Abstract

To achieve a feasible heat-assisted magnetic recording (HAMR) system, a near-field transducer (NFT) is necessary to strongly focus the optical field to a lateral region measuring tens of nanometres in size. An NFT must deliver sufficient power to the recording medium as well as maintain its structural integrity. The self-heating problem in the NFT causes materials failure that leads to the degradation of the hard disk drive performance. The literature reports NFT structures with physical sizes well below 1 micron which were found to be thermo-mechanically unstable at an elevated temperature. In this paper, we demonstrate an adiabatic NFT to address the central challenge of thermal engineering for a HAMR system. The NFT is formed by an isosceles triangular gold taper plasmonic waveguide with a length of 6 µm and a height of 50 nm. Our study shows that in the full optically and thermally optimized system, the NFT efficiently extracts the incident light from the waveguide core and can improve the shape of the heating source profile for data recording. The most important insight of the thermal performance is that the recording medium can be heated up to 866 K with an input power of 8.5 mW which is above the Curie temperature of the FePt film while maintaining the temperature in the NFT at 390 K without a heat spreader. A very good thermal efficiency of 5.91 is achieved also. The proposed structure is easily fabricated and can potentially reduce the NFT deformation at a high recording temperature making it suitable for practical HAMR application.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Optical and thermal analysis of the light-heat conversion process employing an antenna-based hybrid plasmonic waveguide for HAMR

Nicolás Abadía, Frank Bello, Chuan Zhong, Patrick Flanigan, David M. McCloskey, Christopher Wolf, Alexander Krichevsky, Daniel Wolf, Fenghua Zong, Alireza Samani, David V. Plant, and John F. Donegan
Opt. Express 26(2) 1752-1765 (2018)

Split ring resonator as a nanoscale optical transducer for heat-assisted magnetic recording

Anurup Datta, Zhou Zeng, and Xianfan Xu
Opt. Express 27(20) 28264-28278 (2019)

Nanoscale ridge aperture as near-field transducer for heat-assisted magnetic recording

Nan Zhou, Edward C. Kinzel, and Xianfan Xu
Appl. Opt. 50(31) G42-G46 (2011)

References

  • View by:
  • |
  • |
  • |

  1. H. Choo, M. K. Kim, M. Staffaroni, T. J. Seok, J. Bokor, S. Cabrini, P. J. Schuck, M. C. Wu, and E. Yablonovitch, “Nanofocusing in a metal-insulator-metal gap plasmon waveguide with a three-dimensional linear taper,” Nat. Photonics 6(12), 838–843 (2012).
    [Crossref]
  2. M. Schnell, P. Alonso-Gonzalez, L. Arzubiaga, F. Casanova, L. E. Hueso, A. Chuvilin, and R. Hillenbrand, “Nanofocusing of mid-infrared energy with tapered transmission lines,” Nat. Photonics 5(5), 283–287 (2011).
    [Crossref]
  3. M. H. Kryder, E. C. Gage, T. W. McDaniel, W. A. Challener, R. E. Rottmayer, G. Ju, Y.-T. Hsia, and M. F. Erden, “Heat assisted magnetic recording,” Proc. IEEE 96(11), 1810–1835 (2008).
    [Crossref]
  4. G. Ju, Y. Peng, E. K. C. Chang, Y. Ding, A. Q. Wu, X. Zhu, Y. Kubota, T. J. Klemmer, H. Amini, L. Gao, Z. Fan, T. Rausch, P. Subedi, M. Ma, S. Kalarickal, C. J. Rea, D. V. Dimitrov, P. W. Huang, K. Wang, X. Chen, C. Peng, W. Chen, J. W. Dykes, M. A. Seigler, E. C. Gage, R. Chantrell, and J. U. Thiele, “High Density Heat-Assisted Magnetic Recording Media and Advanced Characterization: Progress and Challenges,” IEEE Trans. Magn. 51(11), 1–9 (2015).
    [PubMed]
  5. M. T. Kief and R. H. Victora, “Materials for heat-assisted magnetic recording,” MRS Bull. 43(2), 87–92 (2018).
    [Crossref]
  6. N. Abadía, F. Bello, C. Zhong, P. Flanigan, D. M. McCloskey, C. Wolf, A. Krichevsky, D. Wolf, F. Zong, A. Samani, D. V. Plant, and J. F. Donegan, “Optical and thermal analysis of the light-heat conversion process employing an antenna-based hybrid plasmonic waveguide for HAMR,” Opt. Express 26(2), 1752–1765 (2018).
    [Crossref] [PubMed]
  7. D. Weller, G. Parker, O. Mosendz, E. Champion, B. Stipe, X. B. Wang, T. Klemmer, G. P. Ju, and A. Ajan, “A HAMR Media Technology Roadmap to an Areal Density of 4 Tb/in2,” IEEE Trans. Magn. 50(1), 1–8 (2014).
    [Crossref]
  8. C. Rea, P. Subedi, H. Zhou, D. Saunders, M. Cordle, P. L. Lu, S. Granz, P. J. Czoschke, S. Hernandez, J. Jury, Y. Peng, J. U. Thiele, A. Q. Wu, G. Ju, T. Rausch, M. Seigler, and E. Gage, “High Track Pitch Capability for HAMR Recording,” IEEE Trans. Magn. 53(2), 1–7 (2017).
    [Crossref]
  9. W. A. Challener, C. B. Peng, A. V. Itagi, D. Karns, W. Peng, Y. G. Peng, X. M. Yang, X. B. Zhu, N. J. Gokemeijer, Y. T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(5), 303 (2009).
    [Crossref]
  10. N. Zhou, X. F. Xu, A. T. Hammack, B. C. Stipe, K. Z. Gao, W. Scholz, and E. C. Gage, “Plasmonic near-field transducer for heat-assisted magnetic recording,” Nanophotonics-Berlin 3(3), 141–155 (2014).
  11. V. Krishnamurthy, D. K. T. Ng, Z. Cen, B. Xu, and Q. Wang, “Maximizing the plasmonic near-field transducer efficiency to its limit for HAMR,” J. Lightwave Technol. 34(4), 1184–1190 (2016).
    [Crossref]
  12. V. A. Zenin, A. Andryieuski, R. Malureanu, I. P. Radko, V. S. Volkov, D. K. Gramotnev, A. V. Lavrinenko, and S. I. Bozhevolnyi, “Boosting Local Field Enhancement by on-Chip Nanofocusing and Impedance-Matched Plasmonic Antennas,” Nano Lett. 15(12), 8148–8154 (2015).
    [Crossref] [PubMed]
  13. A. Datta and X. Xu, “Comparative study of optical near-field transducers for heat-assisted magnetic recording,” Opt. Eng. 56(12), 121906 (2017).
    [Crossref]
  14. B. V. Budaev and D. B. Bogy, “On the lifetime of plasmonic transducers in heat assisted magnetic recording,” J. Appl. Phys. 112(3), 034512 (2012).
    [Crossref]
  15. Z. Li, W. Chen, C. Rea, M. G. Blaber, N. Zhou, H. Zhou, and H. Yin, “Head and Media Design for Curvature Reduction in Heat-Assisted Magnetic Recording,” IEEE T Magn 53(10), 1–4 (2017).
    [Crossref]
  16. S. Lee, “Energy assisted magnetic recording disk drive using a distributed feedback laser,” US8422342B1 (2013).
  17. E. Schreck, T. Maletzky, X. Jin, Y. Zhou, K. Takano, and J. Smyth, “Directional waveguide coupler for ABS reflected light,” US20120155232A1 (2012).
  18. S. P. Powell, E. J. Black, T. E. Schlesinger, and J. A. Bain, “The influence of media optical properties on the efficiency of optical power delivery for heat assisted magnetic recording,” J. Appl. Phys. 109(7), 07B775 (2011).
    [Crossref]
  19. G. Singh, V. Krishnamurthy, J. Pu, and Q. Wang, “Efficient Plasmonic Transducer for Nanoscale Optical Energy Transfer in Heat-Assisted Magnetic Recording,” J. Lightwave Technol. 32(17), 3074–3080 (2014).
    [Crossref]
  20. V. Krishnamurthy, D. K. T. Ng, K. P. Lim, and Q. Wang, “Efficient Integrated Light-Delivery System Design for HAMR: Maximal Optical Coupling for Transducer and Nanowaveguide,” IEEE Trans. Magn. 52(2), 1–7 (2016).
    [Crossref]
  21. Y. Luo, M. Chamanzar, A. Apuzzo, R. Salas-Montiel, K. N. Nguyen, S. Blaize, and A. Adibi, “On-Chip Hybrid Photonic-Plasmonic Light Concentrator for Nanofocusing in an Integrated Silicon Photonics Platform,” Nano Lett. 15(2), 849–856 (2015).
    [Crossref] [PubMed]
  22. B. Jennings, D. McCloskey, J. Gough, T. Hoang, N. Abadía, C. Zhong, E. Karademir, A. Bradley, and J. Donegan, “Characterisation of multi-mode propagation in silicon nitride slab waveguides,” J. Opt. 19(1), 015604 (2017).
    [Crossref]
  23. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1998).
  24. E. Verhagen, L. Kuipers, and A. Polman, “Enhanced nonlinear optical effects with a tapered plasmonic waveguide,” Nano Lett. 7(2), 334–337 (2007).
    [Crossref] [PubMed]
  25. H. Ditlbacher, N. Galler, D. M. Koller, A. Hohenau, A. Leitner, F. R. Aussenegg, and J. R. Krenn, “Coupling dielectric waveguide modes to surface plasmon polaritons,” Opt. Express 16(14), 10455–10464 (2008).
    [Crossref] [PubMed]
  26. R. G. Hobbs, V. R. Manfrinato, Y. Yang, S. A. Goodman, L. Zhang, E. A. Stach, and K. K. Berggren, “High-energy surface and volume plasmons in nanopatterned sub-10 nm aluminum nanostructures,” Nano Lett. 16(7), 4149–4157 (2016).
    [Crossref] [PubMed]
  27. X. Fan, W. Zheng, and D. J. Singh, “Light scattering and surface plasmons on small spherical particles,” Light Sci. Appl. 3(6), e179 (2014).
    [Crossref]
  28. R. G. Hobbs, Y. Yang, A. Fallahi, P. D. Keathley, E. De Leo, F. X. Kärtner, W. S. Graves, and K. K. Berggren, “High-Yield, Ultrafast, Surface Plasmon-Enhanced, Au Nanorod Optical Field Electron Emitter Arrays,” ACS Nano 8(11), 11474–11482 (2014).
    [Crossref] [PubMed]
  29. C. Birleanu, M. Pustan, V. Merie, R. Muller, R. Voicu, A. Baracu, and S. Craciun, “Temperature effect on the mechanical properties of gold nano films with different thickness,” IOP Con. Mat. Sci. 147(1), 012021 (2016).
    [Crossref]
  30. A. Krichevsky, C. Wolf, F. Bello, K. Ballantine, J. Donegan, D. McCloskey, “Method and system for reducing undesirable reflections in a HAMR write apparatus,” US9484051B1 (2016).
  31. B. Dieny, M. Chshiev, B. Charles, N. Strelkov, A. Truong, O. Fruchart, A. Hallal, J. Wang, Y. K. Takahashi, and T. Mizuno, “Impact of intergrain spin transfer torques due to huge thermal gradients on the performance of heat assisted magnetic recording,” arXiv preprint arXiv:1712.03302 (2017).
  32. W. A. Challener and A. V. Itagi, “Near-field optics for heat-assisted magnetic recording (experiment, theory, and modeling),” Modern Aspects of Electrochemistry 44, 53– 111 (2009).
  33. A. Datta and X. Xu, “Improved near-field transducer design for heat-assisted magnetic recording,” IEEE Trans. Magn 52(12), 1–6 (2016).
    [Crossref]
  34. N. Zhou, E. C. Kinzel, and X. Xu, “Nanoscale ridge aperture as near-field transducer for heat-assisted magnetic recording,” Appl. Opt. 50(31), G42–G46 (2011).
    [Crossref] [PubMed]
  35. X. Shi and L. Hesselink, “Mechanisms for enhancing power throughput from planar nano-apertures for near-field optical data storage,” J. Appl. Phys. 41(3), 1632–1635 (2002).
    [Crossref]
  36. T. Matsumoto, F. Akagi, M. Mochizuki, H. Miyamoto, and B. Stipe, “Integrated head design using a nanobeak antenna for thermally assisted magnetic recording,” Opt. Express 20(17), 18946–18954 (2012).
    [Crossref] [PubMed]
  37. T. Matsumoto, Y. Anzai, T. Shintani, K. Nakamura, and T. Nishida, “Writing 40 nm marks by using a beaked metallic plate near-field optical probe,” Opt. Lett. 31(2), 259–261 (2006).
    [Crossref] [PubMed]

2018 (2)

2017 (4)

