Abstract

We present an analysis on how the optical parametric oscillator (OPO) detuning and the relative phase drift deteriorate the stability of the squeezed states, including the output power and the squeezed degree, and investigate the influence of RAM on the cavity detuning and the relative phase drift under different cases. Subsequently, the RAM is experimentally measured. In term of the measurement results, we perform a comparative study about RAM’s influence on the cavity and phase locking in two cases. As a result, with the error signal extracted from the transmission of the OPO, the output power stability of the squeezed light is greatly improved. With the phase modulation imposed on the signal beam, the long-term stability of the squeezed degree is significantly enhanced.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Reduction of zero baseline drift of the Pound–Drever–Hall error signal with a wedged electro-optical crystal for squeezed state generation

Zhixiu Li, Weiguang Ma, Wenhai Yang, Yajun Wang, and Yaohui Zheng
Opt. Lett. 41(14) 3331-3334 (2016)

Utilizing weak pump depletion to stabilize squeezed vacuum states

T. Denker, D. Schütte, M. H. Wimmer, T. A. Wheatley, E. H. Huntington, and M. Heurs
Opt. Express 23(13) 16517-16528 (2015)

Squeezed states of light from an optical parametric oscillator

Ling-An Wu, Min Xiao, and H. J. Kimble
J. Opt. Soc. Am. B 4(10) 1465-1475 (1987)

References

  • View by:
  • |
  • |
  • |

  1. H. Grote, K. Danzmann, K. L. Dooley, R. Schnabel, J. Slutsky, and H. Vahlbruch, “First long-term application of squeezed states of light in a gravitational-wave observatory,” Phys. Rev. Lett. 110, 181101 (2013).
    [Crossref] [PubMed]
  2. LIGO Scientific Collaboration, “A gravitational wave observatory operating beyond the quantum shot-noise limit,” Nat. Phys. 7, 962–965 (2011).
    [Crossref]
  3. K. Goda, O. Miyakawa, E. E. Mikhailov, S. Saraf, R. Adhikari, K. Mchenzie, R. Ward, S. Vass, A. J. Weinstein, and N. Mavalvala, “A quantum-enhanced prototype gravitational-wave detector,” Nat. Phys. 4, 472–476 (2008).
    [Crossref]
  4. A. Furusawa, J. L. Sorensen, S. L. Braunstein, C. A. Fuchs, H. J. Kimble, and E. S. Polzik, “Unconditional quantum teleportation,” Science 282, 706–709 (1998).
    [Crossref] [PubMed]
  5. S. L. Braunstein and P. Van. Loock, “Quantum information with continuous variables,” Rev. Mod. Phys. 77(2), 513–577 (2005).
    [Crossref]
  6. R. E. Slusher, L. W. Hollberg, B. Yurke, J. C. Mertz, and J. F. Valley, “Observation of squeezed states generated by four-wave mixing in an optical cavity,” Phys. Rev. Lett. 55, 2409–2412 (1985).
    [Crossref] [PubMed]
  7. T. Corbitt, Y. Chen, F. Khalili, D. Ottaway, S. Vyatchanin, S. Whitcomb, and N. Mavalvala, “Squeezed-state source using radiation-pressure induced rigidity,” Phys. Rev. A,  73, 023801 (2006).
    [Crossref]
  8. L. A. Wu, H. J. Kimble, J. L. Hall, and H. F. Wu, “Generation of squeezed states by parametric down conversion,” Phys. Rev. Lett. 57(20), 2520–2523 (1986).
    [Crossref] [PubMed]
  9. S. Suzuki, H. Yonezawa, F. Kannari, M. Sasaki, and A. Furusawa, “7 dB quadrature squeezing at 860 nm with periodically poled KTiOPO4,” Appl. Phys. Lett. 89, 061116 (2006).
    [Crossref]
  10. T. Eberle, S. Steinlechner, J. Bauchrowitz, V. Handchen, H. Vahlbruch, M. Mehmet, H. Muller-Ebhardt, and R. Schnabel, “Quantum enhancement of the zero-area sagnac interferometer topology for gravitational wave detection,” Phys. Rev. Lett. 104, 251102 (2010).
    [Crossref] [PubMed]
  11. M. Mehmet, S. Ast, T. Eberle, S. Steinlechner, H. Vahlbruch, and R Schnabel, “Squeezed light at 1550 nm with a quantum noise reduction of 12.3 dB,” Opt. Express 19(25), 25763–25772 (2011).
    [Crossref]
  12. T. Serikawa, J. Yoshikawa, K. Makino, and A. Frusawa, “Creation and measurement of broadband squeezed vacuum from a ring optical parametric oscillator,” Opt. Express 24(25), 28383–28391 (2016).
    [Crossref] [PubMed]
  13. H. Vahlbruch, M. Mehmet, K. Danzmann, and R. Schnabel, “Detection of 15 dB squeezed states of light and their application for the absolute calibration of photoelectric quantum efficiency,” Phys. Rev. Lett. 117, 110801 (2016).
    [Crossref]
  14. E. Oelker, G. Mansell, M. Tse, J. Miller, F. Matichard, L. Barsotti, P. Fritschel, D. E. McClelland, M. Evans, and N. Mavalvala, “Ultra-low phase noise squeezed vacuum source for gravitational wave detectors,” Optica 3(7), 682–685 (2016).
    [Crossref]
  15. Y. Takeno, M. Yukawa, H. Yonezawa, and A. Furusawa, “Observation of −9 dB quadrature squeezing with improvement of phase stability in homodyne measurement,” Opt. Express 15(7), 4321–4327 (2007).
    [Crossref] [PubMed]
  16. E. D. Black, “An introduction to Pound–Drever–Hall laser frequency stabilization,” Am. J. Phys. 69(1), 79–87 (2001).
    [Crossref]
  17. U. Andersen, T. Gehring, C. Marquardt, and G. Leuchs, “30 years of squeezed light generation,” Phys. Scr. 91, 053001 (2016).
    [Crossref]
  18. W. Zhang, M. J. Martin, C. Benko, J. L. Hall, J. Ye, C. Hagemann, T. Legero, U. Sterr, F. Riehle, G. D. Cole, and M. Aspelmeyer, “Reduction of residual amplitude modulation to 1 ×10−6 for frequency modulation and laser stabilization,” Opt. Lett. 39(7), 1980–1983 (2014).
    [Crossref] [PubMed]
  19. N. C. Wong and J. L. Hall, “Servo control of amplitude modulation in frequency-modulation spectroscopy: demonstration of shot-noise-limited detection,” J. Opt. Soc. Am. B,  2(9), 1527–1533 (1985).
    [Crossref]
  20. P. Kluczynski and O. Axner, “Theoretical description based on Fourier analysis of wavelength-modulation spectrometry in terms of analytical and background signals,” Appl. Opt. 38(27), 5803–5815 (1999).
    [Crossref]
  21. I. Silander, P. Ehlers, J. Y. Wang, and O. Axner, “Frequency modulation background signals from fiber-based electro optic modulators are caused by crosstalk,” J. Opt. Soc. Am. B 29(5), 916–923 (2012).
    [Crossref]
  22. A. Foltynowicz, I. Silander, and O. Axner, “Reduction of background signals in fiber-based NICE-OHMS,” J. Opt. Soc. Am. B 28(11), 2797–2805 (2011).
    [Crossref]
  23. L. F. Li, F. Liu, C. Wang, and L. S. Chen, “Measurement and control of residual amplitude modulation in optical phase modulation,” Rev. Sci. Instrum. 83, 043111 (2012).
    [Crossref] [PubMed]
  24. Z. X. Li, W. G. Ma, W. H. Yang, Y. J. Wang, and Y. H. Zheng, “Reduction of zero baseline drift of the Pound–Drever– Hall error signal with a wedged electro-optical crystal for squeezed state generation,” Opt. Lett. 41(14), 3331–3334 (2016).
    [Crossref] [PubMed]
  25. Z. Y. Tai, L. L. Yan, Y. Y. Zhang, X. F. Zhang, W. G. Guo, S. G. Zhang, and H. F. Jiang, “Electro-optic modulator with ultra-low residual amplitude modulation for frequency modulation and laser stabilization,” Opt. Lett. 41(23), 5584–5587 (2016).
    [Crossref] [PubMed]
  26. S. Dwyer, L. Barsotti, S. S. Y. Chua, M. Evans, M. Factourovich, D. Gustafson, T. Isogai, K. Kawabe, A. Khalaidovski, P. K. Lam, M. Landry, N. Mavalvala, D. E. McClelland, G. D. Meadors, C. M. Mow-Lowry, R. Schnabel, R. M. S. Schofield, N. Smith-Lefebvre, M. Stefszky, C. Vorvick, and D. Sigg, “Squeezed quadrature fluctuations in a gravitational wave detector using squeezed light,” Opt. Express,  21(16), 19047–19060 (2013).
    [Crossref] [PubMed]
  27. K. L. Dooley, E. Schreiber, H. Vahlbruch, C. Affeldt, J. R. Leong, H. Wittel, and H. Grote, “Phase control of squeezed vacuum states of light in gravitational wave detectors,” Opt. Express,  23(7), 8235–8245 (2015).
    [Crossref] [PubMed]
  28. W. H. Yang, S. P. Shi, Y. J. Wang, W. G. Ma, Y. H. Zheng, and K. C. Peng, “Detection of stably bright squeezed light with the quantum noise reduction of 12.6 dB by mutually compensating the phase fluctuations,” Opt. Lett. 42(21), 4553–4556 (2017).
    [Crossref] [PubMed]
  29. H. Shen, L. F. Li, J. Bi, J. Wang, and L. S. Chen, “Systematic and quantitative analysis of residual amplitude modulation in Pound-Drever-Hall frequency stabilization,” Phys. Rev. A 92, 063809 (2015).
    [Crossref]
  30. H. D. Lu, J. Su, Y. H. Zheng, and K. C. Peng, “Physical conditions of single-longitudinal-mode operation for high-power all-solid-state lasers,” Opt. Lett. 39(5), 1117–1120 (2014).
    [Crossref] [PubMed]

