Abstract

III-Nitride nanowires (NWs) have recently emerged as potential photoelectrodes for efficient solar hydrogen generation. While InGaN NWs epitaxy over silicon is required for high crystalline quality and economic production, it leads to the formation of the notorious silicon nitride insulating interface as well as low electrical conductivity which both impede excess charge carrier dynamics and overall device performance. We tackle this issue by developing, for the first time, a substrate-free InGaN NWs membrane photoanodes, through liftoff and transfer techniques, where excess charge carriers are efficiently extracted from the InGaN NWs through a proper ohmic contact formed with a high electrical conductivity metal stack membrane. As a result, compared to conventional InGaN NWs on silicon, the fabricated free-standing flexible membranes showed a 10-fold increase in the generated photocurrent as well as a 0.8 V cathodic shift in the onset potential. Through electrochemical impedance spectroscopy, accompanied with TEM-based analysis, we further demonstrated the detailed enhancement within excess charge carrier dynamics of the photoanode membranes. This novel configuration in photoelectrodes demonstrates a novel pathway for enhancing the performance of III-nitrides photoelectrodes to accelerate their commercialization for solar water splitting.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Optical enhancement of a printed organic tandem solar cell using diffractive nanostructures

Jan A. Mayer, Ton Offermans, Marek Chrapa, Martin Pfannmöller, Sara Bals, Rolando Ferrini, and Giovanni Nisato
Opt. Express 26(6) A240-A250 (2018)

Metal germanides for practical on-chip plasmonics in the mid infrared

Evan M. Smith, William H. Streyer, Nima Nader, Shivashankar Vangala, Gordon Grzybowski, Richard Soref, Daniel Wasserman, and Justin W. Cleary
Opt. Mater. Express 8(4) 968-982 (2018)

Leukemia cells detection based on electroporation assisted surface-enhanced Raman scattering

Yun Yu, Juqiang Lin, Duo Lin, Shangyuan Feng, Weiwei Chen, Zufang Huang, Hao Huang, and Rong Chen
Biomed. Opt. Express 8(9) 4108-4121 (2017)

References

  • View by:
  • |
  • |
  • |

  1. N. Kannan and D. Vakeesan, “Solar energy for future world: - A review,” Renew. Sustain. Energy Rev. 62, 1092–1105 (2016).
    [Crossref]
  2. N. S. Lewis and D. G. Nocera, “Powering the planet: Chemical challenges in solar energy utilization,” Proceedings of the National Academy of Sciences103(2006).
    [Crossref]
  3. T. R. Cook, D. K. Dogutan, S. Y. Reece, Y. Surendranath, T. S. Teets, and D. G. Nocera, “Solar Energy Supply and Storage for the Legacy and Nonlegacy Worlds,” Chem. Rev. 110(11), 6474–6502 (2010).
    [Crossref] [PubMed]
  4. X. Chen, S. Shen, L. Guo, and S. S. Mao, “Semiconductor-based Photocatalytic Hydrogen Generation,” Chem. Rev. 110(11), 6503–6570 (2010).
    [Crossref] [PubMed]
  5. N. Sato, Electrochemistry at Metal and Semiconductor Electrodes (Elsevier Science, 1998), p. 412.
  6. C. Yang, L. Liu, S. Zhu, Z. Yu, X. Xi, S. Wu, H. Cao, J. Li, and L. Zhao, “GaN with Laterally Aligned Nanopores To Enhance the Water Splitting,” J. Phys. Chem. C 121(13), 7331–7336 (2017).
    [Crossref]
  7. M. G. Kibria and Z. Mi, “Artificial photosynthesis using metal/nonmetal-nitride semiconductors: current status, prospects, and challenges,” J. Mater. Chem. A Mater. Energy Sustain. 4(8), 2801–2820 (2016).
    [Crossref]
  8. K. Aryal, B. N. Pantha, J. Li, J. Y. Lin, and H. X. Jiang, “Hydrogen generation by solar water splitting using p-InGaN photoelectrochemical cells,” Appl. Phys. Lett. 96(5), 052110 (2010).
    [Crossref]
  9. K. D. Goodman, V. V. Protasenko, J. Verma, T. H. Kosel, H. G. Xing, and D. Jena, “Green luminescence of InGaN nanowires grown on silicon substrates by molecular beam epitaxy,” J. Appl. Phys. 109(8), 084336 (2011).
    [Crossref]
  10. M. G. Kibria, H. P. T. Nguyen, K. Cui, S. Zhao, D. Liu, H. Guo, M. L. Trudeau, S. Paradis, A.-R. Hakima, and Z. Mi, “One-Step Overall Water Splitting under Visible Light Using Multiband InGaN/GaN Nanowire Heterostructures,” ACS Nano 7(9), 7886–7893 (2013).
    [Crossref] [PubMed]
  11. B. AlOtaibi, H. P. T. Nguyen, S. Zhao, M. G. Kibria, S. Fan, and Z. Mi, “Highly Stable Photoelectrochemical Water Splitting and Hydrogen Generation Using a Double-Band InGaN/GaN Core/Shell Nanowire Photoanode,” Nano Lett. 13(9), 4356–4361 (2013).
    [Crossref] [PubMed]
  12. M. Ebaid, J.-H. Kang, S.-H. Lim, J.-S. Ha, J. K. Lee, Y.-H. Cho, and S.-W. Ryu, “Enhanced solar hydrogen generation of high density, high aspect ratio, coaxial InGaN/GaN multi-quantum well nanowires,” Nano Energy 12, 215–223 (2015).
    [Crossref]
  13. M. Ebaid, J.-H. Kang, S.-H. Lim, Y.-H. Cho, and S.-W. Ryu, “Towards highly efficient photoanodes: the role of carrier dynamics on the photoelectrochemical performance of InGaN/GaN multiple quantum well coaxial nanowires,” RSC Advances 5(30), 23303–23310 (2015).
    [Crossref]
  14. M. Ebaid, J.-H. Kang, and S.-W. Ryu, “Controlled synthesis of GaN-based nanowires for photoelectrochemical water splitting applications,” Semicond. Sci. Technol. 32(1), 013001 (2017).
    [Crossref]
  15. B. Alotaibi, S. Fan, H. P. T. Nguyen, S. Zhao, M. G. Kibria, and Z. Mi, “Photoelectrochemical Water Splitting and Hydrogen Generation Using InGaN/GaN Nanowire Arrays,” in 2014 IEEE Photonics Society Summer Topical Meeting Series, 206–207 (2014).
  16. J.-H. Park, A. Mandal, S. Kang, U. Chatterjee, J. S. Kim, B.-G. Park, M.-D. Kim, K.-U. Jeong, and C.-R. Lee, “Hydrogen Generation using non-polar coaxial InGaN/GaN Multiple Quantum Well Structure Formed on Hollow n-GaN Nanowires,” Sci. Rep. 6(1), 31996 (2016).
    [Crossref] [PubMed]
  17. S. Eftychis, J. Kruse, T. Koukoula, T. Kehagias, P. Komninou, A. Adikimenakis, K. Tsagaraki, M. Androulidaki, P. Tzanetakis, E. Iliopoulos, and A. Georgakilas, “Understanding the effects of Si (111) nitridation on the spontaneous growth and properties of GaN nanowires,” J. Cryst. Growth 442, 8–13 (2016).
    [Crossref]
  18. M. Tchernycheva, C. Sartel, G. Cirlin, L. Travers, G. Patriarche, J. C. Harmand, D. Le Si, J. Renard, B. Gayral, L. Nevou, and F. Julien, “Growth of GaN free-standing nanowires by plasma-assisted molecular beam epitaxy: structural and optical characterization,” Nanotechnology 18(38), 385306 (2007).
    [Crossref]
  19. O. Husberg, A. Khartchenko, D. J. As, H. Vogelsang, T. Frey, D. Schikora, K. Lischka, O. C. Noriega, A. Tabata, and J. R. Leite, “Photoluminescence from quantum dots in cubic GaN/InGaN/GaN double heterostructures,” Appl. Phys. Lett. 79(9), 1243–1245 (2001).
    [Crossref]
  20. M. G. Walter, E. L. Warren, J. R. McKone, S. W. Boettcher, Q. Mi, E. A. Santori, and N. S. Lewis, “Solar Water Splitting Cells,” Chem. Rev. 110(11), 6446–6473 (2010).
    [Crossref] [PubMed]
  21. V. Y. Davydov, Y. E. Kitaev, I. N. Goncharuk, A. N. Smirnov, J. Graul, O. Semchinova, D. Uffmann, M. B. Smirnov, A. P. Mirgorodsky, and R. A. Evarestov, “Phonon dispersion and Raman scattering in hexagonal GaN and AlN,” Phys. Rev. B 58(19), 12899–12907 (1998).
    [Crossref]
  22. S. Hernández, R. Cuscó, D. Pastor, L. Artús, K. P. O’Donnell, R. W. Martin, I. M. Watson, Y. Nanishi, and E. Calleja, “Raman-scattering study of the InGaN alloy over the whole composition range,” J. Appl. Phys. 98(1), 013511 (2005).
    [Crossref]
  23. J. Segura-Ruiz, G. Martínez-Criado, C. Denker, J. Malindretos, and A. Rizzi, “Phase Separation in Single InxGa1-xN Nanowires Revealed through a hard X-ray Synchrotron Nanoprobe,” Nano Lett. 14(3), 1300–1305 (2014).
    [Crossref] [PubMed]
  24. Q. Z. Liu and S. S. Lau, “A review of the metal–GaN contact technology,” Solid-State Electron. 42(5), 677–691 (1998).
    [Crossref]
  25. G. Greco, F. Iucolano, and F. Roccaforte, “Ohmic contacts to Gallium Nitride materials,” Appl. Surf. Sci. 383, 324–345 (2016).
    [Crossref]
  26. A. Motayed, R. Bathe, M. C. Wood, O. S. Diouf, R. D. Vispute, and S. N. Mohammad, “Electrical, thermal, and microstructural characteristics of Ti/Al/Ti/Au multilayer Ohmic contacts to n-type GaN,” J. Appl. Phys. 93(2), 1087–1094 (2003).
    [Crossref]
  27. L. Caccamo, G. Cocco, G. Martín, H. Zhou, S. Fundling, A. Gad, M. S. Mohajerani, M. Abdelfatah, S. Estradé, F. Peiró, W. Dziony, H. Bremers, A. Hangleiter, L. Mayrhofer, G. Lilienkamp, M. Moseler, W. Daum, and A. Waag, “Insights into Interfacial Changes and Photoelectrochemical Stability of InxGa1-xN (0001) Photoanode Surfaces in Liquid Environments,” ACS Appl. Mater. Interfaces 8(12), 8232–8238 (2016).
    [Crossref] [PubMed]
  28. Y. Imazeki, Y. Iwai, A. Nakamura, K. Koike, S.-i. Sato, T. Ohshima, K. Fujii, M. Sugiyama, and Y. Nakano, “Band Alignment at n-GaN/Electrolyte Interface Explored by Photo-Induced Offset of Open-Circuit Potential for Efficient Water Splitting,” ECS Trans. 77(4), 25–30 (2017).
    [Crossref]
  29. L. Caccamo, J. Hartmann, C. Fàbrega, S. Estradé, G. Lilienkamp, J. D. Prades, M. W. G. Hoffmann, J. Ledig, A. Wagner, X. Wang, L. Lopez-Conesa, F. Peiró, J. M. Rebled, H.-H. Wehmann, W. Daum, H. Shen, and A. Waag, “Band Engineered Epitaxial 3D GaN-InGaN Core-Shell Rod Arrays as an Advanced Photoanode for Visible-Light-Driven Water Splitting,” ACS Appl. Mater. Interfaces 6(4), 2235–2240 (2014).
    [Crossref] [PubMed]
  30. J. Kamimura, P. Bogdanoff, M. Ramsteiner, P. Corfdir, F. Feix, L. Geelhaar, and H. Riechert, “p-Type Doping of GaN Nanowires Characterized by Photoelectrochemical Measurements,” Nano Lett. 17(3), 1529–1537 (2017).
    [Crossref] [PubMed]
  31. L. M. Peter, “Semiconductor Electrochemistry,” in Photoelectrochemical Solar Fuel Production, From Basic Principles to Advanced Devices, S. Gimenez and J. Bisquert, eds. (Springer, 2016).
  32. B. AlOtaibi, S. Fan, S. Vanka, M. G. Kibria, and Z. Mi, “A Metal-Nitride Nanowire Dual-Photoelectrode Device for Unassisted Solar-to-Hydrogen Conversion under Parallel Illumination,” Nano Lett. 15(10), 6821–6828 (2015).
    [Crossref] [PubMed]
  33. J. Kang, V. Q. Dang, H. Li, S. Moon, P. Li, Y. Kim, C. Kim, J. Choi, H. Choi, Z. Liu, and H. Lee, “Broadband light-absorption InGaN photoanode assisted by imprint patterning and ZnO nanowire growth for energy conversion,” Nanotechnology 28(4), 045401 (2017).
    [Crossref] [PubMed]
  34. M. Ebaid, D. Priante, G. Liu, C. Zhao, M. Sharizal Alias, U. Buttner, T. Khee Ng, T. Taylor Isimjan, H. Idriss, and B. S. Ooi, “Unbiased photocatalytic hydrogen generation from pure water on stable Ir-treated In0.33Ga0.67N nanorods,” Nano Energy 37, 158–167 (2017).
    [Crossref]
  35. C. Dezhong, X. Hongdi, F. Jiacheng, L. Jianqiang, G. Qingxue, L. Xiangdong, and M. Jin, “Photoelectrochemical water splitting on nanoporous GaN thin films for energy conversion under visible light,” Materials Research Express 4(1), 015019 (2017).
    [Crossref]
  36. W. H. Mulder, J. H. Sluyters, T. Pajkossy, and L. Nyikos, “Tafel current at fractal electrodes: Connection with admittance spectra,” J. Electroanal. Chem. Interfacial Electrochem. 285(1-2), 103–115 (1990).
    [Crossref]
  37. C. A. Schiller and W. Strunz, “The evaluation of experimental dielectric data of barrier coatings by means of different models,” Electrochim. Acta 46(24-25), 3619–3625 (2001).
    [Crossref]
  38. D. Cao, H. Xiao, Q. Gao, X. Yang, C. Luan, H. Mao, J. Liu, and X. Liu, “Fabrication and improved photoelectrochemical properties of a transferred GaN-based thin film with InGaN/GaN layers,” Nanoscale 9(32), 11504–11510 (2017).
    [Crossref] [PubMed]
  39. X. Yang, R. Liu, Y. He, J. Thorne, Z. Zheng, and D. Wang, “Enabling practical electrocatalyst-assisted photoelectron-chemical water splitting with earth abundant materials,” Nano Res. 8(1), 56–81 (2015).
    [Crossref]
  40. S. Hu, M. R. Shaner, J. A. Beardslee, M. Lichterman, B. S. Brunschwig, and N. S. Lewis, “Amorphous TiO2 coatings stabilize Si, GaAs, and GaP photoanodes for efficient water oxidation,” Science 344(6187), 1005–1009 (2014).
    [Crossref] [PubMed]
  41. J. Su, Y. Wei, and L. Vayssieres, “Stability and Performance of Sulfide-, Nitride-, and Phosphide-Based Electrodes for Photocatalytic Solar Water Splitting,” J. Phys. Chem. Lett. 8(20), 5228–5238 (2017).
    [Crossref] [PubMed]

2017 (9)

C. Yang, L. Liu, S. Zhu, Z. Yu, X. Xi, S. Wu, H. Cao, J. Li, and L. Zhao, “GaN with Laterally Aligned Nanopores To Enhance the Water Splitting,” J. Phys. Chem. C 121(13), 7331–7336 (2017).
[Crossref]

M. Ebaid, J.-H. Kang, and S.-W. Ryu, “Controlled synthesis of GaN-based nanowires for photoelectrochemical water splitting applications,” Semicond. Sci. Technol. 32(1), 013001 (2017).
[Crossref]

Y. Imazeki, Y. Iwai, A. Nakamura, K. Koike, S.-i. Sato, T. Ohshima, K. Fujii, M. Sugiyama, and Y. Nakano, “Band Alignment at n-GaN/Electrolyte Interface Explored by Photo-Induced Offset of Open-Circuit Potential for Efficient Water Splitting,” ECS Trans. 77(4), 25–30 (2017).
[Crossref]

J. Kamimura, P. Bogdanoff, M. Ramsteiner, P. Corfdir, F. Feix, L. Geelhaar, and H. Riechert, “p-Type Doping of GaN Nanowires Characterized by Photoelectrochemical Measurements,” Nano Lett. 17(3), 1529–1537 (2017).
[Crossref] [PubMed]

J. Kang, V. Q. Dang, H. Li, S. Moon, P. Li, Y. Kim, C. Kim, J. Choi, H. Choi, Z. Liu, and H. Lee, “Broadband light-absorption InGaN photoanode assisted by imprint patterning and ZnO nanowire growth for energy conversion,” Nanotechnology 28(4), 045401 (2017).
[Crossref] [PubMed]

M. Ebaid, D. Priante, G. Liu, C. Zhao, M. Sharizal Alias, U. Buttner, T. Khee Ng, T. Taylor Isimjan, H. Idriss, and B. S. Ooi, “Unbiased photocatalytic hydrogen generation from pure water on stable Ir-treated In0.33Ga0.67N nanorods,” Nano Energy 37, 158–167 (2017).
[Crossref]

C. Dezhong, X. Hongdi, F. Jiacheng, L. Jianqiang, G. Qingxue, L. Xiangdong, and M. Jin, “Photoelectrochemical water splitting on nanoporous GaN thin films for energy conversion under visible light,” Materials Research Express 4(1), 015019 (2017).
[Crossref]

D. Cao, H. Xiao, Q. Gao, X. Yang, C. Luan, H. Mao, J. Liu, and X. Liu, “Fabrication and improved photoelectrochemical properties of a transferred GaN-based thin film with InGaN/GaN layers,” Nanoscale 9(32), 11504–11510 (2017).
[Crossref] [PubMed]

J. Su, Y. Wei, and L. Vayssieres, “Stability and Performance of Sulfide-, Nitride-, and Phosphide-Based Electrodes for Photocatalytic Solar Water Splitting,” J. Phys. Chem. Lett. 8(20), 5228–5238 (2017).
[Crossref] [PubMed]

