Abstract

Numerical simulation of both single and double absorbing layers in amorphous silicon thin film solar cell is performed with the use of AFORS-HET. A single absorbing layer solar cell with both a-SiH and a-SiGeH is designed and compared with a tandem heterojunction solar cell, a-SiC/a-SiH/a-Si(i)/a-SiGeH. Design parameters are investigated, compared and optimized. The maximum efficiency for each single absorbing layer and for a tandem heterojunction thin film solar cell, a-SiC/a-SiH/a-Si(i)/a-SiGeH, is predicted. The results are validated by comparing with two different method of analysis.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Multilayer nanoparticle arrays for broad spectrum absorption enhancement in thin film solar cells

Aravind Krishnan, Snehal Das, Siva Rama Krishna, and Mohammed Zafar Ali Khan
Opt. Express 22(S3) A800-A811 (2014)

Influence of front and back grating on light trapping in microcrystalline thin-film silicon solar cells

Darin Madzharov, Rahul Dewan, and Dietmar Knipp
Opt. Express 19(S2) A95-A107 (2011)

Light trapping in periodically textured amorphous silicon thin film solar cells using realistic interface morphologies

Vladislav Jovanov, Ujwol Palanchoke, Philipp Magnus, Helmut Stiebig, Jürgen Hüpkes, Porponth Sichanugrist, Makoto Konagai, Samuel Wiesendanger, Carsten Rockstuhl, and Dietmar Knipp
Opt. Express 21(S4) A595-A606 (2013)

References

  • View by:
  • |
  • |
  • |

  1. S. Ke, C. Wang, T. Pan, J. Yang, and Y. Yang, “Numerical simulation of the performance of the a-Si: H/a-SiGeH/a-SiGeH tandem solar cell,” J. Semiconductors 35(3), 034013 (2014).
    [Crossref]
  2. D. Staebler and C. Wronski, “Reversible conductivity changes in discharge‐produced amorphous Si,” Appl. Phys. Lett. 31(4), 292–294 (1977).
    [Crossref]
  3. M. Nawaz, “Computer analysis of thin-film amorphous silicon heterojunction solar cells,” J. Phys. D Appl. Phys. 44(14), 145105 (2011).
    [Crossref]
  4. Y. Kim, B. Hong, G. Jang, S. Suh, and D. Yoon, “Characterization of a‐SiCH films deposited by RF plasma CVD,” Crystal Research and Technology: Journal of Experiment and Industrial Crystallography 37(3), 219–224 (2002).
  5. S. B. Patil, A. A. Kumbhar, S. Saraswat, and R. Dusane, “Preliminary results on a-SiCH based thin film light emitting diode by hot wire CVD,” Thin Solid Films 430(2), 257–260 (2003).
    [Crossref]
  6. J. Yang, A. Banerjee, and S. Guha, “Amorphous silicon based photovoltaics—from earth to the final frontier,” Sol. Energy Mater. Sol. Cells 78(4), 597–612 (2003).
    [Crossref]
  7. J. Becker, D. Pysch, A. Leimenstoll, M. Hermle, and S. Glunz, “Wet-chemical pre-treatment of c-Si substrates enhancing the performance of a-Si: H/c-Si hetero-junction solar cells,” 24th European PV Solar Energy Conference and Exhibition, Hamburg, Germany, Sept. 2009.
  8. T. Matsui, H. Jia, and M. Kondo, “Thin film solar cells incorporating microcrystalline Si1–xGex as efficient infrared absorber: an application to double junction tandem solar cells,” Prog. Photovolt. Res. Appl. 18(1), 48–53 (2010).
    [Crossref]
  9. T. Mishima, M. Taguchi, H. Sakata, and E. Maruyama, “Development status of high-efficiency HIT solar cells,” Sol. Energy Mater. Sol. Cells 95(1), 18–21 (2011).
    [Crossref]
  10. R. Grigorovici, R. Croitoru, N. Marina, and I. Natasi, “Heterojunctions between amorphous Si and Si single crystals,” Rev. Roum. Physiol. 13(4), 317–325 (1968).
  11. H. Sai, T. Matsui, K. Matsubara, M. Kondo, and I. Yoshida, “11.0 percent efficient thin-film microcrystalline silicon solar cells with honeycomb textured substrates,” IEEE J. Photovoltaics 4(6), 1349–1353 (2014).
    [Crossref]
  12. Z. C. Holman, A. Descoeudres, L. Barraud, F. Z. Fernandez, J. P. Seif, S. De Wolf, and C. Ballif, “Current losses at the front of silicon heterojunction solar cells,” IEEE J. Photovoltaics 2(1), 7–15 (2012).
    [Crossref]
  13. D. Muñoz, T. Desrues, A. Ozanne, S. De Vecchi, S. M. de Nicolás, F. Jay, F. Souche, N. Nguyen, C. Denis, and C. Arnal, “Key aspects on development of high efficiency heterojunction and IBC heterojunction solar cells: Towards 22 percent efficiency on industrial size,” in Proc. 27th European Photovoltaic Solar Energy Conference and Exhibition 576 (2012).
  14. S. De Wolf, A. Descoeudres, Z. C. Holman, and C. Ballif, “High-efficiency silicon heterojunction solar cells: a review,” Green 2(1), 7–24 (2012).
    [Crossref]
  15. G. A. Armin, B. B. Matthew, H. Bram, and M. Thomas, “Industrial silicon wafer solar cells–status and trends,” Green 2(4), 135–148 (2012).
    [Crossref]
  16. D. Bätzner, Y. Andrault, L. Andreetta, A. Büchel, W. Frammelsberger, C. Guerin, N. Holm, D. Lachenal, J. Meixenberger, and P. Papet, “Properties of high efficiency silicon heterojunction cells,” Energy Procedia (Elsevier Ltd., 2011), pp. 153–159.
  17. R. Stangl, C. Leendertz, and J. Haschke, “Numerical simulation of solar cells and solar cell characterization methods: the open-source on demand program AFORS-HET (INTECH Croatia,” Sol. Energy (2010).
  18. W. Lisheng, C. Fengxiang, and A. Yu, “Simulation of high efficiency heterojunction solar cells with AFORS-HET,” J. Phys. Conf. Ser. 276(1), 012177 (2011).
    [Crossref]
  19. M. Krichen and A. B. Arab, “Analysis and study of a-Si thin heterojunction solar cells with back surface field,” J. Comput. Electron. 15(1), 269–276 (2016).
    [Crossref]
  20. F. D. T. D. Solutions, Lumerical, Device and FDTD, A TCAD device simulation for design, analysis, & optimization of semiconductor optoelectronic devices, (Lumerical Solutions. Inc., 2016). https://www.lumerical.com/tcad-products/fdtd2/