C. Rea, P. Subedi, H. Zhou, D. Saunders, M. Cordle, P. L. Lu, S. Granz, P. J. Czoschke, S. Hernandez, J. Jury, Y. Peng, J. U. Thiele, A. Q. Wu, G. Ju, T. Rausch, M. Seigler, and E. Gage, “High Track Pitch Capability for HAMR Recording,” IEEE Trans. Magn. 53(2), 1–7 (2017).
[Crossref]

A. Datta and X. Xu, “Comparative study of optical near-field transducers for heat-assisted magnetic recording,” Opt. Eng. 56(12), 121906 (2017).
[Crossref]

Z. Li, W. Chen, C. Rea, M. G. Blaber, N. Zhou, H. Zhou, and H. Yin, “Head and Media Design for Curvature Reduction in Heat-Assisted Magnetic Recording,” IEEE T Magn 53(10), 1–4 (2017).
[Crossref]

B. Jennings, D. McCloskey, J. Gough, T. Hoang, N. Abadía, C. Zhong, E. Karademir, A. Bradley, and J. Donegan, “Characterisation of multi-mode propagation in silicon nitride slab waveguides,” J. Opt. 19(1), 015604 (2017).
[Crossref]

2016 (5)

V. Krishnamurthy, D. K. T. Ng, K. P. Lim, and Q. Wang, “Efficient Integrated Light-Delivery System Design for HAMR: Maximal Optical Coupling for Transducer and Nanowaveguide,” IEEE Trans. Magn. 52(2), 1–7 (2016).
[Crossref]

V. Krishnamurthy, D. K. T. Ng, Z. Cen, B. Xu, and Q. Wang, “Maximizing the plasmonic near-field transducer efficiency to its limit for HAMR,” J. Lightwave Technol. 34(4), 1184–1190 (2016).
[Crossref]

R. G. Hobbs, V. R. Manfrinato, Y. Yang, S. A. Goodman, L. Zhang, E. A. Stach, and K. K. Berggren, “High-energy surface and volume plasmons in nanopatterned sub-10 nm aluminum nanostructures,” Nano Lett. 16(7), 4149–4157 (2016).
[Crossref] [PubMed]

C. Birleanu, M. Pustan, V. Merie, R. Muller, R. Voicu, A. Baracu, and S. Craciun, “Temperature effect on the mechanical properties of gold nano films with different thickness,” IOP Con. Mat. Sci. 147(1), 012021 (2016).
[Crossref]

A. Datta and X. Xu, “Improved near-field transducer design for heat-assisted magnetic recording,” IEEE Trans. Magn 52(12), 1–6 (2016).
[Crossref]

2015 (3)

V. A. Zenin, A. Andryieuski, R. Malureanu, I. P. Radko, V. S. Volkov, D. K. Gramotnev, A. V. Lavrinenko, and S. I. Bozhevolnyi, “Boosting Local Field Enhancement by on-Chip Nanofocusing and Impedance-Matched Plasmonic Antennas,” Nano Lett. 15(12), 8148–8154 (2015).
[Crossref] [PubMed]

Y. Luo, M. Chamanzar, A. Apuzzo, R. Salas-Montiel, K. N. Nguyen, S. Blaize, and A. Adibi, “On-Chip Hybrid Photonic-Plasmonic Light Concentrator for Nanofocusing in an Integrated Silicon Photonics Platform,” Nano Lett. 15(2), 849–856 (2015).
[Crossref] [PubMed]

G. Ju, Y. Peng, E. K. C. Chang, Y. Ding, A. Q. Wu, X. Zhu, Y. Kubota, T. J. Klemmer, H. Amini, L. Gao, Z. Fan, T. Rausch, P. Subedi, M. Ma, S. Kalarickal, C. J. Rea, D. V. Dimitrov, P. W. Huang, K. Wang, X. Chen, C. Peng, W. Chen, J. W. Dykes, M. A. Seigler, E. C. Gage, R. Chantrell, and J. U. Thiele, “High Density Heat-Assisted Magnetic Recording Media and Advanced Characterization: Progress and Challenges,” IEEE Trans. Magn. 51(11), 1–9 (2015).
[PubMed]

2014 (5)

N. Zhou, X. F. Xu, A. T. Hammack, B. C. Stipe, K. Z. Gao, W. Scholz, and E. C. Gage, “Plasmonic near-field transducer for heat-assisted magnetic recording,” Nanophotonics-Berlin 3(3), 141–155 (2014).

D. Weller, G. Parker, O. Mosendz, E. Champion, B. Stipe, X. B. Wang, T. Klemmer, G. P. Ju, and A. Ajan, “A HAMR Media Technology Roadmap to an Areal Density of 4 Tb/in2,” IEEE Trans. Magn. 50(1), 1–8 (2014).
[Crossref]

X. Fan, W. Zheng, and D. J. Singh, “Light scattering and surface plasmons on small spherical particles,” Light Sci. Appl. 3(6), e179 (2014).
[Crossref]

R. G. Hobbs, Y. Yang, A. Fallahi, P. D. Keathley, E. De Leo, F. X. Kärtner, W. S. Graves, and K. K. Berggren, “High-Yield, Ultrafast, Surface Plasmon-Enhanced, Au Nanorod Optical Field Electron Emitter Arrays,” ACS Nano 8(11), 11474–11482 (2014).
[Crossref] [PubMed]

G. Singh, V. Krishnamurthy, J. Pu, and Q. Wang, “Efficient Plasmonic Transducer for Nanoscale Optical Energy Transfer in Heat-Assisted Magnetic Recording,” J. Lightwave Technol. 32(17), 3074–3080 (2014).
[Crossref]

2012 (3)

T. Matsumoto, F. Akagi, M. Mochizuki, H. Miyamoto, and B. Stipe, “Integrated head design using a nanobeak antenna for thermally assisted magnetic recording,” Opt. Express 20(17), 18946–18954 (2012).
[Crossref] [PubMed]

H. Choo, M. K. Kim, M. Staffaroni, T. J. Seok, J. Bokor, S. Cabrini, P. J. Schuck, M. C. Wu, and E. Yablonovitch, “Nanofocusing in a metal-insulator-metal gap plasmon waveguide with a three-dimensional linear taper,” Nat. Photonics 6(12), 838–843 (2012).
[Crossref]

B. V. Budaev and D. B. Bogy, “On the lifetime of plasmonic transducers in heat assisted magnetic recording,” J. Appl. Phys. 112(3), 034512 (2012).
[Crossref]

2011 (3)

S. P. Powell, E. J. Black, T. E. Schlesinger, and J. A. Bain, “The influence of media optical properties on the efficiency of optical power delivery for heat assisted magnetic recording,” J. Appl. Phys. 109(7), 07B775 (2011).
[Crossref]

M. Schnell, P. Alonso-Gonzalez, L. Arzubiaga, F. Casanova, L. E. Hueso, A. Chuvilin, and R. Hillenbrand, “Nanofocusing of mid-infrared energy with tapered transmission lines,” Nat. Photonics 5(5), 283–287 (2011).
[Crossref]

N. Zhou, E. C. Kinzel, and X. Xu, “Nanoscale ridge aperture as near-field transducer for heat-assisted magnetic recording,” Appl. Opt. 50(31), G42–G46 (2011).
[Crossref] [PubMed]

2009 (2)

W. A. Challener and A. V. Itagi, “Near-field optics for heat-assisted magnetic recording (experiment, theory, and modeling),” Modern Aspects of Electrochemistry 44, 53– 111 (2009).

W. A. Challener, C. B. Peng, A. V. Itagi, D. Karns, W. Peng, Y. G. Peng, X. M. Yang, X. B. Zhu, N. J. Gokemeijer, Y. T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(5), 303 (2009).
[Crossref]

2008 (2)

M. H. Kryder, E. C. Gage, T. W. McDaniel, W. A. Challener, R. E. Rottmayer, G. Ju, Y.-T. Hsia, and M. F. Erden, “Heat assisted magnetic recording,” Proc. IEEE 96(11), 1810–1835 (2008).
[Crossref]

H. Ditlbacher, N. Galler, D. M. Koller, A. Hohenau, A. Leitner, F. R. Aussenegg, and J. R. Krenn, “Coupling dielectric waveguide modes to surface plasmon polaritons,” Opt. Express 16(14), 10455–10464 (2008).
[Crossref] [PubMed]

2007 (1)

E. Verhagen, L. Kuipers, and A. Polman, “Enhanced nonlinear optical effects with a tapered plasmonic waveguide,” Nano Lett. 7(2), 334–337 (2007).
[Crossref] [PubMed]

2006 (1)

2002 (1)

X. Shi and L. Hesselink, “Mechanisms for enhancing power throughput from planar nano-apertures for near-field optical data storage,” J. Appl. Phys. 41(3), 1632–1635 (2002).
[Crossref]

Abadía, N.

Adibi, A.

Y. Luo, M. Chamanzar, A. Apuzzo, R. Salas-Montiel, K. N. Nguyen, S. Blaize, and A. Adibi, “On-Chip Hybrid Photonic-Plasmonic Light Concentrator for Nanofocusing in an Integrated Silicon Photonics Platform,” Nano Lett. 15(2), 849–856 (2015).
[Crossref] [PubMed]

Ajan, A.

D. Weller, G. Parker, O. Mosendz, E. Champion, B. Stipe, X. B. Wang, T. Klemmer, G. P. Ju, and A. Ajan, “A HAMR Media Technology Roadmap to an Areal Density of 4 Tb/in2,” IEEE Trans. Magn. 50(1), 1–8 (2014).
[Crossref]

Akagi, F.

Alonso-Gonzalez, P.

M. Schnell, P. Alonso-Gonzalez, L. Arzubiaga, F. Casanova, L. E. Hueso, A. Chuvilin, and R. Hillenbrand, “Nanofocusing of mid-infrared energy with tapered transmission lines,” Nat. Photonics 5(5), 283–287 (2011).
[Crossref]

Amini, H.

G. Ju, Y. Peng, E. K. C. Chang, Y. Ding, A. Q. Wu, X. Zhu, Y. Kubota, T. J. Klemmer, H. Amini, L. Gao, Z. Fan, T. Rausch, P. Subedi, M. Ma, S. Kalarickal, C. J. Rea, D. V. Dimitrov, P. W. Huang, K. Wang, X. Chen, C. Peng, W. Chen, J. W. Dykes, M. A. Seigler, E. C. Gage, R. Chantrell, and J. U. Thiele, “High Density Heat-Assisted Magnetic Recording Media and Advanced Characterization: Progress and Challenges,” IEEE Trans. Magn. 51(11), 1–9 (2015).
[PubMed]

Andryieuski, A.

V. A. Zenin, A. Andryieuski, R. Malureanu, I. P. Radko, V. S. Volkov, D. K. Gramotnev, A. V. Lavrinenko, and S. I. Bozhevolnyi, “Boosting Local Field Enhancement by on-Chip Nanofocusing and Impedance-Matched Plasmonic Antennas,” Nano Lett. 15(12), 8148–8154 (2015).
[Crossref] [PubMed]

Anzai, Y.

Apuzzo, A.

Y. Luo, M. Chamanzar, A. Apuzzo, R. Salas-Montiel, K. N. Nguyen, S. Blaize, and A. Adibi, “On-Chip Hybrid Photonic-Plasmonic Light Concentrator for Nanofocusing in an Integrated Silicon Photonics Platform,” Nano Lett. 15(2), 849–856 (2015).
[Crossref] [PubMed]

Arzubiaga, L.

M. Schnell, P. Alonso-Gonzalez, L. Arzubiaga, F. Casanova, L. E. Hueso, A. Chuvilin, and R. Hillenbrand, “Nanofocusing of mid-infrared energy with tapered transmission lines,” Nat. Photonics 5(5), 283–287 (2011).
[Crossref]

Aussenegg, F. R.

Bain, J. A.

S. P. Powell, E. J. Black, T. E. Schlesinger, and J. A. Bain, “The influence of media optical properties on the efficiency of optical power delivery for heat assisted magnetic recording,” J. Appl. Phys. 109(7), 07B775 (2011).
[Crossref]

Baracu, A.

C. Birleanu, M. Pustan, V. Merie, R. Muller, R. Voicu, A. Baracu, and S. Craciun, “Temperature effect on the mechanical properties of gold nano films with different thickness,” IOP Con. Mat. Sci. 147(1), 012021 (2016).
[Crossref]

Bello, F.

Berggren, K. K.

R. G. Hobbs, V. R. Manfrinato, Y. Yang, S. A. Goodman, L. Zhang, E. A. Stach, and K. K. Berggren, “High-energy surface and volume plasmons in nanopatterned sub-10 nm aluminum nanostructures,” Nano Lett. 16(7), 4149–4157 (2016).
[Crossref] [PubMed]

R. G. Hobbs, Y. Yang, A. Fallahi, P. D. Keathley, E. De Leo, F. X. Kärtner, W. S. Graves, and K. K. Berggren, “High-Yield, Ultrafast, Surface Plasmon-Enhanced, Au Nanorod Optical Field Electron Emitter Arrays,” ACS Nano 8(11), 11474–11482 (2014).
[Crossref] [PubMed]

Birleanu, C.