2016 (6)

L. Caccamo, G. Cocco, G. Martín, H. Zhou, S. Fundling, A. Gad, M. S. Mohajerani, M. Abdelfatah, S. Estradé, F. Peiró, W. Dziony, H. Bremers, A. Hangleiter, L. Mayrhofer, G. Lilienkamp, M. Moseler, W. Daum, and A. Waag, “Insights into Interfacial Changes and Photoelectrochemical Stability of InxGa1-xN (0001) Photoanode Surfaces in Liquid Environments,” ACS Appl. Mater. Interfaces 8(12), 8232–8238 (2016).
[Crossref] [PubMed]

G. Greco, F. Iucolano, and F. Roccaforte, “Ohmic contacts to Gallium Nitride materials,” Appl. Surf. Sci. 383, 324–345 (2016).
[Crossref]

J.-H. Park, A. Mandal, S. Kang, U. Chatterjee, J. S. Kim, B.-G. Park, M.-D. Kim, K.-U. Jeong, and C.-R. Lee, “Hydrogen Generation using non-polar coaxial InGaN/GaN Multiple Quantum Well Structure Formed on Hollow n-GaN Nanowires,” Sci. Rep. 6(1), 31996 (2016).
[Crossref] [PubMed]

S. Eftychis, J. Kruse, T. Koukoula, T. Kehagias, P. Komninou, A. Adikimenakis, K. Tsagaraki, M. Androulidaki, P. Tzanetakis, E. Iliopoulos, and A. Georgakilas, “Understanding the effects of Si (111) nitridation on the spontaneous growth and properties of GaN nanowires,” J. Cryst. Growth 442, 8–13 (2016).
[Crossref]

M. G. Kibria and Z. Mi, “Artificial photosynthesis using metal/nonmetal-nitride semiconductors: current status, prospects, and challenges,” J. Mater. Chem. A Mater. Energy Sustain. 4(8), 2801–2820 (2016).
[Crossref]

N. Kannan and D. Vakeesan, “Solar energy for future world: - A review,” Renew. Sustain. Energy Rev. 62, 1092–1105 (2016).
[Crossref]

2015 (4)

M. Ebaid, J.-H. Kang, S.-H. Lim, J.-S. Ha, J. K. Lee, Y.-H. Cho, and S.-W. Ryu, “Enhanced solar hydrogen generation of high density, high aspect ratio, coaxial InGaN/GaN multi-quantum well nanowires,” Nano Energy 12, 215–223 (2015).
[Crossref]

M. Ebaid, J.-H. Kang, S.-H. Lim, Y.-H. Cho, and S.-W. Ryu, “Towards highly efficient photoanodes: the role of carrier dynamics on the photoelectrochemical performance of InGaN/GaN multiple quantum well coaxial nanowires,” RSC Advances 5(30), 23303–23310 (2015).
[Crossref]

B. AlOtaibi, S. Fan, S. Vanka, M. G. Kibria, and Z. Mi, “A Metal-Nitride Nanowire Dual-Photoelectrode Device for Unassisted Solar-to-Hydrogen Conversion under Parallel Illumination,” Nano Lett. 15(10), 6821–6828 (2015).
[Crossref] [PubMed]

X. Yang, R. Liu, Y. He, J. Thorne, Z. Zheng, and D. Wang, “Enabling practical electrocatalyst-assisted photoelectron-chemical water splitting with earth abundant materials,” Nano Res. 8(1), 56–81 (2015).
[Crossref]

2014 (3)

S. Hu, M. R. Shaner, J. A. Beardslee, M. Lichterman, B. S. Brunschwig, and N. S. Lewis, “Amorphous TiO2 coatings stabilize Si, GaAs, and GaP photoanodes for efficient water oxidation,” Science 344(6187), 1005–1009 (2014).
[Crossref] [PubMed]

L. Caccamo, J. Hartmann, C. Fàbrega, S. Estradé, G. Lilienkamp, J. D. Prades, M. W. G. Hoffmann, J. Ledig, A. Wagner, X. Wang, L. Lopez-Conesa, F. Peiró, J. M. Rebled, H.-H. Wehmann, W. Daum, H. Shen, and A. Waag, “Band Engineered Epitaxial 3D GaN-InGaN Core-Shell Rod Arrays as an Advanced Photoanode for Visible-Light-Driven Water Splitting,” ACS Appl. Mater. Interfaces 6(4), 2235–2240 (2014).
[Crossref] [PubMed]

J. Segura-Ruiz, G. Martínez-Criado, C. Denker, J. Malindretos, and A. Rizzi, “Phase Separation in Single InxGa1-xN Nanowires Revealed through a hard X-ray Synchrotron Nanoprobe,” Nano Lett. 14(3), 1300–1305 (2014).
[Crossref] [PubMed]

2013 (2)

M. G. Kibria, H. P. T. Nguyen, K. Cui, S. Zhao, D. Liu, H. Guo, M. L. Trudeau, S. Paradis, A.-R. Hakima, and Z. Mi, “One-Step Overall Water Splitting under Visible Light Using Multiband InGaN/GaN Nanowire Heterostructures,” ACS Nano 7(9), 7886–7893 (2013).
[Crossref] [PubMed]

B. AlOtaibi, H. P. T. Nguyen, S. Zhao, M. G. Kibria, S. Fan, and Z. Mi, “Highly Stable Photoelectrochemical Water Splitting and Hydrogen Generation Using a Double-Band InGaN/GaN Core/Shell Nanowire Photoanode,” Nano Lett. 13(9), 4356–4361 (2013).
[Crossref] [PubMed]

2011 (1)

K. D. Goodman, V. V. Protasenko, J. Verma, T. H. Kosel, H. G. Xing, and D. Jena, “Green luminescence of InGaN nanowires grown on silicon substrates by molecular beam epitaxy,” J. Appl. Phys. 109(8), 084336 (2011).
[Crossref]

2010 (4)

M. G. Walter, E. L. Warren, J. R. McKone, S. W. Boettcher, Q. Mi, E. A. Santori, and N. S. Lewis, “Solar Water Splitting Cells,” Chem. Rev. 110(11), 6446–6473 (2010).
[Crossref] [PubMed]

T. R. Cook, D. K. Dogutan, S. Y. Reece, Y. Surendranath, T. S. Teets, and D. G. Nocera, “Solar Energy Supply and Storage for the Legacy and Nonlegacy Worlds,” Chem. Rev. 110(11), 6474–6502 (2010).
[Crossref] [PubMed]

X. Chen, S. Shen, L. Guo, and S. S. Mao, “Semiconductor-based Photocatalytic Hydrogen Generation,” Chem. Rev. 110(11), 6503–6570 (2010).
[Crossref] [PubMed]

K. Aryal, B. N. Pantha, J. Li, J. Y. Lin, and H. X. Jiang, “Hydrogen generation by solar water splitting using p-InGaN photoelectrochemical cells,” Appl. Phys. Lett. 96(5), 052110 (2010).
[Crossref]

2007 (1)

M. Tchernycheva, C. Sartel, G. Cirlin, L. Travers, G. Patriarche, J. C. Harmand, D. Le Si, J. Renard, B. Gayral, L. Nevou, and F. Julien, “Growth of GaN free-standing nanowires by plasma-assisted molecular beam epitaxy: structural and optical characterization,” Nanotechnology 18(38), 385306 (2007).
[Crossref]

2005 (1)

S. Hernández, R. Cuscó, D. Pastor, L. Artús, K. P. O’Donnell, R. W. Martin, I. M. Watson, Y. Nanishi, and E. Calleja, “Raman-scattering study of the InGaN alloy over the whole composition range,” J. Appl. Phys. 98(1), 013511 (2005).
[Crossref]

2003 (1)

A. Motayed, R. Bathe, M. C. Wood, O. S. Diouf, R. D. Vispute, and S. N. Mohammad, “Electrical, thermal, and microstructural characteristics of Ti/Al/Ti/Au multilayer Ohmic contacts to n-type GaN,” J. Appl. Phys. 93(2), 1087–1094 (2003).
[Crossref]

2001 (2)

C. A. Schiller and W. Strunz, “The evaluation of experimental dielectric data of barrier coatings by means of different models,” Electrochim. Acta 46(24-25), 3619–3625 (2001).
[Crossref]

O. Husberg, A. Khartchenko, D. J. As, H. Vogelsang, T. Frey, D. Schikora, K. Lischka, O. C. Noriega, A. Tabata, and J. R. Leite, “Photoluminescence from quantum dots in cubic GaN/InGaN/GaN double heterostructures,” Appl. Phys. Lett. 79(9), 1243–1245 (2001).
[Crossref]

1998 (2)

V. Y. Davydov, Y. E. Kitaev, I. N. Goncharuk, A. N. Smirnov, J. Graul, O. Semchinova, D. Uffmann, M. B. Smirnov, A. P. Mirgorodsky, and R. A. Evarestov, “Phonon dispersion and Raman scattering in hexagonal GaN and AlN,” Phys. Rev. B 58(19), 12899–12907 (1998).
[Crossref]

Q. Z. Liu and S. S. Lau, “A review of the metal–GaN contact technology,” Solid-State Electron. 42(5), 677–691 (1998).
[Crossref]

1990 (1)

W. H. Mulder, J. H. Sluyters, T. Pajkossy, and L. Nyikos, “Tafel current at fractal electrodes: Connection with admittance spectra,” J. Electroanal. Chem. Interfacial Electrochem. 285(1-2), 103–115 (1990).
[Crossref]

Abdelfatah, M.

L. Caccamo, G. Cocco, G. Martín, H. Zhou, S. Fundling, A. Gad, M. S. Mohajerani, M. Abdelfatah, S. Estradé, F. Peiró, W. Dziony, H. Bremers, A. Hangleiter, L. Mayrhofer, G. Lilienkamp, M. Moseler, W. Daum, and A. Waag, “Insights into Interfacial Changes and Photoelectrochemical Stability of InxGa1-xN (0001) Photoanode Surfaces in Liquid Environments,” ACS Appl. Mater. Interfaces 8(12), 8232–8238 (2016).
[Crossref] [PubMed]

Adikimenakis, A.

S. Eftychis, J. Kruse, T. Koukoula, T. Kehagias, P. Komninou, A. Adikimenakis, K. Tsagaraki, M. Androulidaki, P. Tzanetakis, E. Iliopoulos, and A. Georgakilas, “Understanding the effects of Si (111) nitridation on the spontaneous growth and properties of GaN nanowires,” J. Cryst. Growth 442, 8–13 (2016).
[Crossref]

AlOtaibi, B.

B. AlOtaibi, S. Fan, S. Vanka, M. G. Kibria, and Z. Mi, “A Metal-Nitride Nanowire Dual-Photoelectrode Device for Unassisted Solar-to-Hydrogen Conversion under Parallel Illumination,” Nano Lett. 15(10), 6821–6828 (2015).
[Crossref] [PubMed]

B. AlOtaibi, H. P. T. Nguyen, S. Zhao, M. G. Kibria, S. Fan, and Z. Mi, “Highly Stable Photoelectrochemical Water Splitting and Hydrogen Generation Using a Double-Band InGaN/GaN Core/Shell Nanowire Photoanode,” Nano Lett. 13(9), 4356–4361 (2013).
[Crossref] [PubMed]

Androulidaki, M.

S. Eftychis, J. Kruse, T. Koukoula, T. Kehagias, P. Komninou, A. Adikimenakis, K. Tsagaraki, M. Androulidaki, P. Tzanetakis, E. Iliopoulos, and A. Georgakilas, “Understanding the effects of Si (111) nitridation on the spontaneous growth and properties of GaN nanowires,” J. Cryst. Growth 442, 8–13 (2016).
[Crossref]

Artús, L.

S. Hernández, R. Cuscó, D. Pastor, L. Artús, K. P. O’Donnell, R. W. Martin, I. M. Watson, Y. Nanishi, and E. Calleja, “Raman-scattering study of the InGaN alloy over the whole composition range,” J. Appl. Phys. 98(1), 013511 (2005).
[Crossref]

Aryal, K.

K. Aryal, B. N. Pantha, J. Li, J. Y. Lin, and H. X. Jiang, “Hydrogen generation by solar water splitting using p-InGaN photoelectrochemical cells,” Appl. Phys. Lett. 96(5), 052110 (2010).
[Crossref]

As, D. J.

O. Husberg, A. Khartchenko, D. J. As, H. Vogelsang, T. Frey, D. Schikora, K. Lischka, O. C. Noriega, A. Tabata, and J. R. Leite, “Photoluminescence from quantum dots in cubic GaN/InGaN/GaN double heterostructures,” Appl. Phys. Lett. 79(9), 1243–1245 (2001).
[Crossref]

Bathe, R.

A. Motayed, R. Bathe, M. C. Wood, O. S. Diouf, R. D. Vispute, and S. N. Mohammad, “Electrical, thermal, and microstructural characteristics of Ti/Al/Ti/Au multilayer Ohmic contacts to n-type GaN,” J. Appl. Phys. 93(2), 1087–1094 (2003).
[Crossref]

Beardslee, J. A.

S. Hu, M. R. Shaner, J. A. Beardslee, M. Lichterman, B. S. Brunschwig, and N. S. Lewis, “Amorphous TiO2 coatings stabilize Si, GaAs, and GaP photoanodes for efficient water oxidation,” Science 344(6187), 1005–1009 (2014).
[Crossref] [PubMed]

Boettcher, S. W.

M. G. Walter, E. L. Warren, J. R. McKone, S. W. Boettcher, Q. Mi, E. A. Santori, and N. S. Lewis, “Solar Water Splitting Cells,” Chem. Rev. 110(11), 6446–6473 (2010).
[Crossref] [PubMed]

Bogdanoff, P.

J. Kamimura, P. Bogdanoff, M. Ramsteiner, P. Corfdir, F. Feix, L. Geelhaar, and H. Riechert, “p-Type Doping of GaN Nanowires Characterized by Photoelectrochemical Measurements,” Nano Lett. 17(3), 1529–1537 (2017).
[Crossref] [PubMed]

Bremers, H.

L. Caccamo, G. Cocco, G. Martín, H. Zhou, S. Fundling, A. Gad, M. S. Mohajerani, M. Abdelfatah, S. Estradé, F. Peiró, W. Dziony, H. Bremers, A. Hangleiter, L. Mayrhofer, G. Lilienkamp, M. Moseler, W. Daum, and A. Waag, “Insights into Interfacial Changes and Photoelectrochemical Stability of InxGa1-xN (0001) Photoanode Surfaces in Liquid Environments,” ACS Appl. Mater. Interfaces 8(12), 8232–8238 (2016).
[Crossref] [PubMed]

Brunschwig, B. S.

S. Hu, M. R. Shaner, J. A. Beardslee, M. Lichterman, B. S. Brunschwig, and N. S. Lewis, “Amorphous TiO2 coatings stabilize Si, GaAs, and GaP photoanodes for efficient water oxidation,” Science 344(6187), 1005–1009 (2014).
[Crossref] [PubMed]

Buttner, U.

M. Ebaid, D. Priante, G. Liu, C. Zhao, M. Sharizal Alias, U. Buttner, T. Khee Ng, T. Taylor Isimjan, H. Idriss, and B. S. Ooi, “Unbiased photocatalytic hydrogen generation from pure water on stable Ir-treated In0.33Ga0.67N nanorods,” Nano Energy 37, 158–167 (2017).
[Crossref]

Caccamo, L.

L. Caccamo, G. Cocco, G. Martín, H. Zhou, S. Fundling, A. Gad, M. S. Mohajerani, M. Abdelfatah, S. Estradé, F. Peiró, W. Dziony, H. Bremers, A. Hangleiter, L. Mayrhofer, G. Lilienkamp, M. Moseler, W. Daum, and A. Waag, “Insights into Interfacial Changes and Photoelectrochemical Stability of InxGa1-xN (0001) Photoanode Surfaces in Liquid Environments,” ACS Appl. Mater. Interfaces 8(12), 8232–8238 (2016).
[Crossref] [PubMed]

L. Caccamo, J. Hartmann, C. Fàbrega, S. Estradé, G. Lilienkamp, J. D. Prades, M. W. G. Hoffmann, J. Ledig, A. Wagner, X. Wang, L. Lopez-Conesa, F. Peiró, J. M. Rebled, H.-H. Wehmann, W. Daum, H. Shen, and A. Waag, “Band Engineered Epitaxial 3D GaN-InGaN Core-Shell Rod Arrays as an Advanced Photoanode for Visible-Light-Driven Water Splitting,” ACS Appl. Mater. Interfaces 6(4), 2235–2240 (2014).
[Crossref] [PubMed]

Calleja, E.

S. Hernández, R. Cuscó, D. Pastor, L. Artús, K. P. O’Donnell, R. W. Martin, I. M. Watson, Y. Nanishi, and E. Calleja, “Raman-scattering study of the InGaN alloy over the whole composition range,” J. Appl. Phys. 98(1), 013511 (2005).
[Crossref]

Cao, D.

D. Cao, H. Xiao, Q. Gao, X. Yang, C. Luan, H. Mao, J. Liu, and X. Liu, “Fabrication and improved photoelectrochemical properties of a transferred GaN-based thin film with InGaN/GaN layers,” Nanoscale 9(32), 11504–11510 (2017).
[Crossref] [PubMed]

Cao, H.

C. Yang, L. Liu, S. Zhu, Z. Yu, X. Xi, S. Wu, H. Cao, J. Li, and L. Zhao, “GaN with Laterally Aligned Nanopores To Enhance the Water Splitting,” J. Phys. Chem. C 121(13), 7331–7336 (2017).
[Crossref]

Chatterjee, U.

J.-H. Park, A. Mandal, S. Kang, U. Chatterjee, J. S. Kim, B.-G. Park, M.-D. Kim, K.-U. Jeong, and C.-R. Lee, “Hydrogen Generation using non-polar coaxial InGaN/GaN Multiple Quantum Well Structure Formed on Hollow n-GaN Nanowires,” Sci. Rep. 6(1), 31996 (2016).
[Crossref] [PubMed]

Chen, X.

X. Chen, S. Shen, L. Guo, and S. S. Mao, “Semiconductor-based Photocatalytic Hydrogen Generation,” Chem. Rev. 110(11), 6503–6570 (2010).
[Crossref] [PubMed]

Cho, Y.-H.

