Abstract

A multi-excitation fluorometer (MFL, JFE Advantech Co., Ltd.), originally designed to discriminate between phytoplankton species present within a population, has been redirected for use in fluorescence quantum yield (FQY) determination. While this calibration for apparent FQY requires no modification of the MFL, it is necessary to have an independent measurement of the spectral absorption coefficient of the subject fluid. Two different approaches to calibration were implemented. The primary method made use of reference fluorescent dye solutions of known quantum yield. The second method made use of acrylic fluorescent plaques and films. The two methods yielded consistent results, except in the 570 and 590 nm LED channels of the MFL. Application of the MFL in FQY determination is illustrated with an in situ Southern Ocean sample.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Determination of the fluorescence quantum yield by oceanic phytoplankton in their natural habitat

Stéphane Maritorena, André Morel, and Bernard Gentili
Appl. Opt. 39(36) 6725-6737 (2000)

New Algae Mapping Technique by the Use of an Airborne Laser Fluorosensor

Hongsuk H. Kim
Appl. Opt. 12(7) 1454-1459 (1973)

Review of fluorescent standards for calibration of in situ fluorometers: Recommendations applied in coastal and ocean observing programs

Alan Earp, Christine E. Hanson, Peter J. Ralph, Vittorio E. Brando, Simon Allen, Mark Baird, Lesley Clementson, Paul Daniel, Arnold G. Dekker, Peter R.C.S. Fearns, John Parslow, Peter G. Strutton, Peter A. Thompson, Mark Underwood, Scarla Weeks, and Martina A. Doblin
Opt. Express 19(27) 26768-26782 (2011)

References

  • View by:
  • |
  • |
  • |

  1. A. Morel and A. Bricaud, “Theoretical results concerning light absorption in a discrete medium, and application to specific absorption of phytoplankton,” Deep. Sea Res. Part A 28, 1375–1393 (1981).
    [Crossref]
  2. L. N. M. Duysens, “The flattening of the absorption spectrum of suspensions, as compared to that of solutions,” Biochim.Biophys. Acta 19, 1–12 (1956).
    [Crossref]
  3. A. Bricaud, M. Babin, A. Morel, and H. Claustre, “Variability in the chlorophyll-specific absorption coefficients of natural phytoplankton,” J. Geophys. Res. 100, 13321–13332 (1995).
    [Crossref]
  4. S. Sathyendranath, L. Lazzara, and L. Prieur, “Variations in the spectral values of specific absorption of phytoplankton,” Limnol. Oceanogr. 32, 403–415 (1987).
    [Crossref]
  5. V. Stuart, S. Sathyendranath, T. Platt, H. Maass, and B. D. Irwin, “Pigments and species composition of natural phytoplankton populations: effect on the absorption spectra,” J. Plankton Res. 20, 187–217 (1998).
    [Crossref]
  6. S. E. Lohrenz, A. Weidemann, and M. Tuel, “Phytoplankton spectral absorption as influenced by community size structure and pigment composition,” J. Plankton Res. 25, 35–61 (2003).
    [Crossref]
  7. P. G. Falkowski and J. A. Raven, Aquatic Photosynthesis (Princeton University, 2007), chap. 2.
  8. W. J. Vredenberg and L. Slooten, “Chlorophyll a fluorescence and photochemical activities of chloroplast fragments,” Biochim. Biophys. Acta 143, 583–594 (1967).
    [Crossref] [PubMed]
  9. G. H. Krause and E. Weis, “Chlorophyll fluorescence and photosynthesis: The basics,” Annu. Rev. Plant Physiol. Plant Mol. Biol. 42, 313–349 (1991).
    [Crossref]
  10. V. Lutz and S. Sathyendaranath, “Changes in the in vivo absorption and fluorescence excitation spectra with growth irradiance in three species of phytoplankton,” J. Plankton Res. 23, 555–569 (2001).
    [Crossref]
  11. S. Maritorena, A. Morel, and B. Gentili, “Determination of the fluorescence quantum yield by oceanic phytoplankton in their natural habitat,” Appl. Opt. 39, 6725–6737 (2000).
    [Crossref]
  12. J. R. Morrison, “In situ determination of the quantum yield of phytoplankton chlorophyll a fluorescence: A simple algorithm, observations, and a model,” Limnol. Oceanogr. 48, 618–631 (2003).
    [Crossref]
  13. M. Babin, A. Morel, and B. Gentili, “Remote sensing of sea surface sun-induced chlorophyll fluorescence: consequences of natural variations in the optical characteristics of phytoplankton and the quantum yield of chlorophyll a fluorescence,” Int. J. Remote. Sens. 17, 2417–2448 (1996).
    [Crossref]
  14. M. J. Behrenfeld, T. K. Westberry, E. S. Boss, R. T. O’Malley, D. A. Siegel, J. D. Wiggert, B. A. Franz, C. R. McClain, G. C. Feldman, S. C. Doney, J. K. Moore, G. Dall’Olmo, A. J. Milligan, I. Lima, and N. Mahowald, “Satellite-detected fluorescence reveals global physiology of ocean phytoplankton,” Biogeosciences. 6, 779–794 (2009).
    [Crossref]
  15. R. A. Desiderio, C. M. Moore, C. Lantz, and T. J. Cowles, “Multiple excitation fluorometer for in situ oceanographic applications,” Appl. Opt. 36, 1289–1296 (1997).
    [Crossref] [PubMed]
  16. M. Beutler, K. H. Wiltshire, B. Meyer, C. Moldaenke, C. Lüring, M. Meyerhöfer, U.-P. Hansen, and H. Dau, “A fluorometric method for the differentiation of algal populations in vivo and in situ,” Photosynth. Res. 72, 39–53 (2002).
    [Crossref]
  17. M. Beutler, K. H. Wiltshire, M. Arp, J. Kruse, C. Reineke, C. Moldaenke, and U. P. Hansen, “A reduced model of the fluorescence from the cyanobacterial photosynthetic apparatus designed for the in situ detection of cyanobacteria,” Biochim. Biophys. Acta 1604, 33–46 (2003).
    [Crossref] [PubMed]
  18. M. Yoshida, T. Horiuchi, and Y. Nagasawa, “In situ multi-excitation chlorophyll fluorometer for phytoplankton measurements: Technologies and applications beyond conventional fluorometers,” in Proceedings of the OCEANS (IEEE, 2011), pp. 1–4.
  19. M. Ostrowska, “Dependence between the quantum yield of chlorophyll a fluorescence in marine phytoplankton and trophicity in low irradiance level,” Opt. Appl. 41, 567–577 (2011).
  20. J. N. Demas and G. A. Crosby, “Measurement of Photoluminescence Quantum Yields. A Review,” The J. Phys. Chem. 75, 991–1024 (1971).
    [Crossref]
  21. C. S. Yentsch, “Measurement of visible light absorption by particulate matter in the ocean,” Limnol. Oceanogr. 7, 207–217 (1962).
    [Crossref]
  22. M. Kishino, M. Takahashi, N. Okami, and S. Ichimura, “Estimation of the Spectral Absorption Coefficients of Phytoplankton in the Sea,” Bull. Mar. Sci. 37, 634–642 (1985).
  23. C. S. Roesler, “Theoretical and experimental approaches to improve the accuracy of particulate absorption coefficients derived from the quantitative filter technique,” Limnol. Oceanogr. 43, 1649–1660 (1998).
    [Crossref]

