Abstract

Infrared spectroscopy in the spectral fingerprint region from 6.5 to 20 µm has been applied for decades to identify vapor- and condensed-phase chemicals with high confidence. By employing a unique broadband laser operating from 7.2- to 11.5-µm we show that, in this region, wavelength-dependent Mie-scattering effects substantially modulate the underlying chemical absorption signature, undermining the ability of conventional infrared absorption spectroscopy to identify aerosolized liquids and solids. In the aerosol studied, Mie theory predicts that the positions of spectroscopic features will blue-shift by up to 200 nm, and this behavior is confirmed by experiment, illustrating the critical importance of considering Mie contributions to aerosol spectroscopy in the mid infrared. By examining the spectroscopy of light scattered from an aerosol of the chemical diethyl phthalate, we demonstrate excellent agreement with a Mie-scattering model informed by direct measurements of the particle-size-distribution and complex refractive index.

Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Full Article  |  PDF Article
OSA Recommended Articles
Stand-off identification of aerosols using mid-infrared backscattering Fourier-transform spectroscopy

Luke Maidment, Zhaowei Zhang, Christopher R. Howle, and Derryck T. Reid
Opt. Lett. 41(10) 2266-2269 (2016)

In situ infrared aerosol spectroscopy for a variety of nerve agent simulants using flow-through photoacoustics

Kristan P. Gurton, Melvin Felton, Rachid Dahmani, and David Ligon
Appl. Opt. 46(25) 6323-6329 (2007)

Measured infrared spectral extinction for aerosolized Bacillus subtilis var. niger endospores from 3 to 13 µm

Kristan P. Gurton, David Ligon, and Ramaz Kvavilashvili
Appl. Opt. 40(25) 4443-4448 (2001)

References

  • View by:
  • |
  • |
  • |

  1. C. E. Kolb and D. R. Worsnop, “Chemistry and Composition of Atmospheric Aerosol Particles,” Annu. Rev. Phys. Chem. 63(1), 471–491 (2012).
    [Crossref] [PubMed]
  2. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-VCH, 2004).
  3. S. Arnold, M. Neuman, and A. B. Pluchino, “Molecular spectroscopy of a single aerosol particle,” Opt. Lett. 9(1), 4–6 (1984).
    [Crossref] [PubMed]
  4. R. M. Sullenberger, S. M. Redmond, D. Crompton, A. M. Stolyarov, and W. D. Herzog, “Spatially-resolved individual particle spectroscopy using photothermal modulation of Mie scattering,” Opt. Lett. 42(2), 203–206 (2017).
    [Crossref] [PubMed]
  5. A. Aiuppa, L. Fiorani, S. Santoro, S. Parracino, M. Nuvoli, G. Chiodini, C. Minopoli, and G. Tamburello, “New ground-based lidar enables volcanic CO2 flux measurements,” Sci. Rep. 5(1), 13614 (2015).
    [Crossref] [PubMed]
  6. R. E. H. Miles, A. E. Carruthers, and J. P. Reid, “Novel optical techniques for measurements of light extinction, scattering and absorption by single aerosol particles,” Laser Photonics Rev. 5(4), 534–552 (2011).
    [Crossref]
  7. K. P. Gurton, M. Felton, R. Dahmani, and D. Ligon, “In situ infrared aerosol spectroscopy for a variety of nerve agent simulants using flow-through photoacoustics,” Appl. Opt. 46(25), 6323–6329 (2007).
    [Crossref] [PubMed]
  8. K. B. Aptowicz, Y.-L. Pan, R. K. Chang, R. G. Pinnick, S. C. Hill, R. L. Tober, A. Goyal, T. Jeys, and B. V. Bronk, “Two-dimensional angular optical scattering patterns of microdroplets in the mid infrared with strong and weak absorption,” Opt. Lett. 29(17), 1965–1967 (2004).
    [Crossref] [PubMed]
  9. L. Maidment, Z. Zhang, C. R. Howle, and D. T. Reid, “Stand-off identification of aerosols using mid-infrared backscattering Fourier-transform spectroscopy,” Opt. Lett. 41(10), 2266–2269 (2016).
    [Crossref] [PubMed]
  10. L. Maidment, P. G. Schunemann, and D. T. Reid, “Molecular fingerprint-region spectroscopy from 5 to 12 μm using an orientation-patterned gallium phosphide optical parametric oscillator,” Opt. Lett. 41(18), 4261–4264 (2016).
    [Crossref] [PubMed]
  11. S. L. Bartelt-Hunt, D. R. U. Knappe, and M. A. Barlaz, “A review of chemical warfare agent simulants for the study of environmental behavior,” Crit. Rev. Environ. Sci. Technol. 38(2), 112–136 (2008).
    [Crossref]
  12. A. Kocak, S. L. Berets, V. Milosevic, and M. Milosevic, “Using the Kramers-Kronig method to determine optical constants and evaluating its suitability as a linear transform for near-normal front-surface reflectance spectra,” Appl. Spectrosc. 60(9), 1004–1007 (2006).
    [Crossref] [PubMed]
  13. J. Schäfer, “MatScat,” http://www.mathworks.com/matlabcentral/fileexchange/36831-matscat .
  14. M. Kumar, M. N. Islam, F. L. Terry, M. J. Freeman, A. Chan, M. Neelakandan, and T. Manzur, “Stand-off detection of solid targets with diffuse reflection spectroscopy using a high-power mid-infrared supercontinuum source,” Appl. Opt. 51(15), 2794–2807 (2012).
    [Crossref] [PubMed]
  15. M. T. Dohm, A. M. Potscavage, and R. F. Niedziela, “Infrared optical constants for carvone from the Mie inversion of aerosol extinction spectra,” J. Phys. Chem. A 108(25), 5365–5376 (2004).
    [Crossref]

