003).
[Crossref] [PubMed]

Golling, M.

S. M. Link, A. Klenner, M. Mangold, C. A. Zaugg, M. Golling, B. W. Tilma, and U. Keller, “Dual-comb modelocked laser,” Opt. Express 23(5), 5521–5531 (2015).
[Crossref] [PubMed]

Gong, X.

Y. Chen, Q. Hou, Y. Huang, Y. Lin, J. Huang, X. Gong, Z. Luo, Z. Lin, and Y. Huang, “Efficient continuous-wave diode-pumped Er3+:Yb3+:LaMgB5O10 laser with sapphire cooling at 1.57 μm,” Opt. Express 25(16), 19320–19325 (2017).
[Crossref] [PubMed]

Gong, X. H.

Y. J. Chen, Y. F. Lin, J. H. Huang, X. H. Gong, Z. D. Luo, and Y. D. Huang, “Efficient diode-pumped acousto-optic Q-switched Er:Yb:GdAl3(BO3)4 pulse laser at 1522 nm,” Opt. Lett. 40(21), 4927–4930 (2015).
[Crossref] [PubMed]

Hou, Q.

Y. Chen, Q. Hou, Y. Huang, Y. Lin, J. Huang, X. Gong, Z. Luo, Z. Lin, and Y. Huang, “Efficient continuous-wave diode-pumped Er3+:Yb3+:LaMgB5O10 laser with sapphire cooling at 1.57 μm,” Opt. Express 25(16), 19320–19325 (2017).
[Crossref] [PubMed]

Huang, J.

Y. Chen, Q. Hou, Y. Huang, Y. Lin, J. Huang, X. Gong, Z. Luo, Z. Lin, and Y. Huang, “Efficient continuous-wave diode-pumped Er3+:Yb3+:LaMgB5O10 laser with sapphire cooling at 1.57 μm,” Opt. Express 25(16), 19320–19325 (2017).
[Crossref] [PubMed]

Huang, J. H.

Y. J. Chen, Y. F. Lin, J. H. Huang, X. H. Gong, Z. D. Luo, and Y. D. Huang, “Efficient diode-pumped acousto-optic Q-switched Er:Yb:GdAl3(BO3)4 pulse laser at 1522 nm,” Opt. Lett. 40(21), 4927–4930 (2015).
[Crossref] [PubMed]

Huang, Y.

Y. Huang, S. Sun, F. Yuan, L. Zhang, and Z. Lin, “Spectroscopic properties and continuous-wave laser operation of Er3+:Yb3+:LaMgB5O10 crystal,” J. Alloys Compd. 695, 215–220 (2017).
[Crossref]

Y. Chen, Q. Hou, Y. Huang, Y. Lin, J. Huang, X. Gong, Z. Luo, Z. Lin, and Y. Huang, “Efficient continuous-wave diode-pumped Er3+:Yb3+:LaMgB5O10 laser with sapphire cooling at 1.57 μm,” Opt. Express 25(16), 19320–19325 (2017).
[Crossref] [PubMed]

Y. Chen, Q. Hou, Y. Huang, Y. Lin, J. Huang, X. Gong, Z. Luo, Z. Lin, and Y. Huang, “Efficient continuous-wave diode-pumped Er3+:Yb3+:LaMgB5O10 laser with sapphire cooling at 1.57 μm,” Opt. Express 25(16), 19320–19325 (2017).
[Crossref] [PubMed]

Y. Li, J. Feng, P. Li, K. Zhang, Y. Chen, Y. Lin, and Y. Huang, “400 mW low noise continuous-wave single-frequency Er,Yb:YAl3(BO3)4 laser at 1.55 μm,” Opt. Express 21(5), 6082–6090 (2013).
[Crossref] [PubMed]

Huang, Y. D.

Y. J. Chen, Y. F. Lin, J. H. Huang, X. H. Gong, Z. D. Luo, and Y. D. Huang, “Efficient diode-pumped acousto-optic Q-switched Er:Yb:GdAl3(BO3)4 pulse laser at 1522 nm,” Opt. Lett. 40(21), 4927–4930 (2015).
[Crossref] [PubMed]

Karlsson, G.