2016 (1)

M. Krichen and A. B. Arab, “Analysis and study of a-Si thin heterojunction solar cells with back surface field,” J. Comput. Electron. 15(1), 269–276 (2016).
[Crossref]

2014 (2)

H. Sai, T. Matsui, K. Matsubara, M. Kondo, and I. Yoshida, “11.0 percent efficient thin-film microcrystalline silicon solar cells with honeycomb textured substrates,” IEEE J. Photovoltaics 4(6), 1349–1353 (2014).
[Crossref]

S. Ke, C. Wang, T. Pan, J. Yang, and Y. Yang, “Numerical simulation of the performance of the a-Si: H/a-SiGeH/a-SiGeH tandem solar cell,” J. Semiconductors 35(3), 034013 (2014).
[Crossref]

2012 (3)

Z. C. Holman, A. Descoeudres, L. Barraud, F. Z. Fernandez, J. P. Seif, S. De Wolf, and C. Ballif, “Current losses at the front of silicon heterojunction solar cells,” IEEE J. Photovoltaics 2(1), 7–15 (2012).
[Crossref]

S. De Wolf, A. Descoeudres, Z. C. Holman, and C. Ballif, “High-efficiency silicon heterojunction solar cells: a review,” Green 2(1), 7–24 (2012).
[Crossref]

G. A. Armin, B. B. Matthew, H. Bram, and M. Thomas, “Industrial silicon wafer solar cells–status and trends,” Green 2(4), 135–148 (2012).
[Crossref]

2011 (3)

W. Lisheng, C. Fengxiang, and A. Yu, “Simulation of high efficiency heterojunction solar cells with AFORS-HET,” J. Phys. Conf. Ser. 276(1), 012177 (2011).
[Crossref]

M. Nawaz, “Computer analysis of thin-film amorphous silicon heterojunction solar cells,” J. Phys. D Appl. Phys. 44(14), 145105 (2011).
[Crossref]

T. Mishima, M. Taguchi, H. Sakata, and E. Maruyama, “Development status of high-efficiency HIT solar cells,” Sol. Energy Mater. Sol. Cells 95(1), 18–21 (2011).
[Crossref]

2010 (1)

T. Matsui, H. Jia, and M. Kondo, “Thin film solar cells incorporating microcrystalline Si1–xGex as efficient infrared absorber: an application to double junction tandem solar cells,” Prog. Photovolt. Res. Appl. 18(1), 48–53 (2010).
[Crossref]

2003 (2)

S. B. Patil, A. A. Kumbhar, S. Saraswat, and R. Dusane, “Preliminary results on a-SiCH based thin film light emitting diode by hot wire CVD,” Thin Solid Films 430(2), 257–260 (2003).
[Crossref]

J. Yang, A. Banerjee, and S. Guha, “Amorphous silicon based photovoltaics—from earth to the final frontier,” Sol. Energy Mater. Sol. Cells 78(4), 597–612 (2003).
[Crossref]

2002 (1)

Y. Kim, B. Hong, G. Jang, S. Suh, and D. Yoon, “Characterization of a‐SiCH films deposited by RF plasma CVD,” Crystal Research and Technology: Journal of Experiment and Industrial Crystallography 37(3), 219–224 (2002).

