Abstract

Coloured dissolved organic matter (CDOM) is one of the major contributors to the absorption budget of most freshwaters and can be used as a proxy to assess non-optical carbon fractions such as dissolved organic carbon (DOC) and the partial pressure of carbon dioxide (pCO2). Nevertheless, riverine studies that explore the former relationships are still relatively scarce, especially within tropical regions. Here we document the spatial-seasonal variability of CDOM, DOC and pCO2, and assess the potential of CDOM absorption coefficient (aCDOM(412)) for estimating DOC concentration and pCO2 along the Lower Amazon River. Our results revealed differences in the dissolved organic matter (DOM) quality between clearwater (CW) tributaries and the Amazon River mainstream. A linear relationship between DOC and CDOM was observed when tributaries and mainstream are evaluated separately (Amazon River: N = 42, R2 = 0.74, p<0.05; CW: N = 13, R2 = 0.57, p<0.05). However, this linear relationship was not observed during periods of higher rainfall and river discharge, requiring a specific model for these time periods to be developed (N = 25, R2 = 0.58, p<0.05). A strong linear positive relation was found between aCDOM(412) and pCO2(N = 69, R2 = 0.65, p<0.05) along the lower river. pCO2 was less affected by the optical difference between tributaries and mainstream waters or by the discharge conditions when compared to CDOM to DOC relationships. Including the river water temperature in the model improves our ability to estimate pCO2 (N = 69; R2 = 0.80, p<0.05). The ability to assess both DOC and pCO2 from CDOM optical properties opens further perspectives on the use of ocean colour remote sensing data for monitoring carbon dynamics in large running water systems worldwide.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
CDOM-DOC relationship in contrasted coastal waters: implication for DOC retrieval from ocean color remote sensing observation.

Vincent Vantrepotte, François-Pierre Danhiez, Hubert Loisel, Sylvain Ouillon, Xavier Mériaux, Arnaud Cauvin, and David Dessailly
Opt. Express 23(1) 33-54 (2015)

Variability of apparent and inherent optical properties of sediment-laden waters in large river basins – lessons from in situ measurements and bio-optical modeling

Sylvain Pinet, Jean-Michel Martinez, Sylvain Ouillon, Bruno Lartiges, and Raul Espinoza Villar
Opt. Express 25(8) A283-A310 (2017)

Bio-optical properties and ocean color algorithms for coastal waters influenced by the Mississippi River during a cold front

Eurico J. D'Sa, Richard L. Miller, and Carlos Del Castillo
Appl. Opt. 45(28) 7410-7428 (2006)

References

  • View by:
  • |
  • |
  • |

  1. R. G. Wetzel and G. E. Likens, Limnological Analyses (Springer Science and Business Media, 2000).
  2. T. J. Battin, L. A. Kaplan, S. Findlay, C. S. Hopkinson, E. Marti, A. I. Packman, J. D. Newbold, and F. Sabater, “Biophysical controls on organic carbon fluxes in fluvial networks,” Nat. Geosci. 2(8), 595 (2009).
    [Crossref]
  3. N. D. Ward, T. S. Bianchi, P. M. Medeiros, M. Seidel, J. E. Richey, R. G. Keil, and H. O. Sawakuchi, “Where carbon goes when water flows: carbon cycling across the aquatic continuum,” Front. Mater. Sci. 4, 7 (2017).
  4. M. S. Johnson, J. Lehmann, E. C. Selva, M. Abdo, S. Riha, and E. G. Couto, “Organic carbon fluxes within and streamwater exports from headwater catchments in the southern Amazon,” Hydrol. Processes 20(12), 2599–2614 (2006).
    [Crossref]
  5. N. D. Ward, H. O. Sawakuchi, V. Neu, D. F. S. Less, A. M. Valerio, A. C. Cunha, M. Kampel, T. S. Bianchi, A. V. Krusche, J. E. Richey, and R. G. Keil, “Velocity-amplified microbial respiration rates in the lower Amazon River,” Limnol. Oceanogr. Lett., (in press).
  6. B. Koehler, T. Landelius, G. A. Weyhenmeyer, N. Machida, and L. J. Tranvik, “Sunlight-induced carbon dioxide emissions from inland waters,” Global Biogeochem. Cycles 28(7), 696–711 (2014).
    [Crossref]
  7. H. O. Sawakuchi, V. Neu, N. D. Ward, M. D. L. C. Barros, A. Valerio, W. Gagne-Maynard, A. C. Cunha, D. Fernanda, J. E. Diniz, D. C. Brito, A. V. Krusche, and J. E. Richey, “Carbon dioxide emissions along the lower Amazon River,” Front. Mater. Sci. 4, 1–12 (2017).
  8. N. D. Ward, A. V. Krusche, H. O. Sawakuchi, D. C. Brito, A. C. Cunha, J. M. S. Moura, R. da Silva, P. L. Yager, R. G. Keil, and J. E. Richey, “The compositional evolution of dissolved and particulate organic matter along the lower Amazon River-Óbidos to the ocean,” Mar. Chem. 177, 244–256 (2015).
    [Crossref]
  9. J. E. Richey, J. M. Melack, A. K. Aufdenkampe, V. M. Ballester, and L. L. Hess, “Outgassing from Amazonian rivers and wetlands as a large tropical source of atmospheric CO2,” Nature 416(6881), 617–620 (2002).
    [Crossref] [PubMed]
  10. R. Lauerwald, G. Laruelle, J. Hartmann, P. Ciais, and P. A. G. Regnier, “Spatial patterns in CO2 evasion from the global river network,” Global Biogeochem. Cycles 29(5), 534 (2015).
    [Crossref]
  11. G. Abril, J.-M. Martinez, L. F. Artigas, P. Moreira-Turcq, M. F. Benedetti, L. Vidal, T. Meziane, J.-H. Kim, M. C. Bernardes, N. Savoye, J. Deborde, E. L. Souza, P. Albéric, M. F. Landim de Souza, and F. Roland, “Amazon River carbon dioxide outgassing fuelled by wetlands,” Nature 505(7483), 395–398 (2014).
    [Crossref] [PubMed]
  12. M. P. Curtarelli, I. Ogashawara, C. A. S. de Araújo, J. A. Lorenzzetti, J. A. D. Leão, E. Alcântara, and J. L. Stech, “Carbon dioxide emissions from Tucuruí reservoir (Amazon biome): New findings based on three-dimensional ecological model simulations,” Sci. Total Environ. 551-552, 676–694 (2016).
    [Crossref] [PubMed]
  13. L. E. Vihermaa, S. Waldron, T. Domingues, J. Grace, E. G. Cosio, F. Limonchi, C. Hopkinson, H. R. da Rocha, and E. Gloor, “Fluvial carbon export from a lowland Amazonian rainforest in relation to atmospheric fluxes,” J. Geophys. Res. Biogeosci. 121, 3001 (2016).
  14. P. Moreira-Turcq, M. P. Bonnet, M. Amorim, M. Bernardes, C. Lagane, L. Maurice, M. Perez, and P. Seyler, “Seasonal variability in concentration, composition, age, and fluxes of particulate organic carbon exchanged between the floodplain and Amazon River,” Global Biogeochem. Cycles 27(1), 119–130 (2013).
    [Crossref]
  15. C. M. Rudorff, J. M. Melack, S. MacIntyre, C. C. F. Barbosa, and E. M. L. M. Novo, “Seasonal and spatial variability of CO2 emission from a large floodplain lake in the lower Amazon,” J. Geophys. Res. Biogeosci. 116, 1–12 (2011).
  16. J. E. Richey, A. V. Krusche, M. S. Johnson, H. B. Da Cunha, and M. V. Ballester, “The role of rivers in the regional carbon balance,” in Amazonia and Global Change, M. Keller, M. Bustamante, J. Gash and P. Silva Dias, eds. (American Geophysical Union, 2013).
  17. V. Neu, C. Neill, and A. V. Krusche, “Gaseous and fluvial carbon export from an Amazon forest watershed,” Biogeochemistry 105(1-3), 133–147 (2011).
    [Crossref]
  18. A. C. da Cunha and L. S. L. Sternberg, “Using stable isotopes 18 O and 2 H of lake water and biogeochemical analysis to identify factors affecting water quality in four estuarine Amazonian shallow lakes,” Hydrol. Processes., (in press).
  19. S. W. Correa, R. C. D. de Paiva, J. C. Espinoza, and W. Collischonn, “Multi-decadal Hydrological Retrospective: Case study of Amazon floods and droughts,” J. Hydrol. (Amst.) 549, 667 (2017).
  20. J. C. Jiménez-Muñoz, C. Mattar, J. Barichivich, A. Santamaría-Artigas, K. Takahashi, Y. Malhi, J. A. Sobrino, and G. Schrier, “Record-breaking warming and extreme drought in the Amazon rainforest during the course of El Niño 2015-2016,” Sci. Rep. 6(1), 33130 (2016).
    [Crossref] [PubMed]
  21. J. A. Marengo and J. C. Espinoza, “Extreme seasonal droughts and floods in Amazonia: Causes, trends and impacts,” Int. J. Climatol. 36(3), 1033–1050 (2016).
    [Crossref]
  22. J. C. Espinoza, J. A. Marengo, J. Ronchail, J. M. Carpio, L. N. Flores, and J. L. Guyot, “The extreme 2014 flood in south-western Amazon basin: the role of tropical-subtropical South Atlantic SST gradient,” Environ. Res. Lett. 9(12), 124007 (2014).
    [Crossref]
  23. N. D. Ward, R. G. Keil, P. M. Medeiros, D. C. Brito, A. C. Cunha, T. Dittmar, P. L. Yager, A. V. Krusche, and J. E. Richey, “Degradation of terrestrially derived macromolecules in the Amazon River,” Nat. Geosci. 6(7), 530–533 (2013).
    [Crossref]
  24. P. L. Brezonik, L. G. Olmanson, J. C. Finlay, and M. E. Bauer, “Factors affecting the measurement of CDOM by remote sensing of optically complex inland waters,” Remote Sens. Environ. 157, 199–215 (2015).
    [Crossref]
  25. V. Vantrepotte, F. P. Danhiez, H. Loisel, S. Ouillon, X. Mériaux, A. Cauvin, and D. Dessailly, “CDOM-DOC relationship in contrasted coastal waters: implication for DOC retrieval from ocean color remote sensing observation,” Opt. Express 23(1), 33–54 (2015).
    [Crossref] [PubMed]
  26. C. G. Fichot and R. Benner, “The spectral slope coefficient of chromophoric dissolved organic matter (S275-295) as a tracer of terrigenous dissolved organic carbon in river-influenced ocean margins,” Limnol. Oceanogr. 57(5), 1453–1466 (2012).
    [Crossref]
  27. R. G. M. Spencer, K. D. Butler, and G. R. Aiken, “Dissolved organic carbon and chromophoric dissolved organic matter properties of rivers in the USA,” J. Geophys. Res. Biogeosci. 117, G03001 (2012).
  28. A. Mannino, M. E. Russ, and S. B. Hooker, “Algorithm development and validation for satellite-derived distributions of DOC and CDOM in the U.S. Middle Atlantic Bight,” J. Geophys. Res. 113(C7), C07051 (2008).
    [Crossref]
  29. R. F. Chen and G. B. Gardner, “High-resolution measurements of chromophoric dissolved organic matter in the Mississippi and Atchafalaya River plume regions,” Mar. Chem. 89(1-4), 103–125 (2004).
    [Crossref]
  30. A. Vodacek, N. V. Blough, M. D. DeGrandpre, M. D. DeGrandpre, and R. K. Nelson, “Seasonal variation of CDOM and DOC in the Middle Atlantic Bight: terrestrial inputs and photo oxidation,” Limnol. Oceanogr. 42(4), 674–686 (1997).
    [Crossref]
  31. G. M. Ferrari, M. D. Dowell, S. Grossi, and C. Targa, “Relationship between the optical properties of chromophoric dissolved organic matter and total concentration of dissolved organic carbon in the southern Baltic Sea region,” Mar. Chem. 55(3-4), 299–316 (1996).
    [Crossref]
  32. J. R. Helms, A. Stubbins, J. D. Ritchie, E. C. Minor, D. J. Kieber, and K. Mopper, “Absorption spectral slopes and slope ratios as indicators of molecular weight, source, and photobleaching of chromophoric dissolved organic matter,” Limnol. Oceanogr. 53(3), 955–969 (2008).
    [Crossref]
  33. C. G. Fichot and R. Benner, “A novel method to estimate DOC concentrations from CDOM absorption coefficients in coastal waters,” Geophys. Res. Lett. 38(3), 1–5 (2011).
    [Crossref]
  34. F. P. Danhiez, V. Vantrepotte, A. Cauvin, E. Lebourg, and H. Loisel, “Optical properties of chromophoric dissolved organic matter during a phytoplankton bloom. Implication for DOC estimates from CDOM absorption,” Limnol. Oceanogr. 62(4), 1409–1425 (2017).
    [Crossref]
  35. N. B. Nelson and D. A. Siegel, “The global distribution and dynamics of chromophoric dissolved organic matter,” Annu. Rev. Mar. Sci. 5(1), 447–476 (2013).
    [Crossref] [PubMed]
  36. J. F. Lapierre and P. A. Del Giorgio, “Geographical and environmental drivers of regional differences in the lake pCO2 versus DOC relationship across northern landscapes,” J. Geophys. Res. Biogeosci. 117, 1–10 (2012).
  37. S. Larsen, T. Andersen, and D. O. Hessen, “The pCO2 in boreal lakes: Organic carbon as a universal predictor?” Global Biogeochem. Cycles 25(2), 1–8 (2011).
    [Crossref]
  38. S. Sobek, L. J. Tranvik, and J. J. Cole, “Temperature independence of carbon dioxide supersaturation in global lakes,” Global Biogeochem. Cycles 19(2), 1–10 (2005).
    [Crossref]
  39. L. Pinho, C. M. Duarte, H. Marotta, and A. Enrich-Prast, “Temperature-dependence of the relationship between pCO2 and dissolved organic carbon in lakes,” Biogeosciences Discuss. 12(3), 2787–2808 (2015).
    [Crossref]
  40. H. Marotta, C. M. Duarte, L. Pinho, and A. Enrich-Prast, “Rainfall leads to increased pCO2 in Brazilian coastal lakes,” Biogeosciences 7(5), 1607–1614 (2010).
    [Crossref]
  41. T. Kutser, C. Verpoorter, B. Paavel, and L. J. Tranvik, “Estimating lake carbon fractions from remote sensing data,” Remote Sens. Environ. 157, 138–146 (2015).
    [Crossref]
  42. S. E. Lohrenz and W. J. Cai, “Satellite ocean color assessment of air-sea fluxes of CO2 in a river-dominated coastal margin,” Geophys. Res. Lett. 33(1), L01601 (2006).
    [Crossref]
  43. C. D. Clark, W. T. Hiscock, F. J. Millero, G. Hitchcock, L. Brand, W. L. Miller, L. Ziolkowski, R. F. Chen, and R. G. Zika, “CDOM distribution and CO2 production on the Southwest Florida Shelf,” Mar. Chem. 89(1-4), 145–167 (2004).
    [Crossref]
  44. O. Nikiema, J. Devenon, and M. Baklouti, “Numerical modeling of the Amazon River plume,” Cont. Shelf Res. 27(7), 873–899 (2007).
    [Crossref]
  45. H. Sioli, The Amazon. Limnology and Landscape Ecology of a Mighty Tropical River and its Basin (Springer Netherlands, 1984).
  46. B. G. Mitchell, M. Kahru, J. Wieland, and M. Stramska, “Determination of spectral absorption coefficients of particles, dissolved material and phytoplankton for discrete water samples,” in Ocean Optics Protocols for Satellite Ocean Color Sensor Validation, G. S. Fargion and J. L. Mueller, eds. (NASA Goddard Space Flight Center, 2003).
  47. M. Babin, “Variations in the light absorption coefficients of phytoplankton, nonalgal particles, and dissolved organic matter in coastal waters around Europe,” J. Geophys. Res. 108(C7), 3211 (2003).
    [Crossref]
  48. A. Bricaud, A. Morel, and L. Prieur, “Absorption by dissolved organic matter of the sea (yellow substance) in the UV and visible domains,” Limnol. Oceanogr. 26(1), 43–53 (1981).
    [Crossref]
  49. H. O. Sawakuchi, D. Bastviken, A. O. Sawakuchi, N. D. Ward, C. D. Borges, S. M. Tsai, J. E. Richey, V. M. Ballester, and A. V. Krusche, “Oxidative mitigation of aquatic methane emissions in large Amazonian rivers,” Glob. Change Biol. 1, 1075 (2015).
  50. T. Kutser, G. Casal Pascual, C. Barbosa, B. Paavel, R. Ferreira, L. Carvalho, and K. Toming, “Mapping inland water carbon content with Landsat 8 data,” Int. J. Remote Sens. 37(13), 2950–2961 (2016).
    [Crossref]
  51. W. C. Gagne-Maynard, N. D. Ward, R. G. Keil, H. O. Sawakuchi, A. C. Da Cunha, V. Neu, D. C. Brito, D. F. Da Silva Less, J. E. M. Diniz, A. M. Valerio, M. Kampel, A. V. Krusche, and J. E. Richey, “Evaluation of primary production in the Lower Amazon River based on a dissolved oxygen stable isotopic mass balance,” Front. Mater. Sci. 4, 1–12 (2017).
  52. M. Seidel, T. Dittmar, N. D. Ward, A. V. Krusche, J. E. Richey, P. L. Yager, and P. M. Medeiros, “Seasonal and spatial variability of dissolved organic matter composition in the lower Amazon River,” Biogeochemistry 131(3), 281–302 (2016).
    [Crossref]
  53. R. Pereira, C. Isabella Bovolo, R. G. M. Spencer, P. J. Hernes, E. Tipping, A. Vieth-Hillebrand, N. Pedentchouk, N. A. Chappell, G. Parkin, and T. Wagner, “Mobilization of optically invisible dissolved organic matter in response to rainstorm events in a tropical forest headwater river,” Geophys. Res. Lett. 41(4), 1202–1208 (2014).
    [Crossref]
  54. P. M. Medeiros, M. Seidel, N. D. Ward, E. J. Carpenter, H. R. Gomes, J. Niggemann, A. V. Krusche, J. E. Richey, P. L. Yager, and T. Dittmar, “Fate of the Amazon River dissolved organic matter in the tropical Atlantic Ocean,” Global Biogeochem. Cycles 29(5), 677 (2015).
    [Crossref]
  55. M. Seidel, P. L. Yager, N. D. Ward, E. J. Carpenter, H. R. Gomes, A. V. Krusche, J. E. Richey, T. Dittmar, and P. M. Medeiros, “Molecular-level changes of dissolved organic matter along the Amazon River-to-ocean continuum,” Mar. Chem. 177, 218–231 (2015).
    [Crossref]
  56. N. D. Ward, T. S. Bianchi, H. O. Sawakuchi, W. Gagne-Maynard, A. C. Cunha, D. C. Brito, V. Neu, A. M. Valerio, R. da Silva, A. V. Krusche, J. E. Richey, and R. G. Keil, “The reactivity of plant-derived organic matter and the potential importance of priming effects along the lower Amazon River,” J. Geophys. Res. Biogeosci. 121, 1–18 (2016).
  57. T. S. Moore, M. D. Dowell, S. Bradt, and A. R. Verdu, “An optical water type framework for selecting and blending retrievals from bio-optical algorithms in lakes and coastal waters,” Remote Sens. Environ. 143, 97–111 (2014).
    [Crossref] [PubMed]
  58. V. Vantrepotte, H. Loisel, D. Dessailly, and X. Meriaux, “Optical classification of contrasted coastal waters,” Remote Sens. Environ. 123, 306–323 (2012).
    [Crossref]
  59. F. Mélin, V. Vantrepotte, M. Clerici, D. D’Alimonte, G. Zibordi, J. F. Berthon, and E. Canuti, “Multi-sensor satellite time series of optical properties and chlorophyll-a concentration in the Adriatic Sea,” Prog. Oceanogr. 91(3), 229–244 (2011).
    [Crossref]
  60. H. Marotta, L. T. Paiva, and M. M. Petrucio, “Changes in thermal and oxygen stratification pattern coupled to CO2 outgassing persistence in two oligotrophic shallow lakes of the Atlantic Tropical Forest, Southeast Brazil,” Limnology 10(3), 195–202 (2009).
    [Crossref]
  61. M. Fontes, H. Marotta, S. MacIntyre, and M. Petrucio, “Inter- and intra-annual variations of pCO2 and pO2 in a freshwater subtropical coastal lake,” Inland Waters 5(2), 107–116 (2015).
    [Crossref]
  62. B. Hales, P. G. Strutton, M. Saraceno, R. Letelier, T. Takahashi, R. Feely, C. Sabine, and F. Chavez, “Satellite-based prediction of pCO2 in coastal waters of the eastern North Pacific,” Prog. Oceanogr. 103, 1–15 (2012).
    [Crossref]
  63. Y. Zhu, S. Shang, W. Zhai, and M. Dai, “Satellite-derived surface water pCO2 and air-sea CO2 fluxes in the northern South China Sea in summer,” Prog. Nat. Sci. 19(6), 775–779 (2009).
    [Crossref]
  64. Y. Bai, W.-J. Cai, X. He, W. Zhai, D. Pan, M. Dai, and P. Yu, “A mechanistic semi-analytical method for remotely sensing sea surface pCO2 in river-dominated coastal oceans: A case study from the East China Sea,” J. Geophys. Res. Oceans 120(3), 2331 (2015).
    [Crossref]
  65. S. Kosten, F. Roland, D. M. L. Da Motta Marques, E. H. Van Nes, N. Mazzeo, L. D. S. L. Sternberg, M. Scheffer, and J. J. Cole, “Climate-dependent CO2 emissions from lakes,” Global Biogeochem. Cycles 24(2), 1–7 (2010).
    [Crossref]
  66. A. Subramaniam, P. L. Yager, E. J. Carpenter, C. Mahaffey, K. Björkman, S. Cooley, A. B. Kustka, J. P. Montoya, S. A. Sañudo-Wilhelmy, R. Shipe, and D. G. Capone, “Amazon River enhances diazotrophy and carbon sequestration in the tropical North Atlantic Ocean,” Proc. Natl. Acad. Sci. U.S.A. 105(30), 10460–10465 (2008).
    [Crossref] [PubMed]
  67. R. Weiss, “Carbon dioxide in water and seawater: the solubility of a non-ideal gas,” Mar. Chem. 2(3), 203–215 (1974).
    [Crossref]
  68. E. E. Ellis, J. E. Richey, A. K. Aufdenkampe, A. V. Krusche, P. D. Quay, C. Salimon, and H. B. da Cunha, “Factors controlling water-column respiration in rivers of the central and southwestern Amazon Basin,” Limnol. Oceanogr. 57(2), 527–540 (2012).
    [Crossref]
  69. D. Sun, C. Hu, Z. Qiu, J. P. Cannizzaro, and B. B. Barnes, “Influence of a red band-based water classification approach on chlorophyll algorithms for optically complex estuaries,” Remote Sens. Environ. 155, 289–302 (2014).
    [Crossref]
  70. C. Le, C. Hu, J. Cannizzaro, D. English, F. Muller-Karger, and Z. Lee, “Evaluation of chlorophyll-a remote sensing algorithms for an optically complex estuary,” Remote Sens. Environ. 129, 75–89 (2013).
    [Crossref]
  71. C. Le, Y. Li, Y. Zha, D. Sun, C. Huang, and H. Lu, “A four-band semi-analytical model for estimating chlorophyll a in highly turbid lakes: The case of Taihu Lake, China,” Remote Sens. Environ. 113, 1175 (2009).
  72. A. A. Gitelson, G. Dall’Olmo, W. Moses, D. C. Rundquist, T. Barrow, T. R. Fisher, D. Gurlin, and J. Holz, “A simple semi-analytical model for remote estimation of chlorophyll-a in turbid waters: validation,” Remote Sens. Environ. 112(9), 3582–3593 (2008).
    [Crossref]
  73. G. Dall’Olmo and A. A. Gitelson, “Effect of bio-optical parameter variability on the remote estimation of chlorophyll-a concentration in turbid productive waters: experimental results,” Appl. Opt. 44(3), 412–422 (2005).
    [Crossref] [PubMed]
  74. K. Dörnhöfer and N. Oppelt, “Remote sensing for lake research and monitoring – Recent advances,” Ecol. Indic. 64, 105–122 (2016).
    [Crossref]
  75. S. J. Dugdale, “A practitioner’s guide to thermal infrared remote sensing of rivers and streams: recent advances, precautions and considerations,” Wiley Interdiscip. Rev. Water 3(2), 251–268 (2016).
    [Crossref]
  76. R. N. Handcock, C. E. Torgersen, K. A. Cherkauer, A. R. Gillespie, K. Tockner, R. N. Faux, and J. Tan, “Thermal infrared remote sensing of water temperature in riverine landscapes,” in Fluvial Remote Sensing. Science and. Management, P. E. Carbonneau and H. Piégay, eds (Wiley-Blackwell, 2012).
  77. E. H. Alcântara, J. L. Stech, J. A. Lorenzzetti, M. P. Bonnet, X. Casamitjana, A. T. Assireu, and E. M. L. D. M. Novo, “Remote sensing of water surface temperature and heat flux over a tropical hydroelectric reservoir,” Remote Sens. Environ. 114(11), 2651–2665 (2010).
    [Crossref]
  78. F. Cao, M. Tzortziou, C. Hu, A. Mannino, C. G. Fichot, R. Del Vecchio, R. G. Najjar, and M. Novak, “Remote sensing retrievals of colored dissolved organic matter and dissolved organic carbon dynamics in North American estuaries and their margins,” Remote Sens. Environ. 205, 151–165 (2018).
    [Crossref]

2018 (1)

F. Cao, M. Tzortziou, C. Hu, A. Mannino, C. G. Fichot, R. Del Vecchio, R. G. Najjar, and M. Novak, “Remote sensing retrievals of colored dissolved organic matter and dissolved organic carbon dynamics in North American estuaries and their margins,” Remote Sens. Environ. 205, 151–165 (2018).
[Crossref]

2017 (5)

W. C. Gagne-Maynard, N. D. Ward, R. G. Keil, H. O. Sawakuchi, A. C. Da Cunha, V. Neu, D. C. Brito, D. F. Da Silva Less, J. E. M. Diniz, A. M. Valerio, M. Kampel, A. V. Krusche, and J. E. Richey, “Evaluation of primary production in the Lower Amazon River based on a dissolved oxygen stable isotopic mass balance,” Front. Mater. Sci. 4, 1–12 (2017).

N. D. Ward, T. S. Bianchi, P. M. Medeiros, M. Seidel, J. E. Richey, R. G. Keil, and H. O. Sawakuchi, “Where carbon goes when water flows: carbon cycling across the aquatic continuum,” Front. Mater. Sci. 4, 7 (2017).

H. O. Sawakuchi, V. Neu, N. D. Ward, M. D. L. C. Barros, A. Valerio, W. Gagne-Maynard, A. C. Cunha, D. Fernanda, J. E. Diniz, D. C. Brito, A. V. Krusche, and J. E. Richey, “Carbon dioxide emissions along the lower Amazon River,” Front. Mater. Sci. 4, 1–12 (2017).