2011 (1)

M. Ostrowska, “Dependence between the quantum yield of chlorophyll a fluorescence in marine phytoplankton and trophicity in low irradiance level,” Opt. Appl. 41, 567–577 (2011).

2009 (1)

M. J. Behrenfeld, T. K. Westberry, E. S. Boss, R. T. O’Malley, D. A. Siegel, J. D. Wiggert, B. A. Franz, C. R. McClain, G. C. Feldman, S. C. Doney, J. K. Moore, G. Dall’Olmo, A. J. Milligan, I. Lima, and N. Mahowald, “Satellite-detected fluorescence reveals global physiology of ocean phytoplankton,” Biogeosciences. 6, 779–794 (2009).
[Crossref]

2003 (3)

M. Beutler, K. H. Wiltshire, M. Arp, J. Kruse, C. Reineke, C. Moldaenke, and U. P. Hansen, “A reduced model of the fluorescence from the cyanobacterial photosynthetic apparatus designed for the in situ detection of cyanobacteria,” Biochim. Biophys. Acta 1604, 33–46 (2003).
[Crossref] [PubMed]

J. R. Morrison, “In situ determination of the quantum yield of phytoplankton chlorophyll a fluorescence: A simple algorithm, observations, and a model,” Limnol. Oceanogr. 48, 618–631 (2003).
[Crossref]

S. E. Lohrenz, A. Weidemann, and M. Tuel, “Phytoplankton spectral absorption as influenced by community size structure and pigment composition,” J. Plankton Res. 25, 35–61 (2003).
[Crossref]

2002 (1)

M. Beutler, K. H. Wiltshire, B. Meyer, C. Moldaenke, C. Lüring, M. Meyerhöfer, U.-P. Hansen, and H. Dau, “A fluorometric method for the differentiation of algal populations in vivo and in situ,” Photosynth. Res. 72, 39–53 (2002).
[Crossref]

2001 (1)

V. Lutz and S. Sathyendaranath, “Changes in the in vivo absorption and fluorescence excitation spectra with growth irradiance in three species of phytoplankton,” J. Plankton Res. 23, 555–569 (2001).
[Crossref]

2000 (1)

1998 (2)

V. Stuart, S. Sathyendranath, T. Platt, H. Maass, and B. D. Irwin, “Pigments and species composition of natural phytoplankton populations: effect on the absorption spectra,” J. Plankton Res. 20, 187–217 (1998).
[Crossref]

C. S. Roesler, “Theoretical and experimental approaches to improve the accuracy of particulate absorption coefficients derived from the quantitative filter technique,” Limnol. Oceanogr. 43, 1649–1660 (1998).
[Crossref]

1997 (1)

1996 (1)

M. Babin, A. Morel, and B. Gentili, “Remote sensing of sea surface sun-induced chlorophyll fluorescence: consequences of natural variations in the optical characteristics of phytoplankton and the quantum yield of chlorophyll a fluorescence,” Int. J. Remote. Sens. 17, 2417–2448 (1996).
[Crossref]

1995 (1)

A. Bricaud, M. Babin, A. Morel, and H. Claustre, “Variability in the chlorophyll-specific absorption coefficients of natural phytoplankton,” J. Geophys. Res. 100, 13321–13332 (1995).
[Crossref]

1991 (1)

G. H. Krause and E. Weis, “Chlorophyll fluorescence and photosynthesis: The basics,” Annu. Rev. Plant Physiol. Plant Mol. Biol. 42, 313–349 (1991).
[Crossref]

1987 (1)

S. Sathyendranath, L. Lazzara, and L. Prieur, “Variations in the spectral values of specific absorption of phytoplankton,” Limnol. Oceanogr. 32, 403–415 (1987).
[Crossref]

1985 (1)

M. Kishino, M. Takahashi, N. Okami, and S. Ichimura, “Estimation of the Spectral Absorption Coefficients of Phytoplankton in the Sea,” Bull. Mar. Sci. 37, 634–642 (1985).