2017 (1)

2016 (6)

2015 (2)

K. L. Dooley, E. Schreiber, H. Vahlbruch, C. Affeldt, J. R. Leong, H. Wittel, and H. Grote, “Phase control of squeezed vacuum states of light in gravitational wave detectors,” Opt. Express,  23(7), 8235–8245 (2015).
[Crossref] [PubMed]

H. Shen, L. F. Li, J. Bi, J. Wang, and L. S. Chen, “Systematic and quantitative analysis of residual amplitude modulation in Pound-Drever-Hall frequency stabilization,” Phys. Rev. A 92, 063809 (2015).
[Crossref]

2014 (2)

2013 (2)

2012 (2)

L. F. Li, F. Liu, C. Wang, and L. S. Chen, “Measurement and control of residual amplitude modulation in optical phase modulation,” Rev. Sci. Instrum. 83, 043111 (2012).
[Crossref] [PubMed]

I. Silander, P. Ehlers, J. Y. Wang, and O. Axner, “Frequency modulation background signals from fiber-based electro optic modulators are caused by crosstalk,” J. Opt. Soc. Am. B 29(5), 916–923 (2012).
[Crossref]

2011 (3)

2010 (1)

T. Eberle, S. Steinlechner, J. Bauchrowitz, V. Handchen, H. Vahlbruch, M. Mehmet, H. Muller-Ebhardt, and R. Schnabel, “Quantum enhancement of the zero-area sagnac interferometer topology for gravitational wave detection,” Phys. Rev. Lett. 104, 251102 (2010).
[Crossref] [PubMed]

2008 (1)

K. Goda, O. Miyakawa, E. E. Mikhailov, S. Saraf, R. Adhikari, K. Mchenzie, R. Ward, S. Vass, A. J. Weinstein, and N. Mavalvala, “A quantum-enhanced prototype gravitational-wave detector,” Nat. Phys. 4, 472–476 (2008).
[Crossref]