S. W. Correa, R. C. D. de Paiva, J. C. Espinoza, and W. Collischonn, “Multi-decadal Hydrological Retrospective: Case study of Amazon floods and droughts,” J. Hydrol. (Amst.) 549, 667 (2017).

F. P. Danhiez, V. Vantrepotte, A. Cauvin, E. Lebourg, and H. Loisel, “Optical properties of chromophoric dissolved organic matter during a phytoplankton bloom. Implication for DOC estimates from CDOM absorption,” Limnol. Oceanogr. 62(4), 1409–1425 (2017).
[Crossref]

2016 (9)

J. C. Jiménez-Muñoz, C. Mattar, J. Barichivich, A. Santamaría-Artigas, K. Takahashi, Y. Malhi, J. A. Sobrino, and G. Schrier, “Record-breaking warming and extreme drought in the Amazon rainforest during the course of El Niño 2015-2016,” Sci. Rep. 6(1), 33130 (2016).
[Crossref] [PubMed]

J. A. Marengo and J. C. Espinoza, “Extreme seasonal droughts and floods in Amazonia: Causes, trends and impacts,” Int. J. Climatol. 36(3), 1033–1050 (2016).
[Crossref]

M. P. Curtarelli, I. Ogashawara, C. A. S. de Araújo, J. A. Lorenzzetti, J. A. D. Leão, E. Alcântara, and J. L. Stech, “Carbon dioxide emissions from Tucuruí reservoir (Amazon biome): New findings based on three-dimensional ecological model simulations,” Sci. Total Environ. 551-552, 676–694 (2016).
[Crossref] [PubMed]

L. E. Vihermaa, S. Waldron, T. Domingues, J. Grace, E. G. Cosio, F. Limonchi, C. Hopkinson, H. R. da Rocha, and E. Gloor, “Fluvial carbon export from a lowland Amazonian rainforest in relation to atmospheric fluxes,” J. Geophys. Res. Biogeosci. 121, 3001 (2016).

M. Seidel, T. Dittmar, N. D. Ward, A. V. Krusche, J. E. Richey, P. L. Yager, and P. M. Medeiros, “Seasonal and spatial variability of dissolved organic matter composition in the lower Amazon River,” Biogeochemistry 131(3), 281–302 (2016).
[Crossref]

T. Kutser, G. Casal Pascual, C. Barbosa, B. Paavel, R. Ferreira, L. Carvalho, and K. Toming, “Mapping inland water carbon content with Landsat 8 data,” Int. J. Remote Sens. 37(13), 2950–2961 (2016).
[Crossref]

N. D. Ward, T. S. Bianchi, H. O. Sawakuchi, W. Gagne-Maynard, A. C. Cunha, D. C. Brito, V. Neu, A. M. Valerio, R. da Silva, A. V. Krusche, J. E. Richey, and R. G. Keil, “The reactivity of plant-derived organic matter and the potential importance of priming effects along the lower Amazon River,” J. Geophys. Res. Biogeosci. 121, 1–18 (2016).

K. Dörnhöfer and N. Oppelt, “Remote sensing for lake research and monitoring – Recent advances,” Ecol. Indic. 64, 105–122 (2016).
[Crossref]

S. J. Dugdale, “A practitioner’s guide to thermal infrared remote sensing of rivers and streams: recent advances, precautions and considerations,” Wiley Interdiscip. Rev. Water 3(2), 251–268 (2016).
[Crossref]

2015 (11)

Y. Bai, W.-J. Cai, X. He, W. Zhai, D. Pan, M. Dai, and P. Yu, “A mechanistic semi-analytical method for remotely sensing sea surface pCO2 in river-dominated coastal oceans: A case study from the East China Sea,” J. Geophys. Res. Oceans 120(3), 2331 (2015).
[Crossref]

P. M. Medeiros, M. Seidel, N. D. Ward, E. J. Carpenter, H. R. Gomes, J. Niggemann, A. V. Krusche, J. E. Richey, P. L. Yager, and T. Dittmar, “Fate of the Amazon River dissolved organic matter in the tropical Atlantic Ocean,” Global Biogeochem. Cycles 29(5), 677 (2015).
[Crossref]

M. Seidel, P. L. Yager, N. D. Ward, E. J. Carpenter, H. R. Gomes, A. V. Krusche, J. E. Richey, T. Dittmar, and P. M. Medeiros, “Molecular-level changes of dissolved organic matter along the Amazon River-to-ocean continuum,” Mar. Chem. 177, 218–231 (2015).
[Crossref]

M. Fontes, H. Marotta, S. MacIntyre, and M. Petrucio, “Inter- and intra-annual variations of pCO2 and pO2 in a freshwater subtropical coastal lake,” Inland Waters 5(2), 107–116 (2015).
[Crossref]

H. O. Sawakuchi, D. Bastviken, A. O. Sawakuchi, N. D. Ward, C. D. Borges, S. M. Tsai, J. E. Richey, V. M. Ballester, and A. V. Krusche, “Oxidative mitigation of aquatic methane emissions in large Amazonian rivers,” Glob. Change Biol. 1, 1075 (2015).

T. Kutser, C. Verpoorter, B. Paavel, and L. J. Tranvik, “Estimating lake carbon fractions from remote sensing data,” Remote Sens. Environ. 157, 138–146 (2015).
[Crossref]

N. D. Ward, A. V. Krusche, H. O. Sawakuchi, D. C. Brito, A. C. Cunha, J. M. S. Moura, R. da Silva, P. L. Yager, R. G. Keil, and J. E. Richey, “The compositional evolution of dissolved and particulate organic matter along the lower Amazon River-Óbidos to the ocean,” Mar. Chem. 177, 244–256 (2015).
[Crossref]

R. Lauerwald, G. Laruelle, J. Hartmann, P. Ciais, and P. A. G. Regnier, “Spatial patterns in CO2 evasion from the global river network,” Global Biogeochem. Cycles 29(5), 534 (2015).
[Crossref]

L. Pinho, C. M. Duarte, H. Marotta, and A. Enrich-Prast, “Temperature-dependence of the relationship between pCO2 and dissolved organic carbon in lakes,” Biogeosciences Discuss. 12(3), 2787–2808 (2015).
[Crossref]

P. L. Brezonik, L. G. Olmanson, J. C. Finlay, and M. E. Bauer, “Factors affecting the measurement of CDOM by remote sensing of optically complex inland waters,” Remote Sens. Environ. 157, 199–215 (2015).
[Crossref]

V. Vantrepotte, F. P. Danhiez, H. Loisel, S. Ouillon, X. Mériaux, A. Cauvin, and D. Dessailly, “CDOM-DOC relationship in contrasted coastal waters: implication for DOC retrieval from ocean color remote sensing observation,” Opt. Express 23(1), 33–54 (2015).
[Crossref] [PubMed]

2014 (6)

G. Abril, J.-M. Martinez, L. F. Artigas, P. Moreira-Turcq, M. F. Benedetti, L. Vidal, T. Meziane, J.-H. Kim, M. C. Bernardes, N. Savoye, J. Deborde, E. L. Souza, P. Albéric, M. F. Landim de Souza, and F. Roland, “Amazon River carbon dioxide outgassing fuelled by wetlands,” Nature 505(7483), 395–398 (2014).
[Crossref] [PubMed]

B. Koehler, T. Landelius, G. A. Weyhenmeyer, N. Machida, and L. J. Tranvik, “Sunlight-induced carbon dioxide emissions from inland waters,” Global Biogeochem. Cycles 28(7), 696–711 (2014).
[Crossref]

J. C. Espinoza, J. A. Marengo, J. Ronchail, J. M. Carpio, L. N. Flores, and J. L. Guyot, “The extreme 2014 flood in south-western Amazon basin: the role of tropical-subtropical South Atlantic SST gradient,” Environ. Res. Lett. 9(12), 124007 (2014).
[Crossref]

R. Pereira, C. Isabella Bovolo, R. G. M. Spencer, P. J. Hernes, E. Tipping, A. Vieth-Hillebrand, N. Pedentchouk, N. A. Chappell, G. Parkin, and T. Wagner, “Mobilization of optically invisible dissolved organic matter in response to rainstorm events in a tropical forest headwater river,” Geophys. Res. Lett. 41(4), 1202–1208 (2014).
[Crossref]

T. S. Moore, M. D. Dowell, S. Bradt, and A. R. Verdu, “An optical water type framework for selecting and blending retrievals from bio-optical algorithms in lakes and coastal waters,” Remote Sens. Environ. 143, 97–111 (2014).
[Crossref] [PubMed]

D. Sun, C. Hu, Z. Qiu, J. P. Cannizzaro, and B. B. Barnes, “Influence of a red band-based water classification approach on chlorophyll algorithms for optically complex estuaries,” Remote Sens. Environ. 155, 289–302 (2014).
[Crossref]

2013 (4)

C. Le, C. Hu, J. Cannizzaro, D. English, F. Muller-Karger, and Z. Lee, “Evaluation of chlorophyll-a remote sensing algorithms for an optically complex estuary,” Remote Sens. Environ. 129, 75–89 (2013).
[Crossref]

N. D. Ward, R. G. Keil, P. M. Medeiros, D. C. Brito, A. C. Cunha, T. Dittmar, P. L. Yager, A. V. Krusche, and J. E. Richey, “Degradation of terrestrially derived macromolecules in the Amazon River,” Nat. Geosci. 6(7), 530–533 (2013).
[Crossref]

P. Moreira-Turcq, M. P. Bonnet, M. Amorim, M. Bernardes, C. Lagane, L. Maurice, M. Perez, and P. Seyler, “Seasonal variability in concentration, composition, age, and fluxes of particulate organic carbon exchanged between the floodplain and Amazon River,” Global Biogeochem. Cycles 27(1), 119–130 (2013).
[Crossref]

N. B. Nelson and D. A. Siegel, “The global distribution and dynamics of chromophoric dissolved organic matter,” Annu. Rev. Mar. Sci. 5(1), 447–476 (2013).
[Crossref] [PubMed]

2012 (6)

J. F. Lapierre and P. A. Del Giorgio, “Geographical and environmental drivers of regional differences in the lake pCO2 versus DOC relationship across northern landscapes,” J. Geophys. Res. Biogeosci. 117, 1–10 (2012).

C. G. Fichot and R. Benner, “The spectral slope coefficient of chromophoric dissolved organic matter (S275-295) as a tracer of terrigenous dissolved organic carbon in river-influenced ocean margins,” Limnol. Oceanogr. 57(5), 1453–1466 (2012).
[Crossref]

R. G. M. Spencer, K. D. Butler, and G. R. Aiken, “Dissolved organic carbon and chromophoric dissolved organic matter properties of rivers in the USA,” J. Geophys. Res. Biogeosci. 117, G03001 (2012).

E. E. Ellis, J. E. Richey, A. K. Aufdenkampe, A. V. Krusche, P. D. Quay, C. Salimon, and H. B. da Cunha, “Factors controlling water-column respiration in rivers of the central and southwestern Amazon Basin,” Limnol. Oceanogr. 57(2), 527–540 (2012).
[Crossref]

V. Vantrepotte, H. Loisel, D. Dessailly, and X. Meriaux, “Optical classification of contrasted coastal waters,” Remote Sens. Environ. 123, 306–323 (2012).
[Crossref]

B. Hales, P. G. Strutton, M. Saraceno, R. Letelier, T. Takahashi, R. Feely, C. Sabine, and F. Chavez, “Satellite-based prediction of pCO2 in coastal waters of the eastern North Pacific,” Prog. Oceanogr. 103, 1–15 (2012).
[Crossref]

2011 (5)

F. Mélin, V. Vantrepotte, M. Clerici, D. D’Alimonte, G. Zibordi, J. F. Berthon, and E. Canuti, “Multi-sensor satellite time series of optical properties and chlorophyll-a concentration in the Adriatic Sea,” Prog. Oceanogr. 91(3), 229–244 (2011).
[Crossref]

S. Larsen, T. Andersen, and D. O. Hessen, “The pCO2 in boreal lakes: Organic carbon as a universal predictor?” Global Biogeochem. Cycles 25(2), 1–8 (2011).
[Crossref]

C. G. Fichot and R. Benner, “A novel method to estimate DOC concentrations from CDOM absorption coefficients in coastal waters,” Geophys. Res. Lett. 38(3), 1–5 (2011).
[Crossref]

C. M. Rudorff, J. M. Melack, S. MacIntyre, C. C. F. Barbosa, and E. M. L. M. Novo, “Seasonal and spatial variability of CO2 emission from a large floodplain lake in the lower Amazon,” J. Geophys. Res. Biogeosci. 116, 1–12 (2011).

V. Neu, C. Neill, and A. V. Krusche, “Gaseous and fluvial carbon export from an Amazon forest watershed,” Biogeochemistry 105(1-3), 133–147 (2011).
[Crossref]

2010 (3)

H. Marotta, C. M. Duarte, L. Pinho, and A. Enrich-Prast, “Rainfall leads to increased pCO2 in Brazilian coastal lakes,” Biogeosciences 7(5), 1607–1614 (2010).
[Crossref]

E. H. Alcântara, J. L. Stech, J. A. Lorenzzetti, M. P. Bonnet, X. Casamitjana, A. T. Assireu, and E. M. L. D. M. Novo, “Remote sensing of water surface temperature and heat flux over a tropical hydroelectric reservoir,” Remote Sens. Environ. 114(11), 2651–2665 (2010).
[Crossref]

S. Kosten, F. Roland, D. M. L. Da Motta Marques, E. H. Van Nes, N. Mazzeo, L. D. S. L. Sternberg, M. Scheffer, and J. J. Cole, “Climate-dependent CO2 emissions from lakes,” Global Biogeochem. Cycles 24(2), 1–7 (2010).
[Crossref]

2009 (4)

C. Le, Y. Li, Y. Zha, D. Sun, C. Huang, and H. Lu, “A four-band semi-analytical model for estimating chlorophyll a in highly turbid lakes: The case of Taihu Lake, China,” Remote Sens. Environ. 113, 1175 (2009).

H. Marotta, L. T. Paiva, and M. M. Petrucio, “Changes in thermal and oxygen stratification pattern coupled to CO2 outgassing persistence in two oligotrophic shallow lakes of the Atlantic Tropical Forest, Southeast Brazil,” Limnology 10(3), 195–202 (2009).
[Crossref]

Y. Zhu, S. Shang, W. Zhai, and M. Dai, “Satellite-derived surface water pCO2 and air-sea CO2 fluxes in the northern South China Sea in summer,” Prog. Nat. Sci. 19(6), 775–779 (2009).
[Crossref]

T. J. Battin, L. A. Kaplan, S. Findlay, C. S. Hopkinson, E. Marti, A. I. Packman, J. D. Newbold, and F. Sabater, “Biophysical controls on organic carbon fluxes in fluvial networks,” Nat. Geosci. 2(8), 595 (2009).
[Crossref]

2008 (4)

J. R. Helms, A. Stubbins, J. D. Ritchie, E. C. Minor, D. J. Kieber, and K. Mopper, “Absorption spectral slopes and slope ratios as indicators of molecular weight, source, and photobleaching of chromophoric dissolved organic matter,” Limnol. Oceanogr. 53(3), 955–969 (2008).
[Crossref]

A. Mannino, M. E. Russ, and S. B. Hooker, “Algorithm development and validation for satellite-derived distributions of DOC and CDOM in the U.S. Middle Atlantic Bight,” J. Geophys. Res. 113(C7), C07051 (2008).
[Crossref]

A. A. Gitelson, G. Dall’Olmo, W. Moses, D. C. Rundquist, T. Barrow, T. R. Fisher, D. Gurlin, and J. Holz, “A simple semi-analytical model for remote estimation of chlorophyll-a in turbid waters: validation,” Remote Sens. Environ. 112(9), 3582–3593 (2008).
[Crossref]

A. Subramaniam, P. L. Yager, E. J. Carpenter, C. Mahaffey, K. Björkman, S. Cooley, A. B. Kustka, J. P. Montoya, S. A. Sañudo-Wilhelmy, R. Shipe, and D. G. Capone, “Amazon River enhances diazotrophy and carbon sequestration in the tropical North Atlantic Ocean,” Proc. Natl. Acad. Sci. U.S.A. 105(30), 10460–10465 (2008).
[Crossref] [PubMed]

2007 (1)

O. Nikiema, J. Devenon, and M. Baklouti, “Numerical modeling of the Amazon River plume,” Cont. Shelf Res. 27(7), 873–899 (2007).
[Crossref]

2006 (2)

S. E. Lohrenz and W. J. Cai, “Satellite ocean color assessment of air-sea fluxes of CO2 in a river-dominated coastal margin,” Geophys. Res. Lett. 33(1), L01601 (2006).
[Crossref]

M. S. Johnson, J. Lehmann, E. C. Selva, M. Abdo, S. Riha, and E. G. Couto, “Organic carbon fluxes within and streamwater exports from headwater catchments in the southern Amazon,” Hydrol. Processes 20(12), 2599–2614 (2006).
[Crossref]

2005 (2)

S. Sobek, L. J. Tranvik, and J. J. Cole, “Temperature independence of carbon dioxide supersaturation in global lakes,” Global Biogeochem. Cycles 19(2), 1–10 (2005).
[Crossref]

G. Dall’Olmo and A. A. Gitelson, “Effect of bio-optical parameter variability on the remote estimation of chlorophyll-a concentration in turbid productive waters: experimental results,” Appl. Opt. 44(3), 412–422 (2005).
[Crossref] [PubMed]

2004 (2)

C. D. Clark, W. T. Hiscock, F. J. Millero, G. Hitchcock, L. Brand, W. L. Miller, L. Ziolkowski, R. F. Chen, and R. G. Zika, “CDOM distribution and CO2 production on the Southwest Florida Shelf,” Mar. Chem. 89(1-4), 145–167 (2004).
[Crossref]

R. F. Chen and G. B. Gardner, “High-resolution measurements of chromophoric dissolved organic matter in the Mississippi and Atchafalaya River plume regions,” Mar. Chem. 89(1-4), 103–125 (2004).
[Crossref]

2003 (1)

M. Babin, “Variations in the light absorption coefficients of phytoplankton, nonalgal particles, and dissolved organic matter in coastal waters around Europe,” J. Geophys. Res. 108(C7), 3211 (2003).
[Crossref]

2002 (1)

J. E. Richey, J. M. Melack, A. K. Aufdenkampe, V. M. Ballester, and L. L. Hess, “Outgassing from Amazonian rivers and wetlands as a large tropical source of atmospheric CO2,” Nature 416(6881), 617–620 (2002).
[Crossref] [PubMed]

1997 (1)

A. Vodacek, N. V. Blough, M. D. DeGrandpre, M. D. DeGrandpre, and R. K. Nelson, “Seasonal variation of CDOM and DOC in the Middle Atlantic Bight: terrestrial inputs and photo oxidation,” Limnol. Oceanogr. 42(4), 674–686 (1997).
[Crossref]

1996 (1)

G. M. Ferrari, M. D. Dowell, S. Grossi, and C. Targa, “Relationship between the optical properties of chromophoric dissolved organic matter and total concentration of dissolved organic carbon in the southern Baltic Sea region,” Mar. Chem. 55(3-4), 299–316 (1996).
[Crossref]

1981 (1)

A. Bricaud, A. Morel, and L. Prieur, “Absorption by dissolved organic matter of the sea (yellow substance) in the UV and visible domains,” Limnol. Oceanogr. 26(1), 43–53 (1981).
[Crossref]

1974 (1)

R. Weiss, “Carbon dioxide in water and seawater: the solubility of a non-ideal gas,” Mar. Chem. 2(3), 203–215 (1974).
[Crossref]

Abdo, M.

M. S. Johnson, J. Lehmann, E. C. Selva, M. Abdo, S. Riha, and E. G. Couto, “Organic carbon fluxes within and streamwater exports from headwater catchments in the southern Amazon,” Hydrol. Processes 20(12), 2599–2614 (2006).
[Crossref]

Abril, G.

G. Abril, J.-M. Martinez, L. F. Artigas, P. Moreira-Turcq, M. F. Benedetti, L. Vidal, T. Meziane, J.-H. Kim, M. C. Bernardes, N. Savoye, J. Deborde, E. L. Souza, P. Albéric, M. F. Landim de Souza, and F. Roland, “Amazon River carbon dioxide outgassing fuelled by wetlands,” Nature 505(7483), 395–398 (2014).
[Crossref] [PubMed]

Aiken, G. R.

R. G. M. Spencer, K. D. Butler, and G. R. Aiken, “Dissolved organic carbon and chromophoric dissolved organic matter properties of rivers in the USA,” J. Geophys. Res. Biogeosci. 117, G03001 (2012).

Albéric, P.

G. Abril, J.-M. Martinez, L. F. Artigas, P. Moreira-Turcq, M. F. Benedetti, L. Vidal, T. Meziane, J.-H. Kim, M. C. Bernardes, N. Savoye, J. Deborde, E. L. Souza, P. Albéric, M. F. Landim de Souza, and F. Roland, “Amazon River carbon dioxide outgassing fuelled by wetlands,” Nature 505(7483), 395–398 (2014).
[Crossref] [PubMed]

Alcântara, E.

M. P. Curtarelli, I. Ogashawara, C. A. S. de Araújo, J. A. Lorenzzetti, J. A. D. Leão, E. Alcântara, and J. L. Stech, “Carbon dioxide emissions from Tucuruí reservoir (Amazon biome): New findings based on three-dimensional ecological model simulations,” Sci. Total Environ. 551-552, 676–694 (2016).
[Crossref] [PubMed]

Alcântara, E. H.

E. H. Alcântara, J. L. Stech, J. A. Lorenzzetti, M. P. Bonnet, X. Casamitjana, A. T. Assireu, and E. M. L. D. M. Novo, “Remote sensing of water surface temperature and heat flux over a tropical hydroelectric reservoir,” Remote Sens. Environ. 114(11), 2651–2665 (2010).
[Crossref]

Amorim, M.

P. Moreira-Turcq, M. P. Bonnet, M. Amorim, M. Bernardes, C. Lagane, L. Maurice, M. Perez, and P. Seyler, “Seasonal variability in concentration, composition, age, and fluxes of particulate organic carbon exchanged between the floodplain and Amazon River,” Global Biogeochem. Cycles 27(1), 119–130 (2013).
[Crossref]

Andersen, T.

S. Larsen, T. Andersen, and D. O. Hessen, “The pCO2 in boreal lakes: Organic carbon as a universal predictor?” Global Biogeochem. Cycles 25(2), 1–8 (2011).
[Crossref]

Artigas, L. F.

G. Abril, J.-M. Martinez, L. F. Artigas, P. Moreira-Turcq, M. F. Benedetti, L. Vidal, T. Meziane, J.-H. Kim, M. C. Bernardes, N. Savoye, J. Deborde, E. L. Souza, P. Albéric, M. F. Landim de Souza, and F. Roland, “Amazon River carbon dioxide outgassing fuelled by wetlands,” Nature 505(7483), 395–398 (2014).
[Crossref] [PubMed]

Assireu, A. T.

E. H. Alcântara, J. L. Stech, J. A. Lorenzzetti, M. P. Bonnet, X. Casamitjana, A. T. Assireu, and E. M. L. D. M. Novo, “Remote sensing of water surface temperature and heat flux over a tropical hydroelectric reservoir,” Remote Sens. Environ. 114(11), 2651–2665 (2010).
[Crossref]

Aufdenkampe, A. K.

E. E. Ellis, J. E. Richey, A. K. Aufdenkampe, A. V. Krusche, P. D. Quay, C. Salimon, and H. B. da Cunha, “Factors controlling water-column respiration in rivers of the central and southwestern Amazon Basin,” Limnol. Oceanogr. 57(2), 527–540 (2012).
[Crossref]

J. E. Richey, J. M. Melack, A. K. Aufdenkampe, V. M. Ballester, and L. L. Hess, “Outgassing from Amazonian rivers and wetlands as a large tropical source of atmospheric CO2,” Nature 416(6881), 617–620 (2002).
[Crossref] [PubMed]

Babin, M.

M. Babin, “Variations in the light absorption coefficients of phytoplankton, nonalgal particles, and dissolved organic matter in coastal waters around Europe,” J. Geophys. Res. 108(C7), 3211 (2003).
[Crossref]

Bai, Y.

Y. Bai, W.-J. Cai, X. He, W. Zhai, D. Pan, M. Dai, and P. Yu, “A mechanistic semi-analytical method for remotely sensing sea surface pCO2 in river-dominated coastal oceans: A case study from the East China Sea,” J. Geophys. Res. Oceans 120(3), 2331 (2015).
[Crossref]

Baklouti, M.

O. Nikiema, J. Devenon, and M. Baklouti, “Numerical modeling of the Amazon River plume,” Cont. Shelf Res. 27(7), 873–899 (2007).
[Crossref]

Ballester, V. M.

H. O. Sawakuchi, D. Bastviken, A. O. Sawakuchi, N. D. Ward, C. D. Borges, S. M. Tsai, J. E. Richey, V. M. Ballester, and A. V. Krusche, “Oxidative mitigation of aquatic methane emissions in large Amazonian rivers,” Glob. Change Biol. 1, 1075 (2015).

J. E. Richey, J. M. Melack, A. K. Aufdenkampe, V. M. Ballester, and L. L. Hess, “Outgassing from Amazonian rivers and wetlands as a large tropical source of atmospheric CO2,” Nature 416(6881), 617–620 (2002).
[Crossref] [PubMed]

Barbosa, C.

T. Kutser, G. Casal Pascual, C. Barbosa, B. Paavel, R. Ferreira, L. Carvalho, and K. Toming, “Mapping inland water carbon content with Landsat 8 data,” Int. J. Remote Sens. 37(13), 2950–2961 (2016).
[Crossref]

Barbosa, C. C. F.

C. M. Rudorff, J. M. Melack, S. MacIntyre, C. C. F. Barbosa, and E. M. L. M. Novo, “Seasonal and spatial variability of CO2 emission from a large floodplain lake in the lower Amazon,” J. Geophys. Res. Biogeosci. 116, 1–12 (2011).

Barichivich, J.

J. C. Jiménez-Muñoz, C. Mattar, J. Barichivich, A. Santamaría-Artigas, K. Takahashi, Y. Malhi, J. A. Sobrino, and G. Schrier, “Record-breaking warming and extreme drought in the Amazon rainforest during the course of El Niño 2015-2016,” Sci. Rep. 6(1), 33130 (2016).
[Crossref] [PubMed]

Barnes, B. B.

D. Sun, C. Hu, Z. Qiu, J. P. Cannizzaro, and B. B. Barnes, “Influence of a red band-based water classification approach on chlorophyll algorithms for optically complex estuaries,” Remote Sens. Environ. 155, 289–302 (2014).
[Crossref]

Barros, M. D. L. C.

H. O. Sawakuchi, V. Neu, N. D. Ward, M. D. L. C. Barros, A. Valerio, W. Gagne-Maynard, A. C. Cunha, D. Fernanda, J. E. Diniz, D. C. Brito, A. V. Krusche, and J. E. Richey, “Carbon dioxide emissions along the lower Amazon River,” Front. Mater. Sci. 4, 1–12 (2017).

Barrow, T.