1981 (1)

A. Morel and A. Bricaud, “Theoretical results concerning light absorption in a discrete medium, and application to specific absorption of phytoplankton,” Deep. Sea Res. Part A 28, 1375–1393 (1981).
[Crossref]

1971 (1)

J. N. Demas and G. A. Crosby, “Measurement of Photoluminescence Quantum Yields. A Review,” The J. Phys. Chem. 75, 991–1024 (1971).
[Crossref]

1967 (1)

W. J. Vredenberg and L. Slooten, “Chlorophyll a fluorescence and photochemical activities of chloroplast fragments,” Biochim. Biophys. Acta 143, 583–594 (1967).
[Crossref] [PubMed]

1962 (1)

C. S. Yentsch, “Measurement of visible light absorption by particulate matter in the ocean,” Limnol. Oceanogr. 7, 207–217 (1962).
[Crossref]

1956 (1)

L. N. M. Duysens, “The flattening of the absorption spectrum of suspensions, as compared to that of solutions,” Biochim.Biophys. Acta 19, 1–12 (1956).
[Crossref]

Arp, M.

M. Beutler, K. H. Wiltshire, M. Arp, J. Kruse, C. Reineke, C. Moldaenke, and U. P. Hansen, “A reduced model of the fluorescence from the cyanobacterial photosynthetic apparatus designed for the in situ detection of cyanobacteria,” Biochim. Biophys. Acta 1604, 33–46 (2003).
[Crossref] [PubMed]

Babin, M.

M. Babin, A. Morel, and B. Gentili, “Remote sensing of sea surface sun-induced chlorophyll fluorescence: consequences of natural variations in the optical characteristics of phytoplankton and the quantum yield of chlorophyll a fluorescence,” Int. J. Remote. Sens. 17, 2417–2448 (1996).
[Crossref]

A. Bricaud, M. Babin, A. Morel, and H. Claustre, “Variability in the chlorophyll-specific absorption coefficients of natural phytoplankton,” J. Geophys. Res. 100, 13321–13332 (1995).
[Crossref]

Behrenfeld, M. J.

M. J. Behrenfeld, T. K. Westberry, E. S. Boss, R. T. O’Malley, D. A. Siegel, J. D. Wiggert, B. A. Franz, C. R. McClain, G. C. Feldman, S. C. Doney, J. K. Moore, G. Dall’Olmo, A. J. Milligan, I. Lima, and N. Mahowald, “Satellite-detected fluorescence reveals global physiology of ocean phytoplankton,” Biogeosciences. 6, 779–794 (2009).
[Crossref]

Beutler, M.

M. Beutler, K. H. Wiltshire, M. Arp, J. Kruse, C. Reineke, C. Moldaenke, and U. P. Hansen, “A reduced model of the fluorescence from the cyanobacterial photosynthetic apparatus designed for the in situ detection of cyanobacteria,” Biochim. Biophys. Acta 1604, 33–46 (2003).
[Crossref] [PubMed]

M. Beutler, K. H. Wiltshire, B. Meyer, C. Moldaenke, C. Lüring, M. Meyerhöfer, U.-P. Hansen, and H. Dau, “A fluorometric method for the differentiation of algal populations in vivo and in situ,” Photosynth. Res. 72, 39–53 (2002).
[Crossref]

Boss, E. S.

M. J. Behrenfeld, T. K. Westberry, E. S. Boss, R. T. O’Malley, D. A. Siegel, J. D. Wiggert, B. A. Franz, C. R. McClain, G. C. Feldman, S. C. Doney, J. K. Moore, G. Dall’Olmo, A. J. Milligan, I. Lima, and N. Mahowald, “Satellite-detected fluorescence reveals global physiology of ocean phytoplankton,” Biogeosciences. 6, 779–794 (2009).
[Crossref]

Bricaud, A.

A. Bricaud, M. Babin, A. Morel, and H. Claustre, “Variability in the chlorophyll-specific absorption coefficients of natural phytoplankton,” J. Geophys. Res. 100, 13321–13332 (1995).
[Crossref]

A. Morel and A. Bricaud, “Theoretical results concerning light absorption in a discrete medium, and application to specific absorption of phytoplankton,” Deep. Sea Res. Part A 28, 1375–1393 (1981).
[Crossref]

Claustre, H.

A. Bricaud, M. Babin, A. Morel, and H. Claustre, “Variability in the chlorophyll-specific absorption coefficients of natural phytoplankton,” J. Geophys. Res. 100, 13321–13332 (1995).
[Crossref]

Cowles, T. J.

Crosby, G. A.

J. N. Demas and G. A. Crosby, “Measurement of Photoluminescence Quantum Yields. A Review,” The J. Phys. Chem. 75, 991–1024 (1971).
[Crossref]

Dall’Olmo, G.

M. J. Behrenfeld, T. K. Westberry, E. S. Boss, R. T. O’Malley, D. A. Siegel, J. D. Wiggert, B. A. Franz, C. R. McClain, G. C. Feldman, S. C. Doney, J. K. Moore, G. Dall’Olmo, A. J. Milligan, I. Lima, and N. Mahowald, “Satellite-detected fluorescence reveals global physiology of ocean phytoplankton,” Biogeosciences. 6, 779–794 (2009).
[Crossref]

Dau, H.

M. Beutler, K. H. Wiltshire, B. Meyer, C. Moldaenke, C. Lüring, M. Meyerhöfer, U.-P. Hansen, and H. Dau, “A fluorometric method for the differentiation of algal populations in vivo and in situ,” Photosynth. Res. 72, 39–53 (2002).
[Crossref]

Demas, J. N.

J. N. Demas and G. A. Crosby, “Measurement of Photoluminescence Quantum Yields. A Review,” The J. Phys. Chem. 75, 991–1024 (1971).
[Crossref]

Desiderio, R. A.

Doney, S. C.

M. J. Behrenfeld, T. K. Westberry, E. S. Boss, R. T. O’Malley, D. A. Siegel, J. D. Wiggert, B. A. Franz, C. R. McClain, G. C. Feldman, S. C. Doney, J. K. Moore, G. Dall’Olmo, A. J. Milligan, I. Lima, and N. Mahowald, “Satellite-detected fluorescence reveals global physiology of ocean phytoplankton,” Biogeosciences. 6, 779–794 (2009).
[Crossref]

Duysens, L. N. M.