2007 (1)

2006 (2)

S. Suzuki, H. Yonezawa, F. Kannari, M. Sasaki, and A. Furusawa, “7 dB quadrature squeezing at 860 nm with periodically poled KTiOPO4,” Appl. Phys. Lett. 89, 061116 (2006).
[Crossref]

T. Corbitt, Y. Chen, F. Khalili, D. Ottaway, S. Vyatchanin, S. Whitcomb, and N. Mavalvala, “Squeezed-state source using radiation-pressure induced rigidity,” Phys. Rev. A,  73, 023801 (2006).
[Crossref]

2005 (1)

S. L. Braunstein and P. Van. Loock, “Quantum information with continuous variables,” Rev. Mod. Phys. 77(2), 513–577 (2005).
[Crossref]

2001 (1)

E. D. Black, “An introduction to Pound–Drever–Hall laser frequency stabilization,” Am. J. Phys. 69(1), 79–87 (2001).
[Crossref]

1999 (1)

1998 (1)

A. Furusawa, J. L. Sorensen, S. L. Braunstein, C. A. Fuchs, H. J. Kimble, and E. S. Polzik, “Unconditional quantum teleportation,” Science 282, 706–709 (1998).
[Crossref] [PubMed]

1986 (1)

L. A. Wu, H. J. Kimble, J. L. Hall, and H. F. Wu, “Generation of squeezed states by parametric down conversion,” Phys. Rev. Lett. 57(20), 2520–2523 (1986).
[Crossref] [PubMed]

1985 (2)

R. E. Slusher, L. W. Hollberg, B. Yurke, J. C. Mertz, and J. F. Valley, “Observation of squeezed states generated by four-wave mixing in an optical cavity,” Phys. Rev. Lett. 55, 2409–2412 (1985).
[Crossref] [PubMed]

N. C. Wong and J. L. Hall, “Servo control of amplitude modulation in frequency-modulation spectroscopy: demonstration of shot-noise-limited detection,” J. Opt. Soc. Am. B,  2(9), 1527–1533 (1985).
[Crossref]

Adhikari, R.

K. Goda, O. Miyakawa, E. E. Mikhailov, S. Saraf, R. Adhikari, K. Mchenzie, R. Ward, S. Vass, A. J. Weinstein, and N. Mavalvala, “A quantum-enhanced prototype gravitational-wave detector,” Nat. Phys. 4, 472–476 (2008).
[Crossref]

Affeldt, C.

Andersen, U.

U. Andersen, T. Gehring, C. Marquardt, and G. Leuchs, “30 years of squeezed light generation,” Phys. Scr. 91, 053001 (2016).
[Crossref]

Aspelmeyer, M.

Ast, S.

Axner, O.

Barsotti, L.

Bauchrowitz, J.

T. Eberle, S. Steinlechner, J. Bauchrowitz, V. Handchen, H. Vahlbruch, M. Mehmet, H. Muller-Ebhardt, and R. Schnabel, “Quantum enhancement of the zero-area sagnac interferometer topology for gravitational wave detection,” Phys. Rev. Lett. 104, 251102 (2010).
[Crossref] [PubMed]

Benko, C.

Bi, J.

H. Shen, L. F. Li, J. Bi, J. Wang, and L. S. Chen, “Systematic and quantitative analysis of residual amplitude modulation in Pound-Drever-Hall frequency stabilization,” Phys. Rev. A 92, 063809 (2015).
[Crossref]

Black, E. D.

E. D. Black, “An introduction to Pound–Drever–Hall laser frequency stabilization,” Am. J. Phys. 69(1), 79–87 (2001).
[Crossref]

Braunstein, S. L.

S. L. Braunstein and P. Van. Loock, “Quantum information with continuous variables,” Rev. Mod. Phys. 77(2), 513–577 (2005).
[Crossref]

A. Furusawa, J. L. Sorensen, S. L. Braunstein, C. A. Fuchs, H. J. Kimble, and E. S. Polzik, “Unconditional quantum teleportation,” Science 282, 706–709 (1998).
[Crossref] [PubMed]

Chen, L. S.

H. Shen, L. F. Li, J. Bi, J. Wang, and L. S. Chen, “Systematic and quantitative analysis of residual amplitude modulation in Pound-Drever-Hall frequency stabilization,” Phys. Rev. A 92, 063809 (2015).
[Crossref]

L. F. Li, F. Liu, C. Wang, and L. S. Chen, “Measurement and control of residual amplitude modulation in optical phase modulation,” Rev. Sci. Instrum. 83, 043111 (2012).
[Crossref] [PubMed]

Chen, Y.

T. Corbitt, Y. Chen, F. Khalili, D. Ottaway, S. Vyatchanin, S. Whitcomb, and N. Mavalvala, “Squeezed-state source using radiation-pressure induced rigidity,” Phys. Rev. A,  73, 023801 (2006).
[Crossref]

Chua, S. S. Y.

Cole, G. D.

Corbitt, T.

T. Corbitt, Y. Chen, F. Khalili, D. Ottaway, S. Vyatchanin, S. Whitcomb, and N. Mavalvala, “Squeezed-state source using radiation-pressure induced rigidity,” Phys. Rev. A,  73, 023801 (2006).
[Crossref]

Danzmann, K.

H. Vahlbruch, M. Mehmet, K. Danzmann, and R. Schnabel, “Detection of 15 dB squeezed states of light and their application for the absolute calibration of photoelectric quantum efficiency,” Phys. Rev. Lett. 117, 110801 (2016).
[Crossref]

H. Grote, K. Danzmann, K. L. Dooley, R. Schnabel, J. Slutsky, and H. Vahlbruch, “First long-term application of squeezed states of light in a gravitational-wave observatory,” Phys. Rev. Lett. 110, 181101 (2013).
[Crossref] [PubMed]

Dooley, K. L.