A. A. Gitelson, G. Dall’Olmo, W. Moses, D. C. Rundquist, T. Barrow, T. R. Fisher, D. Gurlin, and J. Holz, “A simple semi-analytical model for remote estimation of chlorophyll-a in turbid waters: validation,” Remote Sens. Environ. 112(9), 3582–3593 (2008).
[Crossref]

Bastviken, D.

H. O. Sawakuchi, D. Bastviken, A. O. Sawakuchi, N. D. Ward, C. D. Borges, S. M. Tsai, J. E. Richey, V. M. Ballester, and A. V. Krusche, “Oxidative mitigation of aquatic methane emissions in large Amazonian rivers,” Glob. Change Biol. 1, 1075 (2015).

Battin, T. J.

T. J. Battin, L. A. Kaplan, S. Findlay, C. S. Hopkinson, E. Marti, A. I. Packman, J. D. Newbold, and F. Sabater, “Biophysical controls on organic carbon fluxes in fluvial networks,” Nat. Geosci. 2(8), 595 (2009).
[Crossref]

Bauer, M. E.

P. L. Brezonik, L. G. Olmanson, J. C. Finlay, and M. E. Bauer, “Factors affecting the measurement of CDOM by remote sensing of optically complex inland waters,” Remote Sens. Environ. 157, 199–215 (2015).
[Crossref]

Benedetti, M. F.

G. Abril, J.-M. Martinez, L. F. Artigas, P. Moreira-Turcq, M. F. Benedetti, L. Vidal, T. Meziane, J.-H. Kim, M. C. Bernardes, N. Savoye, J. Deborde, E. L. Souza, P. Albéric, M. F. Landim de Souza, and F. Roland, “Amazon River carbon dioxide outgassing fuelled by wetlands,” Nature 505(7483), 395–398 (2014).
[Crossref] [PubMed]

Benner, R.

C. G. Fichot and R. Benner, “The spectral slope coefficient of chromophoric dissolved organic matter (S275-295) as a tracer of terrigenous dissolved organic carbon in river-influenced ocean margins,” Limnol. Oceanogr. 57(5), 1453–1466 (2012).
[Crossref]

C. G. Fichot and R. Benner, “A novel method to estimate DOC concentrations from CDOM absorption coefficients in coastal waters,” Geophys. Res. Lett. 38(3), 1–5 (2011).
[Crossref]

Bernardes, M.

P. Moreira-Turcq, M. P. Bonnet, M. Amorim, M. Bernardes, C. Lagane, L. Maurice, M. Perez, and P. Seyler, “Seasonal variability in concentration, composition, age, and fluxes of particulate organic carbon exchanged between the floodplain and Amazon River,” Global Biogeochem. Cycles 27(1), 119–130 (2013).
[Crossref]

Bernardes, M. C.

G. Abril, J.-M. Martinez, L. F. Artigas, P. Moreira-Turcq, M. F. Benedetti, L. Vidal, T. Meziane, J.-H. Kim, M. C. Bernardes, N. Savoye, J. Deborde, E. L. Souza, P. Albéric, M. F. Landim de Souza, and F. Roland, “Amazon River carbon dioxide outgassing fuelled by wetlands,” Nature 505(7483), 395–398 (2014).
[Crossref] [PubMed]

Berthon, J. F.

F. Mélin, V. Vantrepotte, M. Clerici, D. D’Alimonte, G. Zibordi, J. F. Berthon, and E. Canuti, “Multi-sensor satellite time series of optical properties and chlorophyll-a concentration in the Adriatic Sea,” Prog. Oceanogr. 91(3), 229–244 (2011).
[Crossref]

Bianchi, T. S.

N. D. Ward, T. S. Bianchi, P. M. Medeiros, M. Seidel, J. E. Richey, R. G. Keil, and H. O. Sawakuchi, “Where carbon goes when water flows: carbon cycling across the aquatic continuum,” Front. Mater. Sci. 4, 7 (2017).

N. D. Ward, T. S. Bianchi, H. O. Sawakuchi, W. Gagne-Maynard, A. C. Cunha, D. C. Brito, V. Neu, A. M. Valerio, R. da Silva, A. V. Krusche, J. E. Richey, and R. G. Keil, “The reactivity of plant-derived organic matter and the potential importance of priming effects along the lower Amazon River,” J. Geophys. Res. Biogeosci. 121, 1–18 (2016).

N. D. Ward, H. O. Sawakuchi, V. Neu, D. F. S. Less, A. M. Valerio, A. C. Cunha, M. Kampel, T. S. Bianchi, A. V. Krusche, J. E. Richey, and R. G. Keil, “Velocity-amplified microbial respiration rates in the lower Amazon River,” Limnol. Oceanogr. Lett., (in press).

Björkman, K.

A. Subramaniam, P. L. Yager, E. J. Carpenter, C. Mahaffey, K. Björkman, S. Cooley, A. B. Kustka, J. P. Montoya, S. A. Sañudo-Wilhelmy, R. Shipe, and D. G. Capone, “Amazon River enhances diazotrophy and carbon sequestration in the tropical North Atlantic Ocean,” Proc. Natl. Acad. Sci. U.S.A. 105(30), 10460–10465 (2008).
[Crossref] [PubMed]

Blough, N. V.

A. Vodacek, N. V. Blough, M. D. DeGrandpre, M. D. DeGrandpre, and R. K. Nelson, “Seasonal variation of CDOM and DOC in the Middle Atlantic Bight: terrestrial inputs and photo oxidation,” Limnol. Oceanogr. 42(4), 674–686 (1997).
[Crossref]

Bonnet, M. P.

P. Moreira-Turcq, M. P. Bonnet, M. Amorim, M. Bernardes, C. Lagane, L. Maurice, M. Perez, and P. Seyler, “Seasonal variability in concentration, composition, age, and fluxes of particulate organic carbon exchanged between the floodplain and Amazon River,” Global Biogeochem. Cycles 27(1), 119–130 (2013).
[Crossref]

E. H. Alcântara, J. L. Stech, J. A. Lorenzzetti, M. P. Bonnet, X. Casamitjana, A. T. Assireu, and E. M. L. D. M. Novo, “Remote sensing of water surface temperature and heat flux over a tropical hydroelectric reservoir,” Remote Sens. Environ. 114(11), 2651–2665 (2010).
[Crossref]

Borges, C. D.

H. O. Sawakuchi, D. Bastviken, A. O. Sawakuchi, N. D. Ward, C. D. Borges, S. M. Tsai, J. E. Richey, V. M. Ballester, and A. V. Krusche, “Oxidative mitigation of aquatic methane emissions in large Amazonian rivers,” Glob. Change Biol. 1, 1075 (2015).

Bradt, S.

T. S. Moore, M. D. Dowell, S. Bradt, and A. R. Verdu, “An optical water type framework for selecting and blending retrievals from bio-optical algorithms in lakes and coastal waters,” Remote Sens. Environ. 143, 97–111 (2014).
[Crossref] [PubMed]

Brand, L.

C. D. Clark, W. T. Hiscock, F. J. Millero, G. Hitchcock, L. Brand, W. L. Miller, L. Ziolkowski, R. F. Chen, and R. G. Zika, “CDOM distribution and CO2 production on the Southwest Florida Shelf,” Mar. Chem. 89(1-4), 145–167 (2004).
[Crossref]

Brezonik, P. L.

P. L. Brezonik, L. G. Olmanson, J. C. Finlay, and M. E. Bauer, “Factors affecting the measurement of CDOM by remote sensing of optically complex inland waters,” Remote Sens. Environ. 157, 199–215 (2015).
[Crossref]

Bricaud, A.

A. Bricaud, A. Morel, and L. Prieur, “Absorption by dissolved organic matter of the sea (yellow substance) in the UV and visible domains,” Limnol. Oceanogr. 26(1), 43–53 (1981).
[Crossref]

Brito, D. C.

W. C. Gagne-Maynard, N. D. Ward, R. G. Keil, H. O. Sawakuchi, A. C. Da Cunha, V. Neu, D. C. Brito, D. F. Da Silva Less, J. E. M. Diniz, A. M. Valerio, M. Kampel, A. V. Krusche, and J. E. Richey, “Evaluation of primary production in the Lower Amazon River based on a dissolved oxygen stable isotopic mass balance,” Front. Mater. Sci. 4, 1–12 (2017).

H. O. Sawakuchi, V. Neu, N. D. Ward, M. D. L. C. Barros, A. Valerio, W. Gagne-Maynard, A. C. Cunha, D. Fernanda, J. E. Diniz, D. C. Brito, A. V. Krusche, and J. E. Richey, “Carbon dioxide emissions along the lower Amazon River,” Front. Mater. Sci. 4, 1–12 (2017).

N. D. Ward, T. S. Bianchi, H. O. Sawakuchi, W. Gagne-Maynard, A. C. Cunha, D. C. Brito, V. Neu, A. M. Valerio, R. da Silva, A. V. Krusche, J. E. Richey, and R. G. Keil, “The reactivity of plant-derived organic matter and the potential importance of priming effects along the lower Amazon River,” J. Geophys. Res. Biogeosci. 121, 1–18 (2016).

N. D. Ward, A. V. Krusche, H. O. Sawakuchi, D. C. Brito, A. C. Cunha, J. M. S. Moura, R. da Silva, P. L. Yager, R. G. Keil, and J. E. Richey, “The compositional evolution of dissolved and particulate organic matter along the lower Amazon River-Óbidos to the ocean,” Mar. Chem. 177, 244–256 (2015).
[Crossref]

N. D. Ward, R. G. Keil, P. M. Medeiros, D. C. Brito, A. C. Cunha, T. Dittmar, P. L. Yager, A. V. Krusche, and J. E. Richey, “Degradation of terrestrially derived macromolecules in the Amazon River,” Nat. Geosci. 6(7), 530–533 (2013).
[Crossref]

Butler, K. D.

R. G. M. Spencer, K. D. Butler, and G. R. Aiken, “Dissolved organic carbon and chromophoric dissolved organic matter properties of rivers in the USA,” J. Geophys. Res. Biogeosci. 117, G03001 (2012).

Cai, W. J.

S. E. Lohrenz and W. J. Cai, “Satellite ocean color assessment of air-sea fluxes of CO2 in a river-dominated coastal margin,” Geophys. Res. Lett. 33(1), L01601 (2006).
[Crossref]

Cai, W.-J.

Y. Bai, W.-J. Cai, X. He, W. Zhai, D. Pan, M. Dai, and P. Yu, “A mechanistic semi-analytical method for remotely sensing sea surface pCO2 in river-dominated coastal oceans: A case study from the East China Sea,” J. Geophys. Res. Oceans 120(3), 2331 (2015).
[Crossref]

Cannizzaro, J.

C. Le, C. Hu, J. Cannizzaro, D. English, F. Muller-Karger, and Z. Lee, “Evaluation of chlorophyll-a remote sensing algorithms for an optically complex estuary,” Remote Sens. Environ. 129, 75–89 (2013).
[Crossref]

Cannizzaro, J. P.

D. Sun, C. Hu, Z. Qiu, J. P. Cannizzaro, and B. B. Barnes, “Influence of a red band-based water classification approach on chlorophyll algorithms for optically complex estuaries,” Remote Sens. Environ. 155, 289–302 (2014).
[Crossref]

Canuti, E.

F. Mélin, V. Vantrepotte, M. Clerici, D. D’Alimonte, G. Zibordi, J. F. Berthon, and E. Canuti, “Multi-sensor satellite time series of optical properties and chlorophyll-a concentration in the Adriatic Sea,” Prog. Oceanogr. 91(3), 229–244 (2011).
[Crossref]

Cao, F.

F. Cao, M. Tzortziou, C. Hu, A. Mannino, C. G. Fichot, R. Del Vecchio, R. G. Najjar, and M. Novak, “Remote sensing retrievals of colored dissolved organic matter and dissolved organic carbon dynamics in North American estuaries and their margins,” Remote Sens. Environ. 205, 151–165 (2018).
[Crossref]

Capone, D. G.

A. Subramaniam, P. L. Yager, E. J. Carpenter, C. Mahaffey, K. Björkman, S. Cooley, A. B. Kustka, J. P. Montoya, S. A. Sañudo-Wilhelmy, R. Shipe, and D. G. Capone, “Amazon River enhances diazotrophy and carbon sequestration in the tropical North Atlantic Ocean,” Proc. Natl. Acad. Sci. U.S.A. 105(30), 10460–10465 (2008).
[Crossref] [PubMed]

Carpenter, E. J.

P. M. Medeiros, M. Seidel, N. D. Ward, E. J. Carpenter, H. R. Gomes, J. Niggemann, A. V. Krusche, J. E. Richey, P. L. Yager, and T. Dittmar, “Fate of the Amazon River dissolved organic matter in the tropical Atlantic Ocean,” Global Biogeochem. Cycles 29(5), 677 (2015).
[Crossref]

M. Seidel, P. L. Yager, N. D. Ward, E. J. Carpenter, H. R. Gomes, A. V. Krusche, J. E. Richey, T. Dittmar, and P. M. Medeiros, “Molecular-level changes of dissolved organic matter along the Amazon River-to-ocean continuum,” Mar. Chem. 177, 218–231 (2015).
[Crossref]

A. Subramaniam, P. L. Yager, E. J. Carpenter, C. Mahaffey, K. Björkman, S. Cooley, A. B. Kustka, J. P. Montoya, S. A. Sañudo-Wilhelmy, R. Shipe, and D. G. Capone, “Amazon River enhances diazotrophy and carbon sequestration in the tropical North Atlantic Ocean,” Proc. Natl. Acad. Sci. U.S.A. 105(30), 10460–10465 (2008).
[Crossref] [PubMed]

Carpio, J. M.

J. C. Espinoza, J. A. Marengo, J. Ronchail, J. M. Carpio, L. N. Flores, and J. L. Guyot, “The extreme 2014 flood in south-western Amazon basin: the role of tropical-subtropical South Atlantic SST gradient,” Environ. Res. Lett. 9(12), 124007 (2014).
[Crossref]

Carvalho, L.

T. Kutser, G. Casal Pascual, C. Barbosa, B. Paavel, R. Ferreira, L. Carvalho, and K. Toming, “Mapping inland water carbon content with Landsat 8 data,” Int. J. Remote Sens. 37(13), 2950–2961 (2016).
[Crossref]

Casal Pascual, G.

T. Kutser, G. Casal Pascual, C. Barbosa, B. Paavel, R. Ferreira, L. Carvalho, and K. Toming, “Mapping inland water carbon content with Landsat 8 data,” Int. J. Remote Sens. 37(13), 2950–2961 (2016).
[Crossref]

Casamitjana, X.

E. H. Alcântara, J. L. Stech, J. A. Lorenzzetti, M. P. Bonnet, X. Casamitjana, A. T. Assireu, and E. M. L. D. M. Novo, “Remote sensing of water surface temperature and heat flux over a tropical hydroelectric reservoir,” Remote Sens. Environ. 114(11), 2651–2665 (2010).
[Crossref]

Cauvin, A.

F. P. Danhiez, V. Vantrepotte, A. Cauvin, E. Lebourg, and H. Loisel, “Optical properties of chromophoric dissolved organic matter during a phytoplankton bloom. Implication for DOC estimates from CDOM absorption,” Limnol. Oceanogr. 62(4), 1409–1425 (2017).
[Crossref]

V. Vantrepotte, F. P. Danhiez, H. Loisel, S. Ouillon, X. Mériaux, A. Cauvin, and D. Dessailly, “CDOM-DOC relationship in contrasted coastal waters: implication for DOC retrieval from ocean color remote sensing observation,” Opt. Express 23(1), 33–54 (2015).
[Crossref] [PubMed]

Chappell, N. A.

R. Pereira, C. Isabella Bovolo, R. G. M. Spencer, P. J. Hernes, E. Tipping, A. Vieth-Hillebrand, N. Pedentchouk, N. A. Chappell, G. Parkin, and T. Wagner, “Mobilization of optically invisible dissolved organic matter in response to rainstorm events in a tropical forest headwater river,” Geophys. Res. Lett. 41(4), 1202–1208 (2014).
[Crossref]

Chavez, F.

B. Hales, P. G. Strutton, M. Saraceno, R. Letelier, T. Takahashi, R. Feely, C. Sabine, and F. Chavez, “Satellite-based prediction of pCO2 in coastal waters of the eastern North Pacific,” Prog. Oceanogr. 103, 1–15 (2012).
[Crossref]

Chen, R. F.

C. D. Clark, W. T. Hiscock, F. J. Millero, G. Hitchcock, L. Brand, W. L. Miller, L. Ziolkowski, R. F. Chen, and R. G. Zika, “CDOM distribution and CO2 production on the Southwest Florida Shelf,” Mar. Chem. 89(1-4), 145–167 (2004).
[Crossref]

R. F. Chen and G. B. Gardner, “High-resolution measurements of chromophoric dissolved organic matter in the Mississippi and Atchafalaya River plume regions,” Mar. Chem. 89(1-4), 103–125 (2004).
[Crossref]

Ciais, P.

R. Lauerwald, G. Laruelle, J. Hartmann, P. Ciais, and P. A. G. Regnier, “Spatial patterns in CO2 evasion from the global river network,” Global Biogeochem. Cycles 29(5), 534 (2015).
[Crossref]

Clark, C. D.

C. D. Clark, W. T. Hiscock, F. J. Millero, G. Hitchcock, L. Brand, W. L. Miller, L. Ziolkowski, R. F. Chen, and R. G. Zika, “CDOM distribution and CO2 production on the Southwest Florida Shelf,” Mar. Chem. 89(1-4), 145–167 (2004).
[Crossref]

Clerici, M.

F. Mélin, V. Vantrepotte, M. Clerici, D. D’Alimonte, G. Zibordi, J. F. Berthon, and E. Canuti, “Multi-sensor satellite time series of optical properties and chlorophyll-a concentration in the Adriatic Sea,” Prog. Oceanogr. 91(3), 229–244 (2011).
[Crossref]

Cole, J. J.

S. Kosten, F. Roland, D. M. L. Da Motta Marques, E. H. Van Nes, N. Mazzeo, L. D. S. L. Sternberg, M. Scheffer, and J. J. Cole, “Climate-dependent CO2 emissions from lakes,” Global Biogeochem. Cycles 24(2), 1–7 (2010).
[Crossref]

S. Sobek, L. J. Tranvik, and J. J. Cole, “Temperature independence of carbon dioxide supersaturation in global lakes,” Global Biogeochem. Cycles 19(2), 1–10 (2005).
[Crossref]

Collischonn, W.

S. W. Correa, R. C. D. de Paiva, J. C. Espinoza, and W. Collischonn, “Multi-decadal Hydrological Retrospective: Case study of Amazon floods and droughts,” J. Hydrol. (Amst.) 549, 667 (2017).

Cooley, S.

A. Subramaniam, P. L. Yager, E. J. Carpenter, C. Mahaffey, K. Björkman, S. Cooley, A. B. Kustka, J. P. Montoya, S. A. Sañudo-Wilhelmy, R. Shipe, and D. G. Capone, “Amazon River enhances diazotrophy and carbon sequestration in the tropical North Atlantic Ocean,” Proc. Natl. Acad. Sci. U.S.A. 105(30), 10460–10465 (2008).
[Crossref] [PubMed]

Correa, S. W.

S. W. Correa, R. C. D. de Paiva, J. C. Espinoza, and W. Collischonn, “Multi-decadal Hydrological Retrospective: Case study of Amazon floods and droughts,” J. Hydrol. (Amst.) 549, 667 (2017).

Cosio, E. G.

L. E. Vihermaa, S. Waldron, T. Domingues, J. Grace, E. G. Cosio, F. Limonchi, C. Hopkinson, H. R. da Rocha, and E. Gloor, “Fluvial carbon export from a lowland Amazonian rainforest in relation to atmospheric fluxes,” J. Geophys. Res. Biogeosci. 121, 3001 (2016).

Couto, E. G.

M. S. Johnson, J. Lehmann, E. C. Selva, M. Abdo, S. Riha, and E. G. Couto, “Organic carbon fluxes within and streamwater exports from headwater catchments in the southern Amazon,” Hydrol. Processes 20(12), 2599–2614 (2006).
[Crossref]

Cunha, A. C.

H. O. Sawakuchi, V. Neu, N. D. Ward, M. D. L. C. Barros, A. Valerio, W. Gagne-Maynard, A. C. Cunha, D. Fernanda, J. E. Diniz, D. C. Brito, A. V. Krusche, and J. E. Richey, “Carbon dioxide emissions along the lower Amazon River,” Front. Mater. Sci. 4, 1–12 (2017).

N. D. Ward, T. S. Bianchi, H. O. Sawakuchi, W. Gagne-Maynard, A. C. Cunha, D. C. Brito, V. Neu, A. M. Valerio, R. da Silva, A. V. Krusche, J. E. Richey, and R. G. Keil, “The reactivity of plant-derived organic matter and the potential importance of priming effects along the lower Amazon River,” J. Geophys. Res. Biogeosci. 121, 1–18 (2016).

N. D. Ward, A. V. Krusche, H. O. Sawakuchi, D. C. Brito, A. C. Cunha, J. M. S. Moura, R. da Silva, P. L. Yager, R. G. Keil, and J. E. Richey, “The compositional evolution of dissolved and particulate organic matter along the lower Amazon River-Óbidos to the ocean,” Mar. Chem. 177, 244–256 (2015).
[Crossref]

N. D. Ward, R. G. Keil, P. M. Medeiros, D. C. Brito, A. C. Cunha, T. Dittmar, P. L. Yager, A. V. Krusche, and J. E. Richey, “Degradation of terrestrially derived macromolecules in the Amazon River,” Nat. Geosci. 6(7), 530–533 (2013).
[Crossref]

N. D. Ward, H. O. Sawakuchi, V. Neu, D. F. S. Less, A. M. Valerio, A. C. Cunha, M. Kampel, T. S. Bianchi, A. V. Krusche, J. E. Richey, and R. G. Keil, “Velocity-amplified microbial respiration rates in the lower Amazon River,” Limnol. Oceanogr. Lett., (in press).

Curtarelli, M. P.

M. P. Curtarelli, I. Ogashawara, C. A. S. de Araújo, J. A. Lorenzzetti, J. A. D. Leão, E. Alcântara, and J. L. Stech, “Carbon dioxide emissions from Tucuruí reservoir (Amazon biome): New findings based on three-dimensional ecological model simulations,” Sci. Total Environ. 551-552, 676–694 (2016).
[Crossref] [PubMed]

D’Alimonte, D.

F. Mélin, V. Vantrepotte, M. Clerici, D. D’Alimonte, G. Zibordi, J. F. Berthon, and E. Canuti, “Multi-sensor satellite time series of optical properties and chlorophyll-a concentration in the Adriatic Sea,” Prog. Oceanogr. 91(3), 229–244 (2011).
[Crossref]

Da Cunha, A. C.

W. C. Gagne-Maynard, N. D. Ward, R. G. Keil, H. O. Sawakuchi, A. C. Da Cunha, V. Neu, D. C. Brito, D. F. Da Silva Less, J. E. M. Diniz, A. M. Valerio, M. Kampel, A. V. Krusche, and J. E. Richey, “Evaluation of primary production in the Lower Amazon River based on a dissolved oxygen stable isotopic mass balance,” Front. Mater. Sci. 4, 1–12 (2017).

A. C. da Cunha and L. S. L. Sternberg, “Using stable isotopes 18 O and 2 H of lake water and biogeochemical analysis to identify factors affecting water quality in four estuarine Amazonian shallow lakes,” Hydrol. Processes., (in press).

da Cunha, H. B.

E. E. Ellis, J. E. Richey, A. K. Aufdenkampe, A. V. Krusche, P. D. Quay, C. Salimon, and H. B. da Cunha, “Factors controlling water-column respiration in rivers of the central and southwestern Amazon Basin,” Limnol. Oceanogr. 57(2), 527–540 (2012).
[Crossref]

Da Motta Marques, D. M. L.

S. Kosten, F. Roland, D. M. L. Da Motta Marques, E. H. Van Nes, N. Mazzeo, L. D. S. L. Sternberg, M. Scheffer, and J. J. Cole, “Climate-dependent CO2 emissions from lakes,” Global Biogeochem. Cycles 24(2), 1–7 (2010).
[Crossref]

da Rocha, H. R.

L. E. Vihermaa, S. Waldron, T. Domingues, J. Grace, E. G. Cosio, F. Limonchi, C. Hopkinson, H. R. da Rocha, and E. Gloor, “Fluvial carbon export from a lowland Amazonian rainforest in relation to atmospheric fluxes,” J. Geophys. Res. Biogeosci. 121, 3001 (2016).

da Silva, R.

N. D. Ward, T. S. Bianchi, H. O. Sawakuchi, W. Gagne-Maynard, A. C. Cunha, D. C. Brito, V. Neu, A. M. Valerio, R. da Silva, A. V. Krusche, J. E. Richey, and R. G. Keil, “The reactivity of plant-derived organic matter and the potential importance of priming effects along the lower Amazon River,” J. Geophys. Res. Biogeosci. 121, 1–18 (2016).

N. D. Ward, A. V. Krusche, H. O. Sawakuchi, D. C. Brito, A. C. Cunha, J. M. S. Moura, R. da Silva, P. L. Yager, R. G. Keil, and J. E. Richey, “The compositional evolution of dissolved and particulate organic matter along the lower Amazon River-Óbidos to the ocean,” Mar. Chem. 177, 244–256 (2015).
[Crossref]

Da Silva Less, D. F.

W. C. Gagne-Maynard, N. D. Ward, R. G. Keil, H. O. Sawakuchi, A. C. Da Cunha, V. Neu, D. C. Brito, D. F. Da Silva Less, J. E. M. Diniz, A. M. Valerio, M. Kampel, A. V. Krusche, and J. E. Richey, “Evaluation of primary production in the Lower Amazon River based on a dissolved oxygen stable isotopic mass balance,” Front. Mater. Sci. 4, 1–12 (2017).

Dai, M.

Y. Bai, W.-J. Cai, X. He, W. Zhai, D. Pan, M. Dai, and P. Yu, “A mechanistic semi-analytical method for remotely sensing sea surface pCO2 in river-dominated coastal oceans: A case study from the East China Sea,” J. Geophys. Res. Oceans 120(3), 2331 (2015).
[Crossref]

Y. Zhu, S. Shang, W. Zhai, and M. Dai, “Satellite-derived surface water pCO2 and air-sea CO2 fluxes in the northern South China Sea in summer,” Prog. Nat. Sci. 19(6), 775–779 (2009).
[Crossref]

Dall’Olmo, G.

A. A. Gitelson, G. Dall’Olmo, W. Moses, D. C. Rundquist, T. Barrow, T. R. Fisher, D. Gurlin, and J. Holz, “A simple semi-analytical model for remote estimation of chlorophyll-a in turbid waters: validation,” Remote Sens. Environ. 112(9), 3582–3593 (2008).
[Crossref]

G. Dall’Olmo and A. A. Gitelson, “Effect of bio-optical parameter variability on the remote estimation of chlorophyll-a concentration in turbid productive waters: experimental results,” Appl. Opt. 44(3), 412–422 (2005).
[Crossref] [PubMed]

Danhiez, F. P.