L. N. M. Duysens, “The flattening of the absorption spectrum of suspensions, as compared to that of solutions,” Biochim.Biophys. Acta 19, 1–12 (1956).
[Crossref]

Falkowski, P. G.

P. G. Falkowski and J. A. Raven, Aquatic Photosynthesis (Princeton University, 2007), chap. 2.

Feldman, G. C.

M. J. Behrenfeld, T. K. Westberry, E. S. Boss, R. T. O’Malley, D. A. Siegel, J. D. Wiggert, B. A. Franz, C. R. McClain, G. C. Feldman, S. C. Doney, J. K. Moore, G. Dall’Olmo, A. J. Milligan, I. Lima, and N. Mahowald, “Satellite-detected fluorescence reveals global physiology of ocean phytoplankton,” Biogeosciences. 6, 779–794 (2009).
[Crossref]

Franz, B. A.

M. J. Behrenfeld, T. K. Westberry, E. S. Boss, R. T. O’Malley, D. A. Siegel, J. D. Wiggert, B. A. Franz, C. R. McClain, G. C. Feldman, S. C. Doney, J. K. Moore, G. Dall’Olmo, A. J. Milligan, I. Lima, and N. Mahowald, “Satellite-detected fluorescence reveals global physiology of ocean phytoplankton,” Biogeosciences. 6, 779–794 (2009).
[Crossref]

Gentili, B.

S. Maritorena, A. Morel, and B. Gentili, “Determination of the fluorescence quantum yield by oceanic phytoplankton in their natural habitat,” Appl. Opt. 39, 6725–6737 (2000).
[Crossref]

M. Babin, A. Morel, and B. Gentili, “Remote sensing of sea surface sun-induced chlorophyll fluorescence: consequences of natural variations in the optical characteristics of phytoplankton and the quantum yield of chlorophyll a fluorescence,” Int. J. Remote. Sens. 17, 2417–2448 (1996).
[Crossref]

Hansen, U. P.

M. Beutler, K. H. Wiltshire, M. Arp, J. Kruse, C. Reineke, C. Moldaenke, and U. P. Hansen, “A reduced model of the fluorescence from the cyanobacterial photosynthetic apparatus designed for the in situ detection of cyanobacteria,” Biochim. Biophys. Acta 1604, 33–46 (2003).
[Crossref] [PubMed]

Hansen, U.-P.

M. Beutler, K. H. Wiltshire, B. Meyer, C. Moldaenke, C. Lüring, M. Meyerhöfer, U.-P. Hansen, and H. Dau, “A fluorometric method for the differentiation of algal populations in vivo and in situ,” Photosynth. Res. 72, 39–53 (2002).
[Crossref]

Horiuchi, T.

M. Yoshida, T. Horiuchi, and Y. Nagasawa, “In situ multi-excitation chlorophyll fluorometer for phytoplankton measurements: Technologies and applications beyond conventional fluorometers,” in Proceedings of the OCEANS (IEEE, 2011), pp. 1–4.

Ichimura, S.

M. Kishino, M. Takahashi, N. Okami, and S. Ichimura, “Estimation of the Spectral Absorption Coefficients of Phytoplankton in the Sea,” Bull. Mar. Sci. 37, 634–642 (1985).

Irwin, B. D.

V. Stuart, S. Sathyendranath, T. Platt, H. Maass, and B. D. Irwin, “Pigments and species composition of natural phytoplankton populations: effect on the absorption spectra,” J. Plankton Res. 20, 187–217 (1998).
[Crossref]

Kishino, M.

M. Kishino, M. Takahashi, N. Okami, and S. Ichimura, “Estimation of the Spectral Absorption Coefficients of Phytoplankton in the Sea,” Bull. Mar. Sci. 37, 634–642 (1985).

Krause, G. H.

G. H. Krause and E. Weis, “Chlorophyll fluorescence and photosynthesis: The basics,” Annu. Rev. Plant Physiol. Plant Mol. Biol. 42, 313–349 (1991).
[Crossref]

Kruse, J.

M. Beutler, K. H. Wiltshire, M. Arp, J. Kruse, C. Reineke, C. Moldaenke, and U. P. Hansen, “A reduced model of the fluorescence from the cyanobacterial photosynthetic apparatus designed for the in situ detection of cyanobacteria,” Biochim. Biophys. Acta 1604, 33–46 (2003).
[Crossref] [PubMed]

Lantz, C.

Lazzara, L.

S. Sathyendranath, L. Lazzara, and L. Prieur, “Variations in the spectral values of specific absorption of phytoplankton,” Limnol. Oceanogr. 32, 403–415 (1987).
[Crossref]

Lima, I.

M. J. Behrenfeld, T. K. Westberry, E. S. Boss, R. T. O’Malley, D. A. Siegel, J. D. Wiggert, B. A. Franz, C. R. McClain, G. C. Feldman, S. C. Doney, J. K. Moore, G. Dall’Olmo, A. J. Milligan, I. Lima, and N. Mahowald, “Satellite-detected fluorescence reveals global physiology of ocean phytoplankton,” Biogeosciences. 6, 779–794 (2009).
[Crossref]

Lohrenz, S. E.

S. E. Lohrenz, A. Weidemann, and M. Tuel, “Phytoplankton spectral absorption as influenced by community size structure and pigment composition,” J. Plankton Res. 25, 35–61 (2003).
[Crossref]

Lüring, C.

M. Beutler, K. H. Wiltshire, B. Meyer, C. Moldaenke, C. Lüring, M. Meyerhöfer, U.-P. Hansen, and H. Dau, “A fluorometric method for the differentiation of algal populations in vivo and in situ,” Photosynth. Res. 72, 39–53 (2002).
[Crossref]

Lutz, V.