K. L. Dooley, E. Schreiber, H. Vahlbruch, C. Affeldt, J. R. Leong, H. Wittel, and H. Grote, “Phase control of squeezed vacuum states of light in gravitational wave detectors,” Opt. Express,  23(7), 8235–8245 (2015).
[Crossref] [PubMed]

H. Grote, K. Danzmann, K. L. Dooley, R. Schnabel, J. Slutsky, and H. Vahlbruch, “First long-term application of squeezed states of light in a gravitational-wave observatory,” Phys. Rev. Lett. 110, 181101 (2013).
[Crossref] [PubMed]

Dwyer, S.

Eberle, T.

M. Mehmet, S. Ast, T. Eberle, S. Steinlechner, H. Vahlbruch, and R Schnabel, “Squeezed light at 1550 nm with a quantum noise reduction of 12.3 dB,” Opt. Express 19(25), 25763–25772 (2011).
[Crossref]

T. Eberle, S. Steinlechner, J. Bauchrowitz, V. Handchen, H. Vahlbruch, M. Mehmet, H. Muller-Ebhardt, and R. Schnabel, “Quantum enhancement of the zero-area sagnac interferometer topology for gravitational wave detection,” Phys. Rev. Lett. 104, 251102 (2010).
[Crossref] [PubMed]

Ehlers, P.

Evans, M.

Factourovich, M.

Foltynowicz, A.

Fritschel, P.

Frusawa, A.

Fuchs, C. A.

A. Furusawa, J. L. Sorensen, S. L. Braunstein, C. A. Fuchs, H. J. Kimble, and E. S. Polzik, “Unconditional quantum teleportation,” Science 282, 706–709 (1998).
[Crossref] [PubMed]

Furusawa, A.

Y. Takeno, M. Yukawa, H. Yonezawa, and A. Furusawa, “Observation of −9 dB quadrature squeezing with improvement of phase stability in homodyne measurement,” Opt. Express 15(7), 4321–4327 (2007).
[Crossref] [PubMed]

S. Suzuki, H. Yonezawa, F. Kannari, M. Sasaki, and A. Furusawa, “7 dB quadrature squeezing at 860 nm with periodically poled KTiOPO4,” Appl. Phys. Lett. 89, 061116 (2006).
[Crossref]

A. Furusawa, J. L. Sorensen, S. L. Braunstein, C. A. Fuchs, H. J. Kimble, and E. S. Polzik, “Unconditional quantum teleportation,” Science 282, 706–709 (1998).
[Crossref] [PubMed]

Gehring, T.

U. Andersen, T. Gehring, C. Marquardt, and G. Leuchs, “30 years of squeezed light generation,” Phys. Scr. 91, 053001 (2016).
[Crossref]

Goda, K.

K. Goda, O. Miyakawa, E. E. Mikhailov, S. Saraf, R. Adhikari, K. Mchenzie, R. Ward, S. Vass, A. J. Weinstein, and N. Mavalvala, “A quantum-enhanced prototype gravitational-wave detector,” Nat. Phys. 4, 472–476 (2008).
[Crossref]

Grote, H.

K. L. Dooley, E. Schreiber, H. Vahlbruch, C. Affeldt, J. R. Leong, H. Wittel, and H. Grote, “Phase control of squeezed vacuum states of light in gravitational wave detectors,” Opt. Express,  23(7), 8235–8245 (2015).
[Crossref] [PubMed]

H. Grote, K. Danzmann, K. L. Dooley, R. Schnabel, J. Slutsky, and H. Vahlbruch, “First long-term application of squeezed states of light in a gravitational-wave observatory,” Phys. Rev. Lett. 110, 181101 (2013).
[Crossref] [PubMed]

Guo, W. G.

Gustafson, D.

Hagemann, C.

Hall, J. L.

Handchen, V.

T. Eberle, S. Steinlechner, J. Bauchrowitz, V. Handchen, H. Vahlbruch, M. Mehmet, H. Muller-Ebhardt, and R. Schnabel, “Quantum enhancement of the zero-area sagnac interferometer topology for gravitational wave detection,” Phys. Rev. Lett. 104, 251102 (2010).
[Crossref] [PubMed]

Hollberg, L. W.

R. E. Slusher, L. W. Hollberg, B. Yurke, J. C. Mertz, and J. F. Valley, “Observation of squeezed states generated by four-wave mixing in an optical cavity,” Phys. Rev. Lett. 55, 2409–2412 (1985).
[Crossref] [PubMed]

Isogai, T.

Jiang, H. F.

Kannari, F.

S. Suzuki, H. Yonezawa, F. Kannari, M. Sasaki, and A. Furusawa, “7 dB quadrature squeezing at 860 nm with periodically poled KTiOPO4,” Appl. Phys. Lett. 89, 061116 (2006).
[Crossref]

Kawabe, K.

Khalaidovski, A.

Khalili, F.

T. Corbitt, Y. Chen, F. Khalili, D. Ottaway, S. Vyatchanin, S. Whitcomb, and N. Mavalvala, “Squeezed-state source using radiation-pressure induced rigidity,” Phys. Rev. A,  73, 023801 (2006).
[Crossref]

Kimble, H. J.

A. Furusawa, J. L. Sorensen, S. L. Braunstein, C. A. Fuchs, H. J. Kimble, and E. S. Polzik, “Unconditional quantum teleportation,” Science 282, 706–709 (1998).
[Crossref] [PubMed]

L. A. Wu, H. J. Kimble, J. L. Hall, and H. F. Wu, “Generation of squeezed states by parametric down conversion,” Phys. Rev. Lett. 57(20), 2520–2523 (1986).
[Crossref] [PubMed]

Kluczynski, P.

Lam, P. K.

Landry, M.

Legero, T.

Leong, J. R.

Leuchs, G.

U. Andersen, T. Gehring, C. Marquardt, and G. Leuchs, “30 years of squeezed light generation,” Phys. Scr. 91, 053001 (2016).
[Crossref]

Li, L. F.