G. Karlsson, V. Pasiskevicius, F. Laurell, and J. A. Tellefsen, “Q-switching of an Er-Yb:glass microchip laser using an acousto-optical modulator,” Opt. Commun. 217(1–6), 317–324 (2003).
[Crossref]

Keller, U.

S. M. Link, A. Klenner, M. Mangold, C. A. Zaugg, M. Golling, B. W. Tilma, and U. Keller, “Dual-comb modelocked laser,” Opt. Express 23(5), 5521–5531 (2015).
[Crossref] [PubMed]

Klenner, A.

S. M. Link, A. Klenner, M. Mangold, C. A. Zaugg, M. Golling, B. W. Tilma, and U. Keller, “Dual-comb modelocked laser,” Opt. Express 23(5), 5521–5531 (2015).
[Crossref] [PubMed]

Lai, N. D.

N. D. Lai, M. Brunel, F. Bretenaker, B. Ferrand, and L. Fulbert, “Two-frequency Er-Yb:glass microchip laser passively Q switched by a Co:ASL saturable absorber,” Opt. Lett. 28(5), 328–330 (2003).
[Crossref] [PubMed]

Laporta, P.

S. Taccheo, P. Laporta, S. Longhi, O. Svelto, and C. Svelto, “Diode-pumped bulk erbium-ytterbium lasers,” Appl. Phys. B 63(5), 425–436 (1996).
[Crossref]

Laurell, F.

G. Karlsson, V. Pasiskevicius, F. Laurell, and J. A. Tellefsen, “Q-switching of an Er-Yb:glass microchip laser using an acousto-optical modulator,” Opt. Commun. 217(1–6), 317–324 (2003).
[Crossref]

Li, P.

Y. Li, J. Feng, P. Li, K. Zhang, Y. Chen, Y. Lin, and Y. Huang, “400 mW low noise continuous-wave single-frequency Er,Yb:YAl3(BO3)4 laser at 1.55 μm,” Opt. Express 21(5), 6082–6090 (2013).
[Crossref] [PubMed]

Li, Y.

Y. Li, J. Feng, P. Li, K. Zhang, Y. Chen, Y. Lin, and Y. Huang, “400 mW low noise continuous-wave single-frequency Er,Yb:YAl3(BO3)4 laser at 1.55 μm,” Opt. Express 21(5), 6082–6090 (2013).
[Crossref] [PubMed]

Liang, H.

H. Liang, F. Chang, T. Wu, C. Sung, and Y. Chen, “Generation of orthogonally polarized mode-locked lasers at wavelength of 1342 nm,” IEEE Photonics J. 9(5), 1504908 (2017).
[Crossref]

Lin, Y.

Y. Chen, Q. Hou, Y. Huang, Y. Lin, J. Huang, X. Gong, Z. Luo, Z. Lin, and Y. Huang, “Efficient continuous-wave diode-pumped Er3+:Yb3+:LaMgB5O10 laser with sapphire cooling at 1.57 μm,” Opt. Express 25(16), 19320–19325 (2017).
[Crossref] [PubMed]

Y. Li, J. Feng, P. Li, K. Zhang, Y. Chen, Y. Lin, and Y. Huang, “400 mW low noise continuous-wave single-frequency Er,Yb:YAl3(BO3)4 laser at 1.55 μm,” Opt. Express 21(5), 6082–6090 (2013).
[Crossref] [PubMed]

Lin, Y. F.

Y. J. Chen, Y. F. Lin, J. H. Huang, X. H. Gong, Z. D. Luo, and Y. D. Huang, “Efficient diode-pumped acousto-optic Q-switched Er:Yb:GdAl3(BO3)4 pulse laser at 1522 nm,” Opt. Lett. 40(21), 4927–4930 (2015).
[Crossref] [PubMed]

Lin, Z.

Y. Huang, S. Sun, F. Yuan, L. Zhang, and Z. Lin, “Spectroscopic properties and continuous-wave laser operation of Er3+:Yb3+:LaMgB5O10 crystal,” J. Alloys Compd. 695, 215–220 (2017).
[Crossref]

Y. Chen, Q. Hou, Y. Huang, Y. Lin, J. Huang, X. Gong, Z. Luo, Z. Lin, and Y. Huang, “Efficient continuous-wave diode-pumped Er3+:Yb3+:LaMgB5O10 laser with sapphire cooling at 1.57 μm,” Opt. Express 25(16), 19320–19325 (2017).
[Crossref] [PubMed]

Link, S. M.