V. Lutz and S. Sathyendaranath, “Changes in the in vivo absorption and fluorescence excitation spectra with growth irradiance in three species of phytoplankton,” J. Plankton Res. 23, 555–569 (2001).
[Crossref]

Maass, H.

V. Stuart, S. Sathyendranath, T. Platt, H. Maass, and B. D. Irwin, “Pigments and species composition of natural phytoplankton populations: effect on the absorption spectra,” J. Plankton Res. 20, 187–217 (1998).
[Crossref]

Mahowald, N.

M. J. Behrenfeld, T. K. Westberry, E. S. Boss, R. T. O’Malley, D. A. Siegel, J. D. Wiggert, B. A. Franz, C. R. McClain, G. C. Feldman, S. C. Doney, J. K. Moore, G. Dall’Olmo, A. J. Milligan, I. Lima, and N. Mahowald, “Satellite-detected fluorescence reveals global physiology of ocean phytoplankton,” Biogeosciences. 6, 779–794 (2009).
[Crossref]

Maritorena, S.

McClain, C. R.

M. J. Behrenfeld, T. K. Westberry, E. S. Boss, R. T. O’Malley, D. A. Siegel, J. D. Wiggert, B. A. Franz, C. R. McClain, G. C. Feldman, S. C. Doney, J. K. Moore, G. Dall’Olmo, A. J. Milligan, I. Lima, and N. Mahowald, “Satellite-detected fluorescence reveals global physiology of ocean phytoplankton,” Biogeosciences. 6, 779–794 (2009).
[Crossref]

Meyer, B.

M. Beutler, K. H. Wiltshire, B. Meyer, C. Moldaenke, C. Lüring, M. Meyerhöfer, U.-P. Hansen, and H. Dau, “A fluorometric method for the differentiation of algal populations in vivo and in situ,” Photosynth. Res. 72, 39–53 (2002).
[Crossref]

Meyerhöfer, M.

M. Beutler, K. H. Wiltshire, B. Meyer, C. Moldaenke, C. Lüring, M. Meyerhöfer, U.-P. Hansen, and H. Dau, “A fluorometric method for the differentiation of algal populations in vivo and in situ,” Photosynth. Res. 72, 39–53 (2002).
[Crossref]

Milligan, A. J.

M. J. Behrenfeld, T. K. Westberry, E. S. Boss, R. T. O’Malley, D. A. Siegel, J. D. Wiggert, B. A. Franz, C. R. McClain, G. C. Feldman, S. C. Doney, J. K. Moore, G. Dall’Olmo, A. J. Milligan, I. Lima, and N. Mahowald, “Satellite-detected fluorescence reveals global physiology of ocean phytoplankton,” Biogeosciences. 6, 779–794 (2009).
[Crossref]

Moldaenke, C.

M. Beutler, K. H. Wiltshire, M. Arp, J. Kruse, C. Reineke, C. Moldaenke, and U. P. Hansen, “A reduced model of the fluorescence from the cyanobacterial photosynthetic apparatus designed for the in situ detection of cyanobacteria,” Biochim. Biophys. Acta 1604, 33–46 (2003).
[Crossref] [PubMed]

M. Beutler, K. H. Wiltshire, B. Meyer, C. Moldaenke, C. Lüring, M. Meyerhöfer, U.-P. Hansen, and H. Dau, “A fluorometric method for the differentiation of algal populations in vivo and in situ,” Photosynth. Res. 72, 39–53 (2002).
[Crossref]

Moore, C. M.

Moore, J. K.

M. J. Behrenfeld, T. K. Westberry, E. S. Boss, R. T. O’Malley, D. A. Siegel, J. D. Wiggert, B. A. Franz, C. R. McClain, G. C. Feldman, S. C. Doney, J. K. Moore, G. Dall’Olmo, A. J. Milligan, I. Lima, and N. Mahowald, “Satellite-detected fluorescence reveals global physiology of ocean phytoplankton,” Biogeosciences. 6, 779–794 (2009).
[Crossref]

Morel, A.

S. Maritorena, A. Morel, and B. Gentili, “Determination of the fluorescence quantum yield by oceanic phytoplankton in their natural habitat,” Appl. Opt. 39, 6725–6737 (2000).
[Crossref]

M. Babin, A. Morel, and B. Gentili, “Remote sensing of sea surface sun-induced chlorophyll fluorescence: consequences of natural variations in the optical characteristics of phytoplankton and the quantum yield of chlorophyll a fluorescence,” Int. J. Remote. Sens. 17, 2417–2448 (1996).
[Crossref]

A. Bricaud, M. Babin, A. Morel, and H. Claustre, “Variability in the chlorophyll-specific absorption coefficients of natural phytoplankton,” J. Geophys. Res. 100, 13321–13332 (1995).
[Crossref]

A. Morel and A. Bricaud, “Theoretical results concerning light absorption in a discrete medium, and application to specific absorption of phytoplankton,” Deep. Sea Res. Part A 28, 1375–1393 (1981).
[Crossref]

Morrison, J. R.

J. R. Morrison, “In situ determination of the quantum yield of phytoplankton chlorophyll a fluorescence: A simple algorithm, observations, and a model,” Limnol. Oceanogr. 48, 618–631 (2003).
[Crossref]

Nagasawa, Y.

M. Yoshida, T. Horiuchi, and Y. Nagasawa, “In situ multi-excitation chlorophyll fluorometer for phytoplankton measurements: Technologies and applications beyond conventional fluorometers,” in Proceedings of the OCEANS (IEEE, 2011), pp. 1–4.

O’Malley, R. T.

M. J. Behrenfeld, T. K. Westberry, E. S. Boss, R. T. O’Malley, D. A. Siegel, J. D. Wiggert, B. A. Franz, C. R. McClain, G. C. Feldman, S. C. Doney, J. K. Moore, G. Dall’Olmo, A. J. Milligan, I. Lima, and N. Mahowald, “Satellite-detected fluorescence reveals global physiology of ocean phytoplankton,” Biogeosciences. 6, 779–794 (2009).
[Crossref]

Okami, N.