M. Ebaid, J.-H. Kang, S.-H. Lim, J.-S. Ha, J. K. Lee, Y.-H. Cho, and S.-W. Ryu, “Enhanced solar hydrogen generation of high density, high aspect ratio, coaxial InGaN/GaN multi-quantum well nanowires,” Nano Energy 12, 215–223 (2015).
[Crossref]

M. Ebaid, J.-H. Kang, S.-H. Lim, Y.-H. Cho, and S.-W. Ryu, “Towards highly efficient photoanodes: the role of carrier dynamics on the photoelectrochemical performance of InGaN/GaN multiple quantum well coaxial nanowires,” RSC Advances 5(30), 23303–23310 (2015).
[Crossref]

Choi, H.

J. Kang, V. Q. Dang, H. Li, S. Moon, P. Li, Y. Kim, C. Kim, J. Choi, H. Choi, Z. Liu, and H. Lee, “Broadband light-absorption InGaN photoanode assisted by imprint patterning and ZnO nanowire growth for energy conversion,” Nanotechnology 28(4), 045401 (2017).
[Crossref] [PubMed]

Choi, J.

J. Kang, V. Q. Dang, H. Li, S. Moon, P. Li, Y. Kim, C. Kim, J. Choi, H. Choi, Z. Liu, and H. Lee, “Broadband light-absorption InGaN photoanode assisted by imprint patterning and ZnO nanowire growth for energy conversion,” Nanotechnology 28(4), 045401 (2017).
[Crossref] [PubMed]

Cirlin, G.

M. Tchernycheva, C. Sartel, G. Cirlin, L. Travers, G. Patriarche, J. C. Harmand, D. Le Si, J. Renard, B. Gayral, L. Nevou, and F. Julien, “Growth of GaN free-standing nanowires by plasma-assisted molecular beam epitaxy: structural and optical characterization,” Nanotechnology 18(38), 385306 (2007).
[Crossref]

Cocco, G.

L. Caccamo, G. Cocco, G. Martín, H. Zhou, S. Fundling, A. Gad, M. S. Mohajerani, M. Abdelfatah, S. Estradé, F. Peiró, W. Dziony, H. Bremers, A. Hangleiter, L. Mayrhofer, G. Lilienkamp, M. Moseler, W. Daum, and A. Waag, “Insights into Interfacial Changes and Photoelectrochemical Stability of InxGa1-xN (0001) Photoanode Surfaces in Liquid Environments,” ACS Appl. Mater. Interfaces 8(12), 8232–8238 (2016).
[Crossref] [PubMed]

Cook, T. R.

T. R. Cook, D. K. Dogutan, S. Y. Reece, Y. Surendranath, T. S. Teets, and D. G. Nocera, “Solar Energy Supply and Storage for the Legacy and Nonlegacy Worlds,” Chem. Rev. 110(11), 6474–6502 (2010).
[Crossref] [PubMed]

Corfdir, P.

J. Kamimura, P. Bogdanoff, M. Ramsteiner, P. Corfdir, F. Feix, L. Geelhaar, and H. Riechert, “p-Type Doping of GaN Nanowires Characterized by Photoelectrochemical Measurements,” Nano Lett. 17(3), 1529–1537 (2017).
[Crossref] [PubMed]

Cui, K.

M. G. Kibria, H. P. T. Nguyen, K. Cui, S. Zhao, D. Liu, H. Guo, M. L. Trudeau, S. Paradis, A.-R. Hakima, and Z. Mi, “One-Step Overall Water Splitting under Visible Light Using Multiband InGaN/GaN Nanowire Heterostructures,” ACS Nano 7(9), 7886–7893 (2013).
[Crossref] [PubMed]

Cuscó, R.

S. Hernández, R. Cuscó, D. Pastor, L. Artús, K. P. O’Donnell, R. W. Martin, I. M. Watson, Y. Nanishi, and E. Calleja, “Raman-scattering study of the InGaN alloy over the whole composition range,” J. Appl. Phys. 98(1), 013511 (2005).
[Crossref]

Dang, V. Q.

J. Kang, V. Q. Dang, H. Li, S. Moon, P. Li, Y. Kim, C. Kim, J. Choi, H. Choi, Z. Liu, and H. Lee, “Broadband light-absorption InGaN photoanode assisted by imprint patterning and ZnO nanowire growth for energy conversion,” Nanotechnology 28(4), 045401 (2017).
[Crossref] [PubMed]

Daum, W.

L. Caccamo, G. Cocco, G. Martín, H. Zhou, S. Fundling, A. Gad, M. S. Mohajerani, M. Abdelfatah, S. Estradé, F. Peiró, W. Dziony, H. Bremers, A. Hangleiter, L. Mayrhofer, G. Lilienkamp, M. Moseler, W. Daum, and A. Waag, “Insights into Interfacial Changes and Photoelectrochemical Stability of InxGa1-xN (0001) Photoanode Surfaces in Liquid Environments,” ACS Appl. Mater. Interfaces 8(12), 8232–8238 (2016).
[Crossref] [PubMed]

L. Caccamo, J. Hartmann, C. Fàbrega, S. Estradé, G. Lilienkamp, J. D. Prades, M. W. G. Hoffmann, J. Ledig, A. Wagner, X. Wang, L. Lopez-Conesa, F. Peiró, J. M. Rebled, H.-H. Wehmann, W. Daum, H. Shen, and A. Waag, “Band Engineered Epitaxial 3D GaN-InGaN Core-Shell Rod Arrays as an Advanced Photoanode for Visible-Light-Driven Water Splitting,” ACS Appl. Mater. Interfaces 6(4), 2235–2240 (2014).
[Crossref] [PubMed]

Davydov, V. Y.

V. Y. Davydov, Y. E. Kitaev, I. N. Goncharuk, A. N. Smirnov, J. Graul, O. Semchinova, D. Uffmann, M. B. Smirnov, A. P. Mirgorodsky, and R. A. Evarestov, “Phonon dispersion and Raman scattering in hexagonal GaN and AlN,” Phys. Rev. B 58(19), 12899–12907 (1998).
[Crossref]

Denker, C.

J. Segura-Ruiz, G. Martínez-Criado, C. Denker, J. Malindretos, and A. Rizzi, “Phase Separation in Single InxGa1-xN Nanowires Revealed through a hard X-ray Synchrotron Nanoprobe,” Nano Lett. 14(3), 1300–1305 (2014).
[Crossref] [PubMed]

Dezhong, C.

C. Dezhong, X. Hongdi, F. Jiacheng, L. Jianqiang, G. Qingxue, L. Xiangdong, and M. Jin, “Photoelectrochemical water splitting on nanoporous GaN thin films for energy conversion under visible light,” Materials Research Express 4(1), 015019 (2017).
[Crossref]

Diouf, O. S.

A. Motayed, R. Bathe, M. C. Wood, O. S. Diouf, R. D. Vispute, and S. N. Mohammad, “Electrical, thermal, and microstructural characteristics of Ti/Al/Ti/Au multilayer Ohmic contacts to n-type GaN,” J. Appl. Phys. 93(2), 1087–1094 (2003).
[Crossref]

Dogutan, D. K.

T. R. Cook, D. K. Dogutan, S. Y. Reece, Y. Surendranath, T. S. Teets, and D. G. Nocera, “Solar Energy Supply and Storage for the Legacy and Nonlegacy Worlds,” Chem. Rev. 110(11), 6474–6502 (2010).
[Crossref] [PubMed]

Dziony, W.

L. Caccamo, G. Cocco, G. Martín, H. Zhou, S. Fundling, A. Gad, M. S. Mohajerani, M. Abdelfatah, S. Estradé, F. Peiró, W. Dziony, H. Bremers, A. Hangleiter, L. Mayrhofer, G. Lilienkamp, M. Moseler, W. Daum, and A. Waag, “Insights into Interfacial Changes and Photoelectrochemical Stability of InxGa1-xN (0001) Photoanode Surfaces in Liquid Environments,” ACS Appl. Mater. Interfaces 8(12), 8232–8238 (2016).
[Crossref] [PubMed]

Ebaid, M.

M. Ebaid, D. Priante, G. Liu, C. Zhao, M. Sharizal Alias, U. Buttner, T. Khee Ng, T. Taylor Isimjan, H. Idriss, and B. S. Ooi, “Unbiased photocatalytic hydrogen generation from pure water on stable Ir-treated In0.33Ga0.67N nanorods,” Nano Energy 37, 158–167 (2017).
[Crossref]

M. Ebaid, J.-H. Kang, and S.-W. Ryu, “Controlled synthesis of GaN-based nanowires for photoelectrochemical water splitting applications,” Semicond. Sci. Technol. 32(1), 013001 (2017).
[Crossref]

M. Ebaid, J.-H. Kang, S.-H. Lim, Y.-H. Cho, and S.-W. Ryu, “Towards highly efficient photoanodes: the role of carrier dynamics on the photoelectrochemical performance of InGaN/GaN multiple quantum well coaxial nanowires,” RSC Advances 5(30), 23303–23310 (2015).
[Crossref]

M. Ebaid, J.-H. Kang, S.-H. Lim, J.-S. Ha, J. K. Lee, Y.-H. Cho, and S.-W. Ryu, “Enhanced solar hydrogen generation of high density, high aspect ratio, coaxial InGaN/GaN multi-quantum well nanowires,” Nano Energy 12, 215–223 (2015).
[Crossref]

Eftychis, S.

S. Eftychis, J. Kruse, T. Koukoula, T. Kehagias, P. Komninou, A. Adikimenakis, K. Tsagaraki, M. Androulidaki, P. Tzanetakis, E. Iliopoulos, and A. Georgakilas, “Understanding the effects of Si (111) nitridation on the spontaneous growth and properties of GaN nanowires,” J. Cryst. Growth 442, 8–13 (2016).
[Crossref]

Estradé, S.

L. Caccamo, G. Cocco, G. Martín, H. Zhou, S. Fundling, A. Gad, M. S. Mohajerani, M. Abdelfatah, S. Estradé, F. Peiró, W. Dziony, H. Bremers, A. Hangleiter, L. Mayrhofer, G. Lilienkamp, M. Moseler, W. Daum, and A. Waag, “Insights into Interfacial Changes and Photoelectrochemical Stability of InxGa1-xN (0001) Photoanode Surfaces in Liquid Environments,” ACS Appl. Mater. Interfaces 8(12), 8232–8238 (2016).
[Crossref] [PubMed]

L. Caccamo, J. Hartmann, C. Fàbrega, S. Estradé, G. Lilienkamp, J. D. Prades, M. W. G. Hoffmann, J. Ledig, A. Wagner, X. Wang, L. Lopez-Conesa, F. Peiró, J. M. Rebled, H.-H. Wehmann, W. Daum, H. Shen, and A. Waag, “Band Engineered Epitaxial 3D GaN-InGaN Core-Shell Rod Arrays as an Advanced Photoanode for Visible-Light-Driven Water Splitting,” ACS Appl. Mater. Interfaces 6(4), 2235–2240 (2014).
[Crossref] [PubMed]

Evarestov, R. A.

V. Y. Davydov, Y. E. Kitaev, I. N. Goncharuk, A. N. Smirnov, J. Graul, O. Semchinova, D. Uffmann, M. B. Smirnov, A. P. Mirgorodsky, and R. A. Evarestov, “Phonon dispersion and Raman scattering in hexagonal GaN and AlN,” Phys. Rev. B 58(19), 12899–12907 (1998).
[Crossref]

Fàbrega, C.

L. Caccamo, J. Hartmann, C. Fàbrega, S. Estradé, G. Lilienkamp, J. D. Prades, M. W. G. Hoffmann, J. Ledig, A. Wagner, X. Wang, L. Lopez-Conesa, F. Peiró, J. M. Rebled, H.-H. Wehmann, W. Daum, H. Shen, and A. Waag, “Band Engineered Epitaxial 3D GaN-InGaN Core-Shell Rod Arrays as an Advanced Photoanode for Visible-Light-Driven Water Splitting,” ACS Appl. Mater. Interfaces 6(4), 2235–2240 (2014).
[Crossref] [PubMed]

Fan, S.

B. AlOtaibi, S. Fan, S. Vanka, M. G. Kibria, and Z. Mi, “A Metal-Nitride Nanowire Dual-Photoelectrode Device for Unassisted Solar-to-Hydrogen Conversion under Parallel Illumination,” Nano Lett. 15(10), 6821–6828 (2015).
[Crossref] [PubMed]

B. AlOtaibi, H. P. T. Nguyen, S. Zhao, M. G. Kibria, S. Fan, and Z. Mi, “Highly Stable Photoelectrochemical Water Splitting and Hydrogen Generation Using a Double-Band InGaN/GaN Core/Shell Nanowire Photoanode,” Nano Lett. 13(9), 4356–4361 (2013).
[Crossref] [PubMed]

Feix, F.

J. Kamimura, P. Bogdanoff, M. Ramsteiner, P. Corfdir, F. Feix, L. Geelhaar, and H. Riechert, “p-Type Doping of GaN Nanowires Characterized by Photoelectrochemical Measurements,” Nano Lett. 17(3), 1529–1537 (2017).
[Crossref] [PubMed]

Frey, T.

O. Husberg, A. Khartchenko, D. J. As, H. Vogelsang, T. Frey, D. Schikora, K. Lischka, O. C. Noriega, A. Tabata, and J. R. Leite, “Photoluminescence from quantum dots in cubic GaN/InGaN/GaN double heterostructures,” Appl. Phys. Lett. 79(9), 1243–1245 (2001).
[Crossref]

Fujii, K.

Y. Imazeki, Y. Iwai, A. Nakamura, K. Koike, S.-i. Sato, T. Ohshima, K. Fujii, M. Sugiyama, and Y. Nakano, “Band Alignment at n-GaN/Electrolyte Interface Explored by Photo-Induced Offset of Open-Circuit Potential for Efficient Water Splitting,” ECS Trans. 77(4), 25–30 (2017).
[Crossref]

Fundling, S.

L. Caccamo, G. Cocco, G. Martín, H. Zhou, S. Fundling, A. Gad, M. S. Mohajerani, M. Abdelfatah, S. Estradé, F. Peiró, W. Dziony, H. Bremers, A. Hangleiter, L. Mayrhofer, G. Lilienkamp, M. Moseler, W. Daum, and A. Waag, “Insights into Interfacial Changes and Photoelectrochemical Stability of InxGa1-xN (0001) Photoanode Surfaces in Liquid Environments,” ACS Appl. Mater. Interfaces 8(12), 8232–8238 (2016).
[Crossref] [PubMed]

Gad, A.

L. Caccamo, G. Cocco, G. Martín, H. Zhou, S. Fundling, A. Gad, M. S. Mohajerani, M. Abdelfatah, S. Estradé, F. Peiró, W. Dziony, H. Bremers, A. Hangleiter, L. Mayrhofer, G. Lilienkamp, M. Moseler, W. Daum, and A. Waag, “Insights into Interfacial Changes and Photoelectrochemical Stability of InxGa1-xN (0001) Photoanode Surfaces in Liquid Environments,” ACS Appl. Mater. Interfaces 8(12), 8232–8238 (2016).
[Crossref] [PubMed]

Gao, Q.

D. Cao, H. Xiao, Q. Gao, X. Yang, C. Luan, H. Mao, J. Liu, and X. Liu, “Fabrication and improved photoelectrochemical properties of a transferred GaN-based thin film with InGaN/GaN layers,” Nanoscale 9(32), 11504–11510 (2017).
[Crossref] [PubMed]

Gayral, B.

M. Tchernycheva, C. Sartel, G. Cirlin, L. Travers, G. Patriarche, J. C. Harmand, D. Le Si, J. Renard, B. Gayral, L. Nevou, and F. Julien, “Growth of GaN free-standing nanowires by plasma-assisted molecular beam epitaxy: structural and optical characterization,” Nanotechnology 18(38), 385306 (2007).
[Crossref]

Geelhaar, L.

J. Kamimura, P. Bogdanoff, M. Ramsteiner, P. Corfdir, F. Feix, L. Geelhaar, and H. Riechert, “p-Type Doping of GaN Nanowires Characterized by Photoelectrochemical Measurements,” Nano Lett. 17(3), 1529–1537 (2017).
[Crossref] [PubMed]

Georgakilas, A.

S. Eftychis, J. Kruse, T. Koukoula, T. Kehagias, P. Komninou, A. Adikimenakis, K. Tsagaraki, M. Androulidaki, P. Tzanetakis, E. Iliopoulos, and A. Georgakilas, “Understanding the effects of Si (111) nitridation on the spontaneous growth and properties of GaN nanowires,” J. Cryst. Growth 442, 8–13 (2016).
[Crossref]

Goncharuk, I. N.

V. Y. Davydov, Y. E. Kitaev, I. N. Goncharuk, A. N. Smirnov, J. Graul, O. Semchinova, D. Uffmann, M. B. Smirnov, A. P. Mirgorodsky, and R. A. Evarestov, “Phonon dispersion and Raman scattering in hexagonal GaN and AlN,” Phys. Rev. B 58(19), 12899–12907 (1998).
[Crossref]

Goodman, K. D.

K. D. Goodman, V. V. Protasenko, J. Verma, T. H. Kosel, H. G. Xing, and D. Jena, “Green luminescence of InGaN nanowires grown on silicon substrates by molecular beam epitaxy,” J. Appl. Phys. 109(8), 084336 (2011).
[Crossref]

Graul, J.

V. Y. Davydov, Y. E. Kitaev, I. N. Goncharuk, A. N. Smirnov, J. Graul, O. Semchinova, D. Uffmann, M. B. Smirnov, A. P. Mirgorodsky, and R. A. Evarestov, “Phonon dispersion and Raman scattering in hexagonal GaN and AlN,” Phys. Rev. B 58(19), 12899–12907 (1998).
[Crossref]

Greco, G.

G. Greco, F. Iucolano, and F. Roccaforte, “Ohmic contacts to Gallium Nitride materials,” Appl. Surf. Sci. 383, 324–345 (2016).
[Crossref]

Guo, H.

M. G. Kibria, H. P. T. Nguyen, K. Cui, S. Zhao, D. Liu, H. Guo, M. L. Trudeau, S. Paradis, A.-R. Hakima, and Z. Mi, “One-Step Overall Water Splitting under Visible Light Using Multiband InGaN/GaN Nanowire Heterostructures,” ACS Nano 7(9), 7886–7893 (2013).
[Crossref] [PubMed]

Guo, L.