S. M. Link, A. Klenner, M. Mangold, C. A. Zaugg, M. Golling, B. W. Tilma, and U. Keller, “Dual-comb modelocked laser,” Opt. Express 23(5), 5521–5531 (2015).
[Crossref] [PubMed]

Longhi, S.

S. Taccheo, P. Laporta, S. Longhi, O. Svelto, and C. Svelto, “Diode-pumped bulk erbium-ytterbium lasers,” Appl. Phys. B 63(5), 425–436 (1996).
[Crossref]

Luo, Z.

Y. Chen, Q. Hou, Y. Huang, Y. Lin, J. Huang, X. Gong, Z. Luo, Z. Lin, and Y. Huang, “Efficient continuous-wave diode-pumped Er3+:Yb3+:LaMgB5O10 laser with sapphire cooling at 1.57 μm,” Opt. Express 25(16), 19320–19325 (2017).
[Crossref] [PubMed]

Luo, Z. D.

Y. J. Chen, Y. F. Lin, J. H. Huang, X. H. Gong, Z. D. Luo, and Y. D. Huang, “Efficient diode-pumped acousto-optic Q-switched Er:Yb:GdAl3(BO3)4 pulse laser at 1522 nm,” Opt. Lett. 40(21), 4927–4930 (2015).
[Crossref] [PubMed]

Mangold, M.

S. M. Link, A. Klenner, M. Mangold, C. A. Zaugg, M. Golling, B. W. Tilma, and U. Keller, “Dual-comb modelocked laser,” Opt. Express 23(5), 5521–5531 (2015).
[Crossref] [PubMed]

Pasiskevicius, V.

G. Karlsson, V. Pasiskevicius, F. Laurell, and J. A. Tellefsen, “Q-switching of an Er-Yb:glass microchip laser using an acousto-optical modulator,” Opt. Commun. 217(1–6), 317–324 (2003).
[Crossref]

Sun, S.

Y. Huang, S. Sun, F. Yuan, L. Zhang, and Z. Lin, “Spectroscopic properties and continuous-wave laser operation of Er3+:Yb3+:LaMgB5O10 crystal,” J. Alloys Compd. 695, 215–220 (2017).
[Crossref]

Sung, C.

H. Liang, F. Chang, T. Wu, C. Sung, and Y. Chen, “Generation of orthogonally polarized mode-locked lasers at wavelength of 1342 nm,” IEEE Photonics J. 9(5), 1504908 (2017).
[Crossref]

Svelto, C.

S. Taccheo, P. Laporta, S. Longhi, O. Svelto, and C. Svelto, “Diode-pumped bulk erbium-ytterbium lasers,” Appl. Phys. B 63(5), 425–436 (1996).
[Crossref]

Svelto, O.

S. Taccheo, P. Laporta, S. Longhi, O. Svelto, and C. Svelto, “Diode-pumped bulk erbium-ytterbium lasers,” Appl. Phys. B 63(5), 425–436 (1996).
[Crossref]

Taccheo, S.

S. Taccheo, P. Laporta, S. Longhi, O. Svelto, and C. Svelto, “Diode-pumped bulk erbium-ytterbium lasers,” Appl. Phys. B 63(5), 425–436 (1996).
[Crossref]

Tellefsen, J. A.

G. Karlsson, V. Pasiskevicius, F. Laurell, and J. A. Tellefsen, “Q-switching of an Er-Yb:glass microchip laser using an acousto-optical modulator,” Opt. Commun. 217(1–6), 317–324 (2003).
[Crossref]

Tilma, B. W.

S. M. Link, A. Klenner, M. Mangold, C. A. Zaugg, M. Golling, B. W. Tilma, and U. Keller, “Dual-comb modelocked laser,” Opt. Express 23(5), 5521–5531 (2015).
[Crossref] [PubMed]

Tsai, M.

P. Tuan, M. Tsai, and Y. Chen, “Exploiting birefringent thermal lensing effect to manipulate polarization states of an Nd:YVO4 self-mode-locked laser,” Opt. Express 25(23), 29000–29009 (2017).
[Crossref]

Tsang, Y. H.