2017 (1)

2016 (2)

2015 (1)

A. Aiuppa, L. Fiorani, S. Santoro, S. Parracino, M. Nuvoli, G. Chiodini, C. Minopoli, and G. Tamburello, “New ground-based lidar enables volcanic CO2 flux measurements,” Sci. Rep. 5(1), 13614 (2015).
[Crossref] [PubMed]

2012 (2)

2011 (1)

R. E. H. Miles, A. E. Carruthers, and J. P. Reid, “Novel optical techniques for measurements of light extinction, scattering and absorption by single aerosol particles,” Laser Photonics Rev. 5(4), 534–552 (2011).
[Crossref]

2008 (1)

S. L. Bartelt-Hunt, D. R. U. Knappe, and M. A. Barlaz, “A review of chemical warfare agent simulants for the study of environmental behavior,” Crit. Rev. Environ. Sci. Technol. 38(2), 112–136 (2008).
[Crossref]

2007 (1)

2006 (1)

2004 (2)

1984 (1)

Aiuppa, A.

A. Aiuppa, L. Fiorani, S. Santoro, S. Parracino, M. Nuvoli, G. Chiodini, C. Minopoli, and G. Tamburello, “New ground-based lidar enables volcanic CO2 flux measurements,” Sci. Rep. 5(1), 13614 (2015).
[Crossref] [PubMed]

Aptowicz, K. B.

Arnold, S.

Barlaz, M. A.

S. L. Bartelt-Hunt, D. R. U. Knappe, and M. A. Barlaz, “A review of chemical warfare agent simulants for the study of environmental behavior,” Crit. Rev. Environ. Sci. Technol. 38(2), 112–136 (2008).
[Crossref]

Bartelt-Hunt, S. L.

S. L. Bartelt-Hunt, D. R. U. Knappe, and M. A. Barlaz, “A review of chemical warfare agent simulants for the study of environmental behavior,” Crit. Rev. Environ. Sci. Technol. 38(2), 112–136 (2008).
[Crossref]

Berets, S. L.

Bronk, B. V.

Carruthers, A. E.

R. E. H. Miles, A. E. Carruthers, and J. P. Reid, “Novel optical techniques for measurements of light extinction, scattering and absorption by single aerosol particles,” Laser Photonics Rev. 5(4), 534–552 (2011).
[Crossref]

Chan, A.

Chang, R. K.

Chiodini, G.

A. Aiuppa, L. Fiorani, S. Santoro, S. Parracino, M. Nuvoli, G. Chiodini, C. Minopoli, and G. Tamburello, “New ground-based lidar enables volcanic CO2 flux measurements,” Sci. Rep. 5(1), 13614 (2015).
[Crossref] [PubMed]

Crompton, D.

Dahmani, R.

Dohm, M. T.