X. Chen, S. Shen, L. Guo, and S. S. Mao, “Semiconductor-based Photocatalytic Hydrogen Generation,” Chem. Rev. 110(11), 6503–6570 (2010).
[Crossref] [PubMed]

Ha, J.-S.

M. Ebaid, J.-H. Kang, S.-H. Lim, J.-S. Ha, J. K. Lee, Y.-H. Cho, and S.-W. Ryu, “Enhanced solar hydrogen generation of high density, high aspect ratio, coaxial InGaN/GaN multi-quantum well nanowires,” Nano Energy 12, 215–223 (2015).
[Crossref]

Hakima, A.-R.

M. G. Kibria, H. P. T. Nguyen, K. Cui, S. Zhao, D. Liu, H. Guo, M. L. Trudeau, S. Paradis, A.-R. Hakima, and Z. Mi, “One-Step Overall Water Splitting under Visible Light Using Multiband InGaN/GaN Nanowire Heterostructures,” ACS Nano 7(9), 7886–7893 (2013).
[Crossref] [PubMed]

Hangleiter, A.

L. Caccamo, G. Cocco, G. Martín, H. Zhou, S. Fundling, A. Gad, M. S. Mohajerani, M. Abdelfatah, S. Estradé, F. Peiró, W. Dziony, H. Bremers, A. Hangleiter, L. Mayrhofer, G. Lilienkamp, M. Moseler, W. Daum, and A. Waag, “Insights into Interfacial Changes and Photoelectrochemical Stability of InxGa1-xN (0001) Photoanode Surfaces in Liquid Environments,” ACS Appl. Mater. Interfaces 8(12), 8232–8238 (2016).
[Crossref] [PubMed]

Harmand, J. C.

M. Tchernycheva, C. Sartel, G. Cirlin, L. Travers, G. Patriarche, J. C. Harmand, D. Le Si, J. Renard, B. Gayral, L. Nevou, and F. Julien, “Growth of GaN free-standing nanowires by plasma-assisted molecular beam epitaxy: structural and optical characterization,” Nanotechnology 18(38), 385306 (2007).
[Crossref]

Hartmann, J.

L. Caccamo, J. Hartmann, C. Fàbrega, S. Estradé, G. Lilienkamp, J. D. Prades, M. W. G. Hoffmann, J. Ledig, A. Wagner, X. Wang, L. Lopez-Conesa, F. Peiró, J. M. Rebled, H.-H. Wehmann, W. Daum, H. Shen, and A. Waag, “Band Engineered Epitaxial 3D GaN-InGaN Core-Shell Rod Arrays as an Advanced Photoanode for Visible-Light-Driven Water Splitting,” ACS Appl. Mater. Interfaces 6(4), 2235–2240 (2014).
[Crossref] [PubMed]

He, Y.

X. Yang, R. Liu, Y. He, J. Thorne, Z. Zheng, and D. Wang, “Enabling practical electrocatalyst-assisted photoelectron-chemical water splitting with earth abundant materials,” Nano Res. 8(1), 56–81 (2015).
[Crossref]

Hernández, S.

S. Hernández, R. Cuscó, D. Pastor, L. Artús, K. P. O’Donnell, R. W. Martin, I. M. Watson, Y. Nanishi, and E. Calleja, “Raman-scattering study of the InGaN alloy over the whole composition range,” J. Appl. Phys. 98(1), 013511 (2005).
[Crossref]

Hoffmann, M. W. G.

L. Caccamo, J. Hartmann, C. Fàbrega, S. Estradé, G. Lilienkamp, J. D. Prades, M. W. G. Hoffmann, J. Ledig, A. Wagner, X. Wang, L. Lopez-Conesa, F. Peiró, J. M. Rebled, H.-H. Wehmann, W. Daum, H. Shen, and A. Waag, “Band Engineered Epitaxial 3D GaN-InGaN Core-Shell Rod Arrays as an Advanced Photoanode for Visible-Light-Driven Water Splitting,” ACS Appl. Mater. Interfaces 6(4), 2235–2240 (2014).
[Crossref] [PubMed]

Hongdi, X.

C. Dezhong, X. Hongdi, F. Jiacheng, L. Jianqiang, G. Qingxue, L. Xiangdong, and M. Jin, “Photoelectrochemical water splitting on nanoporous GaN thin films for energy conversion under visible light,” Materials Research Express 4(1), 015019 (2017).
[Crossref]

Hu, S.

S. Hu, M. R. Shaner, J. A. Beardslee, M. Lichterman, B. S. Brunschwig, and N. S. Lewis, “Amorphous TiO2 coatings stabilize Si, GaAs, and GaP photoanodes for efficient water oxidation,” Science 344(6187), 1005–1009 (2014).
[Crossref] [PubMed]

Husberg, O.

O. Husberg, A. Khartchenko, D. J. As, H. Vogelsang, T. Frey, D. Schikora, K. Lischka, O. C. Noriega, A. Tabata, and J. R. Leite, “Photoluminescence from quantum dots in cubic GaN/InGaN/GaN double heterostructures,” Appl. Phys. Lett. 79(9), 1243–1245 (2001).
[Crossref]

Idriss, H.

M. Ebaid, D. Priante, G. Liu, C. Zhao, M. Sharizal Alias, U. Buttner, T. Khee Ng, T. Taylor Isimjan, H. Idriss, and B. S. Ooi, “Unbiased photocatalytic hydrogen generation from pure water on stable Ir-treated In0.33Ga0.67N nanorods,” Nano Energy 37, 158–167 (2017).
[Crossref]

Iliopoulos, E.

S. Eftychis, J. Kruse, T. Koukoula, T. Kehagias, P. Komninou, A. Adikimenakis, K. Tsagaraki, M. Androulidaki, P. Tzanetakis, E. Iliopoulos, and A. Georgakilas, “Understanding the effects of Si (111) nitridation on the spontaneous growth and properties of GaN nanowires,” J. Cryst. Growth 442, 8–13 (2016).
[Crossref]

Imazeki, Y.

Y. Imazeki, Y. Iwai, A. Nakamura, K. Koike, S.-i. Sato, T. Ohshima, K. Fujii, M. Sugiyama, and Y. Nakano, “Band Alignment at n-GaN/Electrolyte Interface Explored by Photo-Induced Offset of Open-Circuit Potential for Efficient Water Splitting,” ECS Trans. 77(4), 25–30 (2017).
[Crossref]

Iucolano, F.

G. Greco, F. Iucolano, and F. Roccaforte, “Ohmic contacts to Gallium Nitride materials,” Appl. Surf. Sci. 383, 324–345 (2016).
[Crossref]

Iwai, Y.

Y. Imazeki, Y. Iwai, A. Nakamura, K. Koike, S.-i. Sato, T. Ohshima, K. Fujii, M. Sugiyama, and Y. Nakano, “Band Alignment at n-GaN/Electrolyte Interface Explored by Photo-Induced Offset of Open-Circuit Potential for Efficient Water Splitting,” ECS Trans. 77(4), 25–30 (2017).
[Crossref]

Jena, D.

K. D. Goodman, V. V. Protasenko, J. Verma, T. H. Kosel, H. G. Xing, and D. Jena, “Green luminescence of InGaN nanowires grown on silicon substrates by molecular beam epitaxy,” J. Appl. Phys. 109(8), 084336 (2011).
[Crossref]

Jeong, K.-U.

J.-H. Park, A. Mandal, S. Kang, U. Chatterjee, J. S. Kim, B.-G. Park, M.-D. Kim, K.-U. Jeong, and C.-R. Lee, “Hydrogen Generation using non-polar coaxial InGaN/GaN Multiple Quantum Well Structure Formed on Hollow n-GaN Nanowires,” Sci. Rep. 6(1), 31996 (2016).
[Crossref] [PubMed]

Jiacheng, F.

C. Dezhong, X. Hongdi, F. Jiacheng, L. Jianqiang, G. Qingxue, L. Xiangdong, and M. Jin, “Photoelectrochemical water splitting on nanoporous GaN thin films for energy conversion under visible light,” Materials Research Express 4(1), 015019 (2017).
[Crossref]

Jiang, H. X.

K. Aryal, B. N. Pantha, J. Li, J. Y. Lin, and H. X. Jiang, “Hydrogen generation by solar water splitting using p-InGaN photoelectrochemical cells,” Appl. Phys. Lett. 96(5), 052110 (2010).
[Crossref]

Jianqiang, L.

C. Dezhong, X. Hongdi, F. Jiacheng, L. Jianqiang, G. Qingxue, L. Xiangdong, and M. Jin, “Photoelectrochemical water splitting on nanoporous GaN thin films for energy conversion under visible light,” Materials Research Express 4(1), 015019 (2017).
[Crossref]

Jin, M.

C. Dezhong, X. Hongdi, F. Jiacheng, L. Jianqiang, G. Qingxue, L. Xiangdong, and M. Jin, “Photoelectrochemical water splitting on nanoporous GaN thin films for energy conversion under visible light,” Materials Research Express 4(1), 015019 (2017).
[Crossref]

Julien, F.

M. Tchernycheva, C. Sartel, G. Cirlin, L. Travers, G. Patriarche, J. C. Harmand, D. Le Si, J. Renard, B. Gayral, L. Nevou, and F. Julien, “Growth of GaN free-standing nanowires by plasma-assisted molecular beam epitaxy: structural and optical characterization,” Nanotechnology 18(38), 385306 (2007).
[Crossref]

Kamimura, J.

J. Kamimura, P. Bogdanoff, M. Ramsteiner, P. Corfdir, F. Feix, L. Geelhaar, and H. Riechert, “p-Type Doping of GaN Nanowires Characterized by Photoelectrochemical Measurements,” Nano Lett. 17(3), 1529–1537 (2017).
[Crossref] [PubMed]

Kang, J.

J. Kang, V. Q. Dang, H. Li, S. Moon, P. Li, Y. Kim, C. Kim, J. Choi, H. Choi, Z. Liu, and H. Lee, “Broadband light-absorption InGaN photoanode assisted by imprint patterning and ZnO nanowire growth for energy conversion,” Nanotechnology 28(4), 045401 (2017).
[Crossref] [PubMed]

Kang, J.-H.

M. Ebaid, J.-H. Kang, and S.-W. Ryu, “Controlled synthesis of GaN-based nanowires for photoelectrochemical water splitting applications,” Semicond. Sci. Technol. 32(1), 013001 (2017).
[Crossref]

M. Ebaid, J.-H. Kang, S.-H. Lim, Y.-H. Cho, and S.-W. Ryu, “Towards highly efficient photoanodes: the role of carrier dynamics on the photoelectrochemical performance of InGaN/GaN multiple quantum well coaxial nanowires,” RSC Advances 5(30), 23303–23310 (2015).
[Crossref]

M. Ebaid, J.-H. Kang, S.-H. Lim, J.-S. Ha, J. K. Lee, Y.-H. Cho, and S.-W. Ryu, “Enhanced solar hydrogen generation of high density, high aspect ratio, coaxial InGaN/GaN multi-quantum well nanowires,” Nano Energy 12, 215–223 (2015).
[Crossref]

Kang, S.

J.-H. Park, A. Mandal, S. Kang, U. Chatterjee, J. S. Kim, B.-G. Park, M.-D. Kim, K.-U. Jeong, and C.-R. Lee, “Hydrogen Generation using non-polar coaxial InGaN/GaN Multiple Quantum Well Structure Formed on Hollow n-GaN Nanowires,” Sci. Rep. 6(1), 31996 (2016).
[Crossref] [PubMed]

Kannan, N.

N. Kannan and D. Vakeesan, “Solar energy for future world: - A review,” Renew. Sustain. Energy Rev. 62, 1092–1105 (2016).
[Crossref]

Kehagias, T.

S. Eftychis, J. Kruse, T. Koukoula, T. Kehagias, P. Komninou, A. Adikimenakis, K. Tsagaraki, M. Androulidaki, P. Tzanetakis, E. Iliopoulos, and A. Georgakilas, “Understanding the effects of Si (111) nitridation on the spontaneous growth and properties of GaN nanowires,” J. Cryst. Growth 442, 8–13 (2016).
[Crossref]

Khartchenko, A.

O. Husberg, A. Khartchenko, D. J. As, H. Vogelsang, T. Frey, D. Schikora, K. Lischka, O. C. Noriega, A. Tabata, and J. R. Leite, “Photoluminescence from quantum dots in cubic GaN/InGaN/GaN double heterostructures,” Appl. Phys. Lett. 79(9), 1243–1245 (2001).
[Crossref]

Khee Ng, T.

M. Ebaid, D. Priante, G. Liu, C. Zhao, M. Sharizal Alias, U. Buttner, T. Khee Ng, T. Taylor Isimjan, H. Idriss, and B. S. Ooi, “Unbiased photocatalytic hydrogen generation from pure water on stable Ir-treated In0.33Ga0.67N nanorods,” Nano Energy 37, 158–167 (2017).
[Crossref]

Kibria, M. G.

M. G. Kibria and Z. Mi, “Artificial photosynthesis using metal/nonmetal-nitride semiconductors: current status, prospects, and challenges,” J. Mater. Chem. A Mater. Energy Sustain. 4(8), 2801–2820 (2016).
[Crossref]

B. AlOtaibi, S. Fan, S. Vanka, M. G. Kibria, and Z. Mi, “A Metal-Nitride Nanowire Dual-Photoelectrode Device for Unassisted Solar-to-Hydrogen Conversion under Parallel Illumination,” Nano Lett. 15(10), 6821–6828 (2015).
[Crossref] [PubMed]

M. G. Kibria, H. P. T. Nguyen, K. Cui, S. Zhao, D. Liu, H. Guo, M. L. Trudeau, S. Paradis, A.-R. Hakima, and Z. Mi, “One-Step Overall Water Splitting under Visible Light Using Multiband InGaN/GaN Nanowire Heterostructures,” ACS Nano 7(9), 7886–7893 (2013).
[Crossref] [PubMed]

B. AlOtaibi, H. P. T. Nguyen, S. Zhao, M. G. Kibria, S. Fan, and Z. Mi, “Highly Stable Photoelectrochemical Water Splitting and Hydrogen Generation Using a Double-Band InGaN/GaN Core/Shell Nanowire Photoanode,” Nano Lett. 13(9), 4356–4361 (2013).
[Crossref] [PubMed]

Kim, C.

J. Kang, V. Q. Dang, H. Li, S. Moon, P. Li, Y. Kim, C. Kim, J. Choi, H. Choi, Z. Liu, and H. Lee, “Broadband light-absorption InGaN photoanode assisted by imprint patterning and ZnO nanowire growth for energy conversion,” Nanotechnology 28(4), 045401 (2017).
[Crossref] [PubMed]

Kim, J. S.

J.-H. Park, A. Mandal, S. Kang, U. Chatterjee, J. S. Kim, B.-G. Park, M.-D. Kim, K.-U. Jeong, and C.-R. Lee, “Hydrogen Generation using non-polar coaxial InGaN/GaN Multiple Quantum Well Structure Formed on Hollow n-GaN Nanowires,” Sci. Rep. 6(1), 31996 (2016).
[Crossref] [PubMed]

Kim, M.-D.

J.-H. Park, A. Mandal, S. Kang, U. Chatterjee, J. S. Kim, B.-G. Park, M.-D. Kim, K.-U. Jeong, and C.-R. Lee, “Hydrogen Generation using non-polar coaxial InGaN/GaN Multiple Quantum Well Structure Formed on Hollow n-GaN Nanowires,” Sci. Rep. 6(1), 31996 (2016).
[Crossref] [PubMed]

Kim, Y.

J. Kang, V. Q. Dang, H. Li, S. Moon, P. Li, Y. Kim, C. Kim, J. Choi, H. Choi, Z. Liu, and H. Lee, “Broadband light-absorption InGaN photoanode assisted by imprint patterning and ZnO nanowire growth for energy conversion,” Nanotechnology 28(4), 045401 (2017).
[Crossref] [PubMed]

Kitaev, Y. E.

V. Y. Davydov, Y. E. Kitaev, I. N. Goncharuk, A. N. Smirnov, J. Graul, O. Semchinova, D. Uffmann, M. B. Smirnov, A. P. Mirgorodsky, and R. A. Evarestov, “Phonon dispersion and Raman scattering in hexagonal GaN and AlN,” Phys. Rev. B 58(19), 12899–12907 (1998).
[Crossref]

Koike, K.

Y. Imazeki, Y. Iwai, A. Nakamura, K. Koike, S.-i. Sato, T. Ohshima, K. Fujii, M. Sugiyama, and Y. Nakano, “Band Alignment at n-GaN/Electrolyte Interface Explored by Photo-Induced Offset of Open-Circuit Potential for Efficient Water Splitting,” ECS Trans. 77(4), 25–30 (2017).
[Crossref]

Komninou, P.

S. Eftychis, J. Kruse, T. Koukoula, T. Kehagias, P. Komninou, A. Adikimenakis, K. Tsagaraki, M. Androulidaki, P. Tzanetakis, E. Iliopoulos, and A. Georgakilas, “Understanding the effects of Si (111) nitridation on the spontaneous growth and properties of GaN nanowires,” J. Cryst. Growth 442, 8–13 (2016).
[Crossref]

Kosel, T. H.

K. D. Goodman, V. V. Protasenko, J. Verma, T. H. Kosel, H. G. Xing, and D. Jena, “Green luminescence of InGaN nanowires grown on silicon substrates by molecular beam epitaxy,” J. Appl. Phys. 109(8), 084336 (2011).
[Crossref]

Koukoula, T.

S. Eftychis, J. Kruse, T. Koukoula, T. Kehagias, P. Komninou, A. Adikimenakis, K. Tsagaraki, M. Androulidaki, P. Tzanetakis, E. Iliopoulos, and A. Georgakilas, “Understanding the effects of Si (111) nitridation on the spontaneous growth and properties of GaN nanowires,” J. Cryst. Growth 442, 8–13 (2016).
[Crossref]

Kruse, J.

S. Eftychis, J. Kruse, T. Koukoula, T. Kehagias, P. Komninou, A. Adikimenakis, K. Tsagaraki, M. Androulidaki, P. Tzanetakis, E. Iliopoulos, and A. Georgakilas, “Understanding the effects of Si (111) nitridation on the spontaneous growth and properties of GaN nanowires,” J. Cryst. Growth 442, 8–13 (2016).
[Crossref]

Lau, S. S.