M. Kishino, M. Takahashi, N. Okami, and S. Ichimura, “Estimation of the Spectral Absorption Coefficients of Phytoplankton in the Sea,” Bull. Mar. Sci. 37, 634–642 (1985).

Ostrowska, M.

M. Ostrowska, “Dependence between the quantum yield of chlorophyll a fluorescence in marine phytoplankton and trophicity in low irradiance level,” Opt. Appl. 41, 567–577 (2011).

Platt, T.

V. Stuart, S. Sathyendranath, T. Platt, H. Maass, and B. D. Irwin, “Pigments and species composition of natural phytoplankton populations: effect on the absorption spectra,” J. Plankton Res. 20, 187–217 (1998).
[Crossref]

Prieur, L.

S. Sathyendranath, L. Lazzara, and L. Prieur, “Variations in the spectral values of specific absorption of phytoplankton,” Limnol. Oceanogr. 32, 403–415 (1987).
[Crossref]

Raven, J. A.

P. G. Falkowski and J. A. Raven, Aquatic Photosynthesis (Princeton University, 2007), chap. 2.

Reineke, C.

M. Beutler, K. H. Wiltshire, M. Arp, J. Kruse, C. Reineke, C. Moldaenke, and U. P. Hansen, “A reduced model of the fluorescence from the cyanobacterial photosynthetic apparatus designed for the in situ detection of cyanobacteria,” Biochim. Biophys. Acta 1604, 33–46 (2003).
[Crossref] [PubMed]

Roesler, C. S.

C. S. Roesler, “Theoretical and experimental approaches to improve the accuracy of particulate absorption coefficients derived from the quantitative filter technique,” Limnol. Oceanogr. 43, 1649–1660 (1998).
[Crossref]

Sathyendaranath, S.

V. Lutz and S. Sathyendaranath, “Changes in the in vivo absorption and fluorescence excitation spectra with growth irradiance in three species of phytoplankton,” J. Plankton Res. 23, 555–569 (2001).
[Crossref]

Sathyendranath, S.

V. Stuart, S. Sathyendranath, T. Platt, H. Maass, and B. D. Irwin, “Pigments and species composition of natural phytoplankton populations: effect on the absorption spectra,” J. Plankton Res. 20, 187–217 (1998).
[Crossref]

S. Sathyendranath, L. Lazzara, and L. Prieur, “Variations in the spectral values of specific absorption of phytoplankton,” Limnol. Oceanogr. 32, 403–415 (1987).
[Crossref]

Siegel, D. A.

M. J. Behrenfeld, T. K. Westberry, E. S. Boss, R. T. O’Malley, D. A. Siegel, J. D. Wiggert, B. A. Franz, C. R. McClain, G. C. Feldman, S. C. Doney, J. K. Moore, G. Dall’Olmo, A. J. Milligan, I. Lima, and N. Mahowald, “Satellite-detected fluorescence reveals global physiology of ocean phytoplankton,” Biogeosciences. 6, 779–794 (2009).
[Crossref]

Slooten, L.

W. J. Vredenberg and L. Slooten, “Chlorophyll a fluorescence and photochemical activities of chloroplast fragments,” Biochim. Biophys. Acta 143, 583–594 (1967).
[Crossref] [PubMed]

Stuart, V.

V. Stuart, S. Sathyendranath, T. Platt, H. Maass, and B. D. Irwin, “Pigments and species composition of natural phytoplankton populations: effect on the absorption spectra,” J. Plankton Res. 20, 187–217 (1998).
[Crossref]

Takahashi, M.

M. Kishino, M. Takahashi, N. Okami, and S. Ichimura, “Estimation of the Spectral Absorption Coefficients of Phytoplankton in the Sea,” Bull. Mar. Sci. 37, 634–642 (1985).

Tuel, M.

S. E. Lohrenz, A. Weidemann, and M. Tuel, “Phytoplankton spectral absorption as influenced by community size structure and pigment composition,” J. Plankton Res. 25, 35–61 (2003).
[Crossref]

Vredenberg, W. J.

W. J. Vredenberg and L. Slooten, “Chlorophyll a fluorescence and photochemical activities of chloroplast fragments,” Biochim. Biophys. Acta 143, 583–594 (1967).
[Crossref] [PubMed]

Weidemann, A.

S. E. Lohrenz, A. Weidemann, and M. Tuel, “Phytoplankton spectral absorption as influenced by community size structure and pigment composition,” J. Plankton Res. 25, 35–61 (2003).
[Crossref]

Weis, E.

G. H. Krause and E. Weis, “Chlorophyll fluorescence and photosynthesis: The basics,” Annu. Rev. Plant Physiol. Plant Mol. Biol. 42, 313–349 (1991).
[Crossref]

Westberry, T. K.

M. J. Behrenfeld, T. K. Westberry, E. S. Boss, R. T. O’Malley, D. A. Siegel, J. D. Wiggert, B. A. Franz, C. R. McClain, G. C. Feldman, S. C. Doney, J. K. Moore, G. Dall’Olmo, A. J. Milligan, I. Lima, and N. Mahowald, “Satellite-detected fluorescence reveals global physiology of ocean phytoplankton,” Biogeosciences. 6, 779–794 (2009).
[Crossref]

Wiggert, J. D.

M. J. Behrenfeld, T. K. Westberry, E. S. Boss, R. T. O’Malley, D. A. Siegel, J. D. Wiggert, B. A. Franz, C. R. McClain, G. C. Feldman, S. C. Doney, J. K. Moore, G. Dall’Olmo, A. J. Milligan, I. Lima, and N. Mahowald, “Satellite-detected fluorescence reveals global physiology of ocean phytoplankton,” Biogeosciences. 6, 779–794 (2009).
[Crossref]

Wiltshire, K. H.

