Abstract

The spatial distribution of electric field in photovoltaic multiple quantum wells (MQWs) is extremely important to dictate the mutual competition of photoelectric conversion and optical transition. Here, electric-field-driven photoluminescence (PL) in both steady-state and transient-state has been utilized to directly investigate the internal photoelectric conversion processes in InGaN-based MQW photovoltaic cell. As applying the reversed external electric field, the compensation of the quantum confined stark effect (QCSE) in InGaN QW is beneficial to help the photoabsorbed minor carriers drift out from the localized states, whereas extremely weakening the PL radiative recombination. A directly driven force by the reversed external electric field decreases the transit time of photocarriers drifting in InGaN QW. And hence, the overall dynamic PL decay including both the slow and fast processes gradually speeds up from 19.2 ns at the open-circuit condition to 3.9 ns at a negative bias of −3 V. In particular, the slow PL decay lifetime declines more quickly than that of the fast one. It is the delocalization of photocarriers by electric-field drift that helps to further enhance the high-efficiency photoelectric conversion except for the tunneling transport in InGaN-based MQW photovoltaics. Therefore, it can be concluded that the electric-field PL probe may provide a direct method for evaluating the photoelectric conversion in multilayer quantum structures and related multijunction photovoltaic cells.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Theory of plasmonic quantum-dot-based intermediate band solar cells

Sina Foroutan and Hamed Baghban
Appl. Opt. 55(13) 3405-3412 (2016)

Efficiency dip observed with InGaN-based multiple quantum well solar cells

K. Y. Lai, G. J. Lin, Yuh-Renn Wu, Meng-Lun Tsai, and Jr-Hau He
Opt. Express 22(S7) A1753-A1760 (2014)

Performance-limiting factors for GaAs-based single nanowire photovoltaics

Xufeng Wang, Mohammad Ryyan Khan, Mark Lundstrom, and Peter Bermel
Opt. Express 22(S2) A344-A358 (2014)

References

  • View by:
  • |
  • |
  • |

  1. B. Metz, O. Davidson, P. Bosch, R. Dave, and L. Meyer, Climate Change 2007: Mitigation of Climate Change (Cambridge University, 2007).
  2. S. Nakamura, S. J. Pearton, and G. Fasol