F. P. Danhiez, V. Vantrepotte, A. Cauvin, E. Lebourg, and H. Loisel, “Optical properties of chromophoric dissolved organic matter during a phytoplankton bloom. Implication for DOC estimates from CDOM absorption,” Limnol. Oceanogr. 62(4), 1409–1425 (2017).
[Crossref]

V. Vantrepotte, F. P. Danhiez, H. Loisel, S. Ouillon, X. Mériaux, A. Cauvin, and D. Dessailly, “CDOM-DOC relationship in contrasted coastal waters: implication for DOC retrieval from ocean color remote sensing observation,” Opt. Express 23(1), 33–54 (2015).
[Crossref] [PubMed]

de Araújo, C. A. S.

M. P. Curtarelli, I. Ogashawara, C. A. S. de Araújo, J. A. Lorenzzetti, J. A. D. Leão, E. Alcântara, and J. L. Stech, “Carbon dioxide emissions from Tucuruí reservoir (Amazon biome): New findings based on three-dimensional ecological model simulations,” Sci. Total Environ. 551-552, 676–694 (2016).
[Crossref] [PubMed]

de Paiva, R. C. D.

S. W. Correa, R. C. D. de Paiva, J. C. Espinoza, and W. Collischonn, “Multi-decadal Hydrological Retrospective: Case study of Amazon floods and droughts,” J. Hydrol. (Amst.) 549, 667 (2017).

Deborde, J.

G. Abril, J.-M. Martinez, L. F. Artigas, P. Moreira-Turcq, M. F. Benedetti, L. Vidal, T. Meziane, J.-H. Kim, M. C. Bernardes, N. Savoye, J. Deborde, E. L. Souza, P. Albéric, M. F. Landim de Souza, and F. Roland, “Amazon River carbon dioxide outgassing fuelled by wetlands,” Nature 505(7483), 395–398 (2014).
[Crossref] [PubMed]

DeGrandpre, M. D.

A. Vodacek, N. V. Blough, M. D. DeGrandpre, M. D. DeGrandpre, and R. K. Nelson, “Seasonal variation of CDOM and DOC in the Middle Atlantic Bight: terrestrial inputs and photo oxidation,” Limnol. Oceanogr. 42(4), 674–686 (1997).
[Crossref]

A. Vodacek, N. V. Blough, M. D. DeGrandpre, M. D. DeGrandpre, and R. K. Nelson, “Seasonal variation of CDOM and DOC in the Middle Atlantic Bight: terrestrial inputs and photo oxidation,” Limnol. Oceanogr. 42(4), 674–686 (1997).
[Crossref]

Del Giorgio, P. A.

J. F. Lapierre and P. A. Del Giorgio, “Geographical and environmental drivers of regional differences in the lake pCO2 versus DOC relationship across northern landscapes,” J. Geophys. Res. Biogeosci. 117, 1–10 (2012).

Del Vecchio, R.

F. Cao, M. Tzortziou, C. Hu, A. Mannino, C. G. Fichot, R. Del Vecchio, R. G. Najjar, and M. Novak, “Remote sensing retrievals of colored dissolved organic matter and dissolved organic carbon dynamics in North American estuaries and their margins,” Remote Sens. Environ. 205, 151–165 (2018).
[Crossref]

Dessailly, D.

Devenon, J.

O. Nikiema, J. Devenon, and M. Baklouti, “Numerical modeling of the Amazon River plume,” Cont. Shelf Res. 27(7), 873–899 (2007).
[Crossref]

Diniz, J. E.

H. O. Sawakuchi, V. Neu, N. D. Ward, M. D. L. C. Barros, A. Valerio, W. Gagne-Maynard, A. C. Cunha, D. Fernanda, J. E. Diniz, D. C. Brito, A. V. Krusche, and J. E. Richey, “Carbon dioxide emissions along the lower Amazon River,” Front. Mater. Sci. 4, 1–12 (2017).

Diniz, J. E. M.

W. C. Gagne-Maynard, N. D. Ward, R. G. Keil, H. O. Sawakuchi, A. C. Da Cunha, V. Neu, D. C. Brito, D. F. Da Silva Less, J. E. M. Diniz, A. M. Valerio, M. Kampel, A. V. Krusche, and J. E. Richey, “Evaluation of primary production in the Lower Amazon River based on a dissolved oxygen stable isotopic mass balance,” Front. Mater. Sci. 4, 1–12 (2017).

Dittmar, T.

M. Seidel, T. Dittmar, N. D. Ward, A. V. Krusche, J. E. Richey, P. L. Yager, and P. M. Medeiros, “Seasonal and spatial variability of dissolved organic matter composition in the lower Amazon River,” Biogeochemistry 131(3), 281–302 (2016).
[Crossref]

P. M. Medeiros, M. Seidel, N. D. Ward, E. J. Carpenter, H. R. Gomes, J. Niggemann, A. V. Krusche, J. E. Richey, P. L. Yager, and T. Dittmar, “Fate of the Amazon River dissolved organic matter in the tropical Atlantic Ocean,” Global Biogeochem. Cycles 29(5), 677 (2015).
[Crossref]

M. Seidel, P. L. Yager, N. D. Ward, E. J. Carpenter, H. R. Gomes, A. V. Krusche, J. E. Richey, T. Dittmar, and P. M. Medeiros, “Molecular-level changes of dissolved organic matter along the Amazon River-to-ocean continuum,” Mar. Chem. 177, 218–231 (2015).
[Crossref]

N. D. Ward, R. G. Keil, P. M. Medeiros, D. C. Brito, A. C. Cunha, T. Dittmar, P. L. Yager, A. V. Krusche, and J. E. Richey, “Degradation of terrestrially derived macromolecules in the Amazon River,” Nat. Geosci. 6(7), 530–533 (2013).
[Crossref]

Domingues, T.

L. E. Vihermaa, S. Waldron, T. Domingues, J. Grace, E. G. Cosio, F. Limonchi, C. Hopkinson, H. R. da Rocha, and E. Gloor, “Fluvial carbon export from a lowland Amazonian rainforest in relation to atmospheric fluxes,” J. Geophys. Res. Biogeosci. 121, 3001 (2016).

Dörnhöfer, K.

K. Dörnhöfer and N. Oppelt, “Remote sensing for lake research and monitoring – Recent advances,” Ecol. Indic. 64, 105–122 (2016).
[Crossref]

Dowell, M. D.

T. S. Moore, M. D. Dowell, S. Bradt, and A. R. Verdu, “An optical water type framework for selecting and blending retrievals from bio-optical algorithms in lakes and coastal waters,” Remote Sens. Environ. 143, 97–111 (2014).
[Crossref] [PubMed]

G. M. Ferrari, M. D. Dowell, S. Grossi, and C. Targa, “Relationship between the optical properties of chromophoric dissolved organic matter and total concentration of dissolved organic carbon in the southern Baltic Sea region,” Mar. Chem. 55(3-4), 299–316 (1996).
[Crossref]

Duarte, C. M.

L. Pinho, C. M. Duarte, H. Marotta, and A. Enrich-Prast, “Temperature-dependence of the relationship between pCO2 and dissolved organic carbon in lakes,” Biogeosciences Discuss. 12(3), 2787–2808 (2015).
[Crossref]

H. Marotta, C. M. Duarte, L. Pinho, and A. Enrich-Prast, “Rainfall leads to increased pCO2 in Brazilian coastal lakes,” Biogeosciences 7(5), 1607–1614 (2010).
[Crossref]

Dugdale, S. J.

S. J. Dugdale, “A practitioner’s guide to thermal infrared remote sensing of rivers and streams: recent advances, precautions and considerations,” Wiley Interdiscip. Rev. Water 3(2), 251–268 (2016).
[Crossref]

Ellis, E. E.

E. E. Ellis, J. E. Richey, A. K. Aufdenkampe, A. V. Krusche, P. D. Quay, C. Salimon, and H. B. da Cunha, “Factors controlling water-column respiration in rivers of the central and southwestern Amazon Basin,” Limnol. Oceanogr. 57(2), 527–540 (2012).
[Crossref]

English, D.

C. Le, C. Hu, J. Cannizzaro, D. English, F. Muller-Karger, and Z. Lee, “Evaluation of chlorophyll-a remote sensing algorithms for an optically complex estuary,” Remote Sens. Environ. 129, 75–89 (2013).
[Crossref]

Enrich-Prast, A.

L. Pinho, C. M. Duarte, H. Marotta, and A. Enrich-Prast, “Temperature-dependence of the relationship between pCO2 and dissolved organic carbon in lakes,” Biogeosciences Discuss. 12(3), 2787–2808 (2015).
[Crossref]

H. Marotta, C. M. Duarte, L. Pinho, and A. Enrich-Prast, “Rainfall leads to increased pCO2 in Brazilian coastal lakes,” Biogeosciences 7(5), 1607–1614 (2010).
[Crossref]

Espinoza, J. C.

S. W. Correa, R. C. D. de Paiva, J. C. Espinoza, and W. Collischonn, “Multi-decadal Hydrological Retrospective: Case study of Amazon floods and droughts,” J. Hydrol. (Amst.) 549, 667 (2017).

J. A. Marengo and J. C. Espinoza, “Extreme seasonal droughts and floods in Amazonia: Causes, trends and impacts,” Int. J. Climatol. 36(3), 1033–1050 (2016).
[Crossref]

J. C. Espinoza, J. A. Marengo, J. Ronchail, J. M. Carpio, L. N. Flores, and J. L. Guyot, “The extreme 2014 flood in south-western Amazon basin: the role of tropical-subtropical South Atlantic SST gradient,” Environ. Res. Lett. 9(12), 124007 (2014).
[Crossref]

Feely, R.

B. Hales, P. G. Strutton, M. Saraceno, R. Letelier, T. Takahashi, R. Feely, C. Sabine, and F. Chavez, “Satellite-based prediction of pCO2 in coastal waters of the eastern North Pacific,” Prog. Oceanogr. 103, 1–15 (2012).
[Crossref]

Fernanda, D.

H. O. Sawakuchi, V. Neu, N. D. Ward, M. D. L. C. Barros, A. Valerio, W. Gagne-Maynard, A. C. Cunha, D. Fernanda, J. E. Diniz, D. C. Brito, A. V. Krusche, and J. E. Richey, “Carbon dioxide emissions along the lower Amazon River,” Front. Mater. Sci. 4, 1–12 (2017).

Ferrari, G. M.

G. M. Ferrari, M. D. Dowell, S. Grossi, and C. Targa, “Relationship between the optical properties of chromophoric dissolved organic matter and total concentration of dissolved organic carbon in the southern Baltic Sea region,” Mar. Chem. 55(3-4), 299–316 (1996).
[Crossref]

Ferreira, R.

T. Kutser, G. Casal Pascual, C. Barbosa, B. Paavel, R. Ferreira, L. Carvalho, and K. Toming, “Mapping inland water carbon content with Landsat 8 data,” Int. J. Remote Sens. 37(13), 2950–2961 (2016).
[Crossref]

Fichot, C. G.

F. Cao, M. Tzortziou, C. Hu, A. Mannino, C. G. Fichot, R. Del Vecchio, R. G. Najjar, and M. Novak, “Remote sensing retrievals of colored dissolved organic matter and dissolved organic carbon dynamics in North American estuaries and their margins,” Remote Sens. Environ. 205, 151–165 (2018).
[Crossref]

C. G. Fichot and R. Benner, “The spectral slope coefficient of chromophoric dissolved organic matter (S275-295) as a tracer of terrigenous dissolved organic carbon in river-influenced ocean margins,” Limnol. Oceanogr. 57(5), 1453–1466 (2012).
[Crossref]

C. G. Fichot and R. Benner, “A novel method to estimate DOC concentrations from CDOM absorption coefficients in coastal waters,” Geophys. Res. Lett. 38(3), 1–5 (2011).
[Crossref]

Findlay, S.

T. J. Battin, L. A. Kaplan, S. Findlay, C. S. Hopkinson, E. Marti, A. I. Packman, J. D. Newbold, and F. Sabater, “Biophysical controls on organic carbon fluxes in fluvial networks,” Nat. Geosci. 2(8), 595 (2009).
[Crossref]

Finlay, J. C.

P. L. Brezonik, L. G. Olmanson, J. C. Finlay, and M. E. Bauer, “Factors affecting the measurement of CDOM by remote sensing of optically complex inland waters,” Remote Sens. Environ. 157, 199–215 (2015).
[Crossref]

Fisher, T. R.

A. A. Gitelson, G. Dall’Olmo, W. Moses, D. C. Rundquist, T. Barrow, T. R. Fisher, D. Gurlin, and J. Holz, “A simple semi-analytical model for remote estimation of chlorophyll-a in turbid waters: validation,” Remote Sens. Environ. 112(9), 3582–3593 (2008).
[Crossref]

Flores, L. N.

J. C. Espinoza, J. A. Marengo, J. Ronchail, J. M. Carpio, L. N. Flores, and J. L. Guyot, “The extreme 2014 flood in south-western Amazon basin: the role of tropical-subtropical South Atlantic SST gradient,” Environ. Res. Lett. 9(12), 124007 (2014).
[Crossref]

Fontes, M.

M. Fontes, H. Marotta, S. MacIntyre, and M. Petrucio, “Inter- and intra-annual variations of pCO2 and pO2 in a freshwater subtropical coastal lake,” Inland Waters 5(2), 107–116 (2015).
[Crossref]

Gagne-Maynard, W.

H. O. Sawakuchi, V. Neu, N. D. Ward, M. D. L. C. Barros, A. Valerio, W. Gagne-Maynard, A. C. Cunha, D. Fernanda, J. E. Diniz, D. C. Brito, A. V. Krusche, and J. E. Richey, “Carbon dioxide emissions along the lower Amazon River,” Front. Mater. Sci. 4, 1–12 (2017).

N. D. Ward, T. S. Bianchi, H. O. Sawakuchi, W. Gagne-Maynard, A. C. Cunha, D. C. Brito, V. Neu, A. M. Valerio, R. da Silva, A. V. Krusche, J. E. Richey, and R. G. Keil, “The reactivity of plant-derived organic matter and the potential importance of priming effects along the lower Amazon River,” J. Geophys. Res. Biogeosci. 121, 1–18 (2016).

Gagne-Maynard, W. C.

W. C. Gagne-Maynard, N. D. Ward, R. G. Keil, H. O. Sawakuchi, A. C. Da Cunha, V. Neu, D. C. Brito, D. F. Da Silva Less, J. E. M. Diniz, A. M. Valerio, M. Kampel, A. V. Krusche, and J. E. Richey, “Evaluation of primary production in the Lower Amazon River based on a dissolved oxygen stable isotopic mass balance,” Front. Mater. Sci. 4, 1–12 (2017).

Gardner, G. B.

R. F. Chen and G. B. Gardner, “High-resolution measurements of chromophoric dissolved organic matter in the Mississippi and Atchafalaya River plume regions,” Mar. Chem. 89(1-4), 103–125 (2004).
[Crossref]

Gitelson, A. A.

A. A. Gitelson, G. Dall’Olmo, W. Moses, D. C. Rundquist, T. Barrow, T. R. Fisher, D. Gurlin, and J. Holz, “A simple semi-analytical model for remote estimation of chlorophyll-a in turbid waters: validation,” Remote Sens. Environ. 112(9), 3582–3593 (2008).
[Crossref]

G. Dall’Olmo and A. A. Gitelson, “Effect of bio-optical parameter variability on the remote estimation of chlorophyll-a concentration in turbid productive waters: experimental results,” Appl. Opt. 44(3), 412–422 (2005).
[Crossref] [PubMed]

Gloor, E.

L. E. Vihermaa, S. Waldron, T. Domingues, J. Grace, E. G. Cosio, F. Limonchi, C. Hopkinson, H. R. da Rocha, and E. Gloor, “Fluvial carbon export from a lowland Amazonian rainforest in relation to atmospheric fluxes,” J. Geophys. Res. Biogeosci. 121, 3001 (2016).

Gomes, H. R.

M. Seidel, P. L. Yager, N. D. Ward, E. J. Carpenter, H. R. Gomes, A. V. Krusche, J. E. Richey, T. Dittmar, and P. M. Medeiros, “Molecular-level changes of dissolved organic matter along the Amazon River-to-ocean continuum,” Mar. Chem. 177, 218–231 (2015).
[Crossref]

P. M. Medeiros, M. Seidel, N. D. Ward, E. J. Carpenter, H. R. Gomes, J. Niggemann, A. V. Krusche, J. E. Richey, P. L. Yager, and T. Dittmar, “Fate of the Amazon River dissolved organic matter in the tropical Atlantic Ocean,” Global Biogeochem. Cycles 29(5), 677 (2015).
[Crossref]

Grace, J.

L. E. Vihermaa, S. Waldron, T. Domingues, J. Grace, E. G. Cosio, F. Limonchi, C. Hopkinson, H. R. da Rocha, and E. Gloor, “Fluvial carbon export from a lowland Amazonian rainforest in relation to atmospheric fluxes,” J. Geophys. Res. Biogeosci. 121, 3001 (2016).

Grossi, S.

G. M. Ferrari, M. D. Dowell, S. Grossi, and C. Targa, “Relationship between the optical properties of chromophoric dissolved organic matter and total concentration of dissolved organic carbon in the southern Baltic Sea region,” Mar. Chem. 55(3-4), 299–316 (1996).
[Crossref]

Gurlin, D.

A. A. Gitelson, G. Dall’Olmo, W. Moses, D. C. Rundquist, T. Barrow, T. R. Fisher, D. Gurlin, and J. Holz, “A simple semi-analytical model for remote estimation of chlorophyll-a in turbid waters: validation,” Remote Sens. Environ. 112(9), 3582–3593 (2008).
[Crossref]

Guyot, J. L.

J. C. Espinoza, J. A. Marengo, J. Ronchail, J. M. Carpio, L. N. Flores, and J. L. Guyot, “The extreme 2014 flood in south-western Amazon basin: the role of tropical-subtropical South Atlantic SST gradient,” Environ. Res. Lett. 9(12), 124007 (2014).
[Crossref]

Hales, B.

B. Hales, P. G. Strutton, M. Saraceno, R. Letelier, T. Takahashi, R. Feely, C. Sabine, and F. Chavez, “Satellite-based prediction of pCO2 in coastal waters of the eastern North Pacific,” Prog. Oceanogr. 103, 1–15 (2012).
[Crossref]

Hartmann, J.

R. Lauerwald, G. Laruelle, J. Hartmann, P. Ciais, and P. A. G. Regnier, “Spatial patterns in CO2 evasion from the global river network,” Global Biogeochem. Cycles 29(5), 534 (2015).
[Crossref]

He, X.

Y. Bai, W.-J. Cai, X. He, W. Zhai, D. Pan, M. Dai, and P. Yu, “A mechanistic semi-analytical method for remotely sensing sea surface pCO2 in river-dominated coastal oceans: A case study from the East China Sea,” J. Geophys. Res. Oceans 120(3), 2331 (2015).
[Crossref]

Helms, J. R.

J. R. Helms, A. Stubbins, J. D. Ritchie, E. C. Minor, D. J. Kieber, and K. Mopper, “Absorption spectral slopes and slope ratios as indicators of molecular weight, source, and photobleaching of chromophoric dissolved organic matter,” Limnol. Oceanogr. 53(3), 955–969 (2008).
[Crossref]

Hernes, P. J.

R. Pereira, C. Isabella Bovolo, R. G. M. Spencer, P. J. Hernes, E. Tipping, A. Vieth-Hillebrand, N. Pedentchouk, N. A. Chappell, G. Parkin, and T. Wagner, “Mobilization of optically invisible dissolved organic matter in response to rainstorm events in a tropical forest headwater river,” Geophys. Res. Lett. 41(4), 1202–1208 (2014).
[Crossref]

Hess, L. L.

J. E. Richey, J. M. Melack, A. K. Aufdenkampe, V. M. Ballester, and L. L. Hess, “Outgassing from Amazonian rivers and wetlands as a large tropical source of atmospheric CO2,” Nature 416(6881), 617–620 (2002).
[Crossref] [PubMed]

Hessen, D. O.

S. Larsen, T. Andersen, and D. O. Hessen, “The pCO2 in boreal lakes: Organic carbon as a universal predictor?” Global Biogeochem. Cycles 25(2), 1–8 (2011).
[Crossref]

Hiscock, W. T.

C. D. Clark, W. T. Hiscock, F. J. Millero, G. Hitchcock, L. Brand, W. L. Miller, L. Ziolkowski, R. F. Chen, and R. G. Zika, “CDOM distribution and CO2 production on the Southwest Florida Shelf,” Mar. Chem. 89(1-4), 145–167 (2004).
[Crossref]

Hitchcock, G.

C. D. Clark, W. T. Hiscock, F. J. Millero, G. Hitchcock, L. Brand, W. L. Miller, L. Ziolkowski, R. F. Chen, and R. G. Zika, “CDOM distribution and CO2 production on the Southwest Florida Shelf,” Mar. Chem. 89(1-4), 145–167 (2004).
[Crossref]

Holz, J.

A. A. Gitelson, G. Dall’Olmo, W. Moses, D. C. Rundquist, T. Barrow, T. R. Fisher, D. Gurlin, and J. Holz, “A simple semi-analytical model for remote estimation of chlorophyll-a in turbid waters: validation,” Remote Sens. Environ. 112(9), 3582–3593 (2008).
[Crossref]

Hooker, S. B.

A. Mannino, M. E. Russ, and S. B. Hooker, “Algorithm development and validation for satellite-derived distributions of DOC and CDOM in the U.S. Middle Atlantic Bight,” J. Geophys. Res. 113(C7), C07051 (2008).
[Crossref]

Hopkinson, C.

L. E. Vihermaa, S. Waldron, T. Domingues, J. Grace, E. G. Cosio, F. Limonchi, C. Hopkinson, H. R. da Rocha, and E. Gloor, “Fluvial carbon export from a lowland Amazonian rainforest in relation to atmospheric fluxes,” J. Geophys. Res. Biogeosci. 121, 3001 (2016).

Hopkinson, C. S.

T. J. Battin, L. A. Kaplan, S. Findlay, C. S. Hopkinson, E. Marti, A. I. Packman, J. D. Newbold, and F. Sabater, “Biophysical controls on organic carbon fluxes in fluvial networks,” Nat. Geosci. 2(8), 595 (2009).
[Crossref]

Hu, C.

F. Cao, M. Tzortziou, C. Hu, A. Mannino, C. G. Fichot, R. Del Vecchio, R. G. Najjar, and M. Novak, “Remote sensing retrievals of colored dissolved organic matter and dissolved organic carbon dynamics in North American estuaries and their margins,” Remote Sens. Environ. 205, 151–165 (2018).
[Crossref]

D. Sun, C. Hu, Z. Qiu, J. P. Cannizzaro, and B. B. Barnes, “Influence of a red band-based water classification approach on chlorophyll algorithms for optically complex estuaries,” Remote Sens. Environ. 155, 289–302 (2014).
[Crossref]

C. Le, C. Hu, J. Cannizzaro, D. English, F. Muller-Karger, and Z. Lee, “Evaluation of chlorophyll-a remote sensing algorithms for an optically complex estuary,” Remote Sens. Environ. 129, 75–89 (2013).
[Crossref]

Huang, C.

C. Le, Y. Li, Y. Zha, D. Sun, C. Huang, and H. Lu, “A four-band semi-analytical model for estimating chlorophyll a in highly turbid lakes: The case of Taihu Lake, China,” Remote Sens. Environ. 113, 1175 (2009).

Isabella Bovolo, C.

R. Pereira, C. Isabella Bovolo, R. G. M. Spencer, P. J. Hernes, E. Tipping, A. Vieth-Hillebrand, N. Pedentchouk, N. A. Chappell, G. Parkin, and T. Wagner, “Mobilization of optically invisible dissolved organic matter in response to rainstorm events in a tropical forest headwater river,” Geophys. Res. Lett. 41(4), 1202–1208 (2014).
[Crossref]

Jiménez-Muñoz, J. C.

J. C. Jiménez-Muñoz, C. Mattar, J. Barichivich, A. Santamaría-Artigas, K. Takahashi, Y. Malhi, J. A. Sobrino, and G. Schrier, “Record-breaking warming and extreme drought in the Amazon rainforest during the course of El Niño 2015-2016,” Sci. Rep. 6(1), 33130 (2016).
[Crossref] [PubMed]

Johnson, M. S.

M. S. Johnson, J. Lehmann, E. C. Selva, M. Abdo, S. Riha, and E. G. Couto, “Organic carbon fluxes within and streamwater exports from headwater catchments in the southern Amazon,” Hydrol. Processes 20(12), 2599–2614 (2006).
[Crossref]

Kampel, M.

W. C. Gagne-Maynard, N. D. Ward, R. G. Keil, H. O. Sawakuchi, A. C. Da Cunha, V. Neu, D. C. Brito, D. F. Da Silva Less, J. E. M. Diniz, A. M. Valerio, M. Kampel, A. V. Krusche, and J. E. Richey, “Evaluation of primary production in the Lower Amazon River based on a dissolved oxygen stable isotopic mass balance,” Front. Mater. Sci. 4, 1–12 (2017).

N. D. Ward, H. O. Sawakuchi, V. Neu, D. F. S. Less, A. M. Valerio, A. C. Cunha, M. Kampel, T. S. Bianchi, A. V. Krusche, J. E. Richey, and R. G. Keil, “Velocity-amplified microbial respiration rates in the lower Amazon River,” Limnol. Oceanogr. Lett., (in press).

Kaplan, L. A.

T. J. Battin, L. A. Kaplan, S. Findlay, C. S. Hopkinson, E. Marti, A. I. Packman, J. D. Newbold, and F. Sabater, “Biophysical controls on organic carbon fluxes in fluvial networks,” Nat. Geosci. 2(8), 595 (2009).
[Crossref]

Keil, R. G.

N. D. Ward, T. S. Bianchi, P. M. Medeiros, M. Seidel, J. E. Richey, R. G. Keil, and H. O. Sawakuchi, “Where carbon goes when water flows: carbon cycling across the aquatic continuum,” Front. Mater. Sci. 4, 7 (2017).

W. C. Gagne-Maynard, N. D. Ward, R. G. Keil, H. O. Sawakuchi, A. C. Da Cunha, V. Neu, D. C. Brito, D. F. Da Silva Less, J. E. M. Diniz, A. M. Valerio, M. Kampel, A. V. Krusche, and J. E. Richey, “Evaluation of primary production in the Lower Amazon River based on a dissolved oxygen stable isotopic mass balance,” Front. Mater. Sci. 4, 1–12 (2017).

N. D. Ward, T. S. Bianchi, H. O. Sawakuchi, W. Gagne-Maynard, A. C. Cunha, D. C. Brito, V. Neu, A. M. Valerio, R. da Silva, A. V. Krusche, J. E. Richey, and R. G. Keil, “The reactivity of plant-derived organic matter and the potential importance of priming effects along the lower Amazon River,” J. Geophys. Res. Biogeosci. 121, 1–18 (2016).