M. T. Dohm, A. M. Potscavage, and R. F. Niedziela, “Infrared optical constants for carvone from the Mie inversion of aerosol extinction spectra,” J. Phys. Chem. A 108(25), 5365–5376 (2004).
[Crossref]

Felton, M.

Fiorani, L.

A. Aiuppa, L. Fiorani, S. Santoro, S. Parracino, M. Nuvoli, G. Chiodini, C. Minopoli, and G. Tamburello, “New ground-based lidar enables volcanic CO2 flux measurements,” Sci. Rep. 5(1), 13614 (2015).
[Crossref] [PubMed]

Freeman, M. J.

Goyal, A.

Gurton, K. P.

Herzog, W. D.

Hill, S. C.

Howle, C. R.

Islam, M. N.

Jeys, T.

Knappe, D. R. U.

S. L. Bartelt-Hunt, D. R. U. Knappe, and M. A. Barlaz, “A review of chemical warfare agent simulants for the study of environmental behavior,” Crit. Rev. Environ. Sci. Technol. 38(2), 112–136 (2008).
[Crossref]

Kocak, A.

Kolb, C. E.

C. E. Kolb and D. R. Worsnop, “Chemistry and Composition of Atmospheric Aerosol Particles,” Annu. Rev. Phys. Chem. 63(1), 471–491 (2012).
[Crossref] [PubMed]

Kumar, M.

Ligon, D.

Maidment, L.

Manzur, T.

Miles, R. E. H.

R. E. H. Miles, A. E. Carruthers, and J. P. Reid, “Novel optical techniques for measurements of light extinction, scattering and absorption by single aerosol particles,” Laser Photonics Rev. 5(4), 534–552 (2011).
[Crossref]

Milosevic, M.

Milosevic, V.

Minopoli, C.

A. Aiuppa, L. Fiorani, S. Santoro, S. Parracino, M. Nuvoli, G. Chiodini, C. Minopoli, and G. Tamburello, “New ground-based lidar enables volcanic CO2 flux measurements,” Sci. Rep. 5(1), 13614 (2015).
[Crossref] [PubMed]

Neelakandan, M.

Neuman, M.

Niedziela, R. F.

M. T. Dohm, A. M. Potscavage, and R. F. Niedziela, “Infrared optical constants for carvone from the Mie inversion of aerosol extinction spectra,” J. Phys. Chem. A 108(25), 5365–5376 (2004).
[Crossref]

Nuvoli, M.

A. Aiuppa, L. Fiorani, S. Santoro, S. Parracino, M. Nuvoli, G. Chiodini, C. Minopoli, and G. Tamburello, “New ground-based lidar enables volcanic CO2 flux measurements,” Sci. Rep. 5(1), 13614 (2015).
[Crossref] [PubMed]

Pan, Y.-L.

Parracino, S.

A. Aiuppa, L. Fiorani, S. Santoro, S. Parracino, M. Nuvoli, G. Chiodini, C. Minopoli, and G. Tamburello, “New ground-based lidar enables volcanic CO2 flux measurements,” Sci. Rep. 5(1), 13614 (2015).
[Crossref] [PubMed]

Pinnick, R. G.

Pluchino, A. B.

Potscavage, A. M.

M. T. Dohm, A. M. Potscavage, and R. F. Niedziela, “Infrared optical constants for carvone from the Mie inversion of aerosol extinction spectra,” J. Phys. Chem. A 108(25), 5365–5376 (2004).
[Crossref]

Redmond, S. M.

Reid, D. T.

Reid, J. P.

R. E. H. Miles, A. E. Carruthers, and J. P. Reid, “Novel optical techniques for measurements of light extinction, scattering and absorption by single aerosol particles,” Laser Photonics Rev. 5(4), 534–552 (2011).
[Crossref]

Santoro, S.

A. Aiuppa, L. Fiorani, S. Santoro, S. Parracino, M. Nuvoli, G. Chiodini, C. Minopoli, and G. Tamburello, “New ground-based lidar enables volcanic CO2 flux measurements,” Sci. Rep. 5(1), 13614 (2015).
[Crossref] [PubMed]

Schunemann, P. G.

Stolyarov, A. M.

Sullenberger, R. M.

Tamburello, G.