C. Birleanu, M. Pustan, V. Merie, R. Muller, R. Voicu, A. Baracu, and S. Craciun, “Temperature effect on the mechanical properties of gold nano films with different thickness,” IOP Con. Mat. Sci. 147(1), 012021 (2016).
[Crossref]

Blaber, M. G.

Z. Li, W. Chen, C. Rea, M. G. Blaber, N. Zhou, H. Zhou, and H. Yin, “Head and Media Design for Curvature Reduction in Heat-Assisted Magnetic Recording,” IEEE T Magn 53(10), 1–4 (2017).
[Crossref]

Black, E. J.

S. P. Powell, E. J. Black, T. E. Schlesinger, and J. A. Bain, “The influence of media optical properties on the efficiency of optical power delivery for heat assisted magnetic recording,” J. Appl. Phys. 109(7), 07B775 (2011).
[Crossref]

Blaize, S.

Y. Luo, M. Chamanzar, A. Apuzzo, R. Salas-Montiel, K. N. Nguyen, S. Blaize, and A. Adibi, “On-Chip Hybrid Photonic-Plasmonic Light Concentrator for Nanofocusing in an Integrated Silicon Photonics Platform,” Nano Lett. 15(2), 849–856 (2015).
[Crossref] [PubMed]

Bogy, D. B.

B. V. Budaev and D. B. Bogy, “On the lifetime of plasmonic transducers in heat assisted magnetic recording,” J. Appl. Phys. 112(3), 034512 (2012).
[Crossref]

Bokor, J.

H. Choo, M. K. Kim, M. Staffaroni, T. J. Seok, J. Bokor, S. Cabrini, P. J. Schuck, M. C. Wu, and E. Yablonovitch, “Nanofocusing in a metal-insulator-metal gap plasmon waveguide with a three-dimensional linear taper,” Nat. Photonics 6(12), 838–843 (2012).
[Crossref]

Bozhevolnyi, S. I.

V. A. Zenin, A. Andryieuski, R. Malureanu, I. P. Radko, V. S. Volkov, D. K. Gramotnev, A. V. Lavrinenko, and S. I. Bozhevolnyi, “Boosting Local Field Enhancement by on-Chip Nanofocusing and Impedance-Matched Plasmonic Antennas,” Nano Lett. 15(12), 8148–8154 (2015).
[Crossref] [PubMed]

Bradley, A.

B. Jennings, D. McCloskey, J. Gough, T. Hoang, N. Abadía, C. Zhong, E. Karademir, A. Bradley, and J. Donegan, “Characterisation of multi-mode propagation in silicon nitride slab waveguides,” J. Opt. 19(1), 015604 (2017).
[Crossref]

Budaev, B. V.

B. V. Budaev and D. B. Bogy, “On the lifetime of plasmonic transducers in heat assisted magnetic recording,” J. Appl. Phys. 112(3), 034512 (2012).
[Crossref]

Cabrini, S.

H. Choo, M. K. Kim, M. Staffaroni, T. J. Seok, J. Bokor, S. Cabrini, P. J. Schuck, M. C. Wu, and E. Yablonovitch, “Nanofocusing in a metal-insulator-metal gap plasmon waveguide with a three-dimensional linear taper,” Nat. Photonics 6(12), 838–843 (2012).
[Crossref]

Casanova, F.

M. Schnell, P. Alonso-Gonzalez, L. Arzubiaga, F. Casanova, L. E. Hueso, A. Chuvilin, and R. Hillenbrand, “Nanofocusing of mid-infrared energy with tapered transmission lines,” Nat. Photonics 5(5), 283–287 (2011).
[Crossref]

Cen, Z.

Challener, W. A.

W. A. Challener, C. B. Peng, A. V. Itagi, D. Karns, W. Peng, Y. G. Peng, X. M. Yang, X. B. Zhu, N. J. Gokemeijer, Y. T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(5), 303 (2009).
[Crossref]

W. A. Challener and A. V. Itagi, “Near-field optics for heat-assisted magnetic recording (experiment, theory, and modeling),” Modern Aspects of Electrochemistry 44, 53– 111 (2009).

M. H. Kryder, E. C. Gage, T. W. McDaniel, W. A. Challener, R. E. Rottmayer, G. Ju, Y.-T. Hsia, and M. F. Erden, “Heat assisted magnetic recording,” Proc. IEEE 96(11), 1810–1835 (2008).
[Crossref]

Chamanzar, M.

Y. Luo, M. Chamanzar, A. Apuzzo, R. Salas-Montiel, K. N. Nguyen, S. Blaize, and A. Adibi, “On-Chip Hybrid Photonic-Plasmonic Light Concentrator for Nanofocusing in an Integrated Silicon Photonics Platform,” Nano Lett. 15(2), 849–856 (2015).
[Crossref] [PubMed]

Champion, E.

D. Weller, G. Parker, O. Mosendz, E. Champion, B. Stipe, X. B. Wang, T. Klemmer, G. P. Ju, and A. Ajan, “A HAMR Media Technology Roadmap to an Areal Density of 4 Tb/in2,” IEEE Trans. Magn. 50(1), 1–8 (2014).
[Crossref]

Chang, E. K. C.

G. Ju, Y. Peng, E. K. C. Chang, Y. Ding, A. Q. Wu, X. Zhu, Y. Kubota, T. J. Klemmer, H. Amini, L. Gao, Z. Fan, T. Rausch, P. Subedi, M. Ma, S. Kalarickal, C. J. Rea, D. V. Dimitrov, P. W. Huang, K. Wang, X. Chen, C. Peng, W. Chen, J. W. Dykes, M. A. Seigler, E. C. Gage, R. Chantrell, and J. U. Thiele, “High Density Heat-Assisted Magnetic Recording Media and Advanced Characterization: Progress and Challenges,” IEEE Trans. Magn. 51(11), 1–9 (2015).
[PubMed]

Chantrell, R.

G. Ju, Y. Peng, E. K. C. Chang, Y. Ding, A. Q. Wu, X. Zhu, Y. Kubota, T. J. Klemmer, H. Amini, L. Gao, Z. Fan, T. Rausch, P. Subedi, M. Ma, S. Kalarickal, C. J. Rea, D. V. Dimitrov, P. W. Huang, K. Wang, X. Chen, C. Peng, W. Chen, J. W. Dykes, M. A. Seigler, E. C. Gage, R. Chantrell, and J. U. Thiele, “High Density Heat-Assisted Magnetic Recording Media and Advanced Characterization: Progress and Challenges,” IEEE Trans. Magn. 51(11), 1–9 (2015).
[PubMed]

Chen, W.

Z. Li, W. Chen, C. Rea, M. G. Blaber, N. Zhou, H. Zhou, and H. Yin, “Head and Media Design for Curvature Reduction in Heat-Assisted Magnetic Recording,” IEEE T Magn 53(10), 1–4 (2017).
[Crossref]

G. Ju, Y. Peng, E. K. C. Chang, Y. Ding, A. Q. Wu, X. Zhu, Y. Kubota, T. J. Klemmer, H. Amini, L. Gao, Z. Fan, T. Rausch, P. Subedi, M. Ma, S. Kalarickal, C. J. Rea, D. V. Dimitrov, P. W. Huang, K. Wang, X. Chen, C. Peng, W. Chen, J. W. Dykes, M. A. Seigler, E. C. Gage, R. Chantrell, and J. U. Thiele, “High Density Heat-Assisted Magnetic Recording Media and Advanced Characterization: Progress and Challenges,” IEEE Trans. Magn. 51(11), 1–9 (2015).
[PubMed]

Chen, X.

G. Ju, Y. Peng, E. K. C. Chang, Y. Ding, A. Q. Wu, X. Zhu, Y. Kubota, T. J. Klemmer, H. Amini, L. Gao, Z. Fan, T. Rausch, P. Subedi, M. Ma, S. Kalarickal, C. J. Rea, D. V. Dimitrov, P. W. Huang, K. Wang, X. Chen, C. Peng, W. Chen, J. W. Dykes, M. A. Seigler, E. C. Gage, R. Chantrell, and J. U. Thiele, “High Density Heat-Assisted Magnetic Recording Media and Advanced Characterization: Progress and Challenges,” IEEE Trans. Magn. 51(11), 1–9 (2015).
[PubMed]

Choo, H.

H. Choo, M. K. Kim, M. Staffaroni, T. J. Seok, J. Bokor, S. Cabrini, P. J. Schuck, M. C. Wu, and E. Yablonovitch, “Nanofocusing in a metal-insulator-metal gap plasmon waveguide with a three-dimensional linear taper,” Nat. Photonics 6(12), 838–843 (2012).
[Crossref]

Chuvilin, A.

M. Schnell, P. Alonso-Gonzalez, L. Arzubiaga, F. Casanova, L. E. Hueso, A. Chuvilin, and R. Hillenbrand, “Nanofocusing of mid-infrared energy with tapered transmission lines,” Nat. Photonics 5(5), 283–287 (2011).
[Crossref]

Cordle, M.

C. Rea, P. Subedi, H. Zhou, D. Saunders, M. Cordle, P. L. Lu, S. Granz, P. J. Czoschke, S. Hernandez, J. Jury, Y. Peng, J. U. Thiele, A. Q. Wu, G. Ju, T. Rausch, M. Seigler, and E. Gage, “High Track Pitch Capability for HAMR Recording,” IEEE Trans. Magn. 53(2), 1–7 (2017).
[Crossref]

Craciun, S.

C. Birleanu, M. Pustan, V. Merie, R. Muller, R. Voicu, A. Baracu, and S. Craciun, “Temperature effect on the mechanical properties of gold nano films with different thickness,” IOP Con. Mat. Sci. 147(1), 012021 (2016).
[Crossref]

Czoschke, P. J.

C. Rea, P. Subedi, H. Zhou, D. Saunders, M. Cordle, P. L. Lu, S. Granz, P. J. Czoschke, S. Hernandez, J. Jury, Y. Peng, J. U. Thiele, A. Q. Wu, G. Ju, T. Rausch, M. Seigler, and E. Gage, “High Track Pitch Capability for HAMR Recording,” IEEE Trans. Magn. 53(2), 1–7 (2017).
[Crossref]

Datta, A.

A. Datta and X. Xu, “Comparative study of optical near-field transducers for heat-assisted magnetic recording,” Opt. Eng. 56(12), 121906 (2017).
[Crossref]

A. Datta and X. Xu, “Improved near-field transducer design for heat-assisted magnetic recording,” IEEE Trans. Magn 52(12), 1–6 (2016).
[Crossref]

De Leo, E.

R. G. Hobbs, Y. Yang, A. Fallahi, P. D. Keathley, E. De Leo, F. X. Kärtner, W. S. Graves, and K. K. Berggren, “High-Yield, Ultrafast, Surface Plasmon-Enhanced, Au Nanorod Optical Field Electron Emitter Arrays,” ACS Nano 8(11), 11474–11482 (2014).
[Crossref] [PubMed]

Dimitrov, D. V.

G. Ju, Y. Peng, E. K. C. Chang, Y. Ding, A. Q. Wu, X. Zhu, Y. Kubota, T. J. Klemmer, H. Amini, L. Gao, Z. Fan, T. Rausch, P. Subedi, M. Ma, S. Kalarickal, C. J. Rea, D. V. Dimitrov, P. W. Huang, K. Wang, X. Chen, C. Peng, W. Chen, J. W. Dykes, M. A. Seigler, E. C. Gage, R. Chantrell, and J. U. Thiele, “High Density Heat-Assisted Magnetic Recording Media and Advanced Characterization: Progress and Challenges,” IEEE Trans. Magn. 51(11), 1–9 (2015).
[PubMed]

Ding, Y.

G. Ju, Y. Peng, E. K. C. Chang, Y. Ding, A. Q. Wu, X. Zhu, Y. Kubota, T. J. Klemmer, H. Amini, L. Gao, Z. Fan, T. Rausch, P. Subedi, M. Ma, S. Kalarickal, C. J. Rea, D. V. Dimitrov, P. W. Huang, K. Wang, X. Chen, C. Peng, W. Chen, J. W. Dykes, M. A. Seigler, E. C. Gage, R. Chantrell, and J. U. Thiele, “High Density Heat-Assisted Magnetic Recording Media and Advanced Characterization: Progress and Challenges,” IEEE Trans. Magn. 51(11), 1–9 (2015).
[PubMed]

Ditlbacher, H.

Donegan, J.

B. Jennings, D. McCloskey, J. Gough, T. Hoang, N. Abadía, C. Zhong, E. Karademir, A. Bradley, and J. Donegan, “Characterisation of multi-mode propagation in silicon nitride slab waveguides,” J. Opt. 19(1), 015604 (2017).
[Crossref]

Donegan, J. F.

Dykes, J. W.

G. Ju, Y. Peng, E. K. C. Chang, Y. Ding, A. Q. Wu, X. Zhu, Y. Kubota, T. J. Klemmer, H. Amini, L. Gao, Z. Fan, T. Rausch, P. Subedi, M. Ma, S. Kalarickal, C. J. Rea, D. V. Dimitrov, P. W. Huang, K. Wang, X. Chen, C. Peng, W. Chen, J. W. Dykes, M. A. Seigler, E. C. Gage, R. Chantrell, and J. U. Thiele, “High Density Heat-Assisted Magnetic Recording Media and Advanced Characterization: Progress and Challenges,” IEEE Trans. Magn. 51(11), 1–9 (2015).
[PubMed]

Erden, M. F.