Y. H. Tsang and D. J. Binks, “Record performance from a Q-switched Er3+:Yb3+:YVO4 laser,” Appl. Phys. B 96(1), 11–17 (2009).
[Crossref]

Tuan, P.

P. Tuan, M. Tsai, and Y. Chen, “Exploiting birefringent thermal lensing effect to manipulate polarization states of an Nd:YVO4 self-mode-locked laser,” Opt. Express 25(23), 29000–29009 (2017).
[Crossref]

Wang, M.

M. Wang, L. Zhu, J. Zhou, W. Chen, and D. Fan, “Performance of an actively Q-switched Er3+:Yb3+:YVO4 laser,” Laser Phys. Lett. 10(8), 085806 (2013).
[Crossref]

Wu, T.

H. Liang, F. Chang, T. Wu, C. Sung, and Y. Chen, “Generation of orthogonally polarized mode-locked lasers at wavelength of 1342 nm,” IEEE Photonics J. 9(5), 1504908 (2017).
[Crossref]

Yuan, F.

Y. Huang, S. Sun, F. Yuan, L. Zhang, and Z. Lin, “Spectroscopic properties and continuous-wave laser operation of Er3+:Yb3+:LaMgB5O10 crystal,” J. Alloys Compd. 695, 215–220 (2017).
[Crossref]

Zaugg, C. A.

S. M. Link, A. Klenner, M. Mangold, C. A. Zaugg, M. Golling, B. W. Tilma, and U. Keller, “Dual-comb modelocked laser,” Opt. Express 23(5), 5521–5531 (2015).
[Crossref] [PubMed]

Zhang, K.

Y. Li, J. Feng, P. Li, K. Zhang, Y. Chen, Y. Lin, and Y. Huang, “400 mW low noise continuous-wave single-frequency Er,Yb:YAl3(BO3)4 laser at 1.55 μm,” Opt. Express 21(5), 6082–6090 (2013).
[Crossref] [PubMed]

Zhang, L.

Y. Huang, S. Sun, F. Yuan, L. Zhang, and Z. Lin, “Spectroscopic properties and continuous-wave laser operation of Er3+:Yb3+:LaMgB5O10 crystal,” J. Alloys Compd. 695, 215–220 (2017).
[Crossref]

Zhou, J.

M. Wang, L. Zhu, J. Zhou, W. Chen, and D. Fan, “Performance of an actively Q-switched Er3+:Yb3+:YVO4 laser,” Laser Phys. Lett. 10(8), 085806 (2013).
[Crossref]

Zhu, L.

M. Wang, L. Zhu, J. Zhou, W. Chen, and D. Fan, “Performance of an actively Q-switched Er3+:Yb3+:YVO4 laser,” Laser Phys. Lett. 10(8), 085806 (2013).
[Crossref]

Appl. Phys. B (2)

Y. H. Tsang and D. J. Binks, “Record performance from a Q-switched Er3+:Yb3+:YVO4 laser,” Appl. Phys. B 96(1), 11–17 (2009).
[Crossref]

S. Taccheo, P. Laporta, S. Longhi, O. Svelto, and C. Svelto, “Diode-pumped bulk erbium-ytterbium lasers,” Appl. Phys. B 63(5), 425–436 (1996).
[Crossref]

IEEE Photonics J. (1)

H. Liang, F. Chang, T. Wu, C. Sung, and Y. Chen, “Generation of orthogonally polarized mode-locked lasers at wavelength of 1342 nm,” IEEE Photonics J. 9(5), 1504908 (2017).
[Crossref]

J. Alloys Compd. (1)

Y. Huang, S. Sun, F. Yuan, L. Zhang, and Z. Lin, “Spectroscopic properties and continuous-wave laser operation of Er3+:Yb3+:LaMgB5O10 crystal,” J. Alloys Compd. 695, 215–220 (2017).
[Crossref]

Laser Phys. Lett. (1)

M. Wang, L. Zhu, J. Zhou, W. Chen, and D. Fan, “Performance of an actively Q-switched Er3+:Yb3+:YVO4 laser,” Laser Phys. Lett. 10(8), 085806 (2013).
[Crossref]