N. D. Ward, A. V. Krusche, H. O. Sawakuchi, D. C. Brito, A. C. Cunha, J. M. S. Moura, R. da Silva, P. L. Yager, R. G. Keil, and J. E. Richey, “The compositional evolution of dissolved and particulate organic matter along the lower Amazon River-Óbidos to the ocean,” Mar. Chem. 177, 244–256 (2015).
[Crossref]

N. D. Ward, R. G. Keil, P. M. Medeiros, D. C. Brito, A. C. Cunha, T. Dittmar, P. L. Yager, A. V. Krusche, and J. E. Richey, “Degradation of terrestrially derived macromolecules in the Amazon River,” Nat. Geosci. 6(7), 530–533 (2013).
[Crossref]

N. D. Ward, H. O. Sawakuchi, V. Neu, D. F. S. Less, A. M. Valerio, A. C. Cunha, M. Kampel, T. S. Bianchi, A. V. Krusche, J. E. Richey, and R. G. Keil, “Velocity-amplified microbial respiration rates in the lower Amazon River,” Limnol. Oceanogr. Lett., (in press).

Kieber, D. J.

J. R. Helms, A. Stubbins, J. D. Ritchie, E. C. Minor, D. J. Kieber, and K. Mopper, “Absorption spectral slopes and slope ratios as indicators of molecular weight, source, and photobleaching of chromophoric dissolved organic matter,” Limnol. Oceanogr. 53(3), 955–969 (2008).
[Crossref]

Kim, J.-H.

G. Abril, J.-M. Martinez, L. F. Artigas, P. Moreira-Turcq, M. F. Benedetti, L. Vidal, T. Meziane, J.-H. Kim, M. C. Bernardes, N. Savoye, J. Deborde, E. L. Souza, P. Albéric, M. F. Landim de Souza, and F. Roland, “Amazon River carbon dioxide outgassing fuelled by wetlands,” Nature 505(7483), 395–398 (2014).
[Crossref] [PubMed]

Koehler, B.

B. Koehler, T. Landelius, G. A. Weyhenmeyer, N. Machida, and L. J. Tranvik, “Sunlight-induced carbon dioxide emissions from inland waters,” Global Biogeochem. Cycles 28(7), 696–711 (2014).
[Crossref]

Kosten, S.

S. Kosten, F. Roland, D. M. L. Da Motta Marques, E. H. Van Nes, N. Mazzeo, L. D. S. L. Sternberg, M. Scheffer, and J. J. Cole, “Climate-dependent CO2 emissions from lakes,” Global Biogeochem. Cycles 24(2), 1–7 (2010).
[Crossref]

Krusche, A. V.

H. O. Sawakuchi, V. Neu, N. D. Ward, M. D. L. C. Barros, A. Valerio, W. Gagne-Maynard, A. C. Cunha, D. Fernanda, J. E. Diniz, D. C. Brito, A. V. Krusche, and J. E. Richey, “Carbon dioxide emissions along the lower Amazon River,” Front. Mater. Sci. 4, 1–12 (2017).

W. C. Gagne-Maynard, N. D. Ward, R. G. Keil, H. O. Sawakuchi, A. C. Da Cunha, V. Neu, D. C. Brito, D. F. Da Silva Less, J. E. M. Diniz, A. M. Valerio, M. Kampel, A. V. Krusche, and J. E. Richey, “Evaluation of primary production in the Lower Amazon River based on a dissolved oxygen stable isotopic mass balance,” Front. Mater. Sci. 4, 1–12 (2017).

M. Seidel, T. Dittmar, N. D. Ward, A. V. Krusche, J. E. Richey, P. L. Yager, and P. M. Medeiros, “Seasonal and spatial variability of dissolved organic matter composition in the lower Amazon River,” Biogeochemistry 131(3), 281–302 (2016).
[Crossref]

N. D. Ward, T. S. Bianchi, H. O. Sawakuchi, W. Gagne-Maynard, A. C. Cunha, D. C. Brito, V. Neu, A. M. Valerio, R. da Silva, A. V. Krusche, J. E. Richey, and R. G. Keil, “The reactivity of plant-derived organic matter and the potential importance of priming effects along the lower Amazon River,” J. Geophys. Res. Biogeosci. 121, 1–18 (2016).

P. M. Medeiros, M. Seidel, N. D. Ward, E. J. Carpenter, H. R. Gomes, J. Niggemann, A. V. Krusche, J. E. Richey, P. L. Yager, and T. Dittmar, “Fate of the Amazon River dissolved organic matter in the tropical Atlantic Ocean,” Global Biogeochem. Cycles 29(5), 677 (2015).
[Crossref]

M. Seidel, P. L. Yager, N. D. Ward, E. J. Carpenter, H. R. Gomes, A. V. Krusche, J. E. Richey, T. Dittmar, and P. M. Medeiros, “Molecular-level changes of dissolved organic matter along the Amazon River-to-ocean continuum,” Mar. Chem. 177, 218–231 (2015).
[Crossref]

H. O. Sawakuchi, D. Bastviken, A. O. Sawakuchi, N. D. Ward, C. D. Borges, S. M. Tsai, J. E. Richey, V. M. Ballester, and A. V. Krusche, “Oxidative mitigation of aquatic methane emissions in large Amazonian rivers,” Glob. Change Biol. 1, 1075 (2015).

N. D. Ward, A. V. Krusche, H. O. Sawakuchi, D. C. Brito, A. C. Cunha, J. M. S. Moura, R. da Silva, P. L. Yager, R. G. Keil, and J. E. Richey, “The compositional evolution of dissolved and particulate organic matter along the lower Amazon River-Óbidos to the ocean,” Mar. Chem. 177, 244–256 (2015).
[Crossref]

N. D. Ward, R. G. Keil, P. M. Medeiros, D. C. Brito, A. C. Cunha, T. Dittmar, P. L. Yager, A. V. Krusche, and J. E. Richey, “Degradation of terrestrially derived macromolecules in the Amazon River,” Nat. Geosci. 6(7), 530–533 (2013).
[Crossref]

E. E. Ellis, J. E. Richey, A. K. Aufdenkampe, A. V. Krusche, P. D. Quay, C. Salimon, and H. B. da Cunha, “Factors controlling water-column respiration in rivers of the central and southwestern Amazon Basin,” Limnol. Oceanogr. 57(2), 527–540 (2012).
[Crossref]

V. Neu, C. Neill, and A. V. Krusche, “Gaseous and fluvial carbon export from an Amazon forest watershed,” Biogeochemistry 105(1-3), 133–147 (2011).
[Crossref]

N. D. Ward, H. O. Sawakuchi, V. Neu, D. F. S. Less, A. M. Valerio, A. C. Cunha, M. Kampel, T. S. Bianchi, A. V. Krusche, J. E. Richey, and R. G. Keil, “Velocity-amplified microbial respiration rates in the lower Amazon River,” Limnol. Oceanogr. Lett., (in press).

Kustka, A. B.

A. Subramaniam, P. L. Yager, E. J. Carpenter, C. Mahaffey, K. Björkman, S. Cooley, A. B. Kustka, J. P. Montoya, S. A. Sañudo-Wilhelmy, R. Shipe, and D. G. Capone, “Amazon River enhances diazotrophy and carbon sequestration in the tropical North Atlantic Ocean,” Proc. Natl. Acad. Sci. U.S.A. 105(30), 10460–10465 (2008).
[Crossref] [PubMed]

Kutser, T.

T. Kutser, G. Casal Pascual, C. Barbosa, B. Paavel, R. Ferreira, L. Carvalho, and K. Toming, “Mapping inland water carbon content with Landsat 8 data,” Int. J. Remote Sens. 37(13), 2950–2961 (2016).
[Crossref]

T. Kutser, C. Verpoorter, B. Paavel, and L. J. Tranvik, “Estimating lake carbon fractions from remote sensing data,” Remote Sens. Environ. 157, 138–146 (2015).
[Crossref]

Lagane, C.

P. Moreira-Turcq, M. P. Bonnet, M. Amorim, M. Bernardes, C. Lagane, L. Maurice, M. Perez, and P. Seyler, “Seasonal variability in concentration, composition, age, and fluxes of particulate organic carbon exchanged between the floodplain and Amazon River,” Global Biogeochem. Cycles 27(1), 119–130 (2013).
[Crossref]

Landelius, T.

B. Koehler, T. Landelius, G. A. Weyhenmeyer, N. Machida, and L. J. Tranvik, “Sunlight-induced carbon dioxide emissions from inland waters,” Global Biogeochem. Cycles 28(7), 696–711 (2014).
[Crossref]

Landim de Souza, M. F.

G. Abril, J.-M. Martinez, L. F. Artigas, P. Moreira-Turcq, M. F. Benedetti, L. Vidal, T. Meziane, J.-H. Kim, M. C. Bernardes, N. Savoye, J. Deborde, E. L. Souza, P. Albéric, M. F. Landim de Souza, and F. Roland, “Amazon River carbon dioxide outgassing fuelled by wetlands,” Nature 505(7483), 395–398 (2014).
[Crossref] [PubMed]

Lapierre, J. F.

J. F. Lapierre and P. A. Del Giorgio, “Geographical and environmental drivers of regional differences in the lake pCO2 versus DOC relationship across northern landscapes,” J. Geophys. Res. Biogeosci. 117, 1–10 (2012).

Larsen, S.

S. Larsen, T. Andersen, and D. O. Hessen, “The pCO2 in boreal lakes: Organic carbon as a universal predictor?” Global Biogeochem. Cycles 25(2), 1–8 (2011).
[Crossref]

Laruelle, G.

R. Lauerwald, G. Laruelle, J. Hartmann, P. Ciais, and P. A. G. Regnier, “Spatial patterns in CO2 evasion from the global river network,” Global Biogeochem. Cycles 29(5), 534 (2015).
[Crossref]

Lauerwald, R.

R. Lauerwald, G. Laruelle, J. Hartmann, P. Ciais, and P. A. G. Regnier, “Spatial patterns in CO2 evasion from the global river network,” Global Biogeochem. Cycles 29(5), 534 (2015).
[Crossref]

Le, C.

C. Le, C. Hu, J. Cannizzaro, D. English, F. Muller-Karger, and Z. Lee, “Evaluation of chlorophyll-a remote sensing algorithms for an optically complex estuary,” Remote Sens. Environ. 129, 75–89 (2013).
[Crossref]

C. Le, Y. Li, Y. Zha, D. Sun, C. Huang, and H. Lu, “A four-band semi-analytical model for estimating chlorophyll a in highly turbid lakes: The case of Taihu Lake, China,” Remote Sens. Environ. 113, 1175 (2009).

Leão, J. A. D.

M. P. Curtarelli, I. Ogashawara, C. A. S. de Araújo, J. A. Lorenzzetti, J. A. D. Leão, E. Alcântara, and J. L. Stech, “Carbon dioxide emissions from Tucuruí reservoir (Amazon biome): New findings based on three-dimensional ecological model simulations,” Sci. Total Environ. 551-552, 676–694 (2016).
[Crossref] [PubMed]

Lebourg, E.

F. P. Danhiez, V. Vantrepotte, A. Cauvin, E. Lebourg, and H. Loisel, “Optical properties of chromophoric dissolved organic matter during a phytoplankton bloom. Implication for DOC estimates from CDOM absorption,” Limnol. Oceanogr. 62(4), 1409–1425 (2017).
[Crossref]

Lee, Z.

C. Le, C. Hu, J. Cannizzaro, D. English, F. Muller-Karger, and Z. Lee, “Evaluation of chlorophyll-a remote sensing algorithms for an optically complex estuary,” Remote Sens. Environ. 129, 75–89 (2013).
[Crossref]

Lehmann, J.

M. S. Johnson, J. Lehmann, E. C. Selva, M. Abdo, S. Riha, and E. G. Couto, “Organic carbon fluxes within and streamwater exports from headwater catchments in the southern Amazon,” Hydrol. Processes 20(12), 2599–2614 (2006).
[Crossref]

Less, D. F. S.

N. D. Ward, H. O. Sawakuchi, V. Neu, D. F. S. Less, A. M. Valerio, A. C. Cunha, M. Kampel, T. S. Bianchi, A. V. Krusche, J. E. Richey, and R. G. Keil, “Velocity-amplified microbial respiration rates in the lower Amazon River,” Limnol. Oceanogr. Lett., (in press).

Letelier, R.

B. Hales, P. G. Strutton, M. Saraceno, R. Letelier, T. Takahashi, R. Feely, C. Sabine, and F. Chavez, “Satellite-based prediction of pCO2 in coastal waters of the eastern North Pacific,” Prog. Oceanogr. 103, 1–15 (2012).
[Crossref]

Li, Y.

C. Le, Y. Li, Y. Zha, D. Sun, C. Huang, and H. Lu, “A four-band semi-analytical model for estimating chlorophyll a in highly turbid lakes: The case of Taihu Lake, China,” Remote Sens. Environ. 113, 1175 (2009).

Limonchi, F.

L. E. Vihermaa, S. Waldron, T. Domingues, J. Grace, E. G. Cosio, F. Limonchi, C. Hopkinson, H. R. da Rocha, and E. Gloor, “Fluvial carbon export from a lowland Amazonian rainforest in relation to atmospheric fluxes,” J. Geophys. Res. Biogeosci. 121, 3001 (2016).

Lohrenz, S. E.

S. E. Lohrenz and W. J. Cai, “Satellite ocean color assessment of air-sea fluxes of CO2 in a river-dominated coastal margin,” Geophys. Res. Lett. 33(1), L01601 (2006).
[Crossref]

Loisel, H.

F. P. Danhiez, V. Vantrepotte, A. Cauvin, E. Lebourg, and H. Loisel, “Optical properties of chromophoric dissolved organic matter during a phytoplankton bloom. Implication for DOC estimates from CDOM absorption,” Limnol. Oceanogr. 62(4), 1409–1425 (2017).
[Crossref]

V. Vantrepotte, F. P. Danhiez, H. Loisel, S. Ouillon, X. Mériaux, A. Cauvin, and D. Dessailly, “CDOM-DOC relationship in contrasted coastal waters: implication for DOC retrieval from ocean color remote sensing observation,” Opt. Express 23(1), 33–54 (2015).
[Crossref] [PubMed]

V. Vantrepotte, H. Loisel, D. Dessailly, and X. Meriaux, “Optical classification of contrasted coastal waters,” Remote Sens. Environ. 123, 306–323 (2012).
[Crossref]

Lorenzzetti, J. A.

M. P. Curtarelli, I. Ogashawara, C. A. S. de Araújo, J. A. Lorenzzetti, J. A. D. Leão, E. Alcântara, and J. L. Stech, “Carbon dioxide emissions from Tucuruí reservoir (Amazon biome): New findings based on three-dimensional ecological model simulations,” Sci. Total Environ. 551-552, 676–694 (2016).
[Crossref] [PubMed]

E. H. Alcântara, J. L. Stech, J. A. Lorenzzetti, M. P. Bonnet, X. Casamitjana, A. T. Assireu, and E. M. L. D. M. Novo, “Remote sensing of water surface temperature and heat flux over a tropical hydroelectric reservoir,” Remote Sens. Environ. 114(11), 2651–2665 (2010).
[Crossref]

Lu, H.

C. Le, Y. Li, Y. Zha, D. Sun, C. Huang, and H. Lu, “A four-band semi-analytical model for estimating chlorophyll a in highly turbid lakes: The case of Taihu Lake, China,” Remote Sens. Environ. 113, 1175 (2009).

Machida, N.

B. Koehler, T. Landelius, G. A. Weyhenmeyer, N. Machida, and L. J. Tranvik, “Sunlight-induced carbon dioxide emissions from inland waters,” Global Biogeochem. Cycles 28(7), 696–711 (2014).
[Crossref]

MacIntyre, S.

M. Fontes, H. Marotta, S. MacIntyre, and M. Petrucio, “Inter- and intra-annual variations of pCO2 and pO2 in a freshwater subtropical coastal lake,” Inland Waters 5(2), 107–116 (2015).
[Crossref]

C. M. Rudorff, J. M. Melack, S. MacIntyre, C. C. F. Barbosa, and E. M. L. M. Novo, “Seasonal and spatial variability of CO2 emission from a large floodplain lake in the lower Amazon,” J. Geophys. Res. Biogeosci. 116, 1–12 (2011).

Mahaffey, C.

A. Subramaniam, P. L. Yager, E. J. Carpenter, C. Mahaffey, K. Björkman, S. Cooley, A. B. Kustka, J. P. Montoya, S. A. Sañudo-Wilhelmy, R. Shipe, and D. G. Capone, “Amazon River enhances diazotrophy and carbon sequestration in the tropical North Atlantic Ocean,” Proc. Natl. Acad. Sci. U.S.A. 105(30), 10460–10465 (2008).
[Crossref] [PubMed]

Malhi, Y.

J. C. Jiménez-Muñoz, C. Mattar, J. Barichivich, A. Santamaría-Artigas, K. Takahashi, Y. Malhi, J. A. Sobrino, and G. Schrier, “Record-breaking warming and extreme drought in the Amazon rainforest during the course of El Niño 2015-2016,” Sci. Rep. 6(1), 33130 (2016).
[Crossref] [PubMed]

Mannino, A.

F. Cao, M. Tzortziou, C. Hu, A. Mannino, C. G. Fichot, R. Del Vecchio, R. G. Najjar, and M. Novak, “Remote sensing retrievals of colored dissolved organic matter and dissolved organic carbon dynamics in North American estuaries and their margins,” Remote Sens. Environ. 205, 151–165 (2018).
[Crossref]

A. Mannino, M. E. Russ, and S. B. Hooker, “Algorithm development and validation for satellite-derived distributions of DOC and CDOM in the U.S. Middle Atlantic Bight,” J. Geophys. Res. 113(C7), C07051 (2008).
[Crossref]

Marengo, J. A.

J. A. Marengo and J. C. Espinoza, “Extreme seasonal droughts and floods in Amazonia: Causes, trends and impacts,” Int. J. Climatol. 36(3), 1033–1050 (2016).
[Crossref]

J. C. Espinoza, J. A. Marengo, J. Ronchail, J. M. Carpio, L. N. Flores, and J. L. Guyot, “The extreme 2014 flood in south-western Amazon basin: the role of tropical-subtropical South Atlantic SST gradient,” Environ. Res. Lett. 9(12), 124007 (2014).
[Crossref]

Marotta, H.

L. Pinho, C. M. Duarte, H. Marotta, and A. Enrich-Prast, “Temperature-dependence of the relationship between pCO2 and dissolved organic carbon in lakes,” Biogeosciences Discuss. 12(3), 2787–2808 (2015).
[Crossref]

M. Fontes, H. Marotta, S. MacIntyre, and M. Petrucio, “Inter- and intra-annual variations of pCO2 and pO2 in a freshwater subtropical coastal lake,” Inland Waters 5(2), 107–116 (2015).
[Crossref]

H. Marotta, C. M. Duarte, L. Pinho, and A. Enrich-Prast, “Rainfall leads to increased pCO2 in Brazilian coastal lakes,” Biogeosciences 7(5), 1607–1614 (2010).
[Crossref]

H. Marotta, L. T. Paiva, and M. M. Petrucio, “Changes in thermal and oxygen stratification pattern coupled to CO2 outgassing persistence in two oligotrophic shallow lakes of the Atlantic Tropical Forest, Southeast Brazil,” Limnology 10(3), 195–202 (2009).
[Crossref]

Marti, E.

T. J. Battin, L. A. Kaplan, S. Findlay, C. S. Hopkinson, E. Marti, A. I. Packman, J. D. Newbold, and F. Sabater, “Biophysical controls on organic carbon fluxes in fluvial networks,” Nat. Geosci. 2(8), 595 (2009).
[Crossref]

Martinez, J.-M.

G. Abril, J.-M. Martinez, L. F. Artigas, P. Moreira-Turcq, M. F. Benedetti, L. Vidal, T. Meziane, J.-H. Kim, M. C. Bernardes, N. Savoye, J. Deborde, E. L. Souza, P. Albéric, M. F. Landim de Souza, and F. Roland, “Amazon River carbon dioxide outgassing fuelled by wetlands,” Nature 505(7483), 395–398 (2014).
[Crossref] [PubMed]

Mattar, C.

J. C. Jiménez-Muñoz, C. Mattar, J. Barichivich, A. Santamaría-Artigas, K. Takahashi, Y. Malhi, J. A. Sobrino, and G. Schrier, “Record-breaking warming and extreme drought in the Amazon rainforest during the course of El Niño 2015-2016,” Sci. Rep. 6(1), 33130 (2016).
[Crossref] [PubMed]

Maurice, L.

P. Moreira-Turcq, M. P. Bonnet, M. Amorim, M. Bernardes, C. Lagane, L. Maurice, M. Perez, and P. Seyler, “Seasonal variability in concentration, composition, age, and fluxes of particulate organic carbon exchanged between the floodplain and Amazon River,” Global Biogeochem. Cycles 27(1), 119–130 (2013).
[Crossref]

Mazzeo, N.

S. Kosten, F. Roland, D. M. L. Da Motta Marques, E. H. Van Nes, N. Mazzeo, L. D. S. L. Sternberg, M. Scheffer, and J. J. Cole, “Climate-dependent CO2 emissions from lakes,” Global Biogeochem. Cycles 24(2), 1–7 (2010).
[Crossref]

Medeiros, P. M.

N. D. Ward, T. S. Bianchi, P. M. Medeiros, M. Seidel, J. E. Richey, R. G. Keil, and H. O. Sawakuchi, “Where carbon goes when water flows: carbon cycling across the aquatic continuum,” Front. Mater. Sci. 4, 7 (2017).

M. Seidel, T. Dittmar, N. D. Ward, A. V. Krusche, J. E. Richey, P. L. Yager, and P. M. Medeiros, “Seasonal and spatial variability of dissolved organic matter composition in the lower Amazon River,” Biogeochemistry 131(3), 281–302 (2016).
[Crossref]

P. M. Medeiros, M. Seidel, N. D. Ward, E. J. Carpenter, H. R. Gomes, J. Niggemann, A. V. Krusche, J. E. Richey, P. L. Yager, and T. Dittmar, “Fate of the Amazon River dissolved organic matter in the tropical Atlantic Ocean,” Global Biogeochem. Cycles 29(5), 677 (2015).
[Crossref]

M. Seidel, P. L. Yager, N. D. Ward, E. J. Carpenter, H. R. Gomes, A. V. Krusche, J. E. Richey, T. Dittmar, and P. M. Medeiros, “Molecular-level changes of dissolved organic matter along the Amazon River-to-ocean continuum,” Mar. Chem. 177, 218–231 (2015).
[Crossref]

N. D. Ward, R. G. Keil, P. M. Medeiros, D. C. Brito, A. C. Cunha, T. Dittmar, P. L. Yager, A. V. Krusche, and J. E. Richey, “Degradation of terrestrially derived macromolecules in the Amazon River,” Nat. Geosci. 6(7), 530–533 (2013).
[Crossref]

Melack, J. M.

C. M. Rudorff, J. M. Melack, S. MacIntyre, C. C. F. Barbosa, and E. M. L. M. Novo, “Seasonal and spatial variability of CO2 emission from a large floodplain lake in the lower Amazon,” J. Geophys. Res. Biogeosci. 116, 1–12 (2011).

J. E. Richey, J. M. Melack, A. K. Aufdenkampe, V. M. Ballester, and L. L. Hess, “Outgassing from Amazonian rivers and wetlands as a large tropical source of atmospheric CO2,” Nature 416(6881), 617–620 (2002).
[Crossref] [PubMed]

Mélin, F.

F. Mélin, V. Vantrepotte, M. Clerici, D. D’Alimonte, G. Zibordi, J. F. Berthon, and E. Canuti, “Multi-sensor satellite time series of optical properties and chlorophyll-a concentration in the Adriatic Sea,” Prog. Oceanogr. 91(3), 229–244 (2011).
[Crossref]

Meriaux, X.

V. Vantrepotte, H. Loisel, D. Dessailly, and X. Meriaux, “Optical classification of contrasted coastal waters,” Remote Sens. Environ. 123, 306–323 (2012).
[Crossref]

Mériaux, X.

Meziane, T.

G. Abril, J.-M. Martinez, L. F. Artigas, P. Moreira-Turcq, M. F. Benedetti, L. Vidal, T. Meziane, J.-H. Kim, M. C. Bernardes, N. Savoye, J. Deborde, E. L. Souza, P. Albéric, M. F. Landim de Souza, and F. Roland, “Amazon River carbon dioxide outgassing fuelled by wetlands,” Nature 505(7483), 395–398 (2014).
[Crossref] [PubMed]

Miller, W. L.

C. D. Clark, W. T. Hiscock, F. J. Millero, G. Hitchcock, L. Brand, W. L. Miller, L. Ziolkowski, R. F. Chen, and R. G. Zika, “CDOM distribution and CO2 production on the Southwest Florida Shelf,” Mar. Chem. 89(1-4), 145–167 (2004).
[Crossref]

Millero, F. J.

C. D. Clark, W. T. Hiscock, F. J. Millero, G. Hitchcock, L. Brand, W. L. Miller, L. Ziolkowski, R. F. Chen, and R. G. Zika, “CDOM distribution and CO2 production on the Southwest Florida Shelf,” Mar. Chem. 89(1-4), 145–167 (2004).
[Crossref]

Minor, E. C.

J. R. Helms, A. Stubbins, J. D. Ritchie, E. C. Minor, D. J. Kieber, and K. Mopper, “Absorption spectral slopes and slope ratios as indicators of molecular weight, source, and photobleaching of chromophoric dissolved organic matter,” Limnol. Oceanogr. 53(3), 955–969 (2008).
[Crossref]

Montoya, J. P.

A. Subramaniam, P. L. Yager, E. J. Carpenter, C. Mahaffey, K. Björkman, S. Cooley, A. B. Kustka, J. P. Montoya, S. A. Sañudo-Wilhelmy, R. Shipe, and D. G. Capone, “Amazon River enhances diazotrophy and carbon sequestration in the tropical North Atlantic Ocean,” Proc. Natl. Acad. Sci. U.S.A. 105(30), 10460–10465 (2008).
[Crossref] [PubMed]

Moore, T. S.

T. S. Moore, M. D. Dowell, S. Bradt, and A. R. Verdu, “An optical water type framework for selecting and blending retrievals from bio-optical algorithms in lakes and coastal waters,” Remote Sens. Environ. 143, 97–111 (2014).
[Crossref] [PubMed]

Mopper, K.

J. R. Helms, A. Stubbins, J. D. Ritchie, E. C. Minor, D. J. Kieber, and K. Mopper, “Absorption spectral slopes and slope ratios as indicators of molecular weight, source, and photobleaching of chromophoric dissolved organic matter,” Limnol. Oceanogr. 53(3), 955–969 (2008).
[Crossref]

Moreira-Turcq, P.

G. Abril, J.-M. Martinez, L. F. Artigas, P. Moreira-Turcq, M. F. Benedetti, L. Vidal, T. Meziane, J.-H. Kim, M. C. Bernardes, N. Savoye, J. Deborde, E. L. Souza, P. Albéric, M. F. Landim de Souza, and F. Roland, “Amazon River carbon dioxide outgassing fuelled by wetlands,” Nature 505(7483), 395–398 (2014).
[Crossref] [PubMed]

P. Moreira-Turcq, M. P. Bonnet, M. Amorim, M. Bernardes, C. Lagane, L. Maurice, M. Perez, and P. Seyler, “Seasonal variability in concentration, composition, age, and fluxes of particulate organic carbon exchanged between the floodplain and Amazon River,” Global Biogeochem. Cycles 27(1), 119–130 (2013).
[Crossref]

Morel, A.