M. H. Kryder, E. C. Gage, T. W. McDaniel, W. A. Challener, R. E. Rottmayer, G. Ju, Y.-T. Hsia, and M. F. Erden, “Heat assisted magnetic recording,” Proc. IEEE 96(11), 1810–1835 (2008).
[Crossref]

Fallahi, A.

R. G. Hobbs, Y. Yang, A. Fallahi, P. D. Keathley, E. De Leo, F. X. Kärtner, W. S. Graves, and K. K. Berggren, “High-Yield, Ultrafast, Surface Plasmon-Enhanced, Au Nanorod Optical Field Electron Emitter Arrays,” ACS Nano 8(11), 11474–11482 (2014).
[Crossref] [PubMed]

Fan, X.

X. Fan, W. Zheng, and D. J. Singh, “Light scattering and surface plasmons on small spherical particles,” Light Sci. Appl. 3(6), e179 (2014).
[Crossref]

Fan, Z.

G. Ju, Y. Peng, E. K. C. Chang, Y. Ding, A. Q. Wu, X. Zhu, Y. Kubota, T. J. Klemmer, H. Amini, L. Gao, Z. Fan, T. Rausch, P. Subedi, M. Ma, S. Kalarickal, C. J. Rea, D. V. Dimitrov, P. W. Huang, K. Wang, X. Chen, C. Peng, W. Chen, J. W. Dykes, M. A. Seigler, E. C. Gage, R. Chantrell, and J. U. Thiele, “High Density Heat-Assisted Magnetic Recording Media and Advanced Characterization: Progress and Challenges,” IEEE Trans. Magn. 51(11), 1–9 (2015).
[PubMed]

Flanigan, P.

Gage, E.

C. Rea, P. Subedi, H. Zhou, D. Saunders, M. Cordle, P. L. Lu, S. Granz, P. J. Czoschke, S. Hernandez, J. Jury, Y. Peng, J. U. Thiele, A. Q. Wu, G. Ju, T. Rausch, M. Seigler, and E. Gage, “High Track Pitch Capability for HAMR Recording,” IEEE Trans. Magn. 53(2), 1–7 (2017).
[Crossref]

Gage, E. C.

G. Ju, Y. Peng, E. K. C. Chang, Y. Ding, A. Q. Wu, X. Zhu, Y. Kubota, T. J. Klemmer, H. Amini, L. Gao, Z. Fan, T. Rausch, P. Subedi, M. Ma, S. Kalarickal, C. J. Rea, D. V. Dimitrov, P. W. Huang, K. Wang, X. Chen, C. Peng, W. Chen, J. W. Dykes, M. A. Seigler, E. C. Gage, R. Chantrell, and J. U. Thiele, “High Density Heat-Assisted Magnetic Recording Media and Advanced Characterization: Progress and Challenges,” IEEE Trans. Magn. 51(11), 1–9 (2015).
[PubMed]

N. Zhou, X. F. Xu, A. T. Hammack, B. C. Stipe, K. Z. Gao, W. Scholz, and E. C. Gage, “Plasmonic near-field transducer for heat-assisted magnetic recording,” Nanophotonics-Berlin 3(3), 141–155 (2014).

W. A. Challener, C. B. Peng, A. V. Itagi, D. Karns, W. Peng, Y. G. Peng, X. M. Yang, X. B. Zhu, N. J. Gokemeijer, Y. T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(5), 303 (2009).
[Crossref]

M. H. Kryder, E. C. Gage, T. W. McDaniel, W. A. Challener, R. E. Rottmayer, G. Ju, Y.-T. Hsia, and M. F. Erden, “Heat assisted magnetic recording,” Proc. IEEE 96(11), 1810–1835 (2008).
[Crossref]

Galler, N.

Gao, K. Z.

N. Zhou, X. F. Xu, A. T. Hammack, B. C. Stipe, K. Z. Gao, W. Scholz, and E. C. Gage, “Plasmonic near-field transducer for heat-assisted magnetic recording,” Nanophotonics-Berlin 3(3), 141–155 (2014).

Gao, L.

G. Ju, Y. Peng, E. K. C. Chang, Y. Ding, A. Q. Wu, X. Zhu, Y. Kubota, T. J. Klemmer, H. Amini, L. Gao, Z. Fan, T. Rausch, P. Subedi, M. Ma, S. Kalarickal, C. J. Rea, D. V. Dimitrov, P. W. Huang, K. Wang, X. Chen, C. Peng, W. Chen, J. W. Dykes, M. A. Seigler, E. C. Gage, R. Chantrell, and J. U. Thiele, “High Density Heat-Assisted Magnetic Recording Media and Advanced Characterization: Progress and Challenges,” IEEE Trans. Magn. 51(11), 1–9 (2015).
[PubMed]

Gokemeijer, N. J.

W. A. Challener, C. B. Peng, A. V. Itagi, D. Karns, W. Peng, Y. G. Peng, X. M. Yang, X. B. Zhu, N. J. Gokemeijer, Y. T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(5), 303 (2009).
[Crossref]

Goodman, S. A.

R. G. Hobbs, V. R. Manfrinato, Y. Yang, S. A. Goodman, L. Zhang, E. A. Stach, and K. K. Berggren, “High-energy surface and volume plasmons in nanopatterned sub-10 nm aluminum nanostructures,” Nano Lett. 16(7), 4149–4157 (2016).
[Crossref] [PubMed]

Gough, J.

B. Jennings, D. McCloskey, J. Gough, T. Hoang, N. Abadía, C. Zhong, E. Karademir, A. Bradley, and J. Donegan, “Characterisation of multi-mode propagation in silicon nitride slab waveguides,” J. Opt. 19(1), 015604 (2017).
[Crossref]

Gramotnev, D. K.

V. A. Zenin, A. Andryieuski, R. Malureanu, I. P. Radko, V. S. Volkov, D. K. Gramotnev, A. V. Lavrinenko, and S. I. Bozhevolnyi, “Boosting Local Field Enhancement by on-Chip Nanofocusing and Impedance-Matched Plasmonic Antennas,” Nano Lett. 15(12), 8148–8154 (2015).
[Crossref] [PubMed]

Granz, S.

C. Rea, P. Subedi, H. Zhou, D. Saunders, M. Cordle, P. L. Lu, S. Granz, P. J. Czoschke, S. Hernandez, J. Jury, Y. Peng, J. U. Thiele, A. Q. Wu, G. Ju, T. Rausch, M. Seigler, and E. Gage, “High Track Pitch Capability for HAMR Recording,” IEEE Trans. Magn. 53(2), 1–7 (2017).
[Crossref]

Graves, W. S.

R. G. Hobbs, Y. Yang, A. Fallahi, P. D. Keathley, E. De Leo, F. X. Kärtner, W. S. Graves, and K. K. Berggren, “High-Yield, Ultrafast, Surface Plasmon-Enhanced, Au Nanorod Optical Field Electron Emitter Arrays,” ACS Nano 8(11), 11474–11482 (2014).
[Crossref] [PubMed]

Hammack, A. T.

N. Zhou, X. F. Xu, A. T. Hammack, B. C. Stipe, K. Z. Gao, W. Scholz, and E. C. Gage, “Plasmonic near-field transducer for heat-assisted magnetic recording,” Nanophotonics-Berlin 3(3), 141–155 (2014).

Hernandez, S.

C. Rea, P. Subedi, H. Zhou, D. Saunders, M. Cordle, P. L. Lu, S. Granz, P. J. Czoschke, S. Hernandez, J. Jury, Y. Peng, J. U. Thiele, A. Q. Wu, G. Ju, T. Rausch, M. Seigler, and E. Gage, “High Track Pitch Capability for HAMR Recording,” IEEE Trans. Magn. 53(2), 1–7 (2017).
[Crossref]

Hesselink, L.

X. Shi and L. Hesselink, “Mechanisms for enhancing power throughput from planar nano-apertures for near-field optical data storage,” J. Appl. Phys. 41(3), 1632–1635 (2002).
[Crossref]

Hillenbrand, R.

M. Schnell, P. Alonso-Gonzalez, L. Arzubiaga, F. Casanova, L. E. Hueso, A. Chuvilin, and R. Hillenbrand, “Nanofocusing of mid-infrared energy with tapered transmission lines,” Nat. Photonics 5(5), 283–287 (2011).
[Crossref]

Hoang, T.

B. Jennings, D. McCloskey, J. Gough, T. Hoang, N. Abadía, C. Zhong, E. Karademir, A. Bradley, and J. Donegan, “Characterisation of multi-mode propagation in silicon nitride slab waveguides,” J. Opt. 19(1), 015604 (2017).
[Crossref]

Hobbs, R. G.

R. G. Hobbs, V. R. Manfrinato, Y. Yang, S. A. Goodman, L. Zhang, E. A. Stach, and K. K. Berggren, “High-energy surface and volume plasmons in nanopatterned sub-10 nm aluminum nanostructures,” Nano Lett. 16(7), 4149–4157 (2016).
[Crossref] [PubMed]

R. G. Hobbs, Y. Yang, A. Fallahi, P. D. Keathley, E. De Leo, F. X. Kärtner, W. S. Graves, and K. K. Berggren, “High-Yield, Ultrafast, Surface Plasmon-Enhanced, Au Nanorod Optical Field Electron Emitter Arrays,” ACS Nano 8(11), 11474–11482 (2014).
[Crossref] [PubMed]

Hohenau, A.

Hsia, Y. T.

W. A. Challener, C. B. Peng, A. V. Itagi, D. Karns, W. Peng, Y. G. Peng, X. M. Yang, X. B. Zhu, N. J. Gokemeijer, Y. T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(5), 303 (2009).
[Crossref]

Hsia, Y.-T.

M. H. Kryder, E. C. Gage, T. W. McDaniel, W. A. Challener, R. E. Rottmayer, G. Ju, Y.-T. Hsia, and M. F. Erden, “Heat assisted magnetic recording,” Proc. IEEE 96(11), 1810–1835 (2008).
[Crossref]

Huang, P. W.

G. Ju, Y. Peng, E. K. C. Chang, Y. Ding, A. Q. Wu, X. Zhu, Y. Kubota, T. J. Klemmer, H. Amini, L. Gao, Z. Fan, T. Rausch, P. Subedi, M. Ma, S. Kalarickal, C. J. Rea, D. V. Dimitrov, P. W. Huang, K. Wang, X. Chen, C. Peng, W. Chen, J. W. Dykes, M. A. Seigler, E. C. Gage, R. Chantrell, and J. U. Thiele, “High Density Heat-Assisted Magnetic Recording Media and Advanced Characterization: Progress and Challenges,” IEEE Trans. Magn. 51(11), 1–9 (2015).
[PubMed]

Hueso, L. E.

M. Schnell, P. Alonso-Gonzalez, L. Arzubiaga, F. Casanova, L. E. Hueso, A. Chuvilin, and R. Hillenbrand, “Nanofocusing of mid-infrared energy with tapered transmission lines,” Nat. Photonics 5(5), 283–287 (2011).
[Crossref]

Itagi, A. V.

W. A. Challener, C. B. Peng, A. V. Itagi, D. Karns, W. Peng, Y. G. Peng, X. M. Yang, X. B. Zhu, N. J. Gokemeijer, Y. T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(5), 303 (2009).
[Crossref]

W. A. Challener and A. V. Itagi, “Near-field optics for heat-assisted magnetic recording (experiment, theory, and modeling),” Modern Aspects of Electrochemistry 44, 53– 111 (2009).

Jennings, B.

B. Jennings, D. McCloskey, J. Gough, T. Hoang, N. Abadía, C. Zhong, E. Karademir, A. Bradley, and J. Donegan, “Characterisation of multi-mode propagation in silicon nitride slab waveguides,” J. Opt. 19(1), 015604 (2017).
[Crossref]

Ju, G.

C. Rea, P. Subedi, H. Zhou, D. Saunders, M. Cordle, P. L. Lu, S. Granz, P. J. Czoschke, S. Hernandez, J. Jury, Y. Peng, J. U. Thiele, A. Q. Wu, G. Ju, T. Rausch, M. Seigler, and E. Gage, “High Track Pitch Capability for HAMR Recording,” IEEE Trans. Magn. 53(2), 1–7 (2017).
[Crossref]

G. Ju, Y. Peng, E. K. C. Chang, Y. Ding, A. Q. Wu, X. Zhu, Y. Kubota, T. J. Klemmer, H. Amini, L. Gao, Z. Fan, T. Rausch, P. Subedi, M. Ma, S. Kalarickal, C. J. Rea, D. V. Dimitrov, P. W. Huang, K. Wang, X. Chen, C. Peng, W. Chen, J. W. Dykes, M. A. Seigler, E. C. Gage, R. Chantrell, and J. U. Thiele, “High Density Heat-Assisted Magnetic Recording Media and Advanced Characterization: Progress and Challenges,” IEEE Trans. Magn. 51(11), 1–9 (2015).
[PubMed]

W. A. Challener, C. B. Peng, A. V. Itagi, D. Karns, W. Peng, Y. G. Peng, X. M. Yang, X. B. Zhu, N. J. Gokemeijer, Y. T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(5), 303 (2009).
[Crossref]

M. H. Kryder, E. C. Gage, T. W. McDaniel, W. A. Challener, R. E. Rottmayer, G. Ju, Y.-T. Hsia, and M. F. Erden, “Heat assisted magnetic recording,” Proc. IEEE 96(11), 1810–1835 (2008).
[Crossref]

Ju, G. P.