Opt. Commun. (1)

G. Karlsson, V. Pasiskevicius, F. Laurell, and J. A. Tellefsen, “Q-switching of an Er-Yb:glass microchip laser using an acousto-optical modulator,” Opt. Commun. 217(1–6), 317–324 (2003).
[Crossref]

Opt. Express (4)

Y. Chen, Q. Hou, Y. Huang, Y. Lin, J. Huang, X. Gong, Z. Luo, Z. Lin, and Y. Huang, “Efficient continuous-wave diode-pumped Er3+:Yb3+:LaMgB5O10 laser with sapphire cooling at 1.57 μm,” Opt. Express 25(16), 19320–19325 (2017).
[Crossref] [PubMed]

Y. Li, J. Feng, P. Li, K. Zhang, Y. Chen, Y. Lin, and Y. Huang, “400 mW low noise continuous-wave single-frequency Er,Yb:YAl3(BO3)4 laser at 1.55 μm,” Opt. Express 21(5), 6082–6090 (2013).
[Crossref] [PubMed]

S. M. Link, A. Klenner, M. Mangold, C. A. Zaugg, M. Golling, B. W. Tilma, and U. Keller, “Dual-comb modelocked laser,” Opt. Express 23(5), 5521–5531 (2015).
[Crossref] [PubMed]

P. Tuan, M. Tsai, and Y. Chen, “Exploiting birefringent thermal lensing effect to manipulate polarization states of an Nd:YVO4 self-mode-locked laser,” Opt. Express 25(23), 29000–29009 (2017).
[Crossref]

Opt. Lett. (2)

N. D. Lai, M. Brunel, F. Bretenaker, B. Ferrand, and L. Fulbert, “Two-frequency Er-Yb:glass microchip laser passively Q switched by a Co:ASL saturable absorber,” Opt. Lett. 28(5), 328–330 (2003).
[Crossref] [PubMed]

Y. J. Chen, Y. F. Lin, J. H. Huang, X. H. Gong, Z. D. Luo, and Y. D. Huang, “Efficient diode-pumped acousto-optic Q-switched Er:Yb:GdAl3(BO3)4 pulse laser at 1522 nm,” Opt. Lett. 40(21), 4927–4930 (2015).
[Crossref] [PubMed]

Other (1)

B. Denker, B. Galagan, S. Sverchkov, and A. Prokhorov, “Erbium (Er) glass lasers,” in Handbook of Solid-State Lasers, B. Denker and E. Shklovsky, eds. (Woodhead, 2013).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Experimental setup of a CW 976 nm-diode-pumped acousto-optic Q-switched Er:Yb:LMB 1.55 μm pulse laser.
Fig. 2
Fig. 2 (a) CW output power realized in an Er:Yb:LMB crystal as a function of absorbed pump power when the resonator was with or without a quartz crystal. (b) Spectra of CW Er:Yb:LMB lasers at an absorbed pumped power of 4.0 W.
Fig. 3
Fig. 3 Average output power and pulse energy of the acousto-optic Q-switched Er:Yb:LMB pulse laser at 1568 nm as functions of pulse repetition frequency at an absorbed pump power of 4.0 W. The output laser spectrum at repetition frequency of 0.5 kHz is shown in the inset.
Fig. 4
Fig. 4 (a) Pulse width of the acousto-optic Q-switched Er:Yb:LMB pulse laser at 1568 nm as a function of pulse repetition frequency at an absorbed pump power of 4.0 W. (b) Pulse train at repetition frequency of 0.5 kHz and absorbed pump power of 4.0 W.
Fig. 5
Fig. 5 (a) Average output power and pulse energy of the acousto-optic Q-switched Er:Yb:LMB pulse laser at 1558 nm as functions of pulse repetition frequency at an absorbed pump power of 4.0 W. The output laser spectrum at repetition frequency of 0.5 kHz is also shown in the inset. (b) Pulse width as a function of pulse repetition frequency at an absorbed pump power of 4.0 W.

Tables (1)

Tables Icon

Table 1 Parameters of the acousto-optic Q-switched Er:Yb:LMB pulse lasers for different OM transmissions T at an absorbed pump power of 4.0 W and repetition frequency of 0.5 kHz.