Q. Z. Liu and S. S. Lau, “A review of the metal–GaN contact technology,” Solid-State Electron. 42(5), 677–691 (1998).
[Crossref]

Le Si, D.

M. Tchernycheva, C. Sartel, G. Cirlin, L. Travers, G. Patriarche, J. C. Harmand, D. Le Si, J. Renard, B. Gayral, L. Nevou, and F. Julien, “Growth of GaN free-standing nanowires by plasma-assisted molecular beam epitaxy: structural and optical characterization,” Nanotechnology 18(38), 385306 (2007).
[Crossref]

Ledig, J.

L. Caccamo, J. Hartmann, C. Fàbrega, S. Estradé, G. Lilienkamp, J. D. Prades, M. W. G. Hoffmann, J. Ledig, A. Wagner, X. Wang, L. Lopez-Conesa, F. Peiró, J. M. Rebled, H.-H. Wehmann, W. Daum, H. Shen, and A. Waag, “Band Engineered Epitaxial 3D GaN-InGaN Core-Shell Rod Arrays as an Advanced Photoanode for Visible-Light-Driven Water Splitting,” ACS Appl. Mater. Interfaces 6(4), 2235–2240 (2014).
[Crossref] [PubMed]

Lee, C.-R.

J.-H. Park, A. Mandal, S. Kang, U. Chatterjee, J. S. Kim, B.-G. Park, M.-D. Kim, K.-U. Jeong, and C.-R. Lee, “Hydrogen Generation using non-polar coaxial InGaN/GaN Multiple Quantum Well Structure Formed on Hollow n-GaN Nanowires,” Sci. Rep. 6(1), 31996 (2016).
[Crossref] [PubMed]

Lee, H.

J. Kang, V. Q. Dang, H. Li, S. Moon, P. Li, Y. Kim, C. Kim, J. Choi, H. Choi, Z. Liu, and H. Lee, “Broadband light-absorption InGaN photoanode assisted by imprint patterning and ZnO nanowire growth for energy conversion,” Nanotechnology 28(4), 045401 (2017).
[Crossref] [PubMed]

Lee, J. K.

M. Ebaid, J.-H. Kang, S.-H. Lim, J.-S. Ha, J. K. Lee, Y.-H. Cho, and S.-W. Ryu, “Enhanced solar hydrogen generation of high density, high aspect ratio, coaxial InGaN/GaN multi-quantum well nanowires,” Nano Energy 12, 215–223 (2015).
[Crossref]

Leite, J. R.

O. Husberg, A. Khartchenko, D. J. As, H. Vogelsang, T. Frey, D. Schikora, K. Lischka, O. C. Noriega, A. Tabata, and J. R. Leite, “Photoluminescence from quantum dots in cubic GaN/InGaN/GaN double heterostructures,” Appl. Phys. Lett. 79(9), 1243–1245 (2001).
[Crossref]

Lewis, N. S.

S. Hu, M. R. Shaner, J. A. Beardslee, M. Lichterman, B. S. Brunschwig, and N. S. Lewis, “Amorphous TiO2 coatings stabilize Si, GaAs, and GaP photoanodes for efficient water oxidation,” Science 344(6187), 1005–1009 (2014).
[Crossref] [PubMed]

M. G. Walter, E. L. Warren, J. R. McKone, S. W. Boettcher, Q. Mi, E. A. Santori, and N. S. Lewis, “Solar Water Splitting Cells,” Chem. Rev. 110(11), 6446–6473 (2010).
[Crossref] [PubMed]

N. S. Lewis and D. G. Nocera, “Powering the planet: Chemical challenges in solar energy utilization,” Proceedings of the National Academy of Sciences103(2006).
[Crossref]

Li, H.

J. Kang, V. Q. Dang, H. Li, S. Moon, P. Li, Y. Kim, C. Kim, J. Choi, H. Choi, Z. Liu, and H. Lee, “Broadband light-absorption InGaN photoanode assisted by imprint patterning and ZnO nanowire growth for energy conversion,” Nanotechnology 28(4), 045401 (2017).
[Crossref] [PubMed]

Li, J.

C. Yang, L. Liu, S. Zhu, Z. Yu, X. Xi, S. Wu, H. Cao, J. Li, and L. Zhao, “GaN with Laterally Aligned Nanopores To Enhance the Water Splitting,” J. Phys. Chem. C 121(13), 7331–7336 (2017).
[Crossref]

K. Aryal, B. N. Pantha, J. Li, J. Y. Lin, and H. X. Jiang, “Hydrogen generation by solar water splitting using p-InGaN photoelectrochemical cells,” Appl. Phys. Lett. 96(5), 052110 (2010).
[Crossref]

Li, P.

J. Kang, V. Q. Dang, H. Li, S. Moon, P. Li, Y. Kim, C. Kim, J. Choi, H. Choi, Z. Liu, and H. Lee, “Broadband light-absorption InGaN photoanode assisted by imprint patterning and ZnO nanowire growth for energy conversion,” Nanotechnology 28(4), 045401 (2017).
[Crossref] [PubMed]

Lichterman, M.

S. Hu, M. R. Shaner, J. A. Beardslee, M. Lichterman, B. S. Brunschwig, and N. S. Lewis, “Amorphous TiO2 coatings stabilize Si, GaAs, and GaP photoanodes for efficient water oxidation,” Science 344(6187), 1005–1009 (2014).
[Crossref] [PubMed]

Lilienkamp, G.

L. Caccamo, G. Cocco, G. Martín, H. Zhou, S. Fundling, A. Gad, M. S. Mohajerani, M. Abdelfatah, S. Estradé, F. Peiró, W. Dziony, H. Bremers, A. Hangleiter, L. Mayrhofer, G. Lilienkamp, M. Moseler, W. Daum, and A. Waag, “Insights into Interfacial Changes and Photoelectrochemical Stability of InxGa1-xN (0001) Photoanode Surfaces in Liquid Environments,” ACS Appl. Mater. Interfaces 8(12), 8232–8238 (2016).
[Crossref] [PubMed]

L. Caccamo, J. Hartmann, C. Fàbrega, S. Estradé, G. Lilienkamp, J. D. Prades, M. W. G. Hoffmann, J. Ledig, A. Wagner, X. Wang, L. Lopez-Conesa, F. Peiró, J. M. Rebled, H.-H. Wehmann, W. Daum, H. Shen, and A. Waag, “Band Engineered Epitaxial 3D GaN-InGaN Core-Shell Rod Arrays as an Advanced Photoanode for Visible-Light-Driven Water Splitting,” ACS Appl. Mater. Interfaces 6(4), 2235–2240 (2014).
[Crossref] [PubMed]

Lim, S.-H.

M. Ebaid, J.-H. Kang, S.-H. Lim, Y.-H. Cho, and S.-W. Ryu, “Towards highly efficient photoanodes: the role of carrier dynamics on the photoelectrochemical performance of InGaN/GaN multiple quantum well coaxial nanowires,” RSC Advances 5(30), 23303–23310 (2015).
[Crossref]

M. Ebaid, J.-H. Kang, S.-H. Lim, J.-S. Ha, J. K. Lee, Y.-H. Cho, and S.-W. Ryu, “Enhanced solar hydrogen generation of high density, high aspect ratio, coaxial InGaN/GaN multi-quantum well nanowires,” Nano Energy 12, 215–223 (2015).
[Crossref]

Lin, J. Y.

K. Aryal, B. N. Pantha, J. Li, J. Y. Lin, and H. X. Jiang, “Hydrogen generation by solar water splitting using p-InGaN photoelectrochemical cells,” Appl. Phys. Lett. 96(5), 052110 (2010).
[Crossref]

Lischka, K.

O. Husberg, A. Khartchenko, D. J. As, H. Vogelsang, T. Frey, D. Schikora, K. Lischka, O. C. Noriega, A. Tabata, and J. R. Leite, “Photoluminescence from quantum dots in cubic GaN/InGaN/GaN double heterostructures,” Appl. Phys. Lett. 79(9), 1243–1245 (2001).
[Crossref]

Liu, D.

M. G. Kibria, H. P. T. Nguyen, K. Cui, S. Zhao, D. Liu, H. Guo, M. L. Trudeau, S. Paradis, A.-R. Hakima, and Z. Mi, “One-Step Overall Water Splitting under Visible Light Using Multiband InGaN/GaN Nanowire Heterostructures,” ACS Nano 7(9), 7886–7893 (2013).
[Crossref] [PubMed]

Liu, G.

M. Ebaid, D. Priante, G. Liu, C. Zhao, M. Sharizal Alias, U. Buttner, T. Khee Ng, T. Taylor Isimjan, H. Idriss, and B. S. Ooi, “Unbiased photocatalytic hydrogen generation from pure water on stable Ir-treated In0.33Ga0.67N nanorods,” Nano Energy 37, 158–167 (2017).
[Crossref]

Liu, J.

D. Cao, H. Xiao, Q. Gao, X. Yang, C. Luan, H. Mao, J. Liu, and X. Liu, “Fabrication and improved photoelectrochemical properties of a transferred GaN-based thin film with InGaN/GaN layers,” Nanoscale 9(32), 11504–11510 (2017).
[Crossref] [PubMed]

Liu, L.

C. Yang, L. Liu, S. Zhu, Z. Yu, X. Xi, S. Wu, H. Cao, J. Li, and L. Zhao, “GaN with Laterally Aligned Nanopores To Enhance the Water Splitting,” J. Phys. Chem. C 121(13), 7331–7336 (2017).
[Crossref]

Liu, Q. Z.

Q. Z. Liu and S. S. Lau, “A review of the metal–GaN contact technology,” Solid-State Electron. 42(5), 677–691 (1998).
[Crossref]

Liu, R.

X. Yang, R. Liu, Y. He, J. Thorne, Z. Zheng, and D. Wang, “Enabling practical electrocatalyst-assisted photoelectron-chemical water splitting with earth abundant materials,” Nano Res. 8(1), 56–81 (2015).
[Crossref]

Liu, X.

D. Cao, H. Xiao, Q. Gao, X. Yang, C. Luan, H. Mao, J. Liu, and X. Liu, “Fabrication and improved photoelectrochemical properties of a transferred GaN-based thin film with InGaN/GaN layers,” Nanoscale 9(32), 11504–11510 (2017).
[Crossref] [PubMed]

Liu, Z.

J. Kang, V. Q. Dang, H. Li, S. Moon, P. Li, Y. Kim, C. Kim, J. Choi, H. Choi, Z. Liu, and H. Lee, “Broadband light-absorption InGaN photoanode assisted by imprint patterning and ZnO nanowire growth for energy conversion,” Nanotechnology 28(4), 045401 (2017).
[Crossref] [PubMed]

Lopez-Conesa, L.

L. Caccamo, J. Hartmann, C. Fàbrega, S. Estradé, G. Lilienkamp, J. D. Prades, M. W. G. Hoffmann, J. Ledig, A. Wagner, X. Wang, L. Lopez-Conesa, F. Peiró, J. M. Rebled, H.-H. Wehmann, W. Daum, H. Shen, and A. Waag, “Band Engineered Epitaxial 3D GaN-InGaN Core-Shell Rod Arrays as an Advanced Photoanode for Visible-Light-Driven Water Splitting,” ACS Appl. Mater. Interfaces 6(4), 2235–2240 (2014).
[Crossref] [PubMed]

Luan, C.

D. Cao, H. Xiao, Q. Gao, X. Yang, C. Luan, H. Mao, J. Liu, and X. Liu, “Fabrication and improved photoelectrochemical properties of a transferred GaN-based thin film with InGaN/GaN layers,” Nanoscale 9(32), 11504–11510 (2017).
[Crossref] [PubMed]

Malindretos, J.

J. Segura-Ruiz, G. Martínez-Criado, C. Denker, J. Malindretos, and A. Rizzi, “Phase Separation in Single InxGa1-xN Nanowires Revealed through a hard X-ray Synchrotron Nanoprobe,” Nano Lett. 14(3), 1300–1305 (2014).
[Crossref] [PubMed]

Mandal, A.

J.-H. Park, A. Mandal, S. Kang, U. Chatterjee, J. S. Kim, B.-G. Park, M.-D. Kim, K.-U. Jeong, and C.-R. Lee, “Hydrogen Generation using non-polar coaxial InGaN/GaN Multiple Quantum Well Structure Formed on Hollow n-GaN Nanowires,” Sci. Rep. 6(1), 31996 (2016).
[Crossref] [PubMed]

Mao, H.

D. Cao, H. Xiao, Q. Gao, X. Yang, C. Luan, H. Mao, J. Liu, and X. Liu, “Fabrication and improved photoelectrochemical properties of a transferred GaN-based thin film with InGaN/GaN layers,” Nanoscale 9(32), 11504–11510 (2017).
[Crossref] [PubMed]

Mao, S. S.

X. Chen, S. Shen, L. Guo, and S. S. Mao, “Semiconductor-based Photocatalytic Hydrogen Generation,” Chem. Rev. 110(11), 6503–6570 (2010).
[Crossref] [PubMed]

Martin, R. W.

S. Hernández, R. Cuscó, D. Pastor, L. Artús, K. P. O’Donnell, R. W. Martin, I. M. Watson, Y. Nanishi, and E. Calleja, “Raman-scattering study of the InGaN alloy over the whole composition range,” J. Appl. Phys. 98(1), 013511 (2005).
[Crossref]

Martín, G.

L. Caccamo, G. Cocco, G. Martín, H. Zhou, S. Fundling, A. Gad, M. S. Mohajerani, M. Abdelfatah, S. Estradé, F. Peiró, W. Dziony, H. Bremers, A. Hangleiter, L. Mayrhofer, G. Lilienkamp, M. Moseler, W. Daum, and A. Waag, “Insights into Interfacial Changes and Photoelectrochemical Stability of InxGa1-xN (0001) Photoanode Surfaces in Liquid Environments,” ACS Appl. Mater. Interfaces 8(12), 8232–8238 (2016).
[Crossref] [PubMed]

Martínez-Criado, G.

J. Segura-Ruiz, G. Martínez-Criado, C. Denker, J. Malindretos, and A. Rizzi, “Phase Separation in Single InxGa1-xN Nanowires Revealed through a hard X-ray Synchrotron Nanoprobe,” Nano Lett. 14(3), 1300–1305 (2014).
[Crossref] [PubMed]

Mayrhofer, L.

L. Caccamo, G. Cocco, G. Martín, H. Zhou, S. Fundling, A. Gad, M. S. Mohajerani, M. Abdelfatah, S. Estradé, F. Peiró, W. Dziony, H. Bremers, A. Hangleiter, L. Mayrhofer, G. Lilienkamp, M. Moseler, W. Daum, and A. Waag, “Insights into Interfacial Changes and Photoelectrochemical Stability of InxGa1-xN (0001) Photoanode Surfaces in Liquid Environments,” ACS Appl. Mater. Interfaces 8(12), 8232–8238 (2016).
[Crossref] [PubMed]

McKone, J. R.

M. G. Walter, E. L. Warren, J. R. McKone, S. W. Boettcher, Q. Mi, E. A. Santori, and N. S. Lewis, “Solar Water Splitting Cells,” Chem. Rev. 110(11), 6446–6473 (2010).
[Crossref] [PubMed]

Mi, Q.

M. G. Walter, E. L. Warren, J. R. McKone, S. W. Boettcher, Q. Mi, E. A. Santori, and N. S. Lewis, “Solar Water Splitting Cells,” Chem. Rev. 110(11), 6446–6473 (2010).
[Crossref] [PubMed]

Mi, Z.

M. G. Kibria and Z. Mi, “Artificial photosynthesis using metal/nonmetal-nitride semiconductors: current status, prospects, and challenges,” J. Mater. Chem. A Mater. Energy Sustain. 4(8), 2801–2820 (2016).
[Crossref]

B. AlOtaibi, S. Fan, S. Vanka, M. G. Kibria, and Z. Mi, “A Metal-Nitride Nanowire Dual-Photoelectrode Device for Unassisted Solar-to-Hydrogen Conversion under Parallel Illumination,” Nano Lett. 15(10), 6821–6828 (2015).
[Crossref] [PubMed]

M. G. Kibria, H. P. T. Nguyen, K. Cui, S. Zhao, D. Liu, H. Guo, M. L. Trudeau, S. Paradis, A.-R. Hakima, and Z. Mi, “One-Step Overall Water Splitting under Visible Light Using Multiband InGaN/GaN Nanowire Heterostructures,” ACS Nano 7(9), 7886–7893 (2013).
[Crossref] [PubMed]

B. AlOtaibi, H. P. T. Nguyen, S. Zhao, M. G. Kibria, S. Fan, and Z. Mi, “Highly Stable Photoelectrochemical Water Splitting and Hydrogen Generation Using a Double-Band InGaN/GaN Core/Shell Nanowire Photoanode,” Nano Lett. 13(9), 4356–4361 (2013).
[Crossref] [PubMed]

Mirgorodsky, A. P.

V. Y. Davydov, Y. E. Kitaev, I. N. Goncharuk, A. N. Smirnov, J. Graul, O. Semchinova, D. Uffmann, M. B. Smirnov, A. P. Mirgorodsky, and R. A. Evarestov, “Phonon dispersion and Raman scattering in hexagonal GaN and AlN,” Phys. Rev. B 58(19), 12899–12907 (1998).
[Crossref]

Mohajerani, M. S.

L. Caccamo, G. Cocco, G. Martín, H. Zhou, S. Fundling, A. Gad, M. S. Mohajerani, M. Abdelfatah, S. Estradé, F. Peiró, W. Dziony, H. Bremers, A. Hangleiter, L. Mayrhofer, G. Lilienkamp, M. Moseler, W. Daum, and A. Waag, “Insights into Interfacial Changes and Photoelectrochemical Stability of InxGa1-xN (0001) Photoanode Surfaces in Liquid Environments,” ACS Appl. Mater. Interfaces 8(12), 8232–8238 (2016).
[Crossref] [PubMed]

Mohammad, S. N.

A. Motayed, R. Bathe, M. C. Wood, O. S. Diouf, R. D. Vispute, and S. N. Mohammad, “Electrical, thermal, and microstructural characteristics of Ti/Al/Ti/Au multilayer Ohmic contacts to n-type GaN,” J. Appl. Phys. 93(2), 1087–1094 (2003).
[Crossref]

Moon, S.