H. Shen, L. F. Li, J. Bi, J. Wang, and L. S. Chen, “Systematic and quantitative analysis of residual amplitude modulation in Pound-Drever-Hall frequency stabilization,” Phys. Rev. A 92, 063809 (2015).
[Crossref]

L. F. Li, F. Liu, C. Wang, and L. S. Chen, “Measurement and control of residual amplitude modulation in optical phase modulation,” Rev. Sci. Instrum. 83, 043111 (2012).
[Crossref] [PubMed]

Li, Z. X.

Liu, F.

L. F. Li, F. Liu, C. Wang, and L. S. Chen, “Measurement and control of residual amplitude modulation in optical phase modulation,” Rev. Sci. Instrum. 83, 043111 (2012).
[Crossref] [PubMed]

Lu, H. D.

Ma, W. G.

Makino, K.

Mansell, G.

Marquardt, C.

U. Andersen, T. Gehring, C. Marquardt, and G. Leuchs, “30 years of squeezed light generation,” Phys. Scr. 91, 053001 (2016).
[Crossref]

Martin, M. J.

Matichard, F.

Mavalvala, N.

McClelland, D. E.

Mchenzie, K.

K. Goda, O. Miyakawa, E. E. Mikhailov, S. Saraf, R. Adhikari, K. Mchenzie, R. Ward, S. Vass, A. J. Weinstein, and N. Mavalvala, “A quantum-enhanced prototype gravitational-wave detector,” Nat. Phys. 4, 472–476 (2008).
[Crossref]

Meadors, G. D.

Mehmet, M.

H. Vahlbruch, M. Mehmet, K. Danzmann, and R. Schnabel, “Detection of 15 dB squeezed states of light and their application for the absolute calibration of photoelectric quantum efficiency,” Phys. Rev. Lett. 117, 110801 (2016).
[Crossref]

M. Mehmet, S. Ast, T. Eberle, S. Steinlechner, H. Vahlbruch, and R Schnabel, “Squeezed light at 1550 nm with a quantum noise reduction of 12.3 dB,” Opt. Express 19(25), 25763–25772 (2011).
[Crossref]

T. Eberle, S. Steinlechner, J. Bauchrowitz, V. Handchen, H. Vahlbruch, M. Mehmet, H. Muller-Ebhardt, and R. Schnabel, “Quantum enhancement of the zero-area sagnac interferometer topology for gravitational wave detection,” Phys. Rev. Lett. 104, 251102 (2010).
[Crossref] [PubMed]

Mertz, J. C.

R. E. Slusher, L. W. Hollberg, B. Yurke, J. C. Mertz, and J. F. Valley, “Observation of squeezed states generated by four-wave mixing in an optical cavity,” Phys. Rev. Lett. 55, 2409–2412 (1985).
[Crossref] [PubMed]

Mikhailov, E. E.

K. Goda, O. Miyakawa, E. E. Mikhailov, S. Saraf, R. Adhikari, K. Mchenzie, R. Ward, S. Vass, A. J. Weinstein, and N. Mavalvala, “A quantum-enhanced prototype gravitational-wave detector,” Nat. Phys. 4, 472–476 (2008).
[Crossref]

Miller, J.

Miyakawa, O.

K. Goda, O. Miyakawa, E. E. Mikhailov, S. Saraf, R. Adhikari, K. Mchenzie, R. Ward, S. Vass, A. J. Weinstein, and N. Mavalvala, “A quantum-enhanced prototype gravitational-wave detector,” Nat. Phys. 4, 472–476 (2008).
[Crossref]

Mow-Lowry, C. M.

Muller-Ebhardt, H.

T. Eberle, S. Steinlechner, J. Bauchrowitz, V. Handchen, H. Vahlbruch, M. Mehmet, H. Muller-Ebhardt, and R. Schnabel, “Quantum enhancement of the zero-area sagnac interferometer topology for gravitational wave detection,” Phys. Rev. Lett. 104, 251102 (2010).
[Crossref] [PubMed]

Oelker, E.

Ottaway, D.

T. Corbitt, Y. Chen, F. Khalili, D. Ottaway, S. Vyatchanin, S. Whitcomb, and N. Mavalvala, “Squeezed-state source using radiation-pressure induced rigidity,” Phys. Rev. A,  73, 023801 (2006).
[Crossref]

Peng, K. C.

Polzik, E. S.

A. Furusawa, J. L. Sorensen, S. L. Braunstein, C. A. Fuchs, H. J. Kimble, and E. S. Polzik, “Unconditional quantum teleportation,” Science 282, 706–709 (1998).
[Crossref] [PubMed]

Riehle, F.

Saraf, S.

K. Goda, O. Miyakawa, E. E. Mikhailov, S. Saraf, R. Adhikari, K. Mchenzie, R. Ward, S. Vass, A. J. Weinstein, and N. Mavalvala, “A quantum-enhanced prototype gravitational-wave detector,” Nat. Phys. 4, 472–476 (2008).
[Crossref]

Sasaki, M.

S. Suzuki, H. Yonezawa, F. Kannari, M. Sasaki, and A. Furusawa, “7 dB quadrature squeezing at 860 nm with periodically poled KTiOPO4,” Appl. Phys. Lett. 89, 061116 (2006).
[Crossref]

Schnabel, R

Schnabel, R.