1977 (1)

D. Staebler and C. Wronski, “Reversible conductivity changes in discharge‐produced amorphous Si,” Appl. Phys. Lett. 31(4), 292–294 (1977).
[Crossref]

1968 (1)

R. Grigorovici, R. Croitoru, N. Marina, and I. Natasi, “Heterojunctions between amorphous Si and Si single crystals,” Rev. Roum. Physiol. 13(4), 317–325 (1968).

Arab, A. B.

M. Krichen and A. B. Arab, “Analysis and study of a-Si thin heterojunction solar cells with back surface field,” J. Comput. Electron. 15(1), 269–276 (2016).
[Crossref]

Armin, G. A.

G. A. Armin, B. B. Matthew, H. Bram, and M. Thomas, “Industrial silicon wafer solar cells–status and trends,” Green 2(4), 135–148 (2012).
[Crossref]

Arnal, C.

D. Muñoz, T. Desrues, A. Ozanne, S. De Vecchi, S. M. de Nicolás, F. Jay, F. Souche, N. Nguyen, C. Denis, and C. Arnal, “Key aspects on development of high efficiency heterojunction and IBC heterojunction solar cells: Towards 22 percent efficiency on industrial size,” in Proc. 27th European Photovoltaic Solar Energy Conference and Exhibition 576 (2012).

Ballif, C.

S. De Wolf, A. Descoeudres, Z. C. Holman, and C. Ballif, “High-efficiency silicon heterojunction solar cells: a review,” Green 2(1), 7–24 (2012).
[Crossref]

Z. C. Holman, A. Descoeudres, L. Barraud, F. Z. Fernandez, J. P. Seif, S. De Wolf, and C. Ballif, “Current losses at the front of silicon heterojunction solar cells,” IEEE J. Photovoltaics 2(1), 7–15 (2012).
[Crossref]

Banerjee, A.

J. Yang, A. Banerjee, and S. Guha, “Amorphous silicon based photovoltaics—from earth to the final frontier,” Sol. Energy Mater. Sol. Cells 78(4), 597–612 (2003).
[Crossref]

Barraud, L.

Z. C. Holman, A. Descoeudres, L. Barraud, F. Z. Fernandez, J. P. Seif, S. De Wolf, and C. Ballif, “Current losses at the front of silicon heterojunction solar cells,” IEEE J. Photovoltaics 2(1), 7–15 (2012).
[Crossref]

Becker, J.

J. Becker, D. Pysch, A. Leimenstoll, M. Hermle, and S. Glunz, “Wet-chemical pre-treatment of c-Si substrates enhancing the performance of a-Si: H/c-Si hetero-junction solar cells,” 24th European PV Solar Energy Conference and Exhibition, Hamburg, Germany, Sept. 2009.

Bram, H.

G. A. Armin, B. B. Matthew, H. Bram, and M. Thomas, “Industrial silicon wafer solar cells–status and trends,” Green 2(4), 135–148 (2012).
[Crossref]

Croitoru, R.

R. Grigorovici, R. Croitoru, N. Marina, and I. Natasi, “Heterojunctions between amorphous Si and Si single crystals,” Rev. Roum. Physiol. 13(4), 317–325 (1968).

de Nicolás, S. M.

D. Muñoz, T. Desrues, A. Ozanne, S. De Vecchi, S. M. de Nicolás, F. Jay, F. Souche, N. Nguyen, C. Denis, and C. Arnal, “Key aspects on development of high efficiency heterojunction and IBC heterojunction solar cells: Towards 22 percent efficiency on industrial size,” in Proc. 27th European Photovoltaic Solar Energy Conference and Exhibition 576 (2012).

De Vecchi, S.

D. Muñoz, T. Desrues, A. Ozanne, S. De Vecchi, S. M. de Nicolás, F. Jay, F. Souche, N. Nguyen, C. Denis, and C. Arnal, “Key aspects on development of high efficiency heterojunction and IBC heterojunction solar cells: Towards 22 percent efficiency on industrial size,” in Proc. 27th European Photovoltaic Solar Energy Conference and Exhibition 576 (2012).

De Wolf, S.

Z. C. Holman, A. Descoeudres, L. Barraud, F. Z. Fernandez, J. P. Seif, S. De Wolf, and C. Ballif, “Current losses at the front of silicon heterojunction solar cells,” IEEE J. Photovoltaics 2(1), 7–15 (2012).
[Crossref]

S. De Wolf, A. Descoeudres, Z. C. Holman, and C. Ballif, “High-efficiency silicon heterojunction solar cells: a review,” Green 2(1), 7–24 (2012).
[Crossref]

Denis, C.

D. Muñoz, T. Desrues, A. Ozanne, S. De Vecchi, S. M. de Nicolás, F. Jay, F. Souche, N. Nguyen, C. Denis, and C. Arnal, “Key aspects on development of high efficiency heterojunction and IBC heterojunction solar cells: Towards 22 percent efficiency on industrial size,” in Proc. 27th European Photovoltaic Solar Energy Conference and Exhibition 576 (2012).