D. Weller, G. Parker, O. Mosendz, E. Champion, B. Stipe, X. B. Wang, T. Klemmer, G. P. Ju, and A. Ajan, “A HAMR Media Technology Roadmap to an Areal Density of 4 Tb/in2,” IEEE Trans. Magn. 50(1), 1–8 (2014).
[Crossref]

Jury, J.

C. Rea, P. Subedi, H. Zhou, D. Saunders, M. Cordle, P. L. Lu, S. Granz, P. J. Czoschke, S. Hernandez, J. Jury, Y. Peng, J. U. Thiele, A. Q. Wu, G. Ju, T. Rausch, M. Seigler, and E. Gage, “High Track Pitch Capability for HAMR Recording,” IEEE Trans. Magn. 53(2), 1–7 (2017).
[Crossref]

Kalarickal, S.

G. Ju, Y. Peng, E. K. C. Chang, Y. Ding, A. Q. Wu, X. Zhu, Y. Kubota, T. J. Klemmer, H. Amini, L. Gao, Z. Fan, T. Rausch, P. Subedi, M. Ma, S. Kalarickal, C. J. Rea, D. V. Dimitrov, P. W. Huang, K. Wang, X. Chen, C. Peng, W. Chen, J. W. Dykes, M. A. Seigler, E. C. Gage, R. Chantrell, and J. U. Thiele, “High Density Heat-Assisted Magnetic Recording Media and Advanced Characterization: Progress and Challenges,” IEEE Trans. Magn. 51(11), 1–9 (2015).
[PubMed]

Karademir, E.

B. Jennings, D. McCloskey, J. Gough, T. Hoang, N. Abadía, C. Zhong, E. Karademir, A. Bradley, and J. Donegan, “Characterisation of multi-mode propagation in silicon nitride slab waveguides,” J. Opt. 19(1), 015604 (2017).
[Crossref]

Karns, D.

W. A. Challener, C. B. Peng, A. V. Itagi, D. Karns, W. Peng, Y. G. Peng, X. M. Yang, X. B. Zhu, N. J. Gokemeijer, Y. T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(5), 303 (2009).
[Crossref]

Kärtner, F. X.

R. G. Hobbs, Y. Yang, A. Fallahi, P. D. Keathley, E. De Leo, F. X. Kärtner, W. S. Graves, and K. K. Berggren, “High-Yield, Ultrafast, Surface Plasmon-Enhanced, Au Nanorod Optical Field Electron Emitter Arrays,” ACS Nano 8(11), 11474–11482 (2014).
[Crossref] [PubMed]

Keathley, P. D.

R. G. Hobbs, Y. Yang, A. Fallahi, P. D. Keathley, E. De Leo, F. X. Kärtner, W. S. Graves, and K. K. Berggren, “High-Yield, Ultrafast, Surface Plasmon-Enhanced, Au Nanorod Optical Field Electron Emitter Arrays,” ACS Nano 8(11), 11474–11482 (2014).
[Crossref] [PubMed]

Kief, M. T.

M. T. Kief and R. H. Victora, “Materials for heat-assisted magnetic recording,” MRS Bull. 43(2), 87–92 (2018).
[Crossref]

Kim, M. K.

H. Choo, M. K. Kim, M. Staffaroni, T. J. Seok, J. Bokor, S. Cabrini, P. J. Schuck, M. C. Wu, and E. Yablonovitch, “Nanofocusing in a metal-insulator-metal gap plasmon waveguide with a three-dimensional linear taper,” Nat. Photonics 6(12), 838–843 (2012).
[Crossref]

Kinzel, E. C.

Klemmer, T.

D. Weller, G. Parker, O. Mosendz, E. Champion, B. Stipe, X. B. Wang, T. Klemmer, G. P. Ju, and A. Ajan, “A HAMR Media Technology Roadmap to an Areal Density of 4 Tb/in2,” IEEE Trans. Magn. 50(1), 1–8 (2014).
[Crossref]

Klemmer, T. J.

G. Ju, Y. Peng, E. K. C. Chang, Y. Ding, A. Q. Wu, X. Zhu, Y. Kubota, T. J. Klemmer, H. Amini, L. Gao, Z. Fan, T. Rausch, P. Subedi, M. Ma, S. Kalarickal, C. J. Rea, D. V. Dimitrov, P. W. Huang, K. Wang, X. Chen, C. Peng, W. Chen, J. W. Dykes, M. A. Seigler, E. C. Gage, R. Chantrell, and J. U. Thiele, “High Density Heat-Assisted Magnetic Recording Media and Advanced Characterization: Progress and Challenges,” IEEE Trans. Magn. 51(11), 1–9 (2015).
[PubMed]

Koller, D. M.

Krenn, J. R.

Krichevsky, A.

Krishnamurthy, V.

Kryder, M. H.

M. H. Kryder, E. C. Gage, T. W. McDaniel, W. A. Challener, R. E. Rottmayer, G. Ju, Y.-T. Hsia, and M. F. Erden, “Heat assisted magnetic recording,” Proc. IEEE 96(11), 1810–1835 (2008).
[Crossref]

Kubota, Y.

G. Ju, Y. Peng, E. K. C. Chang, Y. Ding, A. Q. Wu, X. Zhu, Y. Kubota, T. J. Klemmer, H. Amini, L. Gao, Z. Fan, T. Rausch, P. Subedi, M. Ma, S. Kalarickal, C. J. Rea, D. V. Dimitrov, P. W. Huang, K. Wang, X. Chen, C. Peng, W. Chen, J. W. Dykes, M. A. Seigler, E. C. Gage, R. Chantrell, and J. U. Thiele, “High Density Heat-Assisted Magnetic Recording Media and Advanced Characterization: Progress and Challenges,” IEEE Trans. Magn. 51(11), 1–9 (2015).
[PubMed]

Kuipers, L.

E. Verhagen, L. Kuipers, and A. Polman, “Enhanced nonlinear optical effects with a tapered plasmonic waveguide,” Nano Lett. 7(2), 334–337 (2007).
[Crossref] [PubMed]

Lavrinenko, A. V.

V. A. Zenin, A. Andryieuski, R. Malureanu, I. P. Radko, V. S. Volkov, D. K. Gramotnev, A. V. Lavrinenko, and S. I. Bozhevolnyi, “Boosting Local Field Enhancement by on-Chip Nanofocusing and Impedance-Matched Plasmonic Antennas,” Nano Lett. 15(12), 8148–8154 (2015).
[Crossref] [PubMed]

Leitner, A.

Li, Z.

Z. Li, W. Chen, C. Rea, M. G. Blaber, N. Zhou, H. Zhou, and H. Yin, “Head and Media Design for Curvature Reduction in Heat-Assisted Magnetic Recording,” IEEE T Magn 53(10), 1–4 (2017).
[Crossref]

Lim, K. P.

V. Krishnamurthy, D. K. T. Ng, K. P. Lim, and Q. Wang, “Efficient Integrated Light-Delivery System Design for HAMR: Maximal Optical Coupling for Transducer and Nanowaveguide,” IEEE Trans. Magn. 52(2), 1–7 (2016).
[Crossref]

Lu, P. L.

C. Rea, P. Subedi, H. Zhou, D. Saunders, M. Cordle, P. L. Lu, S. Granz, P. J. Czoschke, S. Hernandez, J. Jury, Y. Peng, J. U. Thiele, A. Q. Wu, G. Ju, T. Rausch, M. Seigler, and E. Gage, “High Track Pitch Capability for HAMR Recording,” IEEE Trans. Magn. 53(2), 1–7 (2017).
[Crossref]

Luo, Y.

Y. Luo, M. Chamanzar, A. Apuzzo, R. Salas-Montiel, K. N. Nguyen, S. Blaize, and A. Adibi, “On-Chip Hybrid Photonic-Plasmonic Light Concentrator for Nanofocusing in an Integrated Silicon Photonics Platform,” Nano Lett. 15(2), 849–856 (2015).
[Crossref] [PubMed]

Ma, M.

G. Ju, Y. Peng, E. K. C. Chang, Y. Ding, A. Q. Wu, X. Zhu, Y. Kubota, T. J. Klemmer, H. Amini, L. Gao, Z. Fan, T. Rausch, P. Subedi, M. Ma, S. Kalarickal, C. J. Rea, D. V. Dimitrov, P. W. Huang, K. Wang, X. Chen, C. Peng, W. Chen, J. W. Dykes, M. A. Seigler, E. C. Gage, R. Chantrell, and J. U. Thiele, “High Density Heat-Assisted Magnetic Recording Media and Advanced Characterization: Progress and Challenges,” IEEE Trans. Magn. 51(11), 1–9 (2015).
[PubMed]

Malureanu, R.

V. A. Zenin, A. Andryieuski, R. Malureanu, I. P. Radko, V. S. Volkov, D. K. Gramotnev, A. V. Lavrinenko, and S. I. Bozhevolnyi, “Boosting Local Field Enhancement by on-Chip Nanofocusing and Impedance-Matched Plasmonic Antennas,” Nano Lett. 15(12), 8148–8154 (2015).
[Crossref] [PubMed]

Manfrinato, V. R.

R. G. Hobbs, V. R. Manfrinato, Y. Yang, S. A. Goodman, L. Zhang, E. A. Stach, and K. K. Berggren, “High-energy surface and volume plasmons in nanopatterned sub-10 nm aluminum nanostructures,” Nano Lett. 16(7), 4149–4157 (2016).
[Crossref] [PubMed]

Matsumoto, T.

McCloskey, D.

B. Jennings, D. McCloskey, J. Gough, T. Hoang, N. Abadía, C. Zhong, E. Karademir, A. Bradley, and J. Donegan, “Characterisation of multi-mode propagation in silicon nitride slab waveguides,” J. Opt. 19(1), 015604 (2017).
[Crossref]

McCloskey, D. M.

McDaniel, T. W.

M. H. Kryder, E. C. Gage, T. W. McDaniel, W. A. Challener, R. E. Rottmayer, G. Ju, Y.-T. Hsia, and M. F. Erden, “Heat assisted magnetic recording,” Proc. IEEE 96(11), 1810–1835 (2008).
[Crossref]

Merie, V.

C. Birleanu, M. Pustan, V. Merie, R. Muller, R. Voicu, A. Baracu, and S. Craciun, “Temperature effect on the mechanical properties of gold nano films with different thickness,” IOP Con. Mat. Sci. 147(1), 012021 (2016).
[Crossref]

Miyamoto, H.

Mochizuki, M.

Mosendz, O.

D. Weller, G. Parker, O. Mosendz, E. Champion, B. Stipe, X. B. Wang, T. Klemmer, G. P. Ju, and A. Ajan, “A HAMR Media Technology Roadmap to an Areal Density of 4 Tb/in2,” IEEE Trans. Magn. 50(1), 1–8 (2014).
[Crossref]

Muller, R.

C. Birleanu, M. Pustan, V. Merie, R. Muller, R. Voicu, A. Baracu, and S. Craciun, “Temperature effect on the mechanical properties of gold nano films with different thickness,” IOP Con. Mat. Sci. 147(1), 012021 (2016).
[Crossref]

Nakamura, K.

Ng, D. K. T.

V. Krishnamurthy, D. K. T. Ng, Z. Cen, B. Xu, and Q. Wang, “Maximizing the plasmonic near-field transducer efficiency to its limit for HAMR,” J. Lightwave Technol. 34(4), 1184–1190 (2016).
[Crossref]

V. Krishnamurthy, D. K. T. Ng, K. P. Lim, and Q. Wang, “Efficient Integrated Light-Delivery System Design for HAMR: Maximal Optical Coupling for Transducer and Nanowaveguide,” IEEE Trans. Magn. 52(2), 1–7 (2016).
[Crossref]

Nguyen, K. N.

Y. Luo, M. Chamanzar, A. Apuzzo, R. Salas-Montiel, K. N. Nguyen, S. Blaize, and A. Adibi, “On-Chip Hybrid Photonic-Plasmonic Light Concentrator for Nanofocusing in an Integrated Silicon Photonics Platform,” Nano Lett. 15(2), 849–856 (2015).
[Crossref] [PubMed]

Nishida, T.

Parker, G.

D. Weller, G. Parker, O. Mosendz, E. Champion, B. Stipe, X. B. Wang, T. Klemmer, G. P. Ju, and A. Ajan, “A HAMR Media Technology Roadmap to an Areal Density of 4 Tb/in2,” IEEE Trans. Magn. 50(1), 1–8 (2014).
[Crossref]

Peng, C.