J. Kang, V. Q. Dang, H. Li, S. Moon, P. Li, Y. Kim, C. Kim, J. Choi, H. Choi, Z. Liu, and H. Lee, “Broadband light-absorption InGaN photoanode assisted by imprint patterning and ZnO nanowire growth for energy conversion,” Nanotechnology 28(4), 045401 (2017).
[Crossref] [PubMed]

Moseler, M.

L. Caccamo, G. Cocco, G. Martín, H. Zhou, S. Fundling, A. Gad, M. S. Mohajerani, M. Abdelfatah, S. Estradé, F. Peiró, W. Dziony, H. Bremers, A. Hangleiter, L. Mayrhofer, G. Lilienkamp, M. Moseler, W. Daum, and A. Waag, “Insights into Interfacial Changes and Photoelectrochemical Stability of InxGa1-xN (0001) Photoanode Surfaces in Liquid Environments,” ACS Appl. Mater. Interfaces 8(12), 8232–8238 (2016).
[Crossref] [PubMed]

Motayed, A.

A. Motayed, R. Bathe, M. C. Wood, O. S. Diouf, R. D. Vispute, and S. N. Mohammad, “Electrical, thermal, and microstructural characteristics of Ti/Al/Ti/Au multilayer Ohmic contacts to n-type GaN,” J. Appl. Phys. 93(2), 1087–1094 (2003).
[Crossref]

Mulder, W. H.

W. H. Mulder, J. H. Sluyters, T. Pajkossy, and L. Nyikos, “Tafel current at fractal electrodes: Connection with admittance spectra,” J. Electroanal. Chem. Interfacial Electrochem. 285(1-2), 103–115 (1990).
[Crossref]

Nakamura, A.

Y. Imazeki, Y. Iwai, A. Nakamura, K. Koike, S.-i. Sato, T. Ohshima, K. Fujii, M. Sugiyama, and Y. Nakano, “Band Alignment at n-GaN/Electrolyte Interface Explored by Photo-Induced Offset of Open-Circuit Potential for Efficient Water Splitting,” ECS Trans. 77(4), 25–30 (2017).
[Crossref]

Nakano, Y.

Y. Imazeki, Y. Iwai, A. Nakamura, K. Koike, S.-i. Sato, T. Ohshima, K. Fujii, M. Sugiyama, and Y. Nakano, “Band Alignment at n-GaN/Electrolyte Interface Explored by Photo-Induced Offset of Open-Circuit Potential for Efficient Water Splitting,” ECS Trans. 77(4), 25–30 (2017).
[Crossref]

Nanishi, Y.

S. Hernández, R. Cuscó, D. Pastor, L. Artús, K. P. O’Donnell, R. W. Martin, I. M. Watson, Y. Nanishi, and E. Calleja, “Raman-scattering study of the InGaN alloy over the whole composition range,” J. Appl. Phys. 98(1), 013511 (2005).
[Crossref]

Nevou, L.

M. Tchernycheva, C. Sartel, G. Cirlin, L. Travers, G. Patriarche, J. C. Harmand, D. Le Si, J. Renard, B. Gayral, L. Nevou, and F. Julien, “Growth of GaN free-standing nanowires by plasma-assisted molecular beam epitaxy: structural and optical characterization,” Nanotechnology 18(38), 385306 (2007).
[Crossref]

Nguyen, H. P. T.

B. AlOtaibi, H. P. T. Nguyen, S. Zhao, M. G. Kibria, S. Fan, and Z. Mi, “Highly Stable Photoelectrochemical Water Splitting and Hydrogen Generation Using a Double-Band InGaN/GaN Core/Shell Nanowire Photoanode,” Nano Lett. 13(9), 4356–4361 (2013).
[Crossref] [PubMed]

M. G. Kibria, H. P. T. Nguyen, K. Cui, S. Zhao, D. Liu, H. Guo, M. L. Trudeau, S. Paradis, A.-R. Hakima, and Z. Mi, “One-Step Overall Water Splitting under Visible Light Using Multiband InGaN/GaN Nanowire Heterostructures,” ACS Nano 7(9), 7886–7893 (2013).
[Crossref] [PubMed]

Nocera, D. G.

T. R. Cook, D. K. Dogutan, S. Y. Reece, Y. Surendranath, T. S. Teets, and D. G. Nocera, “Solar Energy Supply and Storage for the Legacy and Nonlegacy Worlds,” Chem. Rev. 110(11), 6474–6502 (2010).
[Crossref] [PubMed]

N. S. Lewis and D. G. Nocera, “Powering the planet: Chemical challenges in solar energy utilization,” Proceedings of the National Academy of Sciences103(2006).
[Crossref]

Noriega, O. C.

O. Husberg, A. Khartchenko, D. J. As, H. Vogelsang, T. Frey, D. Schikora, K. Lischka, O. C. Noriega, A. Tabata, and J. R. Leite, “Photoluminescence from quantum dots in cubic GaN/InGaN/GaN double heterostructures,” Appl. Phys. Lett. 79(9), 1243–1245 (2001).
[Crossref]

Nyikos, L.

W. H. Mulder, J. H. Sluyters, T. Pajkossy, and L. Nyikos, “Tafel current at fractal electrodes: Connection with admittance spectra,” J. Electroanal. Chem. Interfacial Electrochem. 285(1-2), 103–115 (1990).
[Crossref]

O’Donnell, K. P.

S. Hernández, R. Cuscó, D. Pastor, L. Artús, K. P. O’Donnell, R. W. Martin, I. M. Watson, Y. Nanishi, and E. Calleja, “Raman-scattering study of the InGaN alloy over the whole composition range,” J. Appl. Phys. 98(1), 013511 (2005).
[Crossref]

Ohshima, T.

Y. Imazeki, Y. Iwai, A. Nakamura, K. Koike, S.-i. Sato, T. Ohshima, K. Fujii, M. Sugiyama, and Y. Nakano, “Band Alignment at n-GaN/Electrolyte Interface Explored by Photo-Induced Offset of Open-Circuit Potential for Efficient Water Splitting,” ECS Trans. 77(4), 25–30 (2017).
[Crossref]

Ooi, B. S.

M. Ebaid, D. Priante, G. Liu, C. Zhao, M. Sharizal Alias, U. Buttner, T. Khee Ng, T. Taylor Isimjan, H. Idriss, and B. S. Ooi, “Unbiased photocatalytic hydrogen generation from pure water on stable Ir-treated In0.33Ga0.67N nanorods,” Nano Energy 37, 158–167 (2017).
[Crossref]

Pajkossy, T.

W. H. Mulder, J. H. Sluyters, T. Pajkossy, and L. Nyikos, “Tafel current at fractal electrodes: Connection with admittance spectra,” J. Electroanal. Chem. Interfacial Electrochem. 285(1-2), 103–115 (1990).
[Crossref]

Pantha, B. N.

K. Aryal, B. N. Pantha, J. Li, J. Y. Lin, and H. X. Jiang, “Hydrogen generation by solar water splitting using p-InGaN photoelectrochemical cells,” Appl. Phys. Lett. 96(5), 052110 (2010).
[Crossref]

Paradis, S.

M. G. Kibria, H. P. T. Nguyen, K. Cui, S. Zhao, D. Liu, H. Guo, M. L. Trudeau, S. Paradis, A.-R. Hakima, and Z. Mi, “One-Step Overall Water Splitting under Visible Light Using Multiband InGaN/GaN Nanowire Heterostructures,” ACS Nano 7(9), 7886–7893 (2013).
[Crossref] [PubMed]

Park, B.-G.

J.-H. Park, A. Mandal, S. Kang, U. Chatterjee, J. S. Kim, B.-G. Park, M.-D. Kim, K.-U. Jeong, and C.-R. Lee, “Hydrogen Generation using non-polar coaxial InGaN/GaN Multiple Quantum Well Structure Formed on Hollow n-GaN Nanowires,” Sci. Rep. 6(1), 31996 (2016).
[Crossref] [PubMed]

Park, J.-H.

J.-H. Park, A. Mandal, S. Kang, U. Chatterjee, J. S. Kim, B.-G. Park, M.-D. Kim, K.-U. Jeong, and C.-R. Lee, “Hydrogen Generation using non-polar coaxial InGaN/GaN Multiple Quantum Well Structure Formed on Hollow n-GaN Nanowires,” Sci. Rep. 6(1), 31996 (2016).
[Crossref] [PubMed]

Pastor, D.

S. Hernández, R. Cuscó, D. Pastor, L. Artús, K. P. O’Donnell, R. W. Martin, I. M. Watson, Y. Nanishi, and E. Calleja, “Raman-scattering study of the InGaN alloy over the whole composition range,” J. Appl. Phys. 98(1), 013511 (2005).
[Crossref]

Patriarche, G.

M. Tchernycheva, C. Sartel, G. Cirlin, L. Travers, G. Patriarche, J. C. Harmand, D. Le Si, J. Renard, B. Gayral, L. Nevou, and F. Julien, “Growth of GaN free-standing nanowires by plasma-assisted molecular beam epitaxy: structural and optical characterization,” Nanotechnology 18(38), 385306 (2007).
[Crossref]

Peiró, F.

L. Caccamo, G. Cocco, G. Martín, H. Zhou, S. Fundling, A. Gad, M. S. Mohajerani, M. Abdelfatah, S. Estradé, F. Peiró, W. Dziony, H. Bremers, A. Hangleiter, L. Mayrhofer, G. Lilienkamp, M. Moseler, W. Daum, and A. Waag, “Insights into Interfacial Changes and Photoelectrochemical Stability of InxGa1-xN (0001) Photoanode Surfaces in Liquid Environments,” ACS Appl. Mater. Interfaces 8(12), 8232–8238 (2016).
[Crossref] [PubMed]

L. Caccamo, J. Hartmann, C. Fàbrega, S. Estradé, G. Lilienkamp, J. D. Prades, M. W. G. Hoffmann, J. Ledig, A. Wagner, X. Wang, L. Lopez-Conesa, F. Peiró, J. M. Rebled, H.-H. Wehmann, W. Daum, H. Shen, and A. Waag, “Band Engineered Epitaxial 3D GaN-InGaN Core-Shell Rod Arrays as an Advanced Photoanode for Visible-Light-Driven Water Splitting,” ACS Appl. Mater. Interfaces 6(4), 2235–2240 (2014).
[Crossref] [PubMed]

Prades, J. D.

L. Caccamo, J. Hartmann, C. Fàbrega, S. Estradé, G. Lilienkamp, J. D. Prades, M. W. G. Hoffmann, J. Ledig, A. Wagner, X. Wang, L. Lopez-Conesa, F. Peiró, J. M. Rebled, H.-H. Wehmann, W. Daum, H. Shen, and A. Waag, “Band Engineered Epitaxial 3D GaN-InGaN Core-Shell Rod Arrays as an Advanced Photoanode for Visible-Light-Driven Water Splitting,” ACS Appl. Mater. Interfaces 6(4), 2235–2240 (2014).
[Crossref] [PubMed]

Priante, D.

M. Ebaid, D. Priante, G. Liu, C. Zhao, M. Sharizal Alias, U. Buttner, T. Khee Ng, T. Taylor Isimjan, H. Idriss, and B. S. Ooi, “Unbiased photocatalytic hydrogen generation from pure water on stable Ir-treated In0.33Ga0.67N nanorods,” Nano Energy 37, 158–167 (2017).
[Crossref]

Protasenko, V. V.

K. D. Goodman, V. V. Protasenko, J. Verma, T. H. Kosel, H. G. Xing, and D. Jena, “Green luminescence of InGaN nanowires grown on silicon substrates by molecular beam epitaxy,” J. Appl. Phys. 109(8), 084336 (2011).
[Crossref]

Qingxue, G.

C. Dezhong, X. Hongdi, F. Jiacheng, L. Jianqiang, G. Qingxue, L. Xiangdong, and M. Jin, “Photoelectrochemical water splitting on nanoporous GaN thin films for energy conversion under visible light,” Materials Research Express 4(1), 015019 (2017).
[Crossref]

Ramsteiner, M.

J. Kamimura, P. Bogdanoff, M. Ramsteiner, P. Corfdir, F. Feix, L. Geelhaar, and H. Riechert, “p-Type Doping of GaN Nanowires Characterized by Photoelectrochemical Measurements,” Nano Lett. 17(3), 1529–1537 (2017).
[Crossref] [PubMed]

Rebled, J. M.

L. Caccamo, J. Hartmann, C. Fàbrega, S. Estradé, G. Lilienkamp, J. D. Prades, M. W. G. Hoffmann, J. Ledig, A. Wagner, X. Wang, L. Lopez-Conesa, F. Peiró, J. M. Rebled, H.-H. Wehmann, W. Daum, H. Shen, and A. Waag, “Band Engineered Epitaxial 3D GaN-InGaN Core-Shell Rod Arrays as an Advanced Photoanode for Visible-Light-Driven Water Splitting,” ACS Appl. Mater. Interfaces 6(4), 2235–2240 (2014).
[Crossref] [PubMed]

Reece, S. Y.

T. R. Cook, D. K. Dogutan, S. Y. Reece, Y. Surendranath, T. S. Teets, and D. G. Nocera, “Solar Energy Supply and Storage for the Legacy and Nonlegacy Worlds,” Chem. Rev. 110(11), 6474–6502 (2010).
[Crossref] [PubMed]

Renard, J.

M. Tchernycheva, C. Sartel, G. Cirlin, L. Travers, G. Patriarche, J. C. Harmand, D. Le Si, J. Renard, B. Gayral, L. Nevou, and F. Julien, “Growth of GaN free-standing nanowires by plasma-assisted molecular beam epitaxy: structural and optical characterization,” Nanotechnology 18(38), 385306 (2007).
[Crossref]

Riechert, H.

J. Kamimura, P. Bogdanoff, M. Ramsteiner, P. Corfdir, F. Feix, L. Geelhaar, and H. Riechert, “p-Type Doping of GaN Nanowires Characterized by Photoelectrochemical Measurements,” Nano Lett. 17(3), 1529–1537 (2017).
[Crossref] [PubMed]

Rizzi, A.

J. Segura-Ruiz, G. Martínez-Criado, C. Denker, J. Malindretos, and A. Rizzi, “Phase Separation in Single InxGa1-xN Nanowires Revealed through a hard X-ray Synchrotron Nanoprobe,” Nano Lett. 14(3), 1300–1305 (2014).
[Crossref] [PubMed]

Roccaforte, F.

G. Greco, F. Iucolano, and F. Roccaforte, “Ohmic contacts to Gallium Nitride materials,” Appl. Surf. Sci. 383, 324–345 (2016).
[Crossref]

Ryu, S.-W.

M. Ebaid, J.-H. Kang, and S.-W. Ryu, “Controlled synthesis of GaN-based nanowires for photoelectrochemical water splitting applications,” Semicond. Sci. Technol. 32(1), 013001 (2017).
[Crossref]

M. Ebaid, J.-H. Kang, S.-H. Lim, Y.-H. Cho, and S.-W. Ryu, “Towards highly efficient photoanodes: the role of carrier dynamics on the photoelectrochemical performance of InGaN/GaN multiple quantum well coaxial nanowires,” RSC Advances 5(30), 23303–23310 (2015).
[Crossref]

M. Ebaid, J.-H. Kang, S.-H. Lim, J.-S. Ha, J. K. Lee, Y.-H. Cho, and S.-W. Ryu, “Enhanced solar hydrogen generation of high density, high aspect ratio, coaxial InGaN/GaN multi-quantum well nanowires,” Nano Energy 12, 215–223 (2015).
[Crossref]

Santori, E. A.

M. G. Walter, E. L. Warren, J. R. McKone, S. W. Boettcher, Q. Mi, E. A. Santori, and N. S. Lewis, “Solar Water Splitting Cells,” Chem. Rev. 110(11), 6446–6473 (2010).
[Crossref] [PubMed]

Sartel, C.

M. Tchernycheva, C. Sartel, G. Cirlin, L. Travers, G. Patriarche, J. C. Harmand, D. Le Si, J. Renard, B. Gayral, L. Nevou, and F. Julien, “Growth of GaN free-standing nanowires by plasma-assisted molecular beam epitaxy: structural and optical characterization,” Nanotechnology 18(38), 385306 (2007).
[Crossref]

Sato, S.-i.

Y. Imazeki, Y. Iwai, A. Nakamura, K. Koike, S.-i. Sato, T. Ohshima, K. Fujii, M. Sugiyama, and Y. Nakano, “Band Alignment at n-GaN/Electrolyte Interface Explored by Photo-Induced Offset of Open-Circuit Potential for Efficient Water Splitting,” ECS Trans. 77(4), 25–30 (2017).
[Crossref]

Schikora, D.

O. Husberg, A. Khartchenko, D. J. As, H. Vogelsang, T. Frey, D. Schikora, K. Lischka, O. C. Noriega, A. Tabata, and J. R. Leite, “Photoluminescence from quantum dots in cubic GaN/InGaN/GaN double heterostructures,” Appl. Phys. Lett. 79(9), 1243–1245 (2001).
[Crossref]

Schiller, C. A.

C. A. Schiller and W. Strunz, “The evaluation of experimental dielectric data of barrier coatings by means of different models,” Electrochim. Acta 46(24-25), 3619–3625 (2001).
[Crossref]

Segura-Ruiz, J.

J. Segura-Ruiz, G. Martínez-Criado, C. Denker, J. Malindretos, and A. Rizzi, “Phase Separation in Single InxGa1-xN Nanowires Revealed through a hard X-ray Synchrotron Nanoprobe,” Nano Lett. 14(3), 1300–1305 (2014).
[Crossref] [PubMed]

Semchinova, O.

V. Y. Davydov, Y. E. Kitaev, I. N. Goncharuk, A. N. Smirnov, J. Graul, O. Semchinova, D. Uffmann, M. B. Smirnov, A. P. Mirgorodsky, and R. A. Evarestov, “Phonon dispersion and Raman scattering in hexagonal GaN and AlN,” Phys. Rev. B 58(19), 12899–12907 (1998).
[Crossref]

Shaner, M. R.

S. Hu, M. R. Shaner, J. A. Beardslee, M. Lichterman, B. S. Brunschwig, and N. S. Lewis, “Amorphous TiO2 coatings stabilize Si, GaAs, and GaP photoanodes for efficient water oxidation,” Science 344(6187), 1005–1009 (2014).
[Crossref] [PubMed]

Sharizal Alias, M.