Descoeudres, A.

S. De Wolf, A. Descoeudres, Z. C. Holman, and C. Ballif, “High-efficiency silicon heterojunction solar cells: a review,” Green 2(1), 7–24 (2012).
[Crossref]

Z. C. Holman, A. Descoeudres, L. Barraud, F. Z. Fernandez, J. P. Seif, S. De Wolf, and C. Ballif, “Current losses at the front of silicon heterojunction solar cells,” IEEE J. Photovoltaics 2(1), 7–15 (2012).
[Crossref]

Desrues, T.

D. Muñoz, T. Desrues, A. Ozanne, S. De Vecchi, S. M. de Nicolás, F. Jay, F. Souche, N. Nguyen, C. Denis, and C. Arnal, “Key aspects on development of high efficiency heterojunction and IBC heterojunction solar cells: Towards 22 percent efficiency on industrial size,” in Proc. 27th European Photovoltaic Solar Energy Conference and Exhibition 576 (2012).

Dusane, R.

S. B. Patil, A. A. Kumbhar, S. Saraswat, and R. Dusane, “Preliminary results on a-SiCH based thin film light emitting diode by hot wire CVD,” Thin Solid Films 430(2), 257–260 (2003).
[Crossref]

Fengxiang, C.

W. Lisheng, C. Fengxiang, and A. Yu, “Simulation of high efficiency heterojunction solar cells with AFORS-HET,” J. Phys. Conf. Ser. 276(1), 012177 (2011).
[Crossref]

Fernandez, F. Z.

Z. C. Holman, A. Descoeudres, L. Barraud, F. Z. Fernandez, J. P. Seif, S. De Wolf, and C. Ballif, “Current losses at the front of silicon heterojunction solar cells,” IEEE J. Photovoltaics 2(1), 7–15 (2012).
[Crossref]

Glunz, S.

J. Becker, D. Pysch, A. Leimenstoll, M. Hermle, and S. Glunz, “Wet-chemical pre-treatment of c-Si substrates enhancing the performance of a-Si: H/c-Si hetero-junction solar cells,” 24th European PV Solar Energy Conference and Exhibition, Hamburg, Germany, Sept. 2009.

Grigorovici, R.

R. Grigorovici, R. Croitoru, N. Marina, and I. Natasi, “Heterojunctions between amorphous Si and Si single crystals,” Rev. Roum. Physiol. 13(4), 317–325 (1968).

Guha, S.

J. Yang, A. Banerjee, and S. Guha, “Amorphous silicon based photovoltaics—from earth to the final frontier,” Sol. Energy Mater. Sol. Cells 78(4), 597–612 (2003).
[Crossref]

Hermle, M.

J. Becker, D. Pysch, A. Leimenstoll, M. Hermle, and S. Glunz, “Wet-chemical pre-treatment of c-Si substrates enhancing the performance of a-Si: H/c-Si hetero-junction solar cells,” 24th European PV Solar Energy Conference and Exhibition, Hamburg, Germany, Sept. 2009.

Holman, Z. C.

Z. C. Holman, A. Descoeudres, L. Barraud, F. Z. Fernandez, J. P. Seif, S. De Wolf, and C. Ballif, “Current losses at the front of silicon heterojunction solar cells,” IEEE J. Photovoltaics 2(1), 7–15 (2012).
[Crossref]

S. De Wolf, A. Descoeudres, Z. C. Holman, and C. Ballif, “High-efficiency silicon heterojunction solar cells: a review,” Green 2(1), 7–24 (2012).
[Crossref]

Hong, B.

Y. Kim, B. Hong, G. Jang, S. Suh, and D. Yoon, “Characterization of a‐SiCH films deposited by RF plasma CVD,” Crystal Research and Technology: Journal of Experiment and Industrial Crystallography 37(3), 219–224 (2002).

Jang, G.

Y. Kim, B. Hong, G. Jang, S. Suh, and D. Yoon, “Characterization of a‐SiCH films deposited by RF plasma CVD,” Crystal Research and Technology: Journal of Experiment and Industrial Crystallography 37(3), 219–224 (2002).

Jay, F.

D. Muñoz, T. Desrues, A. Ozanne, S. De Vecchi, S. M. de Nicolás, F. Jay, F. Souche, N. Nguyen, C. Denis, and C. Arnal, “Key aspects on development of high efficiency heterojunction and IBC heterojunction solar cells: Towards 22 percent efficiency on industrial size,” in Proc. 27th European Photovoltaic Solar Energy Conference and Exhibition 576 (2012).

Jia, H.

T. Matsui, H. Jia, and M. Kondo, “Thin film solar cells incorporating microcrystalline Si1–xGex as efficient infrared absorber: an application to double junction tandem solar cells,” Prog. Photovolt. Res. Appl. 18(1), 48–53 (2010).
[Crossref]

Ke, S.