M. Beutler, K. H. Wiltshire, M. Arp, J. Kruse, C. Reineke, C. Moldaenke, and U. P. Hansen, “A reduced model of the fluorescence from the cyanobacterial photosynthetic apparatus designed for the in situ detection of cyanobacteria,” Biochim. Biophys. Acta 1604, 33–46 (2003).
[Crossref] [PubMed]

M. Beutler, K. H. Wiltshire, B. Meyer, C. Moldaenke, C. Lüring, M. Meyerhöfer, U.-P. Hansen, and H. Dau, “A fluorometric method for the differentiation of algal populations in vivo and in situ,” Photosynth. Res. 72, 39–53 (2002).
[Crossref]

Yentsch, C. S.

C. S. Yentsch, “Measurement of visible light absorption by particulate matter in the ocean,” Limnol. Oceanogr. 7, 207–217 (1962).
[Crossref]

Yoshida, M.

M. Yoshida, T. Horiuchi, and Y. Nagasawa, “In situ multi-excitation chlorophyll fluorometer for phytoplankton measurements: Technologies and applications beyond conventional fluorometers,” in Proceedings of the OCEANS (IEEE, 2011), pp. 1–4.

Annu. Rev. Plant Physiol. Plant Mol. Biol. (1)

G. H. Krause and E. Weis, “Chlorophyll fluorescence and photosynthesis: The basics,” Annu. Rev. Plant Physiol. Plant Mol. Biol. 42, 313–349 (1991).
[Crossref]

Appl. Opt. (2)

Biochim. Biophys. Acta (2)

M. Beutler, K. H. Wiltshire, M. Arp, J. Kruse, C. Reineke, C. Moldaenke, and U. P. Hansen, “A reduced model of the fluorescence from the cyanobacterial photosynthetic apparatus designed for the in situ detection of cyanobacteria,” Biochim. Biophys. Acta 1604, 33–46 (2003).
[Crossref] [PubMed]

W. J. Vredenberg and L. Slooten, “Chlorophyll a fluorescence and photochemical activities of chloroplast fragments,” Biochim. Biophys. Acta 143, 583–594 (1967).
[Crossref] [PubMed]

Biochim.Biophys. Acta (1)

L. N. M. Duysens, “The flattening of the absorption spectrum of suspensions, as compared to that of solutions,” Biochim.Biophys. Acta 19, 1–12 (1956).
[Crossref]

Biogeosciences. (1)

M. J. Behrenfeld, T. K. Westberry, E. S. Boss, R. T. O’Malley, D. A. Siegel, J. D. Wiggert, B. A. Franz, C. R. McClain, G. C. Feldman, S. C. Doney, J. K. Moore, G. Dall’Olmo, A. J. Milligan, I. Lima, and N. Mahowald, “Satellite-detected fluorescence reveals global physiology of ocean phytoplankton,” Biogeosciences. 6, 779–794 (2009).
[Crossref]

Bull. Mar. Sci. (1)

M. Kishino, M. Takahashi, N. Okami, and S. Ichimura, “Estimation of the Spectral Absorption Coefficients of Phytoplankton in the Sea,” Bull. Mar. Sci. 37, 634–642 (1985).

Deep. Sea Res. Part A (1)

A. Morel and A. Bricaud, “Theoretical results concerning light absorption in a discrete medium, and application to specific absorption of phytoplankton,” Deep. Sea Res. Part A 28, 1375–1393 (1981).
[Crossref]

Int. J. Remote. Sens. (1)

M. Babin, A. Morel, and B. Gentili, “Remote sensing of sea surface sun-induced chlorophyll fluorescence: consequences of natural variations in the optical characteristics of phytoplankton and the quantum yield of chlorophyll a fluorescence,” Int. J. Remote. Sens. 17, 2417–2448 (1996).
[Crossref]

J. Geophys. Res. (1)

A. Bricaud, M. Babin, A. Morel, and H. Claustre, “Variability in the chlorophyll-specific absorption coefficients of natural phytoplankton,” J. Geophys. Res. 100, 13321–13332 (1995).
[Crossref]

J. Plankton Res. (3)

V. Stuart, S. Sathyendranath, T. Platt, H. Maass, and B. D. Irwin, “Pigments and species composition of natural phytoplankton populations: effect on the absorption spectra,” J. Plankton Res. 20, 187–217 (1998).
[Crossref]

S. E. Lohrenz, A. Weidemann, and M. Tuel, “Phytoplankton spectral absorption as influenced by community size structure and pigment composition,” J. Plankton Res. 25, 35–61 (2003).
[Crossref]

V. Lutz and S. Sathyendaranath, “Changes in the in vivo absorption and fluorescence excitation spectra with growth irradiance in three species of phytoplankton,” J. Plankton Res. 23, 555–569 (2001).
[Crossref]

Limnol. Oceanogr. (4)

S. Sathyendranath, L. Lazzara, and L. Prieur, “Variations in the spectral values of specific absorption of phytoplankton,” Limnol. Oceanogr. 32, 403–415 (1987).
[Crossref]

J. R. Morrison, “In situ determination of the quantum yield of phytoplankton chlorophyll a fluorescence: A simple algorithm, observations, and a model,” Limnol. Oceanogr. 48, 618–631 (2003).
[Crossref]

C. S. Roesler, “Theoretical and experimental approaches to improve the accuracy of particulate absorption coefficients derived from the quantitative filter technique,” Limnol. Oceanogr. 43, 1649–1660 (1998).
[Crossref]

C. S. Yentsch, “Measurement of visible light absorption by particulate matter in the ocean,” Limnol. Oceanogr. 7, 207–217 (1962).
[Crossref]

Opt. Appl. (1)

M. Ostrowska, “Dependence between the quantum yield of chlorophyll a fluorescence in marine phytoplankton and trophicity in low irradiance level,” Opt. Appl. 41, 567–577 (2011).