H. Vahlbruch, M. Mehmet, K. Danzmann, and R. Schnabel, “Detection of 15 dB squeezed states of light and their application for the absolute calibration of photoelectric quantum efficiency,” Phys. Rev. Lett. 117, 110801 (2016).
[Crossref]

H. Grote, K. Danzmann, K. L. Dooley, R. Schnabel, J. Slutsky, and H. Vahlbruch, “First long-term application of squeezed states of light in a gravitational-wave observatory,” Phys. Rev. Lett. 110, 181101 (2013).
[Crossref] [PubMed]

S. Dwyer, L. Barsotti, S. S. Y. Chua, M. Evans, M. Factourovich, D. Gustafson, T. Isogai, K. Kawabe, A. Khalaidovski, P. K. Lam, M. Landry, N. Mavalvala, D. E. McClelland, G. D. Meadors, C. M. Mow-Lowry, R. Schnabel, R. M. S. Schofield, N. Smith-Lefebvre, M. Stefszky, C. Vorvick, and D. Sigg, “Squeezed quadrature fluctuations in a gravitational wave detector using squeezed light,” Opt. Express,  21(16), 19047–19060 (2013).
[Crossref] [PubMed]

T. Eberle, S. Steinlechner, J. Bauchrowitz, V. Handchen, H. Vahlbruch, M. Mehmet, H. Muller-Ebhardt, and R. Schnabel, “Quantum enhancement of the zero-area sagnac interferometer topology for gravitational wave detection,” Phys. Rev. Lett. 104, 251102 (2010).
[Crossref] [PubMed]

Schofield, R. M. S.

Schreiber, E.

Serikawa, T.

Shen, H.

H. Shen, L. F. Li, J. Bi, J. Wang, and L. S. Chen, “Systematic and quantitative analysis of residual amplitude modulation in Pound-Drever-Hall frequency stabilization,” Phys. Rev. A 92, 063809 (2015).
[Crossref]

Shi, S. P.

Sigg, D.

Silander, I.

Slusher, R. E.

R. E. Slusher, L. W. Hollberg, B. Yurke, J. C. Mertz, and J. F. Valley, “Observation of squeezed states generated by four-wave mixing in an optical cavity,” Phys. Rev. Lett. 55, 2409–2412 (1985).
[Crossref] [PubMed]

Slutsky, J.

H. Grote, K. Danzmann, K. L. Dooley, R. Schnabel, J. Slutsky, and H. Vahlbruch, “First long-term application of squeezed states of light in a gravitational-wave observatory,” Phys. Rev. Lett. 110, 181101 (2013).
[Crossref] [PubMed]

Smith-Lefebvre, N.

Sorensen, J. L.

A. Furusawa, J. L. Sorensen, S. L. Braunstein, C. A. Fuchs, H. J. Kimble, and E. S. Polzik, “Unconditional quantum teleportation,” Science 282, 706–709 (1998).
[Crossref] [PubMed]

Stefszky, M.

Steinlechner, S.

M. Mehmet, S. Ast, T. Eberle, S. Steinlechner, H. Vahlbruch, and R Schnabel, “Squeezed light at 1550 nm with a quantum noise reduction of 12.3 dB,” Opt. Express 19(25), 25763–25772 (2011).
[Crossref]

T. Eberle, S. Steinlechner, J. Bauchrowitz, V. Handchen, H. Vahlbruch, M. Mehmet, H. Muller-Ebhardt, and R. Schnabel, “Quantum enhancement of the zero-area sagnac interferometer topology for gravitational wave detection,” Phys. Rev. Lett. 104, 251102 (2010).
[Crossref] [PubMed]

Sterr, U.

Su, J.

Suzuki, S.

S. Suzuki, H. Yonezawa, F. Kannari, M. Sasaki, and A. Furusawa, “7 dB quadrature squeezing at 860 nm with periodically poled KTiOPO4,” Appl. Phys. Lett. 89, 061116 (2006).
[Crossref]

Tai, Z. Y.

Takeno, Y.

Tse, M.

Vahlbruch, H.

H. Vahlbruch, M. Mehmet, K. Danzmann, and R. Schnabel, “Detection of 15 dB squeezed states of light and their application for the absolute calibration of photoelectric quantum efficiency,” Phys. Rev. Lett. 117, 110801 (2016).
[Crossref]

K. L. Dooley, E. Schreiber, H. Vahlbruch, C. Affeldt, J. R. Leong, H. Wittel, and H. Grote, “Phase control of squeezed vacuum states of light in gravitational wave detectors,” Opt. Express,  23(7), 8235–8245 (2015).
[Crossref] [PubMed]

H. Grote, K. Danzmann, K. L. Dooley, R. Schnabel, J. Slutsky, and H. Vahlbruch, “First long-term application of squeezed states of light in a gravitational-wave observatory,” Phys. Rev. Lett. 110, 181101 (2013).
[Crossref] [PubMed]

M. Mehmet, S. Ast, T. Eberle, S. Steinlechner, H. Vahlbruch, and R Schnabel, “Squeezed light at 1550 nm with a quantum noise reduction of 12.3 dB,” Opt. Express 19(25), 25763–25772 (2011).
[Crossref]

T. Eberle, S. Steinlechner, J. Bauchrowitz, V. Handchen, H. Vahlbruch, M. Mehmet, H. Muller-Ebhardt, and R. Schnabel, “Quantum enhancement of the zero-area sagnac interferometer topology for gravitational wave detection,” Phys. Rev. Lett. 104, 251102 (2010).
[Crossref] [PubMed]

Valley, J. F.

R. E. Slusher, L. W. Hollberg, B. Yurke, J. C. Mertz, and J. F. Valley, “Observation of squeezed states generated by four-wave mixing in an optical cavity,” Phys. Rev. Lett. 55, 2409–2412 (1985).
[Crossref] [PubMed]

Van. Loock, P.

S. L. Braunstein and P. Van. Loock, “Quantum information with continuous variables,” Rev. Mod. Phys. 77(2), 513–577 (2005).
[Crossref]

Vass, S.

K. Goda, O. Miyakawa, E. E. Mikhailov, S. Saraf, R. Adhikari, K. Mchenzie, R. Ward, S. Vass, A. J. Weinstein, and N. Mavalvala, “A quantum-enhanced prototype gravitational-wave detector,” Nat. Phys. 4, 472–476 (2008).
[Crossref]

Vorvick, C.

Vyatchanin, S.

T. Corbitt, Y. Chen, F. Khalili, D. Ottaway, S. Vyatchanin, S. Whitcomb, and N. Mavalvala, “Squeezed-state source using radiation-pressure induced rigidity,” Phys. Rev. A,  73, 023801 (2006).
[Crossref]

Wang, C.