G. Ju, Y. Peng, E. K. C. Chang, Y. Ding, A. Q. Wu, X. Zhu, Y. Kubota, T. J. Klemmer, H. Amini, L. Gao, Z. Fan, T. Rausch, P. Subedi, M. Ma, S. Kalarickal, C. J. Rea, D. V. Dimitrov, P. W. Huang, K. Wang, X. Chen, C. Peng, W. Chen, J. W. Dykes, M. A. Seigler, E. C. Gage, R. Chantrell, and J. U. Thiele, “High Density Heat-Assisted Magnetic Recording Media and Advanced Characterization: Progress and Challenges,” IEEE Trans. Magn. 51(11), 1–9 (2015).
[PubMed]

Peng, C. B.

W. A. Challener, C. B. Peng, A. V. Itagi, D. Karns, W. Peng, Y. G. Peng, X. M. Yang, X. B. Zhu, N. J. Gokemeijer, Y. T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(5), 303 (2009).
[Crossref]

Peng, W.

W. A. Challener, C. B. Peng, A. V. Itagi, D. Karns, W. Peng, Y. G. Peng, X. M. Yang, X. B. Zhu, N. J. Gokemeijer, Y. T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(5), 303 (2009).
[Crossref]

Peng, Y.

C. Rea, P. Subedi, H. Zhou, D. Saunders, M. Cordle, P. L. Lu, S. Granz, P. J. Czoschke, S. Hernandez, J. Jury, Y. Peng, J. U. Thiele, A. Q. Wu, G. Ju, T. Rausch, M. Seigler, and E. Gage, “High Track Pitch Capability for HAMR Recording,” IEEE Trans. Magn. 53(2), 1–7 (2017).
[Crossref]

G. Ju, Y. Peng, E. K. C. Chang, Y. Ding, A. Q. Wu, X. Zhu, Y. Kubota, T. J. Klemmer, H. Amini, L. Gao, Z. Fan, T. Rausch, P. Subedi, M. Ma, S. Kalarickal, C. J. Rea, D. V. Dimitrov, P. W. Huang, K. Wang, X. Chen, C. Peng, W. Chen, J. W. Dykes, M. A. Seigler, E. C. Gage, R. Chantrell, and J. U. Thiele, “High Density Heat-Assisted Magnetic Recording Media and Advanced Characterization: Progress and Challenges,” IEEE Trans. Magn. 51(11), 1–9 (2015).
[PubMed]

Peng, Y. G.

W. A. Challener, C. B. Peng, A. V. Itagi, D. Karns, W. Peng, Y. G. Peng, X. M. Yang, X. B. Zhu, N. J. Gokemeijer, Y. T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(5), 303 (2009).
[Crossref]

Plant, D. V.

Polman, A.

E. Verhagen, L. Kuipers, and A. Polman, “Enhanced nonlinear optical effects with a tapered plasmonic waveguide,” Nano Lett. 7(2), 334–337 (2007).
[Crossref] [PubMed]

Powell, S. P.

S. P. Powell, E. J. Black, T. E. Schlesinger, and J. A. Bain, “The influence of media optical properties on the efficiency of optical power delivery for heat assisted magnetic recording,” J. Appl. Phys. 109(7), 07B775 (2011).
[Crossref]

Pu, J.

Pustan, M.

C. Birleanu, M. Pustan, V. Merie, R. Muller, R. Voicu, A. Baracu, and S. Craciun, “Temperature effect on the mechanical properties of gold nano films with different thickness,” IOP Con. Mat. Sci. 147(1), 012021 (2016).
[Crossref]

Radko, I. P.

V. A. Zenin, A. Andryieuski, R. Malureanu, I. P. Radko, V. S. Volkov, D. K. Gramotnev, A. V. Lavrinenko, and S. I. Bozhevolnyi, “Boosting Local Field Enhancement by on-Chip Nanofocusing and Impedance-Matched Plasmonic Antennas,” Nano Lett. 15(12), 8148–8154 (2015).
[Crossref] [PubMed]

Rausch, T.

C. Rea, P. Subedi, H. Zhou, D. Saunders, M. Cordle, P. L. Lu, S. Granz, P. J. Czoschke, S. Hernandez, J. Jury, Y. Peng, J. U. Thiele, A. Q. Wu, G. Ju, T. Rausch, M. Seigler, and E. Gage, “High Track Pitch Capability for HAMR Recording,” IEEE Trans. Magn. 53(2), 1–7 (2017).
[Crossref]

G. Ju, Y. Peng, E. K. C. Chang, Y. Ding, A. Q. Wu, X. Zhu, Y. Kubota, T. J. Klemmer, H. Amini, L. Gao, Z. Fan, T. Rausch, P. Subedi, M. Ma, S. Kalarickal, C. J. Rea, D. V. Dimitrov, P. W. Huang, K. Wang, X. Chen, C. Peng, W. Chen, J. W. Dykes, M. A. Seigler, E. C. Gage, R. Chantrell, and J. U. Thiele, “High Density Heat-Assisted Magnetic Recording Media and Advanced Characterization: Progress and Challenges,” IEEE Trans. Magn. 51(11), 1–9 (2015).
[PubMed]

Rea, C.

C. Rea, P. Subedi, H. Zhou, D. Saunders, M. Cordle, P. L. Lu, S. Granz, P. J. Czoschke, S. Hernandez, J. Jury, Y. Peng, J. U. Thiele, A. Q. Wu, G. Ju, T. Rausch, M. Seigler, and E. Gage, “High Track Pitch Capability for HAMR Recording,” IEEE Trans. Magn. 53(2), 1–7 (2017).
[Crossref]

Z. Li, W. Chen, C. Rea, M. G. Blaber, N. Zhou, H. Zhou, and H. Yin, “Head and Media Design for Curvature Reduction in Heat-Assisted Magnetic Recording,” IEEE T Magn 53(10), 1–4 (2017).
[Crossref]

Rea, C. J.

G. Ju, Y. Peng, E. K. C. Chang, Y. Ding, A. Q. Wu, X. Zhu, Y. Kubota, T. J. Klemmer, H. Amini, L. Gao, Z. Fan, T. Rausch, P. Subedi, M. Ma, S. Kalarickal, C. J. Rea, D. V. Dimitrov, P. W. Huang, K. Wang, X. Chen, C. Peng, W. Chen, J. W. Dykes, M. A. Seigler, E. C. Gage, R. Chantrell, and J. U. Thiele, “High Density Heat-Assisted Magnetic Recording Media and Advanced Characterization: Progress and Challenges,” IEEE Trans. Magn. 51(11), 1–9 (2015).
[PubMed]

Rottmayer, R. E.

W. A. Challener, C. B. Peng, A. V. Itagi, D. Karns, W. Peng, Y. G. Peng, X. M. Yang, X. B. Zhu, N. J. Gokemeijer, Y. T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(5), 303 (2009).
[Crossref]

M. H. Kryder, E. C. Gage, T. W. McDaniel, W. A. Challener, R. E. Rottmayer, G. Ju, Y.-T. Hsia, and M. F. Erden, “Heat assisted magnetic recording,” Proc. IEEE 96(11), 1810–1835 (2008).
[Crossref]

Salas-Montiel, R.

Y. Luo, M. Chamanzar, A. Apuzzo, R. Salas-Montiel, K. N. Nguyen, S. Blaize, and A. Adibi, “On-Chip Hybrid Photonic-Plasmonic Light Concentrator for Nanofocusing in an Integrated Silicon Photonics Platform,” Nano Lett. 15(2), 849–856 (2015).
[Crossref] [PubMed]

Samani, A.

Saunders, D.

C. Rea, P. Subedi, H. Zhou, D. Saunders, M. Cordle, P. L. Lu, S. Granz, P. J. Czoschke, S. Hernandez, J. Jury, Y. Peng, J. U. Thiele, A. Q. Wu, G. Ju, T. Rausch, M. Seigler, and E. Gage, “High Track Pitch Capability for HAMR Recording,” IEEE Trans. Magn. 53(2), 1–7 (2017).
[Crossref]

Schlesinger, T. E.

S. P. Powell, E. J. Black, T. E. Schlesinger, and J. A. Bain, “The influence of media optical properties on the efficiency of optical power delivery for heat assisted magnetic recording,” J. Appl. Phys. 109(7), 07B775 (2011).
[Crossref]

Schnell, M.

M. Schnell, P. Alonso-Gonzalez, L. Arzubiaga, F. Casanova, L. E. Hueso, A. Chuvilin, and R. Hillenbrand, “Nanofocusing of mid-infrared energy with tapered transmission lines,” Nat. Photonics 5(5), 283–287 (2011).
[Crossref]

Scholz, W.

N. Zhou, X. F. Xu, A. T. Hammack, B. C. Stipe, K. Z. Gao, W. Scholz, and E. C. Gage, “Plasmonic near-field transducer for heat-assisted magnetic recording,” Nanophotonics-Berlin 3(3), 141–155 (2014).

Schuck, P. J.

H. Choo, M. K. Kim, M. Staffaroni, T. J. Seok, J. Bokor, S. Cabrini, P. J. Schuck, M. C. Wu, and E. Yablonovitch, “Nanofocusing in a metal-insulator-metal gap plasmon waveguide with a three-dimensional linear taper,” Nat. Photonics 6(12), 838–843 (2012).
[Crossref]

Seigler, M.

C. Rea, P. Subedi, H. Zhou, D. Saunders, M. Cordle, P. L. Lu, S. Granz, P. J. Czoschke, S. Hernandez, J. Jury, Y. Peng, J. U. Thiele, A. Q. Wu, G. Ju, T. Rausch, M. Seigler, and E. Gage, “High Track Pitch Capability for HAMR Recording,” IEEE Trans. Magn. 53(2), 1–7 (2017).
[Crossref]

Seigler, M. A.

G. Ju, Y. Peng, E. K. C. Chang, Y. Ding, A. Q. Wu, X. Zhu, Y. Kubota, T. J. Klemmer, H. Amini, L. Gao, Z. Fan, T. Rausch, P. Subedi, M. Ma, S. Kalarickal, C. J. Rea, D. V. Dimitrov, P. W. Huang, K. Wang, X. Chen, C. Peng, W. Chen, J. W. Dykes, M. A. Seigler, E. C. Gage, R. Chantrell, and J. U. Thiele, “High Density Heat-Assisted Magnetic Recording Media and Advanced Characterization: Progress and Challenges,” IEEE Trans. Magn. 51(11), 1–9 (2015).
[PubMed]

W. A. Challener, C. B. Peng, A. V. Itagi, D. Karns, W. Peng, Y. G. Peng, X. M. Yang, X. B. Zhu, N. J. Gokemeijer, Y. T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(5), 303 (2009).
[Crossref]

Seok, T. J.

H. Choo, M. K. Kim, M. Staffaroni, T. J. Seok, J. Bokor, S. Cabrini, P. J. Schuck, M. C. Wu, and E. Yablonovitch, “Nanofocusing in a metal-insulator-metal gap plasmon waveguide with a three-dimensional linear taper,” Nat. Photonics 6(12), 838–843 (2012).
[Crossref]

Shi, X.

X. Shi and L. Hesselink, “Mechanisms for enhancing power throughput from planar nano-apertures for near-field optical data storage,” J. Appl. Phys. 41(3), 1632–1635 (2002).
[Crossref]

Shintani, T.

Singh, D. J.

X. Fan, W. Zheng, and D. J. Singh, “Light scattering and surface plasmons on small spherical particles,” Light Sci. Appl. 3(6), e179 (2014).
[Crossref]

Singh, G.

Stach, E. A.

R. G. Hobbs, V. R. Manfrinato, Y. Yang, S. A. Goodman, L. Zhang, E. A. Stach, and K. K. Berggren, “High-energy surface and volume plasmons in nanopatterned sub-10 nm aluminum nanostructures,” Nano Lett. 16(7), 4149–4157 (2016).
[Crossref] [PubMed]

Staffaroni, M.

H. Choo, M. K. Kim, M. Staffaroni, T. J. Seok, J. Bokor, S. Cabrini, P. J. Schuck, M. C. Wu, and E. Yablonovitch, “Nanofocusing in a metal-insulator-metal gap plasmon waveguide with a three-dimensional linear taper,” Nat. Photonics 6(12), 838–843 (2012).
[Crossref]

Stipe, B.

D. Weller, G. Parker, O. Mosendz, E. Champion, B. Stipe, X. B. Wang, T. Klemmer, G. P. Ju, and A. Ajan, “A HAMR Media Technology Roadmap to an Areal Density of 4 Tb/in2,” IEEE Trans. Magn. 50(1), 1–8 (2014).
[Crossref]

T. Matsumoto, F. Akagi, M. Mochizuki, H. Miyamoto, and B. Stipe, “Integrated head design using a nanobeak antenna for thermally assisted magnetic recording,” Opt. Express 20(17), 18946–18954 (2012).
[Crossref] [PubMed]

Stipe, B. C.