M. Ebaid, D. Priante, G. Liu, C. Zhao, M. Sharizal Alias, U. Buttner, T. Khee Ng, T. Taylor Isimjan, H. Idriss, and B. S. Ooi, “Unbiased photocatalytic hydrogen generation from pure water on stable Ir-treated In0.33Ga0.67N nanorods,” Nano Energy 37, 158–167 (2017).
[Crossref]

Shen, H.

L. Caccamo, J. Hartmann, C. Fàbrega, S. Estradé, G. Lilienkamp, J. D. Prades, M. W. G. Hoffmann, J. Ledig, A. Wagner, X. Wang, L. Lopez-Conesa, F. Peiró, J. M. Rebled, H.-H. Wehmann, W. Daum, H. Shen, and A. Waag, “Band Engineered Epitaxial 3D GaN-InGaN Core-Shell Rod Arrays as an Advanced Photoanode for Visible-Light-Driven Water Splitting,” ACS Appl. Mater. Interfaces 6(4), 2235–2240 (2014).
[Crossref] [PubMed]

Shen, S.

X. Chen, S. Shen, L. Guo, and S. S. Mao, “Semiconductor-based Photocatalytic Hydrogen Generation,” Chem. Rev. 110(11), 6503–6570 (2010).
[Crossref] [PubMed]

Sluyters, J. H.

W. H. Mulder, J. H. Sluyters, T. Pajkossy, and L. Nyikos, “Tafel current at fractal electrodes: Connection with admittance spectra,” J. Electroanal. Chem. Interfacial Electrochem. 285(1-2), 103–115 (1990).
[Crossref]

Smirnov, A. N.

V. Y. Davydov, Y. E. Kitaev, I. N. Goncharuk, A. N. Smirnov, J. Graul, O. Semchinova, D. Uffmann, M. B. Smirnov, A. P. Mirgorodsky, and R. A. Evarestov, “Phonon dispersion and Raman scattering in hexagonal GaN and AlN,” Phys. Rev. B 58(19), 12899–12907 (1998).
[Crossref]

Smirnov, M. B.

V. Y. Davydov, Y. E. Kitaev, I. N. Goncharuk, A. N. Smirnov, J. Graul, O. Semchinova, D. Uffmann, M. B. Smirnov, A. P. Mirgorodsky, and R. A. Evarestov, “Phonon dispersion and Raman scattering in hexagonal GaN and AlN,” Phys. Rev. B 58(19), 12899–12907 (1998).
[Crossref]

Strunz, W.

C. A. Schiller and W. Strunz, “The evaluation of experimental dielectric data of barrier coatings by means of different models,” Electrochim. Acta 46(24-25), 3619–3625 (2001).
[Crossref]

Su, J.

J. Su, Y. Wei, and L. Vayssieres, “Stability and Performance of Sulfide-, Nitride-, and Phosphide-Based Electrodes for Photocatalytic Solar Water Splitting,” J. Phys. Chem. Lett. 8(20), 5228–5238 (2017).
[Crossref] [PubMed]

Sugiyama, M.

Y. Imazeki, Y. Iwai, A. Nakamura, K. Koike, S.-i. Sato, T. Ohshima, K. Fujii, M. Sugiyama, and Y. Nakano, “Band Alignment at n-GaN/Electrolyte Interface Explored by Photo-Induced Offset of Open-Circuit Potential for Efficient Water Splitting,” ECS Trans. 77(4), 25–30 (2017).
[Crossref]

Surendranath, Y.

T. R. Cook, D. K. Dogutan, S. Y. Reece, Y. Surendranath, T. S. Teets, and D. G. Nocera, “Solar Energy Supply and Storage for the Legacy and Nonlegacy Worlds,” Chem. Rev. 110(11), 6474–6502 (2010).
[Crossref] [PubMed]

Tabata, A.

O. Husberg, A. Khartchenko, D. J. As, H. Vogelsang, T. Frey, D. Schikora, K. Lischka, O. C. Noriega, A. Tabata, and J. R. Leite, “Photoluminescence from quantum dots in cubic GaN/InGaN/GaN double heterostructures,” Appl. Phys. Lett. 79(9), 1243–1245 (2001).
[Crossref]

Taylor Isimjan, T.

M. Ebaid, D. Priante, G. Liu, C. Zhao, M. Sharizal Alias, U. Buttner, T. Khee Ng, T. Taylor Isimjan, H. Idriss, and B. S. Ooi, “Unbiased photocatalytic hydrogen generation from pure water on stable Ir-treated In0.33Ga0.67N nanorods,” Nano Energy 37, 158–167 (2017).
[Crossref]

Tchernycheva, M.

M. Tchernycheva, C. Sartel, G. Cirlin, L. Travers, G. Patriarche, J. C. Harmand, D. Le Si, J. Renard, B. Gayral, L. Nevou, and F. Julien, “Growth of GaN free-standing nanowires by plasma-assisted molecular beam epitaxy: structural and optical characterization,” Nanotechnology 18(38), 385306 (2007).
[Crossref]

Teets, T. S.

T. R. Cook, D. K. Dogutan, S. Y. Reece, Y. Surendranath, T. S. Teets, and D. G. Nocera, “Solar Energy Supply and Storage for the Legacy and Nonlegacy Worlds,” Chem. Rev. 110(11), 6474–6502 (2010).
[Crossref] [PubMed]

Thorne, J.

X. Yang, R. Liu, Y. He, J. Thorne, Z. Zheng, and D. Wang, “Enabling practical electrocatalyst-assisted photoelectron-chemical water splitting with earth abundant materials,” Nano Res. 8(1), 56–81 (2015).
[Crossref]

Travers, L.

M. Tchernycheva, C. Sartel, G. Cirlin, L. Travers, G. Patriarche, J. C. Harmand, D. Le Si, J. Renard, B. Gayral, L. Nevou, and F. Julien, “Growth of GaN free-standing nanowires by plasma-assisted molecular beam epitaxy: structural and optical characterization,” Nanotechnology 18(38), 385306 (2007).
[Crossref]

Trudeau, M. L.

M. G. Kibria, H. P. T. Nguyen, K. Cui, S. Zhao, D. Liu, H. Guo, M. L. Trudeau, S. Paradis, A.-R. Hakima, and Z. Mi, “One-Step Overall Water Splitting under Visible Light Using Multiband InGaN/GaN Nanowire Heterostructures,” ACS Nano 7(9), 7886–7893 (2013).
[Crossref] [PubMed]

Tsagaraki, K.

S. Eftychis, J. Kruse, T. Koukoula, T. Kehagias, P. Komninou, A. Adikimenakis, K. Tsagaraki, M. Androulidaki, P. Tzanetakis, E. Iliopoulos, and A. Georgakilas, “Understanding the effects of Si (111) nitridation on the spontaneous growth and properties of GaN nanowires,” J. Cryst. Growth 442, 8–13 (2016).
[Crossref]

Tzanetakis, P.

S. Eftychis, J. Kruse, T. Koukoula, T. Kehagias, P. Komninou, A. Adikimenakis, K. Tsagaraki, M. Androulidaki, P. Tzanetakis, E. Iliopoulos, and A. Georgakilas, “Understanding the effects of Si (111) nitridation on the spontaneous growth and properties of GaN nanowires,” J. Cryst. Growth 442, 8–13 (2016).
[Crossref]

Uffmann, D.

V. Y. Davydov, Y. E. Kitaev, I. N. Goncharuk, A. N. Smirnov, J. Graul, O. Semchinova, D. Uffmann, M. B. Smirnov, A. P. Mirgorodsky, and R. A. Evarestov, “Phonon dispersion and Raman scattering in hexagonal GaN and AlN,” Phys. Rev. B 58(19), 12899–12907 (1998).
[Crossref]

Vakeesan, D.

N. Kannan and D. Vakeesan, “Solar energy for future world: - A review,” Renew. Sustain. Energy Rev. 62, 1092–1105 (2016).
[Crossref]

Vanka, S.

B. AlOtaibi, S. Fan, S. Vanka, M. G. Kibria, and Z. Mi, “A Metal-Nitride Nanowire Dual-Photoelectrode Device for Unassisted Solar-to-Hydrogen Conversion under Parallel Illumination,” Nano Lett. 15(10), 6821–6828 (2015).
[Crossref] [PubMed]

Vayssieres, L.

J. Su, Y. Wei, and L. Vayssieres, “Stability and Performance of Sulfide-, Nitride-, and Phosphide-Based Electrodes for Photocatalytic Solar Water Splitting,” J. Phys. Chem. Lett. 8(20), 5228–5238 (2017).
[Crossref] [PubMed]

Verma, J.

K. D. Goodman, V. V. Protasenko, J. Verma, T. H. Kosel, H. G. Xing, and D. Jena, “Green luminescence of InGaN nanowires grown on silicon substrates by molecular beam epitaxy,” J. Appl. Phys. 109(8), 084336 (2011).
[Crossref]

Vispute, R. D.

A. Motayed, R. Bathe, M. C. Wood, O. S. Diouf, R. D. Vispute, and S. N. Mohammad, “Electrical, thermal, and microstructural characteristics of Ti/Al/Ti/Au multilayer Ohmic contacts to n-type GaN,” J. Appl. Phys. 93(2), 1087–1094 (2003).
[Crossref]

Vogelsang, H.

O. Husberg, A. Khartchenko, D. J. As, H. Vogelsang, T. Frey, D. Schikora, K. Lischka, O. C. Noriega, A. Tabata, and J. R. Leite, “Photoluminescence from quantum dots in cubic GaN/InGaN/GaN double heterostructures,” Appl. Phys. Lett. 79(9), 1243–1245 (2001).
[Crossref]

Waag, A.

L. Caccamo, G. Cocco, G. Martín, H. Zhou, S. Fundling, A. Gad, M. S. Mohajerani, M. Abdelfatah, S. Estradé, F. Peiró, W. Dziony, H. Bremers, A. Hangleiter, L. Mayrhofer, G. Lilienkamp, M. Moseler, W. Daum, and A. Waag, “Insights into Interfacial Changes and Photoelectrochemical Stability of InxGa1-xN (0001) Photoanode Surfaces in Liquid Environments,” ACS Appl. Mater. Interfaces 8(12), 8232–8238 (2016).
[Crossref] [PubMed]

L. Caccamo, J. Hartmann, C. Fàbrega, S. Estradé, G. Lilienkamp, J. D. Prades, M. W. G. Hoffmann, J. Ledig, A. Wagner, X. Wang, L. Lopez-Conesa, F. Peiró, J. M. Rebled, H.-H. Wehmann, W. Daum, H. Shen, and A. Waag, “Band Engineered Epitaxial 3D GaN-InGaN Core-Shell Rod Arrays as an Advanced Photoanode for Visible-Light-Driven Water Splitting,” ACS Appl. Mater. Interfaces 6(4), 2235–2240 (2014).
[Crossref] [PubMed]

Wagner, A.

L. Caccamo, J. Hartmann, C. Fàbrega, S. Estradé, G. Lilienkamp, J. D. Prades, M. W. G. Hoffmann, J. Ledig, A. Wagner, X. Wang, L. Lopez-Conesa, F. Peiró, J. M. Rebled, H.-H. Wehmann, W. Daum, H. Shen, and A. Waag, “Band Engineered Epitaxial 3D GaN-InGaN Core-Shell Rod Arrays as an Advanced Photoanode for Visible-Light-Driven Water Splitting,” ACS Appl. Mater. Interfaces 6(4), 2235–2240 (2014).
[Crossref] [PubMed]

Walter, M. G.

M. G. Walter, E. L. Warren, J. R. McKone, S. W. Boettcher, Q. Mi, E. A. Santori, and N. S. Lewis, “Solar Water Splitting Cells,” Chem. Rev. 110(11), 6446–6473 (2010).
[Crossref] [PubMed]

Wang, D.

X. Yang, R. Liu, Y. He, J. Thorne, Z. Zheng, and D. Wang, “Enabling practical electrocatalyst-assisted photoelectron-chemical water splitting with earth abundant materials,” Nano Res. 8(1), 56–81 (2015).
[Crossref]

Wang, X.

L. Caccamo, J. Hartmann, C. Fàbrega, S. Estradé, G. Lilienkamp, J. D. Prades, M. W. G. Hoffmann, J. Ledig, A. Wagner, X. Wang, L. Lopez-Conesa, F. Peiró, J. M. Rebled, H.-H. Wehmann, W. Daum, H. Shen, and A. Waag, “Band Engineered Epitaxial 3D GaN-InGaN Core-Shell Rod Arrays as an Advanced Photoanode for Visible-Light-Driven Water Splitting,” ACS Appl. Mater. Interfaces 6(4), 2235–2240 (2014).
[Crossref] [PubMed]

Warren, E. L.

M. G. Walter, E. L. Warren, J. R. McKone, S. W. Boettcher, Q. Mi, E. A. Santori, and N. S. Lewis, “Solar Water Splitting Cells,” Chem. Rev. 110(11), 6446–6473 (2010).
[Crossref] [PubMed]

Watson, I. M.

S. Hernández, R. Cuscó, D. Pastor, L. Artús, K. P. O’Donnell, R. W. Martin, I. M. Watson, Y. Nanishi, and E. Calleja, “Raman-scattering study of the InGaN alloy over the whole composition range,” J. Appl. Phys. 98(1), 013511 (2005).
[Crossref]

Wehmann, H.-H.

L. Caccamo, J. Hartmann, C. Fàbrega, S. Estradé, G. Lilienkamp, J. D. Prades, M. W. G. Hoffmann, J. Ledig, A. Wagner, X. Wang, L. Lopez-Conesa, F. Peiró, J. M. Rebled, H.-H. Wehmann, W. Daum, H. Shen, and A. Waag, “Band Engineered Epitaxial 3D GaN-InGaN Core-Shell Rod Arrays as an Advanced Photoanode for Visible-Light-Driven Water Splitting,” ACS Appl. Mater. Interfaces 6(4), 2235–2240 (2014).
[Crossref] [PubMed]

Wei, Y.

J. Su, Y. Wei, and L. Vayssieres, “Stability and Performance of Sulfide-, Nitride-, and Phosphide-Based Electrodes for Photocatalytic Solar Water Splitting,” J. Phys. Chem. Lett. 8(20), 5228–5238 (2017).
[Crossref] [PubMed]

Wood, M. C.

A. Motayed, R. Bathe, M. C. Wood, O. S. Diouf, R. D. Vispute, and S. N. Mohammad, “Electrical, thermal, and microstructural characteristics of Ti/Al/Ti/Au multilayer Ohmic contacts to n-type GaN,” J. Appl. Phys. 93(2), 1087–1094 (2003).
[Crossref]

Wu, S.

C. Yang, L. Liu, S. Zhu, Z. Yu, X. Xi, S. Wu, H. Cao, J. Li, and L. Zhao, “GaN with Laterally Aligned Nanopores To Enhance the Water Splitting,” J. Phys. Chem. C 121(13), 7331–7336 (2017).
[Crossref]

Xi, X.

C. Yang, L. Liu, S. Zhu, Z. Yu, X. Xi, S. Wu, H. Cao, J. Li, and L. Zhao, “GaN with Laterally Aligned Nanopores To Enhance the Water Splitting,” J. Phys. Chem. C 121(13), 7331–7336 (2017).
[Crossref]

Xiangdong, L.

C. Dezhong, X. Hongdi, F. Jiacheng, L. Jianqiang, G. Qingxue, L. Xiangdong, and M. Jin, “Photoelectrochemical water splitting on nanoporous GaN thin films for energy conversion under visible light,” Materials Research Express 4(1), 015019 (2017).
[Crossref]

Xiao, H.

D. Cao, H. Xiao, Q. Gao, X. Yang, C. Luan, H. Mao, J. Liu, and X. Liu, “Fabrication and improved photoelectrochemical properties of a transferred GaN-based thin film with InGaN/GaN layers,” Nanoscale 9(32), 11504–11510 (2017).
[Crossref] [PubMed]

Xing, H. G.

K. D. Goodman, V. V. Protasenko, J. Verma, T. H. Kosel, H. G. Xing, and D. Jena, “Green luminescence of InGaN nanowires grown on silicon substrates by molecular beam epitaxy,” J. Appl. Phys. 109(8), 084336 (2011).
[Crossref]

Yang, C.

C. Yang, L. Liu, S. Zhu, Z. Yu, X. Xi, S. Wu, H. Cao, J. Li, and L. Zhao, “GaN with Laterally Aligned Nanopores To Enhance the Water Splitting,” J. Phys. Chem. C 121(13), 7331–7336 (2017).
[Crossref]

Yang, X.

D. Cao, H. Xiao, Q. Gao, X. Yang, C. Luan, H. Mao, J. Liu, and X. Liu, “Fabrication and improved photoelectrochemical properties of a transferred GaN-based thin film with InGaN/GaN layers,” Nanoscale 9(32), 11504–11510 (2017).
[Crossref] [PubMed]

X. Yang, R. Liu, Y. He, J. Thorne, Z. Zheng, and D. Wang, “Enabling practical electrocatalyst-assisted photoelectron-chemical water splitting with earth abundant materials,” Nano Res. 8(1), 56–81 (2015).
[Crossref]

Yu, Z.

C. Yang, L. Liu, S. Zhu, Z. Yu, X. Xi, S. Wu, H. Cao, J. Li, and L. Zhao, “GaN with Laterally Aligned Nanopores To Enhance the Water Splitting,” J. Phys. Chem. C 121(13), 7331–7336 (2017).
[Crossref]

Zhao, C.

M. Ebaid, D. Priante, G. Liu, C. Zhao, M. Sharizal Alias, U. Buttner, T. Khee Ng, T. Taylor Isimjan, H. Idriss, and B. S. Ooi, “Unbiased photocatalytic hydrogen generation from pure water on stable Ir-treated In0.33Ga0.67N nanorods,” Nano Energy 37, 158–167 (2017).
[Crossref]

Zhao, L.

C. Yang, L. Liu, S. Zhu, Z. Yu, X. Xi, S. Wu, H. Cao, J. Li, and L. Zhao, “GaN with Laterally Aligned Nanopores To Enhance the Water Splitting,” J. Phys. Chem. C 121(13), 7331–7336 (2017).
[Crossref]

Zhao, S.