L. F. Li, F. Liu, C. Wang, and L. S. Chen, “Measurement and control of residual amplitude modulation in optical phase modulation,” Rev. Sci. Instrum. 83, 043111 (2012).
[Crossref] [PubMed]

Wang, J.

H. Shen, L. F. Li, J. Bi, J. Wang, and L. S. Chen, “Systematic and quantitative analysis of residual amplitude modulation in Pound-Drever-Hall frequency stabilization,” Phys. Rev. A 92, 063809 (2015).
[Crossref]

Wang, J. Y.

Wang, Y. J.

Ward, R.

K. Goda, O. Miyakawa, E. E. Mikhailov, S. Saraf, R. Adhikari, K. Mchenzie, R. Ward, S. Vass, A. J. Weinstein, and N. Mavalvala, “A quantum-enhanced prototype gravitational-wave detector,” Nat. Phys. 4, 472–476 (2008).
[Crossref]

Weinstein, A. J.

K. Goda, O. Miyakawa, E. E. Mikhailov, S. Saraf, R. Adhikari, K. Mchenzie, R. Ward, S. Vass, A. J. Weinstein, and N. Mavalvala, “A quantum-enhanced prototype gravitational-wave detector,” Nat. Phys. 4, 472–476 (2008).
[Crossref]

Whitcomb, S.

T. Corbitt, Y. Chen, F. Khalili, D. Ottaway, S. Vyatchanin, S. Whitcomb, and N. Mavalvala, “Squeezed-state source using radiation-pressure induced rigidity,” Phys. Rev. A,  73, 023801 (2006).
[Crossref]

Wittel, H.

Wong, N. C.

Wu, H. F.

L. A. Wu, H. J. Kimble, J. L. Hall, and H. F. Wu, “Generation of squeezed states by parametric down conversion,” Phys. Rev. Lett. 57(20), 2520–2523 (1986).
[Crossref] [PubMed]

Wu, L. A.

L. A. Wu, H. J. Kimble, J. L. Hall, and H. F. Wu, “Generation of squeezed states by parametric down conversion,” Phys. Rev. Lett. 57(20), 2520–2523 (1986).
[Crossref] [PubMed]

Yan, L. L.

Yang, W. H.

Ye, J.

Yonezawa, H.

Y. Takeno, M. Yukawa, H. Yonezawa, and A. Furusawa, “Observation of −9 dB quadrature squeezing with improvement of phase stability in homodyne measurement,” Opt. Express 15(7), 4321–4327 (2007).
[Crossref] [PubMed]

S. Suzuki, H. Yonezawa, F. Kannari, M. Sasaki, and A. Furusawa, “7 dB quadrature squeezing at 860 nm with periodically poled KTiOPO4,” Appl. Phys. Lett. 89, 061116 (2006).
[Crossref]

Yoshikawa, J.

Yukawa, M.

Yurke, B.

R. E. Slusher, L. W. Hollberg, B. Yurke, J. C. Mertz, and J. F. Valley, “Observation of squeezed states generated by four-wave mixing in an optical cavity,” Phys. Rev. Lett. 55, 2409–2412 (1985).
[Crossref] [PubMed]

Zhang, S. G.

Zhang, W.

Zhang, X. F.

Zhang, Y. Y.

Zheng, Y. H.

Am. J. Phys. (1)

E. D. Black, “An introduction to Pound–Drever–Hall laser frequency stabilization,” Am. J. Phys. 69(1), 79–87 (2001).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

S. Suzuki, H. Yonezawa, F. Kannari, M. Sasaki, and A. Furusawa, “7 dB quadrature squeezing at 860 nm with periodically poled KTiOPO4,” Appl. Phys. Lett. 89, 061116 (2006).
[Crossref]

J. Opt. Soc. Am. B (3)

Nat. Phys. (2)

LIGO Scientific Collaboration, “A gravitational wave observatory operating beyond the quantum shot-noise limit,” Nat. Phys. 7, 962–965 (2011).
[Crossref]

K. Goda, O. Miyakawa, E. E. Mikhailov, S. Saraf, R. Adhikari, K. Mchenzie, R. Ward, S. Vass, A. J. Weinstein, and N. Mavalvala, “A quantum-enhanced prototype gravitational-wave detector,” Nat. Phys. 4, 472–476 (2008).
[Crossref]

Opt. Express (5)

Opt. Lett. (5)

Optica (1)

Phys. Rev. A (2)

H. Shen, L. F. Li, J. Bi, J. Wang, and L. S. Chen, “Systematic and quantitative analysis of residual amplitude modulation in Pound-Drever-Hall frequency stabilization,” Phys. Rev. A 92, 063809 (2015).
[Crossref]

T. Corbitt, Y. Chen, F. Khalili, D. Ottaway, S. Vyatchanin, S. Whitcomb, and N. Mavalvala, “Squeezed-state source using radiation-pressure induced rigidity,” Phys. Rev. A,  73, 023801 (2006).
[Crossref]

Phys. Rev. Lett. (5)

L. A. Wu, H. J. Kimble, J. L. Hall, and H. F. Wu, “Generation of squeezed states by parametric down conversion,” Phys. Rev. Lett. 57(20), 2520–2523 (1986).
[Crossref] [PubMed]

T. Eberle, S. Steinlechner, J. Bauchrowitz, V. Handchen, H. Vahlbruch, M. Mehmet, H. Muller-Ebhardt, and R. Schnabel, “Quantum enhancement of the zero-area sagnac interferometer topology for gravitational wave detection,” Phys. Rev. Lett. 104, 251102 (2010).
[Crossref] [PubMed]

H. Vahlbruch, M. Mehmet, K. Danzmann, and R. Schnabel, “Detection of 15 dB squeezed states of light and their application for the absolute calibration of photoelectric quantum efficiency,” Phys. Rev. Lett. 117, 110801 (2016).
[Crossref]

H. Grote, K. Danzmann, K. L. Dooley, R. Schnabel, J. Slutsky, and H. Vahlbruch, “First long-term application of squeezed states of light in a gravitational-wave observatory,” Phys. Rev. Lett. 110, 181101 (2013).
[Crossref] [PubMed]