A. Aiuppa, L. Fiorani, S. Santoro, S. Parracino, M. Nuvoli, G. Chiodini, C. Minopoli, and G. Tamburello, “New ground-based lidar enables volcanic CO2 flux measurements,” Sci. Rep. 5(1), 13614 (2015).
[Crossref] [PubMed]

Terry, F. L.

Tober, R. L.

Worsnop, D. R.

C. E. Kolb and D. R. Worsnop, “Chemistry and Composition of Atmospheric Aerosol Particles,” Annu. Rev. Phys. Chem. 63(1), 471–491 (2012).
[Crossref] [PubMed]

Zhang, Z.

Annu. Rev. Phys. Chem. (1)

C. E. Kolb and D. R. Worsnop, “Chemistry and Composition of Atmospheric Aerosol Particles,” Annu. Rev. Phys. Chem. 63(1), 471–491 (2012).
[Crossref] [PubMed]

Appl. Opt. (2)

Appl. Spectrosc. (1)

Crit. Rev. Environ. Sci. Technol. (1)

S. L. Bartelt-Hunt, D. R. U. Knappe, and M. A. Barlaz, “A review of chemical warfare agent simulants for the study of environmental behavior,” Crit. Rev. Environ. Sci. Technol. 38(2), 112–136 (2008).
[Crossref]

J. Phys. Chem. A (1)

M. T. Dohm, A. M. Potscavage, and R. F. Niedziela, “Infrared optical constants for carvone from the Mie inversion of aerosol extinction spectra,” J. Phys. Chem. A 108(25), 5365–5376 (2004).
[Crossref]

Laser Photonics Rev. (1)

R. E. H. Miles, A. E. Carruthers, and J. P. Reid, “Novel optical techniques for measurements of light extinction, scattering and absorption by single aerosol particles,” Laser Photonics Rev. 5(4), 534–552 (2011).
[Crossref]

Opt. Lett. (5)

Sci. Rep. (1)

A. Aiuppa, L. Fiorani, S. Santoro, S. Parracino, M. Nuvoli, G. Chiodini, C. Minopoli, and G. Tamburello, “New ground-based lidar enables volcanic CO2 flux measurements,” Sci. Rep. 5(1), 13614 (2015).
[Crossref] [PubMed]

Other (2)

C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-VCH, 2004).

J. Schäfer, “MatScat,” http://www.mathworks.com/matlabcentral/fileexchange/36831-matscat .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1 (a) The mid-infrared idler beam from an orientation patterned gallium phosphide (OPGaP) OPO passes through a scanning Michelson interferometer acting as a Fourier transform spectrometer (using a ZnSe beamsplitter coated for 7 – 14 µm). A weak reflection of the beam is measured on an HgCdTe detector to provide a reference spectrum. The main mid-infrared beam is directed through the aerosol, and scattered light is collected and focused onto the scattering detector. (b) Size distribution of aerosolized DEP. (c) Real (blue) and imaginary (orange) parts of the complex refractive index of DEP (d) Example of the data recorded during the experiment, showing an interferogram recorded on the scattered light detector. (e) Example of the measured spectra from the reference (orange) and scattered light (blue) detectors.
Fig. 2
Fig. 2 (a) Mid-infrared liquid transmission spectrum for DEP (yellow) and the simulated scattered light spectrum for an aerosol of DEP with the measured size distribution and refractive index, for p-polarized incident light measuring at an angle of 25 degrees (orange). (b-d) Reproduction of the spectra in (a) over a narrower wavelength interval, with the experimentally measured scattered light spectrum (blue). Pearson correlation coefficients (r values) between the experimental results and the simulated scattering and transmission spectra are displayed.
Fig. 3
Fig. 3 (a) Spectra recorded on the reference (green) and scattering (purple) detectors for an aerosol of carvone. (b) Scattered light spectrum (blue) co-plotted with the transmission spectrum (yellow) of liquid carvone (calculated using data in [15]).

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

( E p E s )= e ik(rz) ikr ( S 2 0 0 S 1 )( E p 0 E s 0 )
I sca I 0 = | S j ( θ ) | 2 k 2 r 2
d C sca dΩ = | S j ( θ ) | 2 k 2
C sca = 1 k 2 dΩ | S j ( θ ) | 2 sinθdθdφ
P sc a dist = i=1 n p i P sca ( d i )

Metrics