A. Bricaud, A. Morel, and L. Prieur, “Absorption by dissolved organic matter of the sea (yellow substance) in the UV and visible domains,” Limnol. Oceanogr. 26(1), 43–53 (1981).
[Crossref]

Moses, W.

A. A. Gitelson, G. Dall’Olmo, W. Moses, D. C. Rundquist, T. Barrow, T. R. Fisher, D. Gurlin, and J. Holz, “A simple semi-analytical model for remote estimation of chlorophyll-a in turbid waters: validation,” Remote Sens. Environ. 112(9), 3582–3593 (2008).
[Crossref]

Moura, J. M. S.

N. D. Ward, A. V. Krusche, H. O. Sawakuchi, D. C. Brito, A. C. Cunha, J. M. S. Moura, R. da Silva, P. L. Yager, R. G. Keil, and J. E. Richey, “The compositional evolution of dissolved and particulate organic matter along the lower Amazon River-Óbidos to the ocean,” Mar. Chem. 177, 244–256 (2015).
[Crossref]

Muller-Karger, F.

C. Le, C. Hu, J. Cannizzaro, D. English, F. Muller-Karger, and Z. Lee, “Evaluation of chlorophyll-a remote sensing algorithms for an optically complex estuary,” Remote Sens. Environ. 129, 75–89 (2013).
[Crossref]

Najjar, R. G.

F. Cao, M. Tzortziou, C. Hu, A. Mannino, C. G. Fichot, R. Del Vecchio, R. G. Najjar, and M. Novak, “Remote sensing retrievals of colored dissolved organic matter and dissolved organic carbon dynamics in North American estuaries and their margins,” Remote Sens. Environ. 205, 151–165 (2018).
[Crossref]

Neill, C.

V. Neu, C. Neill, and A. V. Krusche, “Gaseous and fluvial carbon export from an Amazon forest watershed,” Biogeochemistry 105(1-3), 133–147 (2011).
[Crossref]

Nelson, N. B.

N. B. Nelson and D. A. Siegel, “The global distribution and dynamics of chromophoric dissolved organic matter,” Annu. Rev. Mar. Sci. 5(1), 447–476 (2013).
[Crossref] [PubMed]

Nelson, R. K.

A. Vodacek, N. V. Blough, M. D. DeGrandpre, M. D. DeGrandpre, and R. K. Nelson, “Seasonal variation of CDOM and DOC in the Middle Atlantic Bight: terrestrial inputs and photo oxidation,” Limnol. Oceanogr. 42(4), 674–686 (1997).
[Crossref]

Neu, V.

W. C. Gagne-Maynard, N. D. Ward, R. G. Keil, H. O. Sawakuchi, A. C. Da Cunha, V. Neu, D. C. Brito, D. F. Da Silva Less, J. E. M. Diniz, A. M. Valerio, M. Kampel, A. V. Krusche, and J. E. Richey, “Evaluation of primary production in the Lower Amazon River based on a dissolved oxygen stable isotopic mass balance,” Front. Mater. Sci. 4, 1–12 (2017).

H. O. Sawakuchi, V. Neu, N. D. Ward, M. D. L. C. Barros, A. Valerio, W. Gagne-Maynard, A. C. Cunha, D. Fernanda, J. E. Diniz, D. C. Brito, A. V. Krusche, and J. E. Richey, “Carbon dioxide emissions along the lower Amazon River,” Front. Mater. Sci. 4, 1–12 (2017).

N. D. Ward, T. S. Bianchi, H. O. Sawakuchi, W. Gagne-Maynard, A. C. Cunha, D. C. Brito, V. Neu, A. M. Valerio, R. da Silva, A. V. Krusche, J. E. Richey, and R. G. Keil, “The reactivity of plant-derived organic matter and the potential importance of priming effects along the lower Amazon River,” J. Geophys. Res. Biogeosci. 121, 1–18 (2016).

V. Neu, C. Neill, and A. V. Krusche, “Gaseous and fluvial carbon export from an Amazon forest watershed,” Biogeochemistry 105(1-3), 133–147 (2011).
[Crossref]

N. D. Ward, H. O. Sawakuchi, V. Neu, D. F. S. Less, A. M. Valerio, A. C. Cunha, M. Kampel, T. S. Bianchi, A. V. Krusche, J. E. Richey, and R. G. Keil, “Velocity-amplified microbial respiration rates in the lower Amazon River,” Limnol. Oceanogr. Lett., (in press).

Newbold, J. D.

T. J. Battin, L. A. Kaplan, S. Findlay, C. S. Hopkinson, E. Marti, A. I. Packman, J. D. Newbold, and F. Sabater, “Biophysical controls on organic carbon fluxes in fluvial networks,” Nat. Geosci. 2(8), 595 (2009).
[Crossref]

Niggemann, J.

P. M. Medeiros, M. Seidel, N. D. Ward, E. J. Carpenter, H. R. Gomes, J. Niggemann, A. V. Krusche, J. E. Richey, P. L. Yager, and T. Dittmar, “Fate of the Amazon River dissolved organic matter in the tropical Atlantic Ocean,” Global Biogeochem. Cycles 29(5), 677 (2015).
[Crossref]

Nikiema, O.

O. Nikiema, J. Devenon, and M. Baklouti, “Numerical modeling of the Amazon River plume,” Cont. Shelf Res. 27(7), 873–899 (2007).
[Crossref]

Novak, M.

F. Cao, M. Tzortziou, C. Hu, A. Mannino, C. G. Fichot, R. Del Vecchio, R. G. Najjar, and M. Novak, “Remote sensing retrievals of colored dissolved organic matter and dissolved organic carbon dynamics in North American estuaries and their margins,” Remote Sens. Environ. 205, 151–165 (2018).
[Crossref]

Novo, E. M. L. D. M.

E. H. Alcântara, J. L. Stech, J. A. Lorenzzetti, M. P. Bonnet, X. Casamitjana, A. T. Assireu, and E. M. L. D. M. Novo, “Remote sensing of water surface temperature and heat flux over a tropical hydroelectric reservoir,” Remote Sens. Environ. 114(11), 2651–2665 (2010).
[Crossref]

Novo, E. M. L. M.

C. M. Rudorff, J. M. Melack, S. MacIntyre, C. C. F. Barbosa, and E. M. L. M. Novo, “Seasonal and spatial variability of CO2 emission from a large floodplain lake in the lower Amazon,” J. Geophys. Res. Biogeosci. 116, 1–12 (2011).

Ogashawara, I.

M. P. Curtarelli, I. Ogashawara, C. A. S. de Araújo, J. A. Lorenzzetti, J. A. D. Leão, E. Alcântara, and J. L. Stech, “Carbon dioxide emissions from Tucuruí reservoir (Amazon biome): New findings based on three-dimensional ecological model simulations,” Sci. Total Environ. 551-552, 676–694 (2016).
[Crossref] [PubMed]

Olmanson, L. G.

P. L. Brezonik, L. G. Olmanson, J. C. Finlay, and M. E. Bauer, “Factors affecting the measurement of CDOM by remote sensing of optically complex inland waters,” Remote Sens. Environ. 157, 199–215 (2015).
[Crossref]

Oppelt, N.

K. Dörnhöfer and N. Oppelt, “Remote sensing for lake research and monitoring – Recent advances,” Ecol. Indic. 64, 105–122 (2016).
[Crossref]

Ouillon, S.

Paavel, B.

T. Kutser, G. Casal Pascual, C. Barbosa, B. Paavel, R. Ferreira, L. Carvalho, and K. Toming, “Mapping inland water carbon content with Landsat 8 data,” Int. J. Remote Sens. 37(13), 2950–2961 (2016).
[Crossref]

T. Kutser, C. Verpoorter, B. Paavel, and L. J. Tranvik, “Estimating lake carbon fractions from remote sensing data,” Remote Sens. Environ. 157, 138–146 (2015).
[Crossref]

Packman, A. I.

T. J. Battin, L. A. Kaplan, S. Findlay, C. S. Hopkinson, E. Marti, A. I. Packman, J. D. Newbold, and F. Sabater, “Biophysical controls on organic carbon fluxes in fluvial networks,” Nat. Geosci. 2(8), 595 (2009).
[Crossref]

Paiva, L. T.

H. Marotta, L. T. Paiva, and M. M. Petrucio, “Changes in thermal and oxygen stratification pattern coupled to CO2 outgassing persistence in two oligotrophic shallow lakes of the Atlantic Tropical Forest, Southeast Brazil,” Limnology 10(3), 195–202 (2009).
[Crossref]

Pan, D.

Y. Bai, W.-J. Cai, X. He, W. Zhai, D. Pan, M. Dai, and P. Yu, “A mechanistic semi-analytical method for remotely sensing sea surface pCO2 in river-dominated coastal oceans: A case study from the East China Sea,” J. Geophys. Res. Oceans 120(3), 2331 (2015).
[Crossref]

Parkin, G.

R. Pereira, C. Isabella Bovolo, R. G. M. Spencer, P. J. Hernes, E. Tipping, A. Vieth-Hillebrand, N. Pedentchouk, N. A. Chappell, G. Parkin, and T. Wagner, “Mobilization of optically invisible dissolved organic matter in response to rainstorm events in a tropical forest headwater river,” Geophys. Res. Lett. 41(4), 1202–1208 (2014).
[Crossref]

Pedentchouk, N.

R. Pereira, C. Isabella Bovolo, R. G. M. Spencer, P. J. Hernes, E. Tipping, A. Vieth-Hillebrand, N. Pedentchouk, N. A. Chappell, G. Parkin, and T. Wagner, “Mobilization of optically invisible dissolved organic matter in response to rainstorm events in a tropical forest headwater river,” Geophys. Res. Lett. 41(4), 1202–1208 (2014).
[Crossref]

Pereira, R.

R. Pereira, C. Isabella Bovolo, R. G. M. Spencer, P. J. Hernes, E. Tipping, A. Vieth-Hillebrand, N. Pedentchouk, N. A. Chappell, G. Parkin, and T. Wagner, “Mobilization of optically invisible dissolved organic matter in response to rainstorm events in a tropical forest headwater river,” Geophys. Res. Lett. 41(4), 1202–1208 (2014).
[Crossref]

Perez, M.

P. Moreira-Turcq, M. P. Bonnet, M. Amorim, M. Bernardes, C. Lagane, L. Maurice, M. Perez, and P. Seyler, “Seasonal variability in concentration, composition, age, and fluxes of particulate organic carbon exchanged between the floodplain and Amazon River,” Global Biogeochem. Cycles 27(1), 119–130 (2013).
[Crossref]

Petrucio, M.

M. Fontes, H. Marotta, S. MacIntyre, and M. Petrucio, “Inter- and intra-annual variations of pCO2 and pO2 in a freshwater subtropical coastal lake,” Inland Waters 5(2), 107–116 (2015).
[Crossref]

Petrucio, M. M.

H. Marotta, L. T. Paiva, and M. M. Petrucio, “Changes in thermal and oxygen stratification pattern coupled to CO2 outgassing persistence in two oligotrophic shallow lakes of the Atlantic Tropical Forest, Southeast Brazil,” Limnology 10(3), 195–202 (2009).
[Crossref]

Pinho, L.

L. Pinho, C. M. Duarte, H. Marotta, and A. Enrich-Prast, “Temperature-dependence of the relationship between pCO2 and dissolved organic carbon in lakes,” Biogeosciences Discuss. 12(3), 2787–2808 (2015).
[Crossref]

H. Marotta, C. M. Duarte, L. Pinho, and A. Enrich-Prast, “Rainfall leads to increased pCO2 in Brazilian coastal lakes,” Biogeosciences 7(5), 1607–1614 (2010).
[Crossref]

Prieur, L.

A. Bricaud, A. Morel, and L. Prieur, “Absorption by dissolved organic matter of the sea (yellow substance) in the UV and visible domains,” Limnol. Oceanogr. 26(1), 43–53 (1981).
[Crossref]

Qiu, Z.

D. Sun, C. Hu, Z. Qiu, J. P. Cannizzaro, and B. B. Barnes, “Influence of a red band-based water classification approach on chlorophyll algorithms for optically complex estuaries,” Remote Sens. Environ. 155, 289–302 (2014).
[Crossref]

Quay, P. D.

E. E. Ellis, J. E. Richey, A. K. Aufdenkampe, A. V. Krusche, P. D. Quay, C. Salimon, and H. B. da Cunha, “Factors controlling water-column respiration in rivers of the central and southwestern Amazon Basin,” Limnol. Oceanogr. 57(2), 527–540 (2012).
[Crossref]

Regnier, P. A. G.

R. Lauerwald, G. Laruelle, J. Hartmann, P. Ciais, and P. A. G. Regnier, “Spatial patterns in CO2 evasion from the global river network,” Global Biogeochem. Cycles 29(5), 534 (2015).
[Crossref]

Richey, J. E.

H. O. Sawakuchi, V. Neu, N. D. Ward, M. D. L. C. Barros, A. Valerio, W. Gagne-Maynard, A. C. Cunha, D. Fernanda, J. E. Diniz, D. C. Brito, A. V. Krusche, and J. E. Richey, “Carbon dioxide emissions along the lower Amazon River,” Front. Mater. Sci. 4, 1–12 (2017).

N. D. Ward, T. S. Bianchi, P. M. Medeiros, M. Seidel, J. E. Richey, R. G. Keil, and H. O. Sawakuchi, “Where carbon goes when water flows: carbon cycling across the aquatic continuum,” Front. Mater. Sci. 4, 7 (2017).

W. C. Gagne-Maynard, N. D. Ward, R. G. Keil, H. O. Sawakuchi, A. C. Da Cunha, V. Neu, D. C. Brito, D. F. Da Silva Less, J. E. M. Diniz, A. M. Valerio, M. Kampel, A. V. Krusche, and J. E. Richey, “Evaluation of primary production in the Lower Amazon River based on a dissolved oxygen stable isotopic mass balance,” Front. Mater. Sci. 4, 1–12 (2017).

M. Seidel, T. Dittmar, N. D. Ward, A. V. Krusche, J. E. Richey, P. L. Yager, and P. M. Medeiros, “Seasonal and spatial variability of dissolved organic matter composition in the lower Amazon River,” Biogeochemistry 131(3), 281–302 (2016).
[Crossref]

N. D. Ward, T. S. Bianchi, H. O. Sawakuchi, W. Gagne-Maynard, A. C. Cunha, D. C. Brito, V. Neu, A. M. Valerio, R. da Silva, A. V. Krusche, J. E. Richey, and R. G. Keil, “The reactivity of plant-derived organic matter and the potential importance of priming effects along the lower Amazon River,” J. Geophys. Res. Biogeosci. 121, 1–18 (2016).

M. Seidel, P. L. Yager, N. D. Ward, E. J. Carpenter, H. R. Gomes, A. V. Krusche, J. E. Richey, T. Dittmar, and P. M. Medeiros, “Molecular-level changes of dissolved organic matter along the Amazon River-to-ocean continuum,” Mar. Chem. 177, 218–231 (2015).
[Crossref]

P. M. Medeiros, M. Seidel, N. D. Ward, E. J. Carpenter, H. R. Gomes, J. Niggemann, A. V. Krusche, J. E. Richey, P. L. Yager, and T. Dittmar, “Fate of the Amazon River dissolved organic matter in the tropical Atlantic Ocean,” Global Biogeochem. Cycles 29(5), 677 (2015).
[Crossref]

H. O. Sawakuchi, D. Bastviken, A. O. Sawakuchi, N. D. Ward, C. D. Borges, S. M. Tsai, J. E. Richey, V. M. Ballester, and A. V. Krusche, “Oxidative mitigation of aquatic methane emissions in large Amazonian rivers,” Glob. Change Biol. 1, 1075 (2015).

N. D. Ward, A. V. Krusche, H. O. Sawakuchi, D. C. Brito, A. C. Cunha, J. M. S. Moura, R. da Silva, P. L. Yager, R. G. Keil, and J. E. Richey, “The compositional evolution of dissolved and particulate organic matter along the lower Amazon River-Óbidos to the ocean,” Mar. Chem. 177, 244–256 (2015).
[Crossref]

N. D. Ward, R. G. Keil, P. M. Medeiros, D. C. Brito, A. C. Cunha, T. Dittmar, P. L. Yager, A. V. Krusche, and J. E. Richey, “Degradation of terrestrially derived macromolecules in the Amazon River,” Nat. Geosci. 6(7), 530–533 (2013).
[Crossref]

E. E. Ellis, J. E. Richey, A. K. Aufdenkampe, A. V. Krusche, P. D. Quay, C. Salimon, and H. B. da Cunha, “Factors controlling water-column respiration in rivers of the central and southwestern Amazon Basin,” Limnol. Oceanogr. 57(2), 527–540 (2012).
[Crossref]

J. E. Richey, J. M. Melack, A. K. Aufdenkampe, V. M. Ballester, and L. L. Hess, “Outgassing from Amazonian rivers and wetlands as a large tropical source of atmospheric CO2,” Nature 416(6881), 617–620 (2002).
[Crossref] [PubMed]

N. D. Ward, H. O. Sawakuchi, V. Neu, D. F. S. Less, A. M. Valerio, A. C. Cunha, M. Kampel, T. S. Bianchi, A. V. Krusche, J. E. Richey, and R. G. Keil, “Velocity-amplified microbial respiration rates in the lower Amazon River,” Limnol. Oceanogr. Lett., (in press).

Riha, S.

M. S. Johnson, J. Lehmann, E. C. Selva, M. Abdo, S. Riha, and E. G. Couto, “Organic carbon fluxes within and streamwater exports from headwater catchments in the southern Amazon,” Hydrol. Processes 20(12), 2599–2614 (2006).
[Crossref]

Ritchie, J. D.

J. R. Helms, A. Stubbins, J. D. Ritchie, E. C. Minor, D. J. Kieber, and K. Mopper, “Absorption spectral slopes and slope ratios as indicators of molecular weight, source, and photobleaching of chromophoric dissolved organic matter,” Limnol. Oceanogr. 53(3), 955–969 (2008).
[Crossref]

Roland, F.

G. Abril, J.-M. Martinez, L. F. Artigas, P. Moreira-Turcq, M. F. Benedetti, L. Vidal, T. Meziane, J.-H. Kim, M. C. Bernardes, N. Savoye, J. Deborde, E. L. Souza, P. Albéric, M. F. Landim de Souza, and F. Roland, “Amazon River carbon dioxide outgassing fuelled by wetlands,” Nature 505(7483), 395–398 (2014).
[Crossref] [PubMed]

S. Kosten, F. Roland, D. M. L. Da Motta Marques, E. H. Van Nes, N. Mazzeo, L. D. S. L. Sternberg, M. Scheffer, and J. J. Cole, “Climate-dependent CO2 emissions from lakes,” Global Biogeochem. Cycles 24(2), 1–7 (2010).
[Crossref]

Ronchail, J.

J. C. Espinoza, J. A. Marengo, J. Ronchail, J. M. Carpio, L. N. Flores, and J. L. Guyot, “The extreme 2014 flood in south-western Amazon basin: the role of tropical-subtropical South Atlantic SST gradient,” Environ. Res. Lett. 9(12), 124007 (2014).
[Crossref]

Rudorff, C. M.

C. M. Rudorff, J. M. Melack, S. MacIntyre, C. C. F. Barbosa, and E. M. L. M. Novo, “Seasonal and spatial variability of CO2 emission from a large floodplain lake in the lower Amazon,” J. Geophys. Res. Biogeosci. 116, 1–12 (2011).

Rundquist, D. C.

A. A. Gitelson, G. Dall’Olmo, W. Moses, D. C. Rundquist, T. Barrow, T. R. Fisher, D. Gurlin, and J. Holz, “A simple semi-analytical model for remote estimation of chlorophyll-a in turbid waters: validation,” Remote Sens. Environ. 112(9), 3582–3593 (2008).
[Crossref]

Russ, M. E.

A. Mannino, M. E. Russ, and S. B. Hooker, “Algorithm development and validation for satellite-derived distributions of DOC and CDOM in the U.S. Middle Atlantic Bight,” J. Geophys. Res. 113(C7), C07051 (2008).
[Crossref]

Sabater, F.

T. J. Battin, L. A. Kaplan, S. Findlay, C. S. Hopkinson, E. Marti, A. I. Packman, J. D. Newbold, and F. Sabater, “Biophysical controls on organic carbon fluxes in fluvial networks,” Nat. Geosci. 2(8), 595 (2009).
[Crossref]

Sabine, C.

B. Hales, P. G. Strutton, M. Saraceno, R. Letelier, T. Takahashi, R. Feely, C. Sabine, and F. Chavez, “Satellite-based prediction of pCO2 in coastal waters of the eastern North Pacific,” Prog. Oceanogr. 103, 1–15 (2012).
[Crossref]

Salimon, C.

E. E. Ellis, J. E. Richey, A. K. Aufdenkampe, A. V. Krusche, P. D. Quay, C. Salimon, and H. B. da Cunha, “Factors controlling water-column respiration in rivers of the central and southwestern Amazon Basin,” Limnol. Oceanogr. 57(2), 527–540 (2012).
[Crossref]

Santamaría-Artigas, A.

J. C. Jiménez-Muñoz, C. Mattar, J. Barichivich, A. Santamaría-Artigas, K. Takahashi, Y. Malhi, J. A. Sobrino, and G. Schrier, “Record-breaking warming and extreme drought in the Amazon rainforest during the course of El Niño 2015-2016,” Sci. Rep. 6(1), 33130 (2016).
[Crossref] [PubMed]

Sañudo-Wilhelmy, S. A.

A. Subramaniam, P. L. Yager, E. J. Carpenter, C. Mahaffey, K. Björkman, S. Cooley, A. B. Kustka, J. P. Montoya, S. A. Sañudo-Wilhelmy, R. Shipe, and D. G. Capone, “Amazon River enhances diazotrophy and carbon sequestration in the tropical North Atlantic Ocean,” Proc. Natl. Acad. Sci. U.S.A. 105(30), 10460–10465 (2008).
[Crossref] [PubMed]

Saraceno, M.

B. Hales, P. G. Strutton, M. Saraceno, R. Letelier, T. Takahashi, R. Feely, C. Sabine, and F. Chavez, “Satellite-based prediction of pCO2 in coastal waters of the eastern North Pacific,” Prog. Oceanogr. 103, 1–15 (2012).
[Crossref]

Savoye, N.

G. Abril, J.-M. Martinez, L. F. Artigas, P. Moreira-Turcq, M. F. Benedetti, L. Vidal, T. Meziane, J.-H. Kim, M. C. Bernardes, N. Savoye, J. Deborde, E. L. Souza, P. Albéric, M. F. Landim de Souza, and F. Roland, “Amazon River carbon dioxide outgassing fuelled by wetlands,” Nature 505(7483), 395–398 (2014).
[Crossref] [PubMed]

Sawakuchi, A. O.

H. O. Sawakuchi, D. Bastviken, A. O. Sawakuchi, N. D. Ward, C. D. Borges, S. M. Tsai, J. E. Richey, V. M. Ballester, and A. V. Krusche, “Oxidative mitigation of aquatic methane emissions in large Amazonian rivers,” Glob. Change Biol. 1, 1075 (2015).

Sawakuchi, H. O.

W. C. Gagne-Maynard, N. D. Ward, R. G. Keil, H. O. Sawakuchi, A. C. Da Cunha, V. Neu, D. C. Brito, D. F. Da Silva Less, J. E. M. Diniz, A. M. Valerio, M. Kampel, A. V. Krusche, and J. E. Richey, “Evaluation of primary production in the Lower Amazon River based on a dissolved oxygen stable isotopic mass balance,” Front. Mater. Sci. 4, 1–12 (2017).

N. D. Ward, T. S. Bianchi, P. M. Medeiros, M. Seidel, J. E. Richey, R. G. Keil, and H. O. Sawakuchi, “Where carbon goes when water flows: carbon cycling across the aquatic continuum,” Front. Mater. Sci. 4, 7 (2017).

H. O. Sawakuchi, V. Neu, N. D. Ward, M. D. L. C. Barros, A. Valerio, W. Gagne-Maynard, A. C. Cunha, D. Fernanda, J. E. Diniz, D. C. Brito, A. V. Krusche, and J. E. Richey, “Carbon dioxide emissions along the lower Amazon River,” Front. Mater. Sci. 4, 1–12 (2017).

N. D. Ward, T. S. Bianchi, H. O. Sawakuchi, W. Gagne-Maynard, A. C. Cunha, D. C. Brito, V. Neu, A. M. Valerio, R. da Silva, A. V. Krusche, J. E. Richey, and R. G. Keil, “The reactivity of plant-derived organic matter and the potential importance of priming effects along the lower Amazon River,” J. Geophys. Res. Biogeosci. 121, 1–18 (2016).

N. D. Ward, A. V. Krusche, H. O. Sawakuchi, D. C. Brito, A. C. Cunha, J. M. S. Moura, R. da Silva, P. L. Yager, R. G. Keil, and J. E. Richey, “The compositional evolution of dissolved and particulate organic matter along the lower Amazon River-Óbidos to the ocean,” Mar. Chem. 177, 244–256 (2015).
[Crossref]

H. O. Sawakuchi, D. Bastviken, A. O. Sawakuchi, N. D. Ward, C. D. Borges, S. M. Tsai, J. E. Richey, V. M. Ballester, and A. V. Krusche, “Oxidative mitigation of aquatic methane emissions in large Amazonian rivers,” Glob. Change Biol. 1, 1075 (2015).

N. D. Ward, H. O. Sawakuchi, V. Neu, D. F. S. Less, A. M. Valerio, A. C. Cunha, M. Kampel, T. S. Bianchi, A. V. Krusche, J. E. Richey, and R. G. Keil, “Velocity-amplified microbial respiration rates in the lower Amazon River,” Limnol. Oceanogr. Lett., (in press).

Scheffer, M.

S. Kosten, F. Roland, D. M. L. Da Motta Marques, E. H. Van Nes, N. Mazzeo, L. D. S. L. Sternberg, M. Scheffer, and J. J. Cole, “Climate-dependent CO2 emissions from lakes,” Global Biogeochem. Cycles 24(2), 1–7 (2010).
[Crossref]

Schrier, G.

J. C. Jiménez-Muñoz, C. Mattar, J. Barichivich, A. Santamaría-Artigas, K. Takahashi, Y. Malhi, J. A. Sobrino, and G. Schrier, “Record-breaking warming and extreme drought in the Amazon rainforest during the course of El Niño 2015-2016,” Sci. Rep. 6(1), 33130 (2016).
[Crossref] [PubMed]

Seidel, M.

N. D. Ward, T. S. Bianchi, P. M. Medeiros, M. Seidel, J. E. Richey, R. G. Keil, and H. O. Sawakuchi, “Where carbon goes when water flows: carbon cycling across the aquatic continuum,” Front. Mater. Sci. 4, 7 (2017).