M. G. Kibria, H. P. T. Nguyen, K. Cui, S. Zhao, D. Liu, H. Guo, M. L. Trudeau, S. Paradis, A.-R. Hakima, and Z. Mi, “One-Step Overall Water Splitting under Visible Light Using Multiband InGaN/GaN Nanowire Heterostructures,” ACS Nano 7(9), 7886–7893 (2013).
[Crossref] [PubMed]

B. AlOtaibi, H. P. T. Nguyen, S. Zhao, M. G. Kibria, S. Fan, and Z. Mi, “Highly Stable Photoelectrochemical Water Splitting and Hydrogen Generation Using a Double-Band InGaN/GaN Core/Shell Nanowire Photoanode,” Nano Lett. 13(9), 4356–4361 (2013).
[Crossref] [PubMed]

Zheng, Z.

X. Yang, R. Liu, Y. He, J. Thorne, Z. Zheng, and D. Wang, “Enabling practical electrocatalyst-assisted photoelectron-chemical water splitting with earth abundant materials,” Nano Res. 8(1), 56–81 (2015).
[Crossref]

Zhou, H.

L. Caccamo, G. Cocco, G. Martín, H. Zhou, S. Fundling, A. Gad, M. S. Mohajerani, M. Abdelfatah, S. Estradé, F. Peiró, W. Dziony, H. Bremers, A. Hangleiter, L. Mayrhofer, G. Lilienkamp, M. Moseler, W. Daum, and A. Waag, “Insights into Interfacial Changes and Photoelectrochemical Stability of InxGa1-xN (0001) Photoanode Surfaces in Liquid Environments,” ACS Appl. Mater. Interfaces 8(12), 8232–8238 (2016).
[Crossref] [PubMed]

Zhu, S.

C. Yang, L. Liu, S. Zhu, Z. Yu, X. Xi, S. Wu, H. Cao, J. Li, and L. Zhao, “GaN with Laterally Aligned Nanopores To Enhance the Water Splitting,” J. Phys. Chem. C 121(13), 7331–7336 (2017).
[Crossref]

ACS Appl. Mater. Interfaces (2)

L. Caccamo, G. Cocco, G. Martín, H. Zhou, S. Fundling, A. Gad, M. S. Mohajerani, M. Abdelfatah, S. Estradé, F. Peiró, W. Dziony, H. Bremers, A. Hangleiter, L. Mayrhofer, G. Lilienkamp, M. Moseler, W. Daum, and A. Waag, “Insights into Interfacial Changes and Photoelectrochemical Stability of InxGa1-xN (0001) Photoanode Surfaces in Liquid Environments,” ACS Appl. Mater. Interfaces 8(12), 8232–8238 (2016).
[Crossref] [PubMed]

L. Caccamo, J. Hartmann, C. Fàbrega, S. Estradé, G. Lilienkamp, J. D. Prades, M. W. G. Hoffmann, J. Ledig, A. Wagner, X. Wang, L. Lopez-Conesa, F. Peiró, J. M. Rebled, H.-H. Wehmann, W. Daum, H. Shen, and A. Waag, “Band Engineered Epitaxial 3D GaN-InGaN Core-Shell Rod Arrays as an Advanced Photoanode for Visible-Light-Driven Water Splitting,” ACS Appl. Mater. Interfaces 6(4), 2235–2240 (2014).
[Crossref] [PubMed]

ACS Nano (1)

M. G. Kibria, H. P. T. Nguyen, K. Cui, S. Zhao, D. Liu, H. Guo, M. L. Trudeau, S. Paradis, A.-R. Hakima, and Z. Mi, “One-Step Overall Water Splitting under Visible Light Using Multiband InGaN/GaN Nanowire Heterostructures,” ACS Nano 7(9), 7886–7893 (2013).
[Crossref] [PubMed]

Appl. Phys. Lett. (2)

K. Aryal, B. N. Pantha, J. Li, J. Y. Lin, and H. X. Jiang, “Hydrogen generation by solar water splitting using p-InGaN photoelectrochemical cells,” Appl. Phys. Lett. 96(5), 052110 (2010).
[Crossref]

O. Husberg, A. Khartchenko, D. J. As, H. Vogelsang, T. Frey, D. Schikora, K. Lischka, O. C. Noriega, A. Tabata, and J. R. Leite, “Photoluminescence from quantum dots in cubic GaN/InGaN/GaN double heterostructures,” Appl. Phys. Lett. 79(9), 1243–1245 (2001).
[Crossref]

Appl. Surf. Sci. (1)

G. Greco, F. Iucolano, and F. Roccaforte, “Ohmic contacts to Gallium Nitride materials,” Appl. Surf. Sci. 383, 324–345 (2016).
[Crossref]

Chem. Rev. (3)

M. G. Walter, E. L. Warren, J. R. McKone, S. W. Boettcher, Q. Mi, E. A. Santori, and N. S. Lewis, “Solar Water Splitting Cells,” Chem. Rev. 110(11), 6446–6473 (2010).
[Crossref] [PubMed]

T. R. Cook, D. K. Dogutan, S. Y. Reece, Y. Surendranath, T. S. Teets, and D. G. Nocera, “Solar Energy Supply and Storage for the Legacy and Nonlegacy Worlds,” Chem. Rev. 110(11), 6474–6502 (2010).
[Crossref] [PubMed]

X. Chen, S. Shen, L. Guo, and S. S. Mao, “Semiconductor-based Photocatalytic Hydrogen Generation,” Chem. Rev. 110(11), 6503–6570 (2010).
[Crossref] [PubMed]

ECS Trans. (1)

Y. Imazeki, Y. Iwai, A. Nakamura, K. Koike, S.-i. Sato, T. Ohshima, K. Fujii, M. Sugiyama, and Y. Nakano, “Band Alignment at n-GaN/Electrolyte Interface Explored by Photo-Induced Offset of Open-Circuit Potential for Efficient Water Splitting,” ECS Trans. 77(4), 25–30 (2017).
[Crossref]

Electrochim. Acta (1)

C. A. Schiller and W. Strunz, “The evaluation of experimental dielectric data of barrier coatings by means of different models,” Electrochim. Acta 46(24-25), 3619–3625 (2001).
[Crossref]

J. Appl. Phys. (3)

A. Motayed, R. Bathe, M. C. Wood, O. S. Diouf, R. D. Vispute, and S. N. Mohammad, “Electrical, thermal, and microstructural characteristics of Ti/Al/Ti/Au multilayer Ohmic contacts to n-type GaN,” J. Appl. Phys. 93(2), 1087–1094 (2003).
[Crossref]

S. Hernández, R. Cuscó, D. Pastor, L. Artús, K. P. O’Donnell, R. W. Martin, I. M. Watson, Y. Nanishi, and E. Calleja, “Raman-scattering study of the InGaN alloy over the whole composition range,” J. Appl. Phys. 98(1), 013511 (2005).
[Crossref]

K. D. Goodman, V. V. Protasenko, J. Verma, T. H. Kosel, H. G. Xing, and D. Jena, “Green luminescence of InGaN nanowires grown on silicon substrates by molecular beam epitaxy,” J. Appl. Phys. 109(8), 084336 (2011).
[Crossref]

J. Cryst. Growth (1)

S. Eftychis, J. Kruse, T. Koukoula, T. Kehagias, P. Komninou, A. Adikimenakis, K. Tsagaraki, M. Androulidaki, P. Tzanetakis, E. Iliopoulos, and A. Georgakilas, “Understanding the effects of Si (111) nitridation on the spontaneous growth and properties of GaN nanowires,” J. Cryst. Growth 442, 8–13 (2016).
[Crossref]

J. Electroanal. Chem. Interfacial Electrochem. (1)

W. H. Mulder, J. H. Sluyters, T. Pajkossy, and L. Nyikos, “Tafel current at fractal electrodes: Connection with admittance spectra,” J. Electroanal. Chem. Interfacial Electrochem. 285(1-2), 103–115 (1990).
[Crossref]

J. Mater. Chem. A Mater. Energy Sustain. (1)

M. G. Kibria and Z. Mi, “Artificial photosynthesis using metal/nonmetal-nitride semiconductors: current status, prospects, and challenges,” J. Mater. Chem. A Mater. Energy Sustain. 4(8), 2801–2820 (2016).
[Crossref]

J. Phys. Chem. C (1)

C. Yang, L. Liu, S. Zhu, Z. Yu, X. Xi, S. Wu, H. Cao, J. Li, and L. Zhao, “GaN with Laterally Aligned Nanopores To Enhance the Water Splitting,” J. Phys. Chem. C 121(13), 7331–7336 (2017).
[Crossref]

J. Phys. Chem. Lett. (1)

J. Su, Y. Wei, and L. Vayssieres, “Stability and Performance of Sulfide-, Nitride-, and Phosphide-Based Electrodes for Photocatalytic Solar Water Splitting,” J. Phys. Chem. Lett. 8(20), 5228–5238 (2017).
[Crossref] [PubMed]

Materials Research Express (1)

C. Dezhong, X. Hongdi, F. Jiacheng, L. Jianqiang, G. Qingxue, L. Xiangdong, and M. Jin, “Photoelectrochemical water splitting on nanoporous GaN thin films for energy conversion under visible light,” Materials Research Express 4(1), 015019 (2017).
[Crossref]

Nano Energy (2)

M. Ebaid, D. Priante, G. Liu, C. Zhao, M. Sharizal Alias, U. Buttner, T. Khee Ng, T. Taylor Isimjan, H. Idriss, and B. S. Ooi, “Unbiased photocatalytic hydrogen generation from pure water on stable Ir-treated In0.33Ga0.67N nanorods,” Nano Energy 37, 158–167 (2017).
[Crossref]

M. Ebaid, J.-H. Kang, S.-H. Lim, J.-S. Ha, J. K. Lee, Y.-H. Cho, and S.-W. Ryu, “Enhanced solar hydrogen generation of high density, high aspect ratio, coaxial InGaN/GaN multi-quantum well nanowires,” Nano Energy 12, 215–223 (2015).
[Crossref]

Nano Lett. (4)

B. AlOtaibi, H. P. T. Nguyen, S. Zhao, M. G. Kibria, S. Fan, and Z. Mi, “Highly Stable Photoelectrochemical Water Splitting and Hydrogen Generation Using a Double-Band InGaN/GaN Core/Shell Nanowire Photoanode,” Nano Lett. 13(9), 4356–4361 (2013).
[Crossref] [PubMed]

J. Kamimura, P. Bogdanoff, M. Ramsteiner, P. Corfdir, F. Feix, L. Geelhaar, and H. Riechert, “p-Type Doping of GaN Nanowires Characterized by Photoelectrochemical Measurements,” Nano Lett. 17(3), 1529–1537 (2017).
[Crossref] [PubMed]

B. AlOtaibi, S. Fan, S. Vanka, M. G. Kibria, and Z. Mi, “A Metal-Nitride Nanowire Dual-Photoelectrode Device for Unassisted Solar-to-Hydrogen Conversion under Parallel Illumination,” Nano Lett. 15(10), 6821–6828 (2015).
[Crossref] [PubMed]

J. Segura-Ruiz, G. Martínez-Criado, C. Denker, J. Malindretos, and A. Rizzi, “Phase Separation in Single InxGa1-xN Nanowires Revealed through a hard X-ray Synchrotron Nanoprobe,” Nano Lett. 14(3), 1300–1305 (2014).
[Crossref] [PubMed]

Nano Res. (1)

X. Yang, R. Liu, Y. He, J. Thorne, Z. Zheng, and D. Wang, “Enabling practical electrocatalyst-assisted photoelectron-chemical water splitting with earth abundant materials,” Nano Res. 8(1), 56–81 (2015).
[Crossref]

Nanoscale (1)

D. Cao, H. Xiao, Q. Gao, X. Yang, C. Luan, H. Mao, J. Liu, and X. Liu, “Fabrication and improved photoelectrochemical properties of a transferred GaN-based thin film with InGaN/GaN layers,” Nanoscale 9(32), 11504–11510 (2017).
[Crossref] [PubMed]

Nanotechnology (2)

J. Kang, V. Q. Dang, H. Li, S. Moon, P. Li, Y. Kim, C. Kim, J. Choi, H. Choi, Z. Liu, and H. Lee, “Broadband light-absorption InGaN photoanode assisted by imprint patterning and ZnO nanowire growth for energy conversion,” Nanotechnology 28(4), 045401 (2017).
[Crossref] [PubMed]

M. Tchernycheva, C. Sartel, G. Cirlin, L. Travers, G. Patriarche, J. C. Harmand, D. Le Si, J. Renard, B. Gayral, L. Nevou, and F. Julien, “Growth of GaN free-standing nanowires by plasma-assisted molecular beam epitaxy: structural and optical characterization,” Nanotechnology 18(38), 385306 (2007).
[Crossref]

Phys. Rev. B (1)

V. Y. Davydov, Y. E. Kitaev, I. N. Goncharuk, A. N. Smirnov, J. Graul, O. Semchinova, D. Uffmann, M. B. Smirnov, A. P. Mirgorodsky, and R. A. Evarestov, “Phonon dispersion and Raman scattering in hexagonal GaN and AlN,” Phys. Rev. B 58(19), 12899–12907 (1998).
[Crossref]

Renew. Sustain. Energy Rev. (1)

N. Kannan and D. Vakeesan, “Solar energy for future world: - A review,” Renew. Sustain. Energy Rev. 62, 1092–1105 (2016).
[Crossref]

RSC Advances (1)

M. Ebaid, J.-H. Kang, S.-H. Lim, Y.-H. Cho, and S.-W. Ryu, “Towards highly efficient photoanodes: the role of carrier dynamics on the photoelectrochemical performance of InGaN/GaN multiple quantum well coaxial nanowires,” RSC Advances 5(30), 23303–23310 (2015).
[Crossref]

Sci. Rep. (1)

J.-H. Park, A. Mandal, S. Kang, U. Chatterjee, J. S. Kim, B.-G. Park, M.-D. Kim, K.-U. Jeong, and C.-R. Lee, “Hydrogen Generation using non-polar coaxial InGaN/GaN Multiple Quantum Well Structure Formed on Hollow n-GaN Nanowires,” Sci. Rep. 6(1), 31996 (2016).
[Crossref] [PubMed]

Science (1)

S. Hu, M. R. Shaner, J. A. Beardslee, M. Lichterman, B. S. Brunschwig, and N. S. Lewis, “Amorphous TiO2 coatings stabilize Si, GaAs, and GaP photoanodes for efficient water oxidation,” Science 344(6187), 1005–1009 (2014).
[Crossref] [PubMed]

Semicond. Sci. Technol. (1)

M. Ebaid, J.-H. Kang, and S.-W. Ryu, “Controlled synthesis of GaN-based nanowires for photoelectrochemical water splitting applications,” Semicond. Sci. Technol. 32(1), 013001 (2017).
[Crossref]

Solid-State Electron. (1)

Q. Z. Liu and S. S. Lau, “A review of the metal–GaN contact technology,” Solid-State Electron. 42(5), 677–691 (1998).
[Crossref]

Other (4)

L. M. Peter, “Semiconductor Electrochemistry,” in Photoelectrochemical Solar Fuel Production, From Basic Principles to Advanced Devices, S. Gimenez and J. Bisquert, eds. (Springer, 2016).

B. Alotaibi, S. Fan, H. P. T. Nguyen, S. Zhao, M. G. Kibria, and Z. Mi, “Photoelectrochemical Water Splitting and Hydrogen Generation Using InGaN/GaN Nanowire Arrays,” in 2014 IEEE Photonics Society Summer Topical Meeting Series, 206–207 (2014).

N. S. Lewis and D. G. Nocera, “Powering the planet: Chemical challenges in solar energy utilization,” Proceedings of the National Academy of Sciences103(2006).
[Crossref]

N. Sato, Electrochemistry at Metal and Semiconductor Electrodes (Elsevier Science, 1998), p. 412.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Flexible InGaN NWs membrane photoanode compromising of lifted-off InGaN NWs attached to a flexible metal film. Inset: A single NW (n-doped) having an ohmic contact with a TiN/Ti/Al/Ti/Au metal layer allowing for an efficient carrier extraction and transport.
Fig. 2
Fig. 2 (a) Top and (b) side view SEM images of the as grown InGaN NWs on silicon substrate. The inset contains 3D illustration of a single representative NW showing its InGaN stem and expanded GaN top. (c) PL and (d) Raman spectra of the as grown NWs (red) and after membrane fabrication (blue). The black shaded curves are Gaussian fittings to the Raman emission from the NW.
Fig. 3
Fig. 3 NWs membrane photoanode fabrication. (a) Cross-sectional SEM (false-coloured) of the NWs after electron beam evaporation of the metal contacts. (b) Optical image of the sample surface showing the Via pattern through the SU-8 photoresist layer and the underlying metal contacts. (c) Optical image of the NWs membrane attached to a plastic sheet and bent to a 7 mm radius of curvature. Top view SEM images of the (d) metal side and (e) NWs side of the NWs membrane photoanode. (f) Cross-sectional SEM (false-coloured) of the NWs after flipping over a conductive medium. (g) Optical image of a NWs membrane attached to a polyimide film covered with gold.
Fig. 4
Fig. 4 (a) Cross-sectional TEM image of the NWs membrane. (b) Collected EDX spectra from the NWs stem (top red) and the expanded region (bottom blue). (c) EDX and EELS elemental mapping of the NWs/metal contact interface collected from the red vertical line in (a).
Fig. 5
Fig. 5 (a) OCP profile measured from the NWs membrane in response to a light pulse. (b) OCP value dependence over increasing illumination intensity. Current density from the NWs membrane (red) and NWs on silicon substrate (blue) under c) continuous illumination, darkness and d) chopped illumination. All potentials are measured versus an Ag|AgCl|3M KCl reference electrode.
Fig. 6
Fig. 6 EIS measurements for the (a) NWs on silicon and b) NWs membrane (dots). The insets in (a) and (b) represent the equivalent electric circuit used to fit (black curves) the experimental data. Energy band diagram of the (c) NWs on silicon and (d) NWs membrane under photo-stationary equilibrium during solar water splitting. EF represents the bulk Fermi level while the EFn and EFp represent the quasi electron and hole Fermi levels under optical excitation, respectively.
Fig. 7
Fig. 7 Stability measurements of the NWs membrane (red) and NWs on silicon (blue) under continuous water splitting operation. The photo-anodes were biased at 0.4 V.

Tables (1)

Tables Icon

Table 1 Fitting parameters for the Nyquist plots.

Metrics