S. Ke, C. Wang, T. Pan, J. Yang, and Y. Yang, “Numerical simulation of the performance of the a-Si: H/a-SiGeH/a-SiGeH tandem solar cell,” J. Semiconductors 35(3), 034013 (2014).
[Crossref]

Kim, Y.

Y. Kim, B. Hong, G. Jang, S. Suh, and D. Yoon, “Characterization of a‐SiCH films deposited by RF plasma CVD,” Crystal Research and Technology: Journal of Experiment and Industrial Crystallography 37(3), 219–224 (2002).

Kondo, M.

H. Sai, T. Matsui, K. Matsubara, M. Kondo, and I. Yoshida, “11.0 percent efficient thin-film microcrystalline silicon solar cells with honeycomb textured substrates,” IEEE J. Photovoltaics 4(6), 1349–1353 (2014).
[Crossref]

T. Matsui, H. Jia, and M. Kondo, “Thin film solar cells incorporating microcrystalline Si1–xGex as efficient infrared absorber: an application to double junction tandem solar cells,” Prog. Photovolt. Res. Appl. 18(1), 48–53 (2010).
[Crossref]

Krichen, M.

M. Krichen and A. B. Arab, “Analysis and study of a-Si thin heterojunction solar cells with back surface field,” J. Comput. Electron. 15(1), 269–276 (2016).
[Crossref]

Kumbhar, A. A.

S. B. Patil, A. A. Kumbhar, S. Saraswat, and R. Dusane, “Preliminary results on a-SiCH based thin film light emitting diode by hot wire CVD,” Thin Solid Films 430(2), 257–260 (2003).
[Crossref]

Leimenstoll, A.

J. Becker, D. Pysch, A. Leimenstoll, M. Hermle, and S. Glunz, “Wet-chemical pre-treatment of c-Si substrates enhancing the performance of a-Si: H/c-Si hetero-junction solar cells,” 24th European PV Solar Energy Conference and Exhibition, Hamburg, Germany, Sept. 2009.

Lisheng, W.

W. Lisheng, C. Fengxiang, and A. Yu, “Simulation of high efficiency heterojunction solar cells with AFORS-HET,” J. Phys. Conf. Ser. 276(1), 012177 (2011).
[Crossref]

Marina, N.

R. Grigorovici, R. Croitoru, N. Marina, and I. Natasi, “Heterojunctions between amorphous Si and Si single crystals,” Rev. Roum. Physiol. 13(4), 317–325 (1968).

Maruyama, E.

T. Mishima, M. Taguchi, H. Sakata, and E. Maruyama, “Development status of high-efficiency HIT solar cells,” Sol. Energy Mater. Sol. Cells 95(1), 18–21 (2011).
[Crossref]

Matsubara, K.

H. Sai, T. Matsui, K. Matsubara, M. Kondo, and I. Yoshida, “11.0 percent efficient thin-film microcrystalline silicon solar cells with honeycomb textured substrates,” IEEE J. Photovoltaics 4(6), 1349–1353 (2014).
[Crossref]

Matsui, T.

H. Sai, T. Matsui, K. Matsubara, M. Kondo, and I. Yoshida, “11.0 percent efficient thin-film microcrystalline silicon solar cells with honeycomb textured substrates,” IEEE J. Photovoltaics 4(6), 1349–1353 (2014).
[Crossref]

T. Matsui, H. Jia, and M. Kondo, “Thin film solar cells incorporating microcrystalline Si1–xGex as efficient infrared absorber: an application to double junction tandem solar cells,” Prog. Photovolt. Res. Appl. 18(1), 48–53 (2010).
[Crossref]

Matthew, B. B.

G. A. Armin, B. B. Matthew, H. Bram, and M. Thomas, “Industrial silicon wafer solar cells–status and trends,” Green 2(4), 135–148 (2012).
[Crossref]

Mishima, T.

T. Mishima, M. Taguchi, H. Sakata, and E. Maruyama, “Development status of high-efficiency HIT solar cells,” Sol. Energy Mater. Sol. Cells 95(1), 18–21 (2011).
[Crossref]

Muñoz, D.

D. Muñoz, T. Desrues, A. Ozanne, S. De Vecchi, S. M. de Nicolás, F. Jay, F. Souche, N. Nguyen, C. Denis, and C. Arnal, “Key aspects on development of high efficiency heterojunction and IBC heterojunction solar cells: Towards 22 percent efficiency on industrial size,” in Proc. 27th European Photovoltaic Solar Energy Conference and Exhibition 576 (2012).

Natasi, I.

R. Grigorovici, R. Croitoru, N. Marina, and I. Natasi, “Heterojunctions between amorphous Si and Si single crystals,” Rev. Roum. Physiol. 13(4), 317–325 (1968).

Nawaz, M.

M. Nawaz, “Computer analysis of thin-film amorphous silicon heterojunction solar cells,” J. Phys. D Appl. Phys. 44(14), 145105 (2011).
[Crossref]

Nguyen, N.