R. E. Slusher, L. W. Hollberg, B. Yurke, J. C. Mertz, and J. F. Valley, “Observation of squeezed states generated by four-wave mixing in an optical cavity,” Phys. Rev. Lett. 55, 2409–2412 (1985).
[Crossref] [PubMed]

Phys. Scr. (1)

U. Andersen, T. Gehring, C. Marquardt, and G. Leuchs, “30 years of squeezed light generation,” Phys. Scr. 91, 053001 (2016).
[Crossref]

Rev. Mod. Phys. (1)

S. L. Braunstein and P. Van. Loock, “Quantum information with continuous variables,” Rev. Mod. Phys. 77(2), 513–577 (2005).
[Crossref]

Rev. Sci. Instrum. (1)

L. F. Li, F. Liu, C. Wang, and L. S. Chen, “Measurement and control of residual amplitude modulation in optical phase modulation,” Rev. Sci. Instrum. 83, 043111 (2012).
[Crossref] [PubMed]

Science (1)

A. Furusawa, J. L. Sorensen, S. L. Braunstein, C. A. Fuchs, H. J. Kimble, and E. S. Polzik, “Unconditional quantum teleportation,” Science 282, 706–709 (1998).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Amplitude quadrature variance of the OPO cavity output field as a function of the relative phase between the siganl and pump fields θ for the cavity on resonance (red) and slightly detuning (blue).
Fig. 2
Fig. 2 The discrimination slopes of the absorption signal (AS) and the dispersion signal (DS), which are extracted from the reflection and transmission of the OPO, respectively.
Fig. 3
Fig. 3 The ratio between the frequency offset and the linewidth as a function of the impedance matching efficiency with the error signals (ES) extracted from the reflection and transmission of the cavity, respectively. Under the circumstances, the polarization angles α and β is fixed to 1°, the birefringence phase shift Δφ is 90°, the proportion of modulation frequency and cavity linewidth Ω/γ is 0.5, and the demodulation phase Φ is 90°.
Fig. 4
Fig. 4 The experimental setup for measuring the RAM and the scheme for cavity and phase locking. EOM: electro-optical modulator; OI: optical isolator; OPO: optical parametric oscillator; P: polarizer; PD: photodetector; DBM: doubly balanced mixer; DAC: data acquisition card; SHG: second harmonic generation; DBS: dichroic beam splitter; BHD: balanced homodyne detection; PZT: piezoelectric transducer.
Fig. 5
Fig. 5 Residual amplitude modulation (RAM) drift with time.
Fig. 6
Fig. 6 Stability of the normalized output power in 8 h with the error signals (ES) extracted from the reflection and transmission of the OPO, respectively.
Fig. 7
Fig. 7 Quantum noise fluctuation originating from RAM in 8 h with the phase modualtion (PM) imposed on the local oscillator (LO) and the signal beam (SB), respectively.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

d d t a ^ s = γ s tot a ^ s + i Δ a ^ s + ε a ^ p a ^ s + 2 γ s in a ^ s in + 2 γ s out a ^ s out + 2 γ s l a ^ s l
d d t a ^ p = γ p tot a ^ p + 2 γ p in a ^ p in
V = 1 + 4 x η [ ( x 2 + 1 ( Δ γ ) 2 + ( Ω γ ) 2 ) cos θ + 2 x + 2 ( Δ γ ) sin θ ] x 4 2 x 2 + 1 2 x 2 ( Δ γ ) 2 + 2 ( Δ γ ) 2 + ( Δ γ ) 4 + 2 x 2 ( Ω γ ) 2 + 2 ( Ω γ ) 2 2 ( Δ γ ) 2 ( Ω γ ) 2 + ( Ω γ ) 4
d θ sqz d Δ = 1 2 d V d Δ | Δ = 0 , θ = π / 2 d V d θ | Δ θ = π / 2 , Δ = 0 , 1 γ ( 1 + x 2 )
F ( ω ) = r 1 + r 2 exp ( i ω / Δ υ fsr ) 1 r 1 r 2 exp ( i ω / Δ υ fsr )
T ( ω ) = ( 1 r 1 2 ) ( 1 r 2 2 ) exp ( i ω / 2 Δ υ fsr ) 1 r 1 r 2 exp ( i ω / Δ υ fsr )
E = E 0 e i ω t [ a e i ( φ o + δ o sin Ω t ) + b e i ( φ e + δ e sin Ω t ) ]
V err cavity = E 0 2 K { Re [ A G ( ω ) G * ( ω + Ω ) A * G * ( ω ) G ( ω ) G ( ω Ω ) ] cos Φ Im [ A G ( ω ) G * ( ω + Ω ) A * G * ( ω ) G ( ω Ω ) ] sin Φ }
A = a 2 J 0 ( δ o ) J 1 ( δ o ) + b 2 J 0 ( δ e ) J 1 ( δ e ) + a b [ J 0 ( δ o ) J 1 ( δ e ) + J 0 ( δ e ) J 1 ( δ o ) ] cos Δ ϕ i a b [ J 0 ( δ o ) J 1 ( δ e ) J 0 ( δ e ) J 1 ( δ o ) ] sin Δ ϕ
V RAM A = 2 E 0 2 K a b J 1 ( M ) sin Δ ϕ = 2 E 0 2 K R ( ε )
V RAM R = 2 E 0 2 K R ( ε ) F ( 0 ) ( F ( 0 ) 1 2 ) = F ( 0 ) ( F ( 0 ) 1 2 ) V RAM A
V RAM T = 2 E 0 2 K R ( ε ) T 2 ( 0 ) 2 = T 2 ( 0 ) 2 V RAM A
Δ υ = V RAM D
V err phase = E 0 E 20 b K J 1 ( M ) sin Ψ + E 0 2 K a b J 1 ( M ) sin Δ φ = E 0 E 20 b K J 1 ( M ) sin Ψ + 1 2 V RAM A

Metrics