M. Seidel, T. Dittmar, N. D. Ward, A. V. Krusche, J. E. Richey, P. L. Yager, and P. M. Medeiros, “Seasonal and spatial variability of dissolved organic matter composition in the lower Amazon River,” Biogeochemistry 131(3), 281–302 (2016).
[Crossref]

P. M. Medeiros, M. Seidel, N. D. Ward, E. J. Carpenter, H. R. Gomes, J. Niggemann, A. V. Krusche, J. E. Richey, P. L. Yager, and T. Dittmar, “Fate of the Amazon River dissolved organic matter in the tropical Atlantic Ocean,” Global Biogeochem. Cycles 29(5), 677 (2015).
[Crossref]

M. Seidel, P. L. Yager, N. D. Ward, E. J. Carpenter, H. R. Gomes, A. V. Krusche, J. E. Richey, T. Dittmar, and P. M. Medeiros, “Molecular-level changes of dissolved organic matter along the Amazon River-to-ocean continuum,” Mar. Chem. 177, 218–231 (2015).
[Crossref]

Selva, E. C.

M. S. Johnson, J. Lehmann, E. C. Selva, M. Abdo, S. Riha, and E. G. Couto, “Organic carbon fluxes within and streamwater exports from headwater catchments in the southern Amazon,” Hydrol. Processes 20(12), 2599–2614 (2006).
[Crossref]

Seyler, P.

P. Moreira-Turcq, M. P. Bonnet, M. Amorim, M. Bernardes, C. Lagane, L. Maurice, M. Perez, and P. Seyler, “Seasonal variability in concentration, composition, age, and fluxes of particulate organic carbon exchanged between the floodplain and Amazon River,” Global Biogeochem. Cycles 27(1), 119–130 (2013).
[Crossref]

Shang, S.

Y. Zhu, S. Shang, W. Zhai, and M. Dai, “Satellite-derived surface water pCO2 and air-sea CO2 fluxes in the northern South China Sea in summer,” Prog. Nat. Sci. 19(6), 775–779 (2009).
[Crossref]

Shipe, R.

A. Subramaniam, P. L. Yager, E. J. Carpenter, C. Mahaffey, K. Björkman, S. Cooley, A. B. Kustka, J. P. Montoya, S. A. Sañudo-Wilhelmy, R. Shipe, and D. G. Capone, “Amazon River enhances diazotrophy and carbon sequestration in the tropical North Atlantic Ocean,” Proc. Natl. Acad. Sci. U.S.A. 105(30), 10460–10465 (2008).
[Crossref] [PubMed]

Siegel, D. A.

N. B. Nelson and D. A. Siegel, “The global distribution and dynamics of chromophoric dissolved organic matter,” Annu. Rev. Mar. Sci. 5(1), 447–476 (2013).
[Crossref] [PubMed]

Sobek, S.

S. Sobek, L. J. Tranvik, and J. J. Cole, “Temperature independence of carbon dioxide supersaturation in global lakes,” Global Biogeochem. Cycles 19(2), 1–10 (2005).
[Crossref]

Sobrino, J. A.

J. C. Jiménez-Muñoz, C. Mattar, J. Barichivich, A. Santamaría-Artigas, K. Takahashi, Y. Malhi, J. A. Sobrino, and G. Schrier, “Record-breaking warming and extreme drought in the Amazon rainforest during the course of El Niño 2015-2016,” Sci. Rep. 6(1), 33130 (2016).
[Crossref] [PubMed]

Souza, E. L.

G. Abril, J.-M. Martinez, L. F. Artigas, P. Moreira-Turcq, M. F. Benedetti, L. Vidal, T. Meziane, J.-H. Kim, M. C. Bernardes, N. Savoye, J. Deborde, E. L. Souza, P. Albéric, M. F. Landim de Souza, and F. Roland, “Amazon River carbon dioxide outgassing fuelled by wetlands,” Nature 505(7483), 395–398 (2014).
[Crossref] [PubMed]

Spencer, R. G. M.

R. Pereira, C. Isabella Bovolo, R. G. M. Spencer, P. J. Hernes, E. Tipping, A. Vieth-Hillebrand, N. Pedentchouk, N. A. Chappell, G. Parkin, and T. Wagner, “Mobilization of optically invisible dissolved organic matter in response to rainstorm events in a tropical forest headwater river,” Geophys. Res. Lett. 41(4), 1202–1208 (2014).
[Crossref]

R. G. M. Spencer, K. D. Butler, and G. R. Aiken, “Dissolved organic carbon and chromophoric dissolved organic matter properties of rivers in the USA,” J. Geophys. Res. Biogeosci. 117, G03001 (2012).

Stech, J. L.

M. P. Curtarelli, I. Ogashawara, C. A. S. de Araújo, J. A. Lorenzzetti, J. A. D. Leão, E. Alcântara, and J. L. Stech, “Carbon dioxide emissions from Tucuruí reservoir (Amazon biome): New findings based on three-dimensional ecological model simulations,” Sci. Total Environ. 551-552, 676–694 (2016).
[Crossref] [PubMed]

E. H. Alcântara, J. L. Stech, J. A. Lorenzzetti, M. P. Bonnet, X. Casamitjana, A. T. Assireu, and E. M. L. D. M. Novo, “Remote sensing of water surface temperature and heat flux over a tropical hydroelectric reservoir,” Remote Sens. Environ. 114(11), 2651–2665 (2010).
[Crossref]

Sternberg, L. D. S. L.

S. Kosten, F. Roland, D. M. L. Da Motta Marques, E. H. Van Nes, N. Mazzeo, L. D. S. L. Sternberg, M. Scheffer, and J. J. Cole, “Climate-dependent CO2 emissions from lakes,” Global Biogeochem. Cycles 24(2), 1–7 (2010).
[Crossref]

Sternberg, L. S. L.

A. C. da Cunha and L. S. L. Sternberg, “Using stable isotopes 18 O and 2 H of lake water and biogeochemical analysis to identify factors affecting water quality in four estuarine Amazonian shallow lakes,” Hydrol. Processes., (in press).

Strutton, P. G.

B. Hales, P. G. Strutton, M. Saraceno, R. Letelier, T. Takahashi, R. Feely, C. Sabine, and F. Chavez, “Satellite-based prediction of pCO2 in coastal waters of the eastern North Pacific,” Prog. Oceanogr. 103, 1–15 (2012).
[Crossref]

Stubbins, A.

J. R. Helms, A. Stubbins, J. D. Ritchie, E. C. Minor, D. J. Kieber, and K. Mopper, “Absorption spectral slopes and slope ratios as indicators of molecular weight, source, and photobleaching of chromophoric dissolved organic matter,” Limnol. Oceanogr. 53(3), 955–969 (2008).
[Crossref]

Subramaniam, A.

A. Subramaniam, P. L. Yager, E. J. Carpenter, C. Mahaffey, K. Björkman, S. Cooley, A. B. Kustka, J. P. Montoya, S. A. Sañudo-Wilhelmy, R. Shipe, and D. G. Capone, “Amazon River enhances diazotrophy and carbon sequestration in the tropical North Atlantic Ocean,” Proc. Natl. Acad. Sci. U.S.A. 105(30), 10460–10465 (2008).
[Crossref] [PubMed]

Sun, D.

D. Sun, C. Hu, Z. Qiu, J. P. Cannizzaro, and B. B. Barnes, “Influence of a red band-based water classification approach on chlorophyll algorithms for optically complex estuaries,” Remote Sens. Environ. 155, 289–302 (2014).
[Crossref]

C. Le, Y. Li, Y. Zha, D. Sun, C. Huang, and H. Lu, “A four-band semi-analytical model for estimating chlorophyll a in highly turbid lakes: The case of Taihu Lake, China,” Remote Sens. Environ. 113, 1175 (2009).

Takahashi, K.

J. C. Jiménez-Muñoz, C. Mattar, J. Barichivich, A. Santamaría-Artigas, K. Takahashi, Y. Malhi, J. A. Sobrino, and G. Schrier, “Record-breaking warming and extreme drought in the Amazon rainforest during the course of El Niño 2015-2016,” Sci. Rep. 6(1), 33130 (2016).
[Crossref] [PubMed]

Takahashi, T.

B. Hales, P. G. Strutton, M. Saraceno, R. Letelier, T. Takahashi, R. Feely, C. Sabine, and F. Chavez, “Satellite-based prediction of pCO2 in coastal waters of the eastern North Pacific,” Prog. Oceanogr. 103, 1–15 (2012).
[Crossref]

Targa, C.

G. M. Ferrari, M. D. Dowell, S. Grossi, and C. Targa, “Relationship between the optical properties of chromophoric dissolved organic matter and total concentration of dissolved organic carbon in the southern Baltic Sea region,” Mar. Chem. 55(3-4), 299–316 (1996).
[Crossref]

Tipping, E.

R. Pereira, C. Isabella Bovolo, R. G. M. Spencer, P. J. Hernes, E. Tipping, A. Vieth-Hillebrand, N. Pedentchouk, N. A. Chappell, G. Parkin, and T. Wagner, “Mobilization of optically invisible dissolved organic matter in response to rainstorm events in a tropical forest headwater river,” Geophys. Res. Lett. 41(4), 1202–1208 (2014).
[Crossref]

Toming, K.

T. Kutser, G. Casal Pascual, C. Barbosa, B. Paavel, R. Ferreira, L. Carvalho, and K. Toming, “Mapping inland water carbon content with Landsat 8 data,” Int. J. Remote Sens. 37(13), 2950–2961 (2016).
[Crossref]

Tranvik, L. J.

T. Kutser, C. Verpoorter, B. Paavel, and L. J. Tranvik, “Estimating lake carbon fractions from remote sensing data,” Remote Sens. Environ. 157, 138–146 (2015).
[Crossref]

B. Koehler, T. Landelius, G. A. Weyhenmeyer, N. Machida, and L. J. Tranvik, “Sunlight-induced carbon dioxide emissions from inland waters,” Global Biogeochem. Cycles 28(7), 696–711 (2014).
[Crossref]

S. Sobek, L. J. Tranvik, and J. J. Cole, “Temperature independence of carbon dioxide supersaturation in global lakes,” Global Biogeochem. Cycles 19(2), 1–10 (2005).
[Crossref]

Tsai, S. M.

H. O. Sawakuchi, D. Bastviken, A. O. Sawakuchi, N. D. Ward, C. D. Borges, S. M. Tsai, J. E. Richey, V. M. Ballester, and A. V. Krusche, “Oxidative mitigation of aquatic methane emissions in large Amazonian rivers,” Glob. Change Biol. 1, 1075 (2015).

Tzortziou, M.

F. Cao, M. Tzortziou, C. Hu, A. Mannino, C. G. Fichot, R. Del Vecchio, R. G. Najjar, and M. Novak, “Remote sensing retrievals of colored dissolved organic matter and dissolved organic carbon dynamics in North American estuaries and their margins,” Remote Sens. Environ. 205, 151–165 (2018).
[Crossref]

Valerio, A.

H. O. Sawakuchi, V. Neu, N. D. Ward, M. D. L. C. Barros, A. Valerio, W. Gagne-Maynard, A. C. Cunha, D. Fernanda, J. E. Diniz, D. C. Brito, A. V. Krusche, and J. E. Richey, “Carbon dioxide emissions along the lower Amazon River,” Front. Mater. Sci. 4, 1–12 (2017).

Valerio, A. M.

W. C. Gagne-Maynard, N. D. Ward, R. G. Keil, H. O. Sawakuchi, A. C. Da Cunha, V. Neu, D. C. Brito, D. F. Da Silva Less, J. E. M. Diniz, A. M. Valerio, M. Kampel, A. V. Krusche, and J. E. Richey, “Evaluation of primary production in the Lower Amazon River based on a dissolved oxygen stable isotopic mass balance,” Front. Mater. Sci. 4, 1–12 (2017).

N. D. Ward, T. S. Bianchi, H. O. Sawakuchi, W. Gagne-Maynard, A. C. Cunha, D. C. Brito, V. Neu, A. M. Valerio, R. da Silva, A. V. Krusche, J. E. Richey, and R. G. Keil, “The reactivity of plant-derived organic matter and the potential importance of priming effects along the lower Amazon River,” J. Geophys. Res. Biogeosci. 121, 1–18 (2016).

N. D. Ward, H. O. Sawakuchi, V. Neu, D. F. S. Less, A. M. Valerio, A. C. Cunha, M. Kampel, T. S. Bianchi, A. V. Krusche, J. E. Richey, and R. G. Keil, “Velocity-amplified microbial respiration rates in the lower Amazon River,” Limnol. Oceanogr. Lett., (in press).

Van Nes, E. H.

S. Kosten, F. Roland, D. M. L. Da Motta Marques, E. H. Van Nes, N. Mazzeo, L. D. S. L. Sternberg, M. Scheffer, and J. J. Cole, “Climate-dependent CO2 emissions from lakes,” Global Biogeochem. Cycles 24(2), 1–7 (2010).
[Crossref]

Vantrepotte, V.

F. P. Danhiez, V. Vantrepotte, A. Cauvin, E. Lebourg, and H. Loisel, “Optical properties of chromophoric dissolved organic matter during a phytoplankton bloom. Implication for DOC estimates from CDOM absorption,” Limnol. Oceanogr. 62(4), 1409–1425 (2017).
[Crossref]

V. Vantrepotte, F. P. Danhiez, H. Loisel, S. Ouillon, X. Mériaux, A. Cauvin, and D. Dessailly, “CDOM-DOC relationship in contrasted coastal waters: implication for DOC retrieval from ocean color remote sensing observation,” Opt. Express 23(1), 33–54 (2015).
[Crossref] [PubMed]

V. Vantrepotte, H. Loisel, D. Dessailly, and X. Meriaux, “Optical classification of contrasted coastal waters,” Remote Sens. Environ. 123, 306–323 (2012).
[Crossref]

F. Mélin, V. Vantrepotte, M. Clerici, D. D’Alimonte, G. Zibordi, J. F. Berthon, and E. Canuti, “Multi-sensor satellite time series of optical properties and chlorophyll-a concentration in the Adriatic Sea,” Prog. Oceanogr. 91(3), 229–244 (2011).
[Crossref]

Verdu, A. R.

T. S. Moore, M. D. Dowell, S. Bradt, and A. R. Verdu, “An optical water type framework for selecting and blending retrievals from bio-optical algorithms in lakes and coastal waters,” Remote Sens. Environ. 143, 97–111 (2014).
[Crossref] [PubMed]

Verpoorter, C.

T. Kutser, C. Verpoorter, B. Paavel, and L. J. Tranvik, “Estimating lake carbon fractions from remote sensing data,” Remote Sens. Environ. 157, 138–146 (2015).
[Crossref]

Vidal, L.

G. Abril, J.-M. Martinez, L. F. Artigas, P. Moreira-Turcq, M. F. Benedetti, L. Vidal, T. Meziane, J.-H. Kim, M. C. Bernardes, N. Savoye, J. Deborde, E. L. Souza, P. Albéric, M. F. Landim de Souza, and F. Roland, “Amazon River carbon dioxide outgassing fuelled by wetlands,” Nature 505(7483), 395–398 (2014).
[Crossref] [PubMed]

Vieth-Hillebrand, A.

R. Pereira, C. Isabella Bovolo, R. G. M. Spencer, P. J. Hernes, E. Tipping, A. Vieth-Hillebrand, N. Pedentchouk, N. A. Chappell, G. Parkin, and T. Wagner, “Mobilization of optically invisible dissolved organic matter in response to rainstorm events in a tropical forest headwater river,” Geophys. Res. Lett. 41(4), 1202–1208 (2014).
[Crossref]

Vihermaa, L. E.

L. E. Vihermaa, S. Waldron, T. Domingues, J. Grace, E. G. Cosio, F. Limonchi, C. Hopkinson, H. R. da Rocha, and E. Gloor, “Fluvial carbon export from a lowland Amazonian rainforest in relation to atmospheric fluxes,” J. Geophys. Res. Biogeosci. 121, 3001 (2016).

Vodacek, A.

A. Vodacek, N. V. Blough, M. D. DeGrandpre, M. D. DeGrandpre, and R. K. Nelson, “Seasonal variation of CDOM and DOC in the Middle Atlantic Bight: terrestrial inputs and photo oxidation,” Limnol. Oceanogr. 42(4), 674–686 (1997).
[Crossref]

Wagner, T.

R. Pereira, C. Isabella Bovolo, R. G. M. Spencer, P. J. Hernes, E. Tipping, A. Vieth-Hillebrand, N. Pedentchouk, N. A. Chappell, G. Parkin, and T. Wagner, “Mobilization of optically invisible dissolved organic matter in response to rainstorm events in a tropical forest headwater river,” Geophys. Res. Lett. 41(4), 1202–1208 (2014).
[Crossref]

Waldron, S.

L. E. Vihermaa, S. Waldron, T. Domingues, J. Grace, E. G. Cosio, F. Limonchi, C. Hopkinson, H. R. da Rocha, and E. Gloor, “Fluvial carbon export from a lowland Amazonian rainforest in relation to atmospheric fluxes,” J. Geophys. Res. Biogeosci. 121, 3001 (2016).

Ward, N. D.

N. D. Ward, T. S. Bianchi, P. M. Medeiros, M. Seidel, J. E. Richey, R. G. Keil, and H. O. Sawakuchi, “Where carbon goes when water flows: carbon cycling across the aquatic continuum,” Front. Mater. Sci. 4, 7 (2017).

H. O. Sawakuchi, V. Neu, N. D. Ward, M. D. L. C. Barros, A. Valerio, W. Gagne-Maynard, A. C. Cunha, D. Fernanda, J. E. Diniz, D. C. Brito, A. V. Krusche, and J. E. Richey, “Carbon dioxide emissions along the lower Amazon River,” Front. Mater. Sci. 4, 1–12 (2017).

W. C. Gagne-Maynard, N. D. Ward, R. G. Keil, H. O. Sawakuchi, A. C. Da Cunha, V. Neu, D. C. Brito, D. F. Da Silva Less, J. E. M. Diniz, A. M. Valerio, M. Kampel, A. V. Krusche, and J. E. Richey, “Evaluation of primary production in the Lower Amazon River based on a dissolved oxygen stable isotopic mass balance,” Front. Mater. Sci. 4, 1–12 (2017).

M. Seidel, T. Dittmar, N. D. Ward, A. V. Krusche, J. E. Richey, P. L. Yager, and P. M. Medeiros, “Seasonal and spatial variability of dissolved organic matter composition in the lower Amazon River,” Biogeochemistry 131(3), 281–302 (2016).
[Crossref]

N. D. Ward, T. S. Bianchi, H. O. Sawakuchi, W. Gagne-Maynard, A. C. Cunha, D. C. Brito, V. Neu, A. M. Valerio, R. da Silva, A. V. Krusche, J. E. Richey, and R. G. Keil, “The reactivity of plant-derived organic matter and the potential importance of priming effects along the lower Amazon River,” J. Geophys. Res. Biogeosci. 121, 1–18 (2016).

P. M. Medeiros, M. Seidel, N. D. Ward, E. J. Carpenter, H. R. Gomes, J. Niggemann, A. V. Krusche, J. E. Richey, P. L. Yager, and T. Dittmar, “Fate of the Amazon River dissolved organic matter in the tropical Atlantic Ocean,” Global Biogeochem. Cycles 29(5), 677 (2015).
[Crossref]

M. Seidel, P. L. Yager, N. D. Ward, E. J. Carpenter, H. R. Gomes, A. V. Krusche, J. E. Richey, T. Dittmar, and P. M. Medeiros, “Molecular-level changes of dissolved organic matter along the Amazon River-to-ocean continuum,” Mar. Chem. 177, 218–231 (2015).
[Crossref]

H. O. Sawakuchi, D. Bastviken, A. O. Sawakuchi, N. D. Ward, C. D. Borges, S. M. Tsai, J. E. Richey, V. M. Ballester, and A. V. Krusche, “Oxidative mitigation of aquatic methane emissions in large Amazonian rivers,” Glob. Change Biol. 1, 1075 (2015).

N. D. Ward, A. V. Krusche, H. O. Sawakuchi, D. C. Brito, A. C. Cunha, J. M. S. Moura, R. da Silva, P. L. Yager, R. G. Keil, and J. E. Richey, “The compositional evolution of dissolved and particulate organic matter along the lower Amazon River-Óbidos to the ocean,” Mar. Chem. 177, 244–256 (2015).
[Crossref]

N. D. Ward, R. G. Keil, P. M. Medeiros, D. C. Brito, A. C. Cunha, T. Dittmar, P. L. Yager, A. V. Krusche, and J. E. Richey, “Degradation of terrestrially derived macromolecules in the Amazon River,” Nat. Geosci. 6(7), 530–533 (2013).
[Crossref]

N. D. Ward, H. O. Sawakuchi, V. Neu, D. F. S. Less, A. M. Valerio, A. C. Cunha, M. Kampel, T. S. Bianchi, A. V. Krusche, J. E. Richey, and R. G. Keil, “Velocity-amplified microbial respiration rates in the lower Amazon River,” Limnol. Oceanogr. Lett., (in press).

Weiss, R.

R. Weiss, “Carbon dioxide in water and seawater: the solubility of a non-ideal gas,” Mar. Chem. 2(3), 203–215 (1974).
[Crossref]

Weyhenmeyer, G. A.

B. Koehler, T. Landelius, G. A. Weyhenmeyer, N. Machida, and L. J. Tranvik, “Sunlight-induced carbon dioxide emissions from inland waters,” Global Biogeochem. Cycles 28(7), 696–711 (2014).
[Crossref]

Yager, P. L.

M. Seidel, T. Dittmar, N. D. Ward, A. V. Krusche, J. E. Richey, P. L. Yager, and P. M. Medeiros, “Seasonal and spatial variability of dissolved organic matter composition in the lower Amazon River,” Biogeochemistry 131(3), 281–302 (2016).
[Crossref]

M. Seidel, P. L. Yager, N. D. Ward, E. J. Carpenter, H. R. Gomes, A. V. Krusche, J. E. Richey, T. Dittmar, and P. M. Medeiros, “Molecular-level changes of dissolved organic matter along the Amazon River-to-ocean continuum,” Mar. Chem. 177, 218–231 (2015).
[Crossref]

P. M. Medeiros, M. Seidel, N. D. Ward, E. J. Carpenter, H. R. Gomes, J. Niggemann, A. V. Krusche, J. E. Richey, P. L. Yager, and T. Dittmar, “Fate of the Amazon River dissolved organic matter in the tropical Atlantic Ocean,” Global Biogeochem. Cycles 29(5), 677 (2015).
[Crossref]

N. D. Ward, A. V. Krusche, H. O. Sawakuchi, D. C. Brito, A. C. Cunha, J. M. S. Moura, R. da Silva, P. L. Yager, R. G. Keil, and J. E. Richey, “The compositional evolution of dissolved and particulate organic matter along the lower Amazon River-Óbidos to the ocean,” Mar. Chem. 177, 244–256 (2015).
[Crossref]

N. D. Ward, R. G. Keil, P. M. Medeiros, D. C. Brito, A. C. Cunha, T. Dittmar, P. L. Yager, A. V. Krusche, and J. E. Richey, “Degradation of terrestrially derived macromolecules in the Amazon River,” Nat. Geosci. 6(7), 530–533 (2013).
[Crossref]

A. Subramaniam, P. L. Yager, E. J. Carpenter, C. Mahaffey, K. Björkman, S. Cooley, A. B. Kustka, J. P. Montoya, S. A. Sañudo-Wilhelmy, R. Shipe, and D. G. Capone, “Amazon River enhances diazotrophy and carbon sequestration in the tropical North Atlantic Ocean,” Proc. Natl. Acad. Sci. U.S.A. 105(30), 10460–10465 (2008).
[Crossref] [PubMed]

Yu, P.

Y. Bai, W.-J. Cai, X. He, W. Zhai, D. Pan, M. Dai, and P. Yu, “A mechanistic semi-analytical method for remotely sensing sea surface pCO2 in river-dominated coastal oceans: A case study from the East China Sea,” J. Geophys. Res. Oceans 120(3), 2331 (2015).
[Crossref]

Zha, Y.

C. Le, Y. Li, Y. Zha, D. Sun, C. Huang, and H. Lu, “A four-band semi-analytical model for estimating chlorophyll a in highly turbid lakes: The case of Taihu Lake, China,” Remote Sens. Environ. 113, 1175 (2009).

Zhai, W.

Y. Bai, W.-J. Cai, X. He, W. Zhai, D. Pan, M. Dai, and P. Yu, “A mechanistic semi-analytical method for remotely sensing sea surface pCO2 in river-dominated coastal oceans: A case study from the East China Sea,” J. Geophys. Res. Oceans 120(3), 2331 (2015).
[Crossref]

Y. Zhu, S. Shang, W. Zhai, and M. Dai, “Satellite-derived surface water pCO2 and air-sea CO2 fluxes in the northern South China Sea in summer,” Prog. Nat. Sci. 19(6), 775–779 (2009).
[Crossref]

Zhu, Y.

Y. Zhu, S. Shang, W. Zhai, and M. Dai, “Satellite-derived surface water pCO2 and air-sea CO2 fluxes in the northern South China Sea in summer,” Prog. Nat. Sci. 19(6), 775–779 (2009).
[Crossref]

Zibordi, G.

F. Mélin, V. Vantrepotte, M. Clerici, D. D’Alimonte, G. Zibordi, J. F. Berthon, and E. Canuti, “Multi-sensor satellite time series of optical properties and chlorophyll-a concentration in the Adriatic Sea,” Prog. Oceanogr. 91(3), 229–244 (2011).
[Crossref]

Zika, R. G.

C. D. Clark, W. T. Hiscock, F. J. Millero, G. Hitchcock, L. Brand, W. L. Miller, L. Ziolkowski, R. F. Chen, and R. G. Zika, “CDOM distribution and CO2 production on the Southwest Florida Shelf,” Mar. Chem. 89(1-4), 145–167 (2004).
[Crossref]

Ziolkowski, L.

C. D. Clark, W. T. Hiscock, F. J. Millero, G. Hitchcock, L. Brand, W. L. Miller, L. Ziolkowski, R. F. Chen, and R. G. Zika, “CDOM distribution and CO2 production on the Southwest Florida Shelf,” Mar. Chem. 89(1-4), 145–167 (2004).
[Crossref]

Annu. Rev. Mar. Sci. (1)

N. B. Nelson and D. A. Siegel, “The global distribution and dynamics of chromophoric dissolved organic matter,” Annu. Rev. Mar. Sci. 5(1), 447–476 (2013).
[Crossref] [PubMed]

Appl. Opt. (1)

Biogeochemistry (2)

V. Neu, C. Neill, and A. V. Krusche, “Gaseous and fluvial carbon export from an Amazon forest watershed,” Biogeochemistry 105(1-3), 133–147 (2011).
[Crossref]

M. Seidel, T. Dittmar, N. D. Ward, A. V. Krusche, J. E. Richey, P. L. Yager, and P. M. Medeiros, “Seasonal and spatial variability of dissolved organic matter composition in the lower Amazon River,” Biogeochemistry 131(3), 281–302 (2016).
[Crossref]

Biogeosciences (1)

H. Marotta, C. M. Duarte, L. Pinho, and A. Enrich-Prast, “Rainfall leads to increased pCO2 in Brazilian coastal lakes,” Biogeosciences 7(5), 1607–1614 (2010).
[Crossref]

Biogeosciences Discuss. (1)

L. Pinho, C. M. Duarte, H. Marotta, and A. Enrich-Prast, “Temperature-dependence of the relationship between pCO2 and dissolved organic carbon in lakes,” Biogeosciences Discuss. 12(3), 2787–2808 (2015).
[Crossref]

Cont. Shelf Res. (1)

O. Nikiema, J. Devenon, and M. Baklouti, “Numerical modeling of the Amazon River plume,” Cont. Shelf Res. 27(7), 873–899 (2007).
[Crossref]

Ecol. Indic. (1)

K. Dörnhöfer and N. Oppelt, “Remote sensing for lake research and monitoring – Recent advances,” Ecol. Indic. 64, 105–122 (2016).
[Crossref]

Environ. Res. Lett. (1)

J. C. Espinoza, J. A. Marengo, J. Ronchail, J. M. Carpio, L. N. Flores, and J. L. Guyot, “The extreme 2014 flood in south-western Amazon basin: the role of tropical-subtropical South Atlantic SST gradient,” Environ. Res. Lett. 9(12), 124007 (2014).
[Crossref]

Front. Mater. Sci. (3)

N. D. Ward, T. S. Bianchi, P. M. Medeiros, M. Seidel, J. E. Richey, R. G. Keil, and H. O. Sawakuchi, “Where carbon goes when water flows: carbon cycling across the aquatic continuum,” Front. Mater. Sci. 4, 7 (2017).