D. Muñoz, T. Desrues, A. Ozanne, S. De Vecchi, S. M. de Nicolás, F. Jay, F. Souche, N. Nguyen, C. Denis, and C. Arnal, “Key aspects on development of high efficiency heterojunction and IBC heterojunction solar cells: Towards 22 percent efficiency on industrial size,” in Proc. 27th European Photovoltaic Solar Energy Conference and Exhibition 576 (2012).

Ozanne, A.

D. Muñoz, T. Desrues, A. Ozanne, S. De Vecchi, S. M. de Nicolás, F. Jay, F. Souche, N. Nguyen, C. Denis, and C. Arnal, “Key aspects on development of high efficiency heterojunction and IBC heterojunction solar cells: Towards 22 percent efficiency on industrial size,” in Proc. 27th European Photovoltaic Solar Energy Conference and Exhibition 576 (2012).

Pan, T.

S. Ke, C. Wang, T. Pan, J. Yang, and Y. Yang, “Numerical simulation of the performance of the a-Si: H/a-SiGeH/a-SiGeH tandem solar cell,” J. Semiconductors 35(3), 034013 (2014).
[Crossref]

Patil, S. B.

S. B. Patil, A. A. Kumbhar, S. Saraswat, and R. Dusane, “Preliminary results on a-SiCH based thin film light emitting diode by hot wire CVD,” Thin Solid Films 430(2), 257–260 (2003).
[Crossref]

Pysch, D.

J. Becker, D. Pysch, A. Leimenstoll, M. Hermle, and S. Glunz, “Wet-chemical pre-treatment of c-Si substrates enhancing the performance of a-Si: H/c-Si hetero-junction solar cells,” 24th European PV Solar Energy Conference and Exhibition, Hamburg, Germany, Sept. 2009.

Sai, H.

H. Sai, T. Matsui, K. Matsubara, M. Kondo, and I. Yoshida, “11.0 percent efficient thin-film microcrystalline silicon solar cells with honeycomb textured substrates,” IEEE J. Photovoltaics 4(6), 1349–1353 (2014).
[Crossref]

Sakata, H.

T. Mishima, M. Taguchi, H. Sakata, and E. Maruyama, “Development status of high-efficiency HIT solar cells,” Sol. Energy Mater. Sol. Cells 95(1), 18–21 (2011).
[Crossref]

Saraswat, S.

S. B. Patil, A. A. Kumbhar, S. Saraswat, and R. Dusane, “Preliminary results on a-SiCH based thin film light emitting diode by hot wire CVD,” Thin Solid Films 430(2), 257–260 (2003).
[Crossref]

Seif, J. P.

Z. C. Holman, A. Descoeudres, L. Barraud, F. Z. Fernandez, J. P. Seif, S. De Wolf, and C. Ballif, “Current losses at the front of silicon heterojunction solar cells,” IEEE J. Photovoltaics 2(1), 7–15 (2012).
[Crossref]

Souche, F.

D. Muñoz, T. Desrues, A. Ozanne, S. De Vecchi, S. M. de Nicolás, F. Jay, F. Souche, N. Nguyen, C. Denis, and C. Arnal, “Key aspects on development of high efficiency heterojunction and IBC heterojunction solar cells: Towards 22 percent efficiency on industrial size,” in Proc. 27th European Photovoltaic Solar Energy Conference and Exhibition 576 (2012).

Staebler, D.

D. Staebler and C. Wronski, “Reversible conductivity changes in discharge‐produced amorphous Si,” Appl. Phys. Lett. 31(4), 292–294 (1977).
[Crossref]

Suh, S.

Y. Kim, B. Hong, G. Jang, S. Suh, and D. Yoon, “Characterization of a‐SiCH films deposited by RF plasma CVD,” Crystal Research and Technology: Journal of Experiment and Industrial Crystallography 37(3), 219–224 (2002).

Taguchi, M.

T. Mishima, M. Taguchi, H. Sakata, and E. Maruyama, “Development status of high-efficiency HIT solar cells,” Sol. Energy Mater. Sol. Cells 95(1), 18–21 (2011).
[Crossref]

Thomas, M.

G. A. Armin, B. B. Matthew, H. Bram, and M. Thomas, “Industrial silicon wafer solar cells–status and trends,” Green 2(4), 135–148 (2012).
[Crossref]

Wang, C.

S. Ke, C. Wang, T. Pan, J. Yang, and Y. Yang, “Numerical simulation of the performance of the a-Si: H/a-SiGeH/a-SiGeH tandem solar cell,” J. Semiconductors 35(3), 034013 (2014).
[Crossref]

Wronski, C.

D. Staebler and C. Wronski, “Reversible conductivity changes in discharge‐produced amorphous Si,” Appl. Phys. Lett. 31(4), 292–294 (1977).
[Crossref]

Yang, J.