N. Zhou, X. F. Xu, A. T. Hammack, B. C. Stipe, K. Z. Gao, W. Scholz, and E. C. Gage, “Plasmonic near-field transducer for heat-assisted magnetic recording,” Nanophotonics-Berlin 3(3), 141–155 (2014).

Subedi, P.

C. Rea, P. Subedi, H. Zhou, D. Saunders, M. Cordle, P. L. Lu, S. Granz, P. J. Czoschke, S. Hernandez, J. Jury, Y. Peng, J. U. Thiele, A. Q. Wu, G. Ju, T. Rausch, M. Seigler, and E. Gage, “High Track Pitch Capability for HAMR Recording,” IEEE Trans. Magn. 53(2), 1–7 (2017).
[Crossref]

G. Ju, Y. Peng, E. K. C. Chang, Y. Ding, A. Q. Wu, X. Zhu, Y. Kubota, T. J. Klemmer, H. Amini, L. Gao, Z. Fan, T. Rausch, P. Subedi, M. Ma, S. Kalarickal, C. J. Rea, D. V. Dimitrov, P. W. Huang, K. Wang, X. Chen, C. Peng, W. Chen, J. W. Dykes, M. A. Seigler, E. C. Gage, R. Chantrell, and J. U. Thiele, “High Density Heat-Assisted Magnetic Recording Media and Advanced Characterization: Progress and Challenges,” IEEE Trans. Magn. 51(11), 1–9 (2015).
[PubMed]

Thiele, J. U.

C. Rea, P. Subedi, H. Zhou, D. Saunders, M. Cordle, P. L. Lu, S. Granz, P. J. Czoschke, S. Hernandez, J. Jury, Y. Peng, J. U. Thiele, A. Q. Wu, G. Ju, T. Rausch, M. Seigler, and E. Gage, “High Track Pitch Capability for HAMR Recording,” IEEE Trans. Magn. 53(2), 1–7 (2017).
[Crossref]

G. Ju, Y. Peng, E. K. C. Chang, Y. Ding, A. Q. Wu, X. Zhu, Y. Kubota, T. J. Klemmer, H. Amini, L. Gao, Z. Fan, T. Rausch, P. Subedi, M. Ma, S. Kalarickal, C. J. Rea, D. V. Dimitrov, P. W. Huang, K. Wang, X. Chen, C. Peng, W. Chen, J. W. Dykes, M. A. Seigler, E. C. Gage, R. Chantrell, and J. U. Thiele, “High Density Heat-Assisted Magnetic Recording Media and Advanced Characterization: Progress and Challenges,” IEEE Trans. Magn. 51(11), 1–9 (2015).
[PubMed]

Verhagen, E.

E. Verhagen, L. Kuipers, and A. Polman, “Enhanced nonlinear optical effects with a tapered plasmonic waveguide,” Nano Lett. 7(2), 334–337 (2007).
[Crossref] [PubMed]

Victora, R. H.

M. T. Kief and R. H. Victora, “Materials for heat-assisted magnetic recording,” MRS Bull. 43(2), 87–92 (2018).
[Crossref]

Voicu, R.

C. Birleanu, M. Pustan, V. Merie, R. Muller, R. Voicu, A. Baracu, and S. Craciun, “Temperature effect on the mechanical properties of gold nano films with different thickness,” IOP Con. Mat. Sci. 147(1), 012021 (2016).
[Crossref]

Volkov, V. S.

V. A. Zenin, A. Andryieuski, R. Malureanu, I. P. Radko, V. S. Volkov, D. K. Gramotnev, A. V. Lavrinenko, and S. I. Bozhevolnyi, “Boosting Local Field Enhancement by on-Chip Nanofocusing and Impedance-Matched Plasmonic Antennas,” Nano Lett. 15(12), 8148–8154 (2015).
[Crossref] [PubMed]

Wang, K.

G. Ju, Y. Peng, E. K. C. Chang, Y. Ding, A. Q. Wu, X. Zhu, Y. Kubota, T. J. Klemmer, H. Amini, L. Gao, Z. Fan, T. Rausch, P. Subedi, M. Ma, S. Kalarickal, C. J. Rea, D. V. Dimitrov, P. W. Huang, K. Wang, X. Chen, C. Peng, W. Chen, J. W. Dykes, M. A. Seigler, E. C. Gage, R. Chantrell, and J. U. Thiele, “High Density Heat-Assisted Magnetic Recording Media and Advanced Characterization: Progress and Challenges,” IEEE Trans. Magn. 51(11), 1–9 (2015).
[PubMed]

Wang, Q.

Wang, X. B.

D. Weller, G. Parker, O. Mosendz, E. Champion, B. Stipe, X. B. Wang, T. Klemmer, G. P. Ju, and A. Ajan, “A HAMR Media Technology Roadmap to an Areal Density of 4 Tb/in2,” IEEE Trans. Magn. 50(1), 1–8 (2014).
[Crossref]

Weller, D.

D. Weller, G. Parker, O. Mosendz, E. Champion, B. Stipe, X. B. Wang, T. Klemmer, G. P. Ju, and A. Ajan, “A HAMR Media Technology Roadmap to an Areal Density of 4 Tb/in2,” IEEE Trans. Magn. 50(1), 1–8 (2014).
[Crossref]

Wolf, C.

Wolf, D.

Wu, A. Q.

C. Rea, P. Subedi, H. Zhou, D. Saunders, M. Cordle, P. L. Lu, S. Granz, P. J. Czoschke, S. Hernandez, J. Jury, Y. Peng, J. U. Thiele, A. Q. Wu, G. Ju, T. Rausch, M. Seigler, and E. Gage, “High Track Pitch Capability for HAMR Recording,” IEEE Trans. Magn. 53(2), 1–7 (2017).
[Crossref]

G. Ju, Y. Peng, E. K. C. Chang, Y. Ding, A. Q. Wu, X. Zhu, Y. Kubota, T. J. Klemmer, H. Amini, L. Gao, Z. Fan, T. Rausch, P. Subedi, M. Ma, S. Kalarickal, C. J. Rea, D. V. Dimitrov, P. W. Huang, K. Wang, X. Chen, C. Peng, W. Chen, J. W. Dykes, M. A. Seigler, E. C. Gage, R. Chantrell, and J. U. Thiele, “High Density Heat-Assisted Magnetic Recording Media and Advanced Characterization: Progress and Challenges,” IEEE Trans. Magn. 51(11), 1–9 (2015).
[PubMed]

Wu, M. C.

H. Choo, M. K. Kim, M. Staffaroni, T. J. Seok, J. Bokor, S. Cabrini, P. J. Schuck, M. C. Wu, and E. Yablonovitch, “Nanofocusing in a metal-insulator-metal gap plasmon waveguide with a three-dimensional linear taper,” Nat. Photonics 6(12), 838–843 (2012).
[Crossref]

Xu, B.

Xu, X.

A. Datta and X. Xu, “Comparative study of optical near-field transducers for heat-assisted magnetic recording,” Opt. Eng. 56(12), 121906 (2017).
[Crossref]

A. Datta and X. Xu, “Improved near-field transducer design for heat-assisted magnetic recording,” IEEE Trans. Magn 52(12), 1–6 (2016).
[Crossref]

N. Zhou, E. C. Kinzel, and X. Xu, “Nanoscale ridge aperture as near-field transducer for heat-assisted magnetic recording,” Appl. Opt. 50(31), G42–G46 (2011).
[Crossref] [PubMed]

Xu, X. F.

N. Zhou, X. F. Xu, A. T. Hammack, B. C. Stipe, K. Z. Gao, W. Scholz, and E. C. Gage, “Plasmonic near-field transducer for heat-assisted magnetic recording,” Nanophotonics-Berlin 3(3), 141–155 (2014).

Yablonovitch, E.

H. Choo, M. K. Kim, M. Staffaroni, T. J. Seok, J. Bokor, S. Cabrini, P. J. Schuck, M. C. Wu, and E. Yablonovitch, “Nanofocusing in a metal-insulator-metal gap plasmon waveguide with a three-dimensional linear taper,” Nat. Photonics 6(12), 838–843 (2012).
[Crossref]

Yang, X. M.

W. A. Challener, C. B. Peng, A. V. Itagi, D. Karns, W. Peng, Y. G. Peng, X. M. Yang, X. B. Zhu, N. J. Gokemeijer, Y. T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(5), 303 (2009).
[Crossref]

Yang, Y.

R. G. Hobbs, V. R. Manfrinato, Y. Yang, S. A. Goodman, L. Zhang, E. A. Stach, and K. K. Berggren, “High-energy surface and volume plasmons in nanopatterned sub-10 nm aluminum nanostructures,” Nano Lett. 16(7), 4149–4157 (2016).
[Crossref] [PubMed]

R. G. Hobbs, Y. Yang, A. Fallahi, P. D. Keathley, E. De Leo, F. X. Kärtner, W. S. Graves, and K. K. Berggren, “High-Yield, Ultrafast, Surface Plasmon-Enhanced, Au Nanorod Optical Field Electron Emitter Arrays,” ACS Nano 8(11), 11474–11482 (2014).
[Crossref] [PubMed]

Yin, H.

Z. Li, W. Chen, C. Rea, M. G. Blaber, N. Zhou, H. Zhou, and H. Yin, “Head and Media Design for Curvature Reduction in Heat-Assisted Magnetic Recording,” IEEE T Magn 53(10), 1–4 (2017).
[Crossref]

Zenin, V. A.

V. A. Zenin, A. Andryieuski, R. Malureanu, I. P. Radko, V. S. Volkov, D. K. Gramotnev, A. V. Lavrinenko, and S. I. Bozhevolnyi, “Boosting Local Field Enhancement by on-Chip Nanofocusing and Impedance-Matched Plasmonic Antennas,” Nano Lett. 15(12), 8148–8154 (2015).
[Crossref] [PubMed]

Zhang, L.

R. G. Hobbs, V. R. Manfrinato, Y. Yang, S. A. Goodman, L. Zhang, E. A. Stach, and K. K. Berggren, “High-energy surface and volume plasmons in nanopatterned sub-10 nm aluminum nanostructures,” Nano Lett. 16(7), 4149–4157 (2016).
[Crossref] [PubMed]

Zheng, W.

X. Fan, W. Zheng, and D. J. Singh, “Light scattering and surface plasmons on small spherical particles,” Light Sci. Appl. 3(6), e179 (2014).
[Crossref]

Zhong, C.

Zhou, H.

C. Rea, P. Subedi, H. Zhou, D. Saunders, M. Cordle, P. L. Lu, S. Granz, P. J. Czoschke, S. Hernandez, J. Jury, Y. Peng, J. U. Thiele, A. Q. Wu, G. Ju, T. Rausch, M. Seigler, and E. Gage, “High Track Pitch Capability for HAMR Recording,” IEEE Trans. Magn. 53(2), 1–7 (2017).
[Crossref]

Z. Li, W. Chen, C. Rea, M. G. Blaber, N. Zhou, H. Zhou, and H. Yin, “Head and Media Design for Curvature Reduction in Heat-Assisted Magnetic Recording,” IEEE T Magn 53(10), 1–4 (2017).
[Crossref]

Zhou, N.

Z. Li, W. Chen, C. Rea, M. G. Blaber, N. Zhou, H. Zhou, and H. Yin, “Head and Media Design for Curvature Reduction in Heat-Assisted Magnetic Recording,” IEEE T Magn 53(10), 1–4 (2017).
[Crossref]

N. Zhou, X. F. Xu, A. T. Hammack, B. C. Stipe, K. Z. Gao, W. Scholz, and E. C. Gage, “Plasmonic near-field transducer for heat-assisted magnetic recording,” Nanophotonics-Berlin 3(3), 141–155 (2014).

N. Zhou, E. C. Kinzel, and X. Xu, “Nanoscale ridge aperture as near-field transducer for heat-assisted magnetic recording,” Appl. Opt. 50(31), G42–G46 (2011).
[Crossref] [PubMed]

Zhu, X.

G. Ju, Y. Peng, E. K. C. Chang, Y. Ding, A. Q. Wu, X. Zhu, Y. Kubota, T. J. Klemmer, H. Amini, L. Gao, Z. Fan, T. Rausch, P. Subedi, M. Ma, S. Kalarickal, C. J. Rea, D. V. Dimitrov, P. W. Huang, K. Wang, X. Chen, C. Peng, W. Chen, J. W. Dykes, M. A. Seigler, E. C. Gage, R. Chantrell, and J. U. Thiele, “High Density Heat-Assisted Magnetic Recording Media and Advanced Characterization: Progress and Challenges,” IEEE Trans. Magn. 51(11), 1–9 (2015).
[PubMed]

Zhu, X. B.

W. A. Challener, C. B. Peng, A. V. Itagi, D. Karns, W. Peng, Y. G. Peng, X. M. Yang, X. B. Zhu, N. J. Gokemeijer, Y. T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(5), 303 (2009).
[Crossref]

Zong, F.