Photosynth. Res. (1)

M. Beutler, K. H. Wiltshire, B. Meyer, C. Moldaenke, C. Lüring, M. Meyerhöfer, U.-P. Hansen, and H. Dau, “A fluorometric method for the differentiation of algal populations in vivo and in situ,” Photosynth. Res. 72, 39–53 (2002).
[Crossref]

The J. Phys. Chem. (1)

J. N. Demas and G. A. Crosby, “Measurement of Photoluminescence Quantum Yields. A Review,” The J. Phys. Chem. 75, 991–1024 (1971).
[Crossref]

Other (2)

M. Yoshida, T. Horiuchi, and Y. Nagasawa, “In situ multi-excitation chlorophyll fluorometer for phytoplankton measurements: Technologies and applications beyond conventional fluorometers,” in Proceedings of the OCEANS (IEEE, 2011), pp. 1–4.

P. G. Falkowski and J. A. Raven, Aquatic Photosynthesis (Princeton University, 2007), chap. 2.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 MFL LED normalized photon spectra, plotted on a log scale with ATTO-TEC Dye and Perspex 4T56 relative spectral absorptivity.
Fig. 2
Fig. 2 Fluorophore normalized emission photon spectra plotted together with MFL normalized effective quantum detection efficiency.
Fig. 3
Fig. 3 MFL LED and detector viewing geometry. The angle at which the LED illumination intersects the fluorescent layer at distance z at the center of the MFL field of view (FOV) is θ.
Fig. 4
Fig. 4 Calibration setup using fluorescent acrylic plaque and neutral gray filter.
Fig. 5
Fig. 5 The FQY measurement for the acrylic fluorescent plaque was performed by relating the emergent emitted radiance L to the FQY of the material and the incident excitation irradiance Eλ.
Fig. 6
Fig. 6 Apparent FQY for in situ measurements. The error bars indicate the standard deviation of the field measurements, which would include all temporal variability of the sample as well as instrument noise.

Tables (2)

Tables Icon

Table 1 Symbols and Units

Tables Icon

Table 2 MFL-Relative Partial Quantum Yield Factors

Equations (32)

Equations on this page are rendered with MathJax. Learn more.

R i j = k i j a i j p i Θ i ,
k i j = R i j a i j p i Θ i .
A ( λ ) = log 10 𝒯 ( λ ) = ε ( λ ) c ,
A ( λ ) = A 0 ( λ ) c c 0 .
ε i j = ε i ( λ ) ς j ( λ ) d λ ς j ( λ ) d λ .
a i j = ε i j c i ln 10 .
p i 𝒮 i ( λ ) ( λ ) d λ 𝒮 i ( λ ) d λ
Θ j = R j k j a j p c .
d R = a Θ g ( z ) d z ,
d R i j = a i j p i Θ i g j ( z ) d z ,
𝒯 i j ( z ) exp [ a i j z sec θ ( z ) ]
𝒯 i ( z ) = exp [ a i z ]
d R i j = a i j p i Θ i g j ( z ) 𝒯 i j ( z ) 𝒯 i ( z ) d z = a i j p i Θ i g j ( z ) exp [ a i j z sec θ ( z ) ] exp [ a i z ] d z = a i j p i Θ i g j ( z ) exp [ ( a i j sec θ ( z ) + a i ) z ] d z .
R i j = a i j p i Θ i 0 t g j ( z ) exp [ ( a i j sec θ ( z ) + a i ) z ] d z .
R 0 j ( z 0 ) = a 0 j p 0 Φ 0 𝒯 f z 0 + t f z 0 + t f + t g j ( z ) 𝒯 f j sec θ ( z ) exp [ ( a 0 j sec θ ( z ) + a i ) ( z z 0 t f ) ] d z .
R 1 j ( z ) = d 1 j g j ( z )
R 2 j ( z ) = d 2 j g j ( z ) ,
g j ( z ) = R 1 j ( z ) d 1 j = R 2 j ( z ) d 2 j .
d 1 j = a 0 j p 0 Φ 0 𝒯 f R 0 j ( z 0 ) z 0 + t f z 0 + t f + t R 1 j ( z ) 𝒯 f j sec θ ( z ) exp [ ( a 0 j sec θ ( z ) + a i ) ( z z 0 t f ) ] d z .
G j = 0 g j ( z ) exp [ ( a j sec θ ( z ) + a ) z ] d z .
Φ j = R j G j a j p c .
ε j = 0 g j ( z ) d z .
E λ ( z ) = E λ 𝒯 F ( λ ) exp [ a o ( λ ) z ] ,
E F λ ( z ) = E λ ( t ) ρ F ( λ ) exp [ a 0 ( λ ) ( t z ) ] = E λ ( t ) ( 1 𝒯 F ( λ ) ) exp [ a 0 ( λ ) ( t z ) ] ,
E λ ( z ) = E λ ( z ) + E F λ ( z ) .
Δ Φ λ ( z ) = E λ ( z ) a 0 ( λ ) Δ z 3
Δ Φ ( z ) = λ 1 λ 2 E λ ( z ) a 0 ( λ ) d λ Δ z 3 .
Δ Φ ( z ) = Φ 0 λ 1 λ 2 E λ ( z ) a 0 ( λ ) d λ Δ z 3
L ( z ) = 1 4 π Φ 0 λ 1 λ 2 E λ ( z ) a 0 ( λ ) d λ .
L p = sec φ 0 t L ( z ) d z .
L = 𝒯 F n 2 L p ( 1 + ρ F + ( ρ F ) 2 + ( ρ F ) 3 + ) = 𝒯 F n 2 L p 1 1 ρ F = 1 n 2 L p .
L = Φ 0 4 π n 2 sec φ 0 t λ 1 λ 2 E λ ( z ) a 0 ( z ) d λ d z .

Metrics