S. Ke, C. Wang, T. Pan, J. Yang, and Y. Yang, “Numerical simulation of the performance of the a-Si: H/a-SiGeH/a-SiGeH tandem solar cell,” J. Semiconductors 35(3), 034013 (2014).
[Crossref]

J. Yang, A. Banerjee, and S. Guha, “Amorphous silicon based photovoltaics—from earth to the final frontier,” Sol. Energy Mater. Sol. Cells 78(4), 597–612 (2003).
[Crossref]

Yang, Y.

S. Ke, C. Wang, T. Pan, J. Yang, and Y. Yang, “Numerical simulation of the performance of the a-Si: H/a-SiGeH/a-SiGeH tandem solar cell,” J. Semiconductors 35(3), 034013 (2014).
[Crossref]

Yoon, D.

Y. Kim, B. Hong, G. Jang, S. Suh, and D. Yoon, “Characterization of a‐SiCH films deposited by RF plasma CVD,” Crystal Research and Technology: Journal of Experiment and Industrial Crystallography 37(3), 219–224 (2002).

Yoshida, I.

H. Sai, T. Matsui, K. Matsubara, M. Kondo, and I. Yoshida, “11.0 percent efficient thin-film microcrystalline silicon solar cells with honeycomb textured substrates,” IEEE J. Photovoltaics 4(6), 1349–1353 (2014).
[Crossref]

Yu, A.

W. Lisheng, C. Fengxiang, and A. Yu, “Simulation of high efficiency heterojunction solar cells with AFORS-HET,” J. Phys. Conf. Ser. 276(1), 012177 (2011).
[Crossref]

Appl. Phys. Lett. (1)

D. Staebler and C. Wronski, “Reversible conductivity changes in discharge‐produced amorphous Si,” Appl. Phys. Lett. 31(4), 292–294 (1977).
[Crossref]

Crystal Research and Technology: Journal of Experiment and Industrial Crystallography (1)

Y. Kim, B. Hong, G. Jang, S. Suh, and D. Yoon, “Characterization of a‐SiCH films deposited by RF plasma CVD,” Crystal Research and Technology: Journal of Experiment and Industrial Crystallography 37(3), 219–224 (2002).

Green (2)

S. De Wolf, A. Descoeudres, Z. C. Holman, and C. Ballif, “High-efficiency silicon heterojunction solar cells: a review,” Green 2(1), 7–24 (2012).
[Crossref]

G. A. Armin, B. B. Matthew, H. Bram, and M. Thomas, “Industrial silicon wafer solar cells–status and trends,” Green 2(4), 135–148 (2012).
[Crossref]

IEEE J. Photovoltaics (2)

H. Sai, T. Matsui, K. Matsubara, M. Kondo, and I. Yoshida, “11.0 percent efficient thin-film microcrystalline silicon solar cells with honeycomb textured substrates,” IEEE J. Photovoltaics 4(6), 1349–1353 (2014).
[Crossref]

Z. C. Holman, A. Descoeudres, L. Barraud, F. Z. Fernandez, J. P. Seif, S. De Wolf, and C. Ballif, “Current losses at the front of silicon heterojunction solar cells,” IEEE J. Photovoltaics 2(1), 7–15 (2012).
[Crossref]

J. Comput. Electron. (1)

M. Krichen and A. B. Arab, “Analysis and study of a-Si thin heterojunction solar cells with back surface field,” J. Comput. Electron. 15(1), 269–276 (2016).
[Crossref]

J. Phys. Conf. Ser. (1)

W. Lisheng, C. Fengxiang, and A. Yu, “Simulation of high efficiency heterojunction solar cells with AFORS-HET,” J. Phys. Conf. Ser. 276(1), 012177 (2011).
[Crossref]

J. Phys. D Appl. Phys. (1)

M. Nawaz, “Computer analysis of thin-film amorphous silicon heterojunction solar cells,” J. Phys. D Appl. Phys. 44(14), 145105 (2011).
[Crossref]

J. Semiconductors (1)

S. Ke, C. Wang, T. Pan, J. Yang, and Y. Yang, “Numerical simulation of the performance of the a-Si: H/a-SiGeH/a-SiGeH tandem solar cell,” J. Semiconductors 35(3), 034013 (2014).
[Crossref]

Prog. Photovolt. Res. Appl. (1)

T. Matsui, H. Jia, and M. Kondo, “Thin film solar cells incorporating microcrystalline Si1–xGex as efficient infrared absorber: an application to double junction tandem solar cells,” Prog. Photovolt. Res. Appl. 18(1), 48–53 (2010).
[Crossref]

Rev. Roum. Physiol. (1)

R. Grigorovici, R. Croitoru, N. Marina, and I. Natasi, “Heterojunctions between amorphous Si and Si single crystals,” Rev. Roum. Physiol. 13(4), 317–325 (1968).