ACS Nano (1)

R. G. Hobbs, Y. Yang, A. Fallahi, P. D. Keathley, E. De Leo, F. X. Kärtner, W. S. Graves, and K. K. Berggren, “High-Yield, Ultrafast, Surface Plasmon-Enhanced, Au Nanorod Optical Field Electron Emitter Arrays,” ACS Nano 8(11), 11474–11482 (2014).
[Crossref] [PubMed]

Appl. Opt. (1)

IEEE T Magn (1)

Z. Li, W. Chen, C. Rea, M. G. Blaber, N. Zhou, H. Zhou, and H. Yin, “Head and Media Design for Curvature Reduction in Heat-Assisted Magnetic Recording,” IEEE T Magn 53(10), 1–4 (2017).
[Crossref]

IEEE Trans. Magn (1)

A. Datta and X. Xu, “Improved near-field transducer design for heat-assisted magnetic recording,” IEEE Trans. Magn 52(12), 1–6 (2016).
[Crossref]

IEEE Trans. Magn. (4)

V. Krishnamurthy, D. K. T. Ng, K. P. Lim, and Q. Wang, “Efficient Integrated Light-Delivery System Design for HAMR: Maximal Optical Coupling for Transducer and Nanowaveguide,” IEEE Trans. Magn. 52(2), 1–7 (2016).
[Crossref]

G. Ju, Y. Peng, E. K. C. Chang, Y. Ding, A. Q. Wu, X. Zhu, Y. Kubota, T. J. Klemmer, H. Amini, L. Gao, Z. Fan, T. Rausch, P. Subedi, M. Ma, S. Kalarickal, C. J. Rea, D. V. Dimitrov, P. W. Huang, K. Wang, X. Chen, C. Peng, W. Chen, J. W. Dykes, M. A. Seigler, E. C. Gage, R. Chantrell, and J. U. Thiele, “High Density Heat-Assisted Magnetic Recording Media and Advanced Characterization: Progress and Challenges,” IEEE Trans. Magn. 51(11), 1–9 (2015).
[PubMed]

D. Weller, G. Parker, O. Mosendz, E. Champion, B. Stipe, X. B. Wang, T. Klemmer, G. P. Ju, and A. Ajan, “A HAMR Media Technology Roadmap to an Areal Density of 4 Tb/in2,” IEEE Trans. Magn. 50(1), 1–8 (2014).
[Crossref]

C. Rea, P. Subedi, H. Zhou, D. Saunders, M. Cordle, P. L. Lu, S. Granz, P. J. Czoschke, S. Hernandez, J. Jury, Y. Peng, J. U. Thiele, A. Q. Wu, G. Ju, T. Rausch, M. Seigler, and E. Gage, “High Track Pitch Capability for HAMR Recording,” IEEE Trans. Magn. 53(2), 1–7 (2017).
[Crossref]

IOP Con. Mat. Sci. (1)

C. Birleanu, M. Pustan, V. Merie, R. Muller, R. Voicu, A. Baracu, and S. Craciun, “Temperature effect on the mechanical properties of gold nano films with different thickness,” IOP Con. Mat. Sci. 147(1), 012021 (2016).
[Crossref]

J. Appl. Phys. (3)

B. V. Budaev and D. B. Bogy, “On the lifetime of plasmonic transducers in heat assisted magnetic recording,” J. Appl. Phys. 112(3), 034512 (2012).
[Crossref]

S. P. Powell, E. J. Black, T. E. Schlesinger, and J. A. Bain, “The influence of media optical properties on the efficiency of optical power delivery for heat assisted magnetic recording,” J. Appl. Phys. 109(7), 07B775 (2011).
[Crossref]

X. Shi and L. Hesselink, “Mechanisms for enhancing power throughput from planar nano-apertures for near-field optical data storage,” J. Appl. Phys. 41(3), 1632–1635 (2002).
[Crossref]

J. Lightwave Technol. (2)

J. Opt. (1)

B. Jennings, D. McCloskey, J. Gough, T. Hoang, N. Abadía, C. Zhong, E. Karademir, A. Bradley, and J. Donegan, “Characterisation of multi-mode propagation in silicon nitride slab waveguides,” J. Opt. 19(1), 015604 (2017).
[Crossref]

Light Sci. Appl. (1)

X. Fan, W. Zheng, and D. J. Singh, “Light scattering and surface plasmons on small spherical particles,” Light Sci. Appl. 3(6), e179 (2014).
[Crossref]

Modern Aspects of Electrochemistry (1)

W. A. Challener and A. V. Itagi, “Near-field optics for heat-assisted magnetic recording (experiment, theory, and modeling),” Modern Aspects of Electrochemistry 44, 53– 111 (2009).

MRS Bull. (1)

M. T. Kief and R. H. Victora, “Materials for heat-assisted magnetic recording,” MRS Bull. 43(2), 87–92 (2018).
[Crossref]

Nano Lett. (4)

V. A. Zenin, A. Andryieuski, R. Malureanu, I. P. Radko, V. S. Volkov, D. K. Gramotnev, A. V. Lavrinenko, and S. I. Bozhevolnyi, “Boosting Local Field Enhancement by on-Chip Nanofocusing and Impedance-Matched Plasmonic Antennas,” Nano Lett. 15(12), 8148–8154 (2015).
[Crossref] [PubMed]

R. G. Hobbs, V. R. Manfrinato, Y. Yang, S. A. Goodman, L. Zhang, E. A. Stach, and K. K. Berggren, “High-energy surface and volume plasmons in nanopatterned sub-10 nm aluminum nanostructures,” Nano Lett. 16(7), 4149–4157 (2016).
[Crossref] [PubMed]

Y. Luo, M. Chamanzar, A. Apuzzo, R. Salas-Montiel, K. N. Nguyen, S. Blaize, and A. Adibi, “On-Chip Hybrid Photonic-Plasmonic Light Concentrator for Nanofocusing in an Integrated Silicon Photonics Platform,” Nano Lett. 15(2), 849–856 (2015).
[Crossref] [PubMed]

E. Verhagen, L. Kuipers, and A. Polman, “Enhanced nonlinear optical effects with a tapered plasmonic waveguide,” Nano Lett. 7(2), 334–337 (2007).
[Crossref] [PubMed]

Nanophotonics-Berlin (1)

N. Zhou, X. F. Xu, A. T. Hammack, B. C. Stipe, K. Z. Gao, W. Scholz, and E. C. Gage, “Plasmonic near-field transducer for heat-assisted magnetic recording,” Nanophotonics-Berlin 3(3), 141–155 (2014).

Nat. Photonics (3)

W. A. Challener, C. B. Peng, A. V. Itagi, D. Karns, W. Peng, Y. G. Peng, X. M. Yang, X. B. Zhu, N. J. Gokemeijer, Y. T. Hsia, G. Ju, R. E. Rottmayer, M. A. Seigler, and E. C. Gage, “Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer,” Nat. Photonics 3(5), 303 (2009).
[Crossref]

H. Choo, M. K. Kim, M. Staffaroni, T. J. Seok, J. Bokor, S. Cabrini, P. J. Schuck, M. C. Wu, and E. Yablonovitch, “Nanofocusing in a metal-insulator-metal gap plasmon waveguide with a three-dimensional linear taper,” Nat. Photonics 6(12), 838–843 (2012).
[Crossref]

M. Schnell, P. Alonso-Gonzalez, L. Arzubiaga, F. Casanova, L. E. Hueso, A. Chuvilin, and R. Hillenbrand, “Nanofocusing of mid-infrared energy with tapered transmission lines,” Nat. Photonics 5(5), 283–287 (2011).
[Crossref]

Opt. Eng. (1)

A. Datta and X. Xu, “Comparative study of optical near-field transducers for heat-assisted magnetic recording,” Opt. Eng. 56(12), 121906 (2017).
[Crossref]

Opt. Express (3)

Opt. Lett. (1)

Proc. IEEE (1)

M. H. Kryder, E. C. Gage, T. W. McDaniel, W. A. Challener, R. E. Rottmayer, G. Ju, Y.-T. Hsia, and M. F. Erden, “Heat assisted magnetic recording,” Proc. IEEE 96(11), 1810–1835 (2008).
[Crossref]

Other (5)

S. Lee, “Energy assisted magnetic recording disk drive using a distributed feedback laser,” US8422342B1 (2013).

E. Schreck, T. Maletzky, X. Jin, Y. Zhou, K. Takano, and J. Smyth, “Directional waveguide coupler for ABS reflected light,” US20120155232A1 (2012).

A. Krichevsky, C. Wolf, F. Bello, K. Ballantine, J. Donegan, D. McCloskey, “Method and system for reducing undesirable reflections in a HAMR write apparatus,” US9484051B1 (2016).

B. Dieny, M. Chshiev, B. Charles, N. Strelkov, A. Truong, O. Fruchart, A. Hallal, J. Wang, Y. K. Takahashi, and T. Mizuno, “Impact of intergrain spin transfer torques due to huge thermal gradients on the performance of heat assisted magnetic recording,” arXiv preprint arXiv:1712.03302 (2017).

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1998).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Schematic diagram of the proposed evanescent coupling system. It consists of a 180 nm Si3N4 dielectric waveguide with a 188 nm SiO2 spacer layer. The propagating photonic mode in the Si3N4 waveguide is excited via an opening trench which will couple to the plasmonic mode in the NFT. The position of the FePt recording medium is also shown.
Fig. 2
Fig. 2 Optical 3-D simulations of the electric field distribution in the NFT with a tapered Au plasmonic waveguide (a)-(d) and a rectangular Au strip waveguide (f)-(i): (a), electric field at the start of the Au taper; (b), electric field at the tip of the Au taper; (c) the side view of the Au taper in the x-z plane shows mode beating; (d), top view of the Au taper shows the nanofocusing process. The same description can be applied to panels (f) – (i) which are simulated results for an Au rectangular strip acting as a reference sample, the difference being that the nanofocusing effect doesn’t appear at the end of the rectangle. Light propagates in the x direction in all figures. The colour bar shows the strength of the intensity which is normalized with the average intensity in the input port of the Si3N4 core layer. Panels (e) and (j) show SEM images of the fabricated taper and rectangular test structures. The scale bar is 1 μm and applies to all panels.
Fig. 3
Fig. 3 (a) The normalized intensity distribution in the spacer layer of the tapered and rectangular waveguides along the light propagation direction. (b) The field intensity enhancement factor in the NFT at different values for the spacer layer thickness (ts). The ratio shown is the output port of the Au layer against the input port. The curves exhibit the expected exponential decay as well as oscillations corresponding to the coupling length (labelled Lc). The experimental data from the optical far-field measurements for the ts = 188 nm samples are overlapped with the simulation.
Fig. 4
Fig. 4 Left side of panel: SEM images; right side of panel: corresponding CCD images from the optical far-field measurements. (a) Measured results of the L = 6 μm sample with a variable spacer layer thickness (ts = 0 nm, 100 nm, and 188 nm from top to bottom). (b) Measured results of the samples with an optimal spacer layer (188 nm), at different lengths. The light is incident from the left side. The scale bar is 2 μm for all four images. Note that the structures were much farther apart than this on the actual sample (30 μm).
Fig. 5
Fig. 5 Thermal simulation of the NFT with an evanescent coupling mechanism. (a) COMSOL model for the 6 μm long tapered NFT with a recording medium. The recording medium is consisting of a 9 nm FePt layer, 72 nm Cu heat sink on a SiO2 substrate. There is a 2.5 nm air-gap between the Au NFT and the recording medium. Capping layer and contaminants such as Carbon form the Carbon overcoat (COC) layer are also present in the thermal model. (b) The cross-section view of the heat distribution in the centre of the x-z plane. (c) The top-down view of the heat distribution in the interface plane of the SiO2 spacer layer and the Au NFT in the x-y plane, the hot spot shows in the ABS interface. (d) Cross-section view on the recording medium in the y-z plane, it is the cross-track and down-track directions, the recording layer is locally heated up. The highest temperature on the recording medium can reach 866 K with an 8.5 mW input power in the Si3N4 core.
Fig. 6
Fig. 6 The temperature distribution in the recording medium as a function of the taper length. Panels (a) to (d) are the tapers with the length of 500 nm, 1 μm, 3 μm and 6 μm respectively. It shows that a longer taper can effectively couple the light from the waveguide core to the Au NFT, which can improve the profile of the thermal spot in the recording medium.
Fig. 7
Fig. 7 (a) Zoomed-in temperature map on the surface of the FePt recording layer. The contour plot is overlapped with the temperature map which shows the thermal gradients in the cross-track and the down-track directions. The y axis represents the cross-track direction and the z axis is down-track. Panel (b) and (c) are the thermal gradient graphs of the cross-track and down-track respectively.

Tables (2)

Tables Icon

Table 1 Intensity enhancement in the NFT and percentage of the intensity distribution in different simulation domains for a 6 μm long NFT when the thickness of the spacer layer is varied. In each case, the excess intensity is in the air or substrate layer.

Tables Icon

Table 2 Steady state thermal figures of merit for the triangle and antenna based NFTs

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

L c = λ 0 2 | 1 n p n d |

Metrics