H. O. Sawakuchi, V. Neu, N. D. Ward, M. D. L. C. Barros, A. Valerio, W. Gagne-Maynard, A. C. Cunha, D. Fernanda, J. E. Diniz, D. C. Brito, A. V. Krusche, and J. E. Richey, “Carbon dioxide emissions along the lower Amazon River,” Front. Mater. Sci. 4, 1–12 (2017).

W. C. Gagne-Maynard, N. D. Ward, R. G. Keil, H. O. Sawakuchi, A. C. Da Cunha, V. Neu, D. C. Brito, D. F. Da Silva Less, J. E. M. Diniz, A. M. Valerio, M. Kampel, A. V. Krusche, and J. E. Richey, “Evaluation of primary production in the Lower Amazon River based on a dissolved oxygen stable isotopic mass balance,” Front. Mater. Sci. 4, 1–12 (2017).

Geophys. Res. Lett. (3)

S. E. Lohrenz and W. J. Cai, “Satellite ocean color assessment of air-sea fluxes of CO2 in a river-dominated coastal margin,” Geophys. Res. Lett. 33(1), L01601 (2006).
[Crossref]

R. Pereira, C. Isabella Bovolo, R. G. M. Spencer, P. J. Hernes, E. Tipping, A. Vieth-Hillebrand, N. Pedentchouk, N. A. Chappell, G. Parkin, and T. Wagner, “Mobilization of optically invisible dissolved organic matter in response to rainstorm events in a tropical forest headwater river,” Geophys. Res. Lett. 41(4), 1202–1208 (2014).
[Crossref]

C. G. Fichot and R. Benner, “A novel method to estimate DOC concentrations from CDOM absorption coefficients in coastal waters,” Geophys. Res. Lett. 38(3), 1–5 (2011).
[Crossref]

Glob. Change Biol. (1)

H. O. Sawakuchi, D. Bastviken, A. O. Sawakuchi, N. D. Ward, C. D. Borges, S. M. Tsai, J. E. Richey, V. M. Ballester, and A. V. Krusche, “Oxidative mitigation of aquatic methane emissions in large Amazonian rivers,” Glob. Change Biol. 1, 1075 (2015).

Global Biogeochem. Cycles (7)

P. M. Medeiros, M. Seidel, N. D. Ward, E. J. Carpenter, H. R. Gomes, J. Niggemann, A. V. Krusche, J. E. Richey, P. L. Yager, and T. Dittmar, “Fate of the Amazon River dissolved organic matter in the tropical Atlantic Ocean,” Global Biogeochem. Cycles 29(5), 677 (2015).
[Crossref]

S. Kosten, F. Roland, D. M. L. Da Motta Marques, E. H. Van Nes, N. Mazzeo, L. D. S. L. Sternberg, M. Scheffer, and J. J. Cole, “Climate-dependent CO2 emissions from lakes,” Global Biogeochem. Cycles 24(2), 1–7 (2010).
[Crossref]

S. Larsen, T. Andersen, and D. O. Hessen, “The pCO2 in boreal lakes: Organic carbon as a universal predictor?” Global Biogeochem. Cycles 25(2), 1–8 (2011).
[Crossref]

S. Sobek, L. J. Tranvik, and J. J. Cole, “Temperature independence of carbon dioxide supersaturation in global lakes,” Global Biogeochem. Cycles 19(2), 1–10 (2005).
[Crossref]

R. Lauerwald, G. Laruelle, J. Hartmann, P. Ciais, and P. A. G. Regnier, “Spatial patterns in CO2 evasion from the global river network,” Global Biogeochem. Cycles 29(5), 534 (2015).
[Crossref]

B. Koehler, T. Landelius, G. A. Weyhenmeyer, N. Machida, and L. J. Tranvik, “Sunlight-induced carbon dioxide emissions from inland waters,” Global Biogeochem. Cycles 28(7), 696–711 (2014).
[Crossref]

P. Moreira-Turcq, M. P. Bonnet, M. Amorim, M. Bernardes, C. Lagane, L. Maurice, M. Perez, and P. Seyler, “Seasonal variability in concentration, composition, age, and fluxes of particulate organic carbon exchanged between the floodplain and Amazon River,” Global Biogeochem. Cycles 27(1), 119–130 (2013).
[Crossref]

Hydrol. Processes (1)

M. S. Johnson, J. Lehmann, E. C. Selva, M. Abdo, S. Riha, and E. G. Couto, “Organic carbon fluxes within and streamwater exports from headwater catchments in the southern Amazon,” Hydrol. Processes 20(12), 2599–2614 (2006).
[Crossref]

Inland Waters (1)

M. Fontes, H. Marotta, S. MacIntyre, and M. Petrucio, “Inter- and intra-annual variations of pCO2 and pO2 in a freshwater subtropical coastal lake,” Inland Waters 5(2), 107–116 (2015).
[Crossref]

Int. J. Climatol. (1)

J. A. Marengo and J. C. Espinoza, “Extreme seasonal droughts and floods in Amazonia: Causes, trends and impacts,” Int. J. Climatol. 36(3), 1033–1050 (2016).
[Crossref]

Int. J. Remote Sens. (1)

T. Kutser, G. Casal Pascual, C. Barbosa, B. Paavel, R. Ferreira, L. Carvalho, and K. Toming, “Mapping inland water carbon content with Landsat 8 data,” Int. J. Remote Sens. 37(13), 2950–2961 (2016).
[Crossref]

J. Geophys. Res. (2)

M. Babin, “Variations in the light absorption coefficients of phytoplankton, nonalgal particles, and dissolved organic matter in coastal waters around Europe,” J. Geophys. Res. 108(C7), 3211 (2003).
[Crossref]

A. Mannino, M. E. Russ, and S. B. Hooker, “Algorithm development and validation for satellite-derived distributions of DOC and CDOM in the U.S. Middle Atlantic Bight,” J. Geophys. Res. 113(C7), C07051 (2008).
[Crossref]

J. Geophys. Res. Biogeosci. (5)

R. G. M. Spencer, K. D. Butler, and G. R. Aiken, “Dissolved organic carbon and chromophoric dissolved organic matter properties of rivers in the USA,” J. Geophys. Res. Biogeosci. 117, G03001 (2012).

J. F. Lapierre and P. A. Del Giorgio, “Geographical and environmental drivers of regional differences in the lake pCO2 versus DOC relationship across northern landscapes,” J. Geophys. Res. Biogeosci. 117, 1–10 (2012).

C. M. Rudorff, J. M. Melack, S. MacIntyre, C. C. F. Barbosa, and E. M. L. M. Novo, “Seasonal and spatial variability of CO2 emission from a large floodplain lake in the lower Amazon,” J. Geophys. Res. Biogeosci. 116, 1–12 (2011).

L. E. Vihermaa, S. Waldron, T. Domingues, J. Grace, E. G. Cosio, F. Limonchi, C. Hopkinson, H. R. da Rocha, and E. Gloor, “Fluvial carbon export from a lowland Amazonian rainforest in relation to atmospheric fluxes,” J. Geophys. Res. Biogeosci. 121, 3001 (2016).

N. D. Ward, T. S. Bianchi, H. O. Sawakuchi, W. Gagne-Maynard, A. C. Cunha, D. C. Brito, V. Neu, A. M. Valerio, R. da Silva, A. V. Krusche, J. E. Richey, and R. G. Keil, “The reactivity of plant-derived organic matter and the potential importance of priming effects along the lower Amazon River,” J. Geophys. Res. Biogeosci. 121, 1–18 (2016).

J. Geophys. Res. Oceans (1)

Y. Bai, W.-J. Cai, X. He, W. Zhai, D. Pan, M. Dai, and P. Yu, “A mechanistic semi-analytical method for remotely sensing sea surface pCO2 in river-dominated coastal oceans: A case study from the East China Sea,” J. Geophys. Res. Oceans 120(3), 2331 (2015).
[Crossref]

J. Hydrol. (Amst.) (1)

S. W. Correa, R. C. D. de Paiva, J. C. Espinoza, and W. Collischonn, “Multi-decadal Hydrological Retrospective: Case study of Amazon floods and droughts,” J. Hydrol. (Amst.) 549, 667 (2017).

Limnol. Oceanogr. (6)

F. P. Danhiez, V. Vantrepotte, A. Cauvin, E. Lebourg, and H. Loisel, “Optical properties of chromophoric dissolved organic matter during a phytoplankton bloom. Implication for DOC estimates from CDOM absorption,” Limnol. Oceanogr. 62(4), 1409–1425 (2017).
[Crossref]

A. Vodacek, N. V. Blough, M. D. DeGrandpre, M. D. DeGrandpre, and R. K. Nelson, “Seasonal variation of CDOM and DOC in the Middle Atlantic Bight: terrestrial inputs and photo oxidation,” Limnol. Oceanogr. 42(4), 674–686 (1997).
[Crossref]

C. G. Fichot and R. Benner, “The spectral slope coefficient of chromophoric dissolved organic matter (S275-295) as a tracer of terrigenous dissolved organic carbon in river-influenced ocean margins,” Limnol. Oceanogr. 57(5), 1453–1466 (2012).
[Crossref]

E. E. Ellis, J. E. Richey, A. K. Aufdenkampe, A. V. Krusche, P. D. Quay, C. Salimon, and H. B. da Cunha, “Factors controlling water-column respiration in rivers of the central and southwestern Amazon Basin,” Limnol. Oceanogr. 57(2), 527–540 (2012).
[Crossref]

A. Bricaud, A. Morel, and L. Prieur, “Absorption by dissolved organic matter of the sea (yellow substance) in the UV and visible domains,” Limnol. Oceanogr. 26(1), 43–53 (1981).
[Crossref]

J. R. Helms, A. Stubbins, J. D. Ritchie, E. C. Minor, D. J. Kieber, and K. Mopper, “Absorption spectral slopes and slope ratios as indicators of molecular weight, source, and photobleaching of chromophoric dissolved organic matter,” Limnol. Oceanogr. 53(3), 955–969 (2008).
[Crossref]

Limnology (1)

H. Marotta, L. T. Paiva, and M. M. Petrucio, “Changes in thermal and oxygen stratification pattern coupled to CO2 outgassing persistence in two oligotrophic shallow lakes of the Atlantic Tropical Forest, Southeast Brazil,” Limnology 10(3), 195–202 (2009).
[Crossref]

Mar. Chem. (6)

R. Weiss, “Carbon dioxide in water and seawater: the solubility of a non-ideal gas,” Mar. Chem. 2(3), 203–215 (1974).
[Crossref]

C. D. Clark, W. T. Hiscock, F. J. Millero, G. Hitchcock, L. Brand, W. L. Miller, L. Ziolkowski, R. F. Chen, and R. G. Zika, “CDOM distribution and CO2 production on the Southwest Florida Shelf,” Mar. Chem. 89(1-4), 145–167 (2004).
[Crossref]

M. Seidel, P. L. Yager, N. D. Ward, E. J. Carpenter, H. R. Gomes, A. V. Krusche, J. E. Richey, T. Dittmar, and P. M. Medeiros, “Molecular-level changes of dissolved organic matter along the Amazon River-to-ocean continuum,” Mar. Chem. 177, 218–231 (2015).
[Crossref]

R. F. Chen and G. B. Gardner, “High-resolution measurements of chromophoric dissolved organic matter in the Mississippi and Atchafalaya River plume regions,” Mar. Chem. 89(1-4), 103–125 (2004).
[Crossref]

G. M. Ferrari, M. D. Dowell, S. Grossi, and C. Targa, “Relationship between the optical properties of chromophoric dissolved organic matter and total concentration of dissolved organic carbon in the southern Baltic Sea region,” Mar. Chem. 55(3-4), 299–316 (1996).
[Crossref]

N. D. Ward, A. V. Krusche, H. O. Sawakuchi, D. C. Brito, A. C. Cunha, J. M. S. Moura, R. da Silva, P. L. Yager, R. G. Keil, and J. E. Richey, “The compositional evolution of dissolved and particulate organic matter along the lower Amazon River-Óbidos to the ocean,” Mar. Chem. 177, 244–256 (2015).
[Crossref]

Nat. Geosci. (2)

T. J. Battin, L. A. Kaplan, S. Findlay, C. S. Hopkinson, E. Marti, A. I. Packman, J. D. Newbold, and F. Sabater, “Biophysical controls on organic carbon fluxes in fluvial networks,” Nat. Geosci. 2(8), 595 (2009).
[Crossref]

N. D. Ward, R. G. Keil, P. M. Medeiros, D. C. Brito, A. C. Cunha, T. Dittmar, P. L. Yager, A. V. Krusche, and J. E. Richey, “Degradation of terrestrially derived macromolecules in the Amazon River,” Nat. Geosci. 6(7), 530–533 (2013).
[Crossref]

Nature (2)

J. E. Richey, J. M. Melack, A. K. Aufdenkampe, V. M. Ballester, and L. L. Hess, “Outgassing from Amazonian rivers and wetlands as a large tropical source of atmospheric CO2,” Nature 416(6881), 617–620 (2002).
[Crossref] [PubMed]

G. Abril, J.-M. Martinez, L. F. Artigas, P. Moreira-Turcq, M. F. Benedetti, L. Vidal, T. Meziane, J.-H. Kim, M. C. Bernardes, N. Savoye, J. Deborde, E. L. Souza, P. Albéric, M. F. Landim de Souza, and F. Roland, “Amazon River carbon dioxide outgassing fuelled by wetlands,” Nature 505(7483), 395–398 (2014).
[Crossref] [PubMed]

Opt. Express (1)

Proc. Natl. Acad. Sci. U.S.A. (1)

A. Subramaniam, P. L. Yager, E. J. Carpenter, C. Mahaffey, K. Björkman, S. Cooley, A. B. Kustka, J. P. Montoya, S. A. Sañudo-Wilhelmy, R. Shipe, and D. G. Capone, “Amazon River enhances diazotrophy and carbon sequestration in the tropical North Atlantic Ocean,” Proc. Natl. Acad. Sci. U.S.A. 105(30), 10460–10465 (2008).
[Crossref] [PubMed]

Prog. Nat. Sci. (1)

Y. Zhu, S. Shang, W. Zhai, and M. Dai, “Satellite-derived surface water pCO2 and air-sea CO2 fluxes in the northern South China Sea in summer,” Prog. Nat. Sci. 19(6), 775–779 (2009).
[Crossref]

Prog. Oceanogr. (2)

B. Hales, P. G. Strutton, M. Saraceno, R. Letelier, T. Takahashi, R. Feely, C. Sabine, and F. Chavez, “Satellite-based prediction of pCO2 in coastal waters of the eastern North Pacific,” Prog. Oceanogr. 103, 1–15 (2012).
[Crossref]

F. Mélin, V. Vantrepotte, M. Clerici, D. D’Alimonte, G. Zibordi, J. F. Berthon, and E. Canuti, “Multi-sensor satellite time series of optical properties and chlorophyll-a concentration in the Adriatic Sea,” Prog. Oceanogr. 91(3), 229–244 (2011).
[Crossref]

Remote Sens. Environ. (10)

T. S. Moore, M. D. Dowell, S. Bradt, and A. R. Verdu, “An optical water type framework for selecting and blending retrievals from bio-optical algorithms in lakes and coastal waters,” Remote Sens. Environ. 143, 97–111 (2014).
[Crossref] [PubMed]

V. Vantrepotte, H. Loisel, D. Dessailly, and X. Meriaux, “Optical classification of contrasted coastal waters,” Remote Sens. Environ. 123, 306–323 (2012).
[Crossref]

D. Sun, C. Hu, Z. Qiu, J. P. Cannizzaro, and B. B. Barnes, “Influence of a red band-based water classification approach on chlorophyll algorithms for optically complex estuaries,” Remote Sens. Environ. 155, 289–302 (2014).
[Crossref]

C. Le, C. Hu, J. Cannizzaro, D. English, F. Muller-Karger, and Z. Lee, “Evaluation of chlorophyll-a remote sensing algorithms for an optically complex estuary,” Remote Sens. Environ. 129, 75–89 (2013).
[Crossref]

C. Le, Y. Li, Y. Zha, D. Sun, C. Huang, and H. Lu, “A four-band semi-analytical model for estimating chlorophyll a in highly turbid lakes: The case of Taihu Lake, China,” Remote Sens. Environ. 113, 1175 (2009).

A. A. Gitelson, G. Dall’Olmo, W. Moses, D. C. Rundquist, T. Barrow, T. R. Fisher, D. Gurlin, and J. Holz, “A simple semi-analytical model for remote estimation of chlorophyll-a in turbid waters: validation,” Remote Sens. Environ. 112(9), 3582–3593 (2008).
[Crossref]

T. Kutser, C. Verpoorter, B. Paavel, and L. J. Tranvik, “Estimating lake carbon fractions from remote sensing data,” Remote Sens. Environ. 157, 138–146 (2015).
[Crossref]

P. L. Brezonik, L. G. Olmanson, J. C. Finlay, and M. E. Bauer, “Factors affecting the measurement of CDOM by remote sensing of optically complex inland waters,” Remote Sens. Environ. 157, 199–215 (2015).
[Crossref]

E. H. Alcântara, J. L. Stech, J. A. Lorenzzetti, M. P. Bonnet, X. Casamitjana, A. T. Assireu, and E. M. L. D. M. Novo, “Remote sensing of water surface temperature and heat flux over a tropical hydroelectric reservoir,” Remote Sens. Environ. 114(11), 2651–2665 (2010).
[Crossref]

F. Cao, M. Tzortziou, C. Hu, A. Mannino, C. G. Fichot, R. Del Vecchio, R. G. Najjar, and M. Novak, “Remote sensing retrievals of colored dissolved organic matter and dissolved organic carbon dynamics in North American estuaries and their margins,” Remote Sens. Environ. 205, 151–165 (2018).
[Crossref]

Sci. Rep. (1)

J. C. Jiménez-Muñoz, C. Mattar, J. Barichivich, A. Santamaría-Artigas, K. Takahashi, Y. Malhi, J. A. Sobrino, and G. Schrier, “Record-breaking warming and extreme drought in the Amazon rainforest during the course of El Niño 2015-2016,” Sci. Rep. 6(1), 33130 (2016).
[Crossref] [PubMed]

Sci. Total Environ. (1)

M. P. Curtarelli, I. Ogashawara, C. A. S. de Araújo, J. A. Lorenzzetti, J. A. D. Leão, E. Alcântara, and J. L. Stech, “Carbon dioxide emissions from Tucuruí reservoir (Amazon biome): New findings based on three-dimensional ecological model simulations,” Sci. Total Environ. 551-552, 676–694 (2016).
[Crossref] [PubMed]

Wiley Interdiscip. Rev. Water (1)

S. J. Dugdale, “A practitioner’s guide to thermal infrared remote sensing of rivers and streams: recent advances, precautions and considerations,” Wiley Interdiscip. Rev. Water 3(2), 251–268 (2016).
[Crossref]

Other (7)

R. N. Handcock, C. E. Torgersen, K. A. Cherkauer, A. R. Gillespie, K. Tockner, R. N. Faux, and J. Tan, “Thermal infrared remote sensing of water temperature in riverine landscapes,” in Fluvial Remote Sensing. Science and. Management, P. E. Carbonneau and H. Piégay, eds (Wiley-Blackwell, 2012).

R. G. Wetzel and G. E. Likens, Limnological Analyses (Springer Science and Business Media, 2000).

N. D. Ward, H. O. Sawakuchi, V. Neu, D. F. S. Less, A. M. Valerio, A. C. Cunha, M. Kampel, T. S. Bianchi, A. V. Krusche, J. E. Richey, and R. G. Keil, “Velocity-amplified microbial respiration rates in the lower Amazon River,” Limnol. Oceanogr. Lett., (in press).

A. C. da Cunha and L. S. L. Sternberg, “Using stable isotopes 18 O and 2 H of lake water and biogeochemical analysis to identify factors affecting water quality in four estuarine Amazonian shallow lakes,” Hydrol. Processes., (in press).

J. E. Richey, A. V. Krusche, M. S. Johnson, H. B. Da Cunha, and M. V. Ballester, “The role of rivers in the regional carbon balance,” in Amazonia and Global Change, M. Keller, M. Bustamante, J. Gash and P. Silva Dias, eds. (American Geophysical Union, 2013).

H. Sioli, The Amazon. Limnology and Landscape Ecology of a Mighty Tropical River and its Basin (Springer Netherlands, 1984).

B. G. Mitchell, M. Kahru, J. Wieland, and M. Stramska, “Determination of spectral absorption coefficients of particles, dissolved material and phytoplankton for discrete water samples,” in Ocean Optics Protocols for Satellite Ocean Color Sensor Validation, G. S. Fargion and J. L. Mueller, eds. (NASA Goddard Space Flight Center, 2003).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 a) Field campaigns (T stands for time of each campaign: T1-T6:); b) Seasonal discharge of the Amazon River during the studied period (2014-2017). Discharge data acquired from Óbidos Station (National Water Agency of Brazil, ANA).
Fig. 2
Fig. 2 Spatial distribution of biogeochemical parameters along the Amazon mainstream. The parameters were averaged for each station per season. The first station is at Óbidos (~900 km from the mouth). The middle of the transect is at Almeirim (~450 km from the mouth). The transect ends at the Amazon mouth, in Macapá, and T5 and T6 were sampled at the river mouth only.
Fig. 3
Fig. 3 a) Direct relationship between aCDOM(412) and [DOC] for: a) All data from the Lower Amazon (N = 80; R2 = 0.17, p<0.05); b) Amazon River (T1-T3, T5), (N = 42, R2 = 0.74, p<0.05) and CW rivers (N = 13, R2 = 0.57, p<0.05); c) Scatter plot of estimated [DOC] as a function of the direct relationship of in situ [DOC] and aCDOM(412) (Amazon River: N = 42, R2 = 0.74, RMSE = 14, Bias = −0.2; MRAD = 4; CW rivers: N = 13, R2 = 0.57, RMSE = 71, Bias = −8; MRAD = 26). Data from T4 and T6 (N = 25) are not showed in a separated panel due the absence of significant direct CDOM-DOC relationship. Solid lines represent 1:1 line and dashed lines represent the 20% error lines.
Fig. 4
Fig. 4 a) Relationship between S275-295 and a*CDOM(412) for Amazon River (T1-T3, T5), clearwater rivers and T4, T6 Amazon samples (N = 80, R2 = 0.26, p<0.05), and zoom for the relationship between aCDOM(412) and S275-295 for T4, T6 Amazon samples (N = 25), Vantrepotte et al. [25] fit for comparison; b) Estimated a*CDOM(412) (S275-295 method) as a function of the measured a*CDOM(412) for Amazon + clearwater rivers (N = 55, R2 = 0.58, p<0.05, RMSE = 0.002, Bias = −3; MRAD = 13), and for T4, T6 Amazon samples (N = 25, R2 = 0.78, p<0.05, RMSE = 0.0004, Bias = 0.001; MRAD = 0.016) in log10 scale; c) Estimated [DOC] as a function of the a*CDOM(412) and S275-295 for Amazon + clearwater rivers (N = 55, R2 = 0.54, p<0.05, RMSE = 41, Bias = 0.16; MRAD = 13), and for T4, T6 Amazon samples (N = 25, R2 = 0.58, p<0.05, RMSE = 19, Bias = −0.33; MRAD = 4) in log10 scale. Solid lines represent 1:1 line and dashed lines represents the 20% error lines.
Fig. 5
Fig. 5 Relationship between aCDOM(412) and S275-295 for all sampling campaigns (N = 80, R2 = 0.85, p<0.05).
Fig. 6
Fig. 6 a) DOC-pCO2 linear relationship (N = 69, R2 = 0.04, p>0.05) and; b) aCDOM(412)-pCO2 linear relationship (N = 69, R2 = 0.65, p<0.05) in the Lower Amazon region.
Fig. 7
Fig. 7 Estimative of pCO2 for different sampling seasons, clearwater and Amazon River: a) Estimated pCO2 as a function of the aCDOM(412) (N = 69, R2 = 0.65, p<0.05, RMSE = 979 ppm, Bias = −9, MRAD = 40, pCO2 = 1240 * aCDOM(412) −1845); b) Estimated pCO2 as a function of aCDOM(412) and temperature (N = 69, R2 = 0.80, RMSE = 757 ppm, Bias = −13, MRAD = 26); c) Estimated pCO2 as a function of aCDOM(412) and chl-a (N = 69, R2 = 0.72, RMSE = 875 ppm, Bias = −11, MRAD = 32); d) Estimated pCO2 as a function of temperature and chl-a (N = 69, R2 = 0.54, RMSE = 1136 ppm, Bias = −16, MRAD = 39). All the figures are in log10 scale. Solid lines represent 1:1 line and dashed lines represent the 20% error lines.

Tables (5)

Tables Icon

Table 1 Dates of sampling campaigns during the years of 2014-2017 and the respective season.

Tables Icon

Table 2 General statistics (maximum, minimum, mean, standard deviation – SD, and coefficient of variation - CV) for clearwater (CW) and Amazon River stations considering all sampling periods (2014-2017).

Tables Icon

Table 3 Average of parameters ( ± standard deviation) for each sampling campaign for the clearwaters (CW) and Amazon River (Am) samples.

Tables Icon

Table 4 Expressions and coefficients for the relationship a*CDOM(412) vs S275-295, S275-295 vs aCDOM(412) and aCDOM(412) vs DOC (Am – Amazon samples; CW – clearwater samples).

Tables Icon

Table 5 Simple regression models describing the relationship of pCO2 and CDOM, temperature (T) and chl-a at the Lower Amazon.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

a CDOM =2.303A( λ )/L
a CDOM ( λ )= a CDOM ( λ 0 ) e s( λ λ 0 )
RMSE= i=1 N ( y i x i ) 2 N
MRAD=100 1 N i=1 N | y i x i | x i
Bias=100 1 N i=1 N y i x i x i
pC O 2 =a( a CDOM ( 412 ) 2 )+b a CDOM ( 412 )+c+d( T 2 )+eT+f( a CDOM ( 412 )T )

Metrics