Sol. Energy Mater. Sol. Cells (2)

T. Mishima, M. Taguchi, H. Sakata, and E. Maruyama, “Development status of high-efficiency HIT solar cells,” Sol. Energy Mater. Sol. Cells 95(1), 18–21 (2011).
[Crossref]

J. Yang, A. Banerjee, and S. Guha, “Amorphous silicon based photovoltaics—from earth to the final frontier,” Sol. Energy Mater. Sol. Cells 78(4), 597–612 (2003).
[Crossref]

Thin Solid Films (1)

S. B. Patil, A. A. Kumbhar, S. Saraswat, and R. Dusane, “Preliminary results on a-SiCH based thin film light emitting diode by hot wire CVD,” Thin Solid Films 430(2), 257–260 (2003).
[Crossref]

Other (5)

J. Becker, D. Pysch, A. Leimenstoll, M. Hermle, and S. Glunz, “Wet-chemical pre-treatment of c-Si substrates enhancing the performance of a-Si: H/c-Si hetero-junction solar cells,” 24th European PV Solar Energy Conference and Exhibition, Hamburg, Germany, Sept. 2009.

D. Muñoz, T. Desrues, A. Ozanne, S. De Vecchi, S. M. de Nicolás, F. Jay, F. Souche, N. Nguyen, C. Denis, and C. Arnal, “Key aspects on development of high efficiency heterojunction and IBC heterojunction solar cells: Towards 22 percent efficiency on industrial size,” in Proc. 27th European Photovoltaic Solar Energy Conference and Exhibition 576 (2012).

D. Bätzner, Y. Andrault, L. Andreetta, A. Büchel, W. Frammelsberger, C. Guerin, N. Holm, D. Lachenal, J. Meixenberger, and P. Papet, “Properties of high efficiency silicon heterojunction cells,” Energy Procedia (Elsevier Ltd., 2011), pp. 153–159.

R. Stangl, C. Leendertz, and J. Haschke, “Numerical simulation of solar cells and solar cell characterization methods: the open-source on demand program AFORS-HET (INTECH Croatia,” Sol. Energy (2010).

F. D. T. D. Solutions, Lumerical, Device and FDTD, A TCAD device simulation for design, analysis, & optimization of semiconductor optoelectronic devices, (Lumerical Solutions. Inc., 2016). https://www.lumerical.com/tcad-products/fdtd2/

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Schematic diagram of individual absorbing layers (a) a-Si:H and a-SiGe:H; (b) Schematic Layout double layer, tandem heterojunction solar cell.
Fig. 2
Fig. 2 Band gap for double layer, tandem solar cell.
Fig. 3
Fig. 3 Defect density distribution of conduction and valence band tail states and two Gaussian states for hydrogenated (a) a-SiGe:H and (b) .a-Si:H.
Fig. 4
Fig. 4 Efficiency of a-SiH versus thickness.
Fig. 5
Fig. 5 (a) Efficiency of a-SiGeH versus thickness.
Fig. 6
Fig. 6 IV curve of tandem heterojunction solar cell.
Fig. 7
Fig. 7 Tandem heterojunction solar cell characteristics after eliminating the BSF layer (layer 7): (a) change in Voc, (b) change in Jsc, and (c) change in efficiency, with respect to change in band gap of the absorbing layer (layer 4).
Fig. 8
Fig. 8 The IQE and EQE of tandem heterojunction solar cell.

Tables (2)

Tables Icon

Table 1 Efficiencies of All Designs

Tables Icon

Table 2 Parameters and Structural Dimensions used in this Simulation

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

γ ( λ )= δ{ sins( δ ) 1 n( λ ) }
ε 0 ε r q 2 φ( x,t ) x 2  = p( x, t ) n( x, t )+ ND( x )NA( x )+  trap ρ trap ( x, t ) 
1 q J n (x,t) x = G n (x,t) R n (x,t) t n(x,t)
+ 1 q J  p ( x, t ) x = G p  ( x,t ) R p ( x, t ) t p( x, t )
J n ( x, t ) = q  μ n  n( x, t )  E Fn ( x, t ) x
J p ( x, t ) = q  μ p  n( x, t )  E Fp ( x, t ) x
E Fn ( x, t )=  E C ( x )+ kTln{ n( x,t ) N C ( x ) }=qχ( x )+ qφ( x,t )+kTln{ n( x,t ) N C ( x ) }
E Fp ( x, t )=  E V ( x ) kTln{ p( x,t ) N V ( x ) }=qχ( x )+ qφ( x,t ) E g ( x )+kTln{ p( x,t ) N V ( x ) }
   R n,p ( x , t ) = r{ n( x, t ) p( x,t )  N C N V   e E g kT }
S bsf = N d D n S n L n D n  cosh( W BSF L n ) + sinh( W BSF L n ) N d L n  cosh( W BSF L n ) +  S n L n D n  sinh( W BSF L n )    F n and F n  =   N   c aSi N v aSi   N N v  esp (   E   g aSi  E g n k T )
Δ V oc = V oc  ( S bsf )  V oc  ( S n )
Δη= η ( S bsf )  η ( S n ) = ( ΔP/ P in ) x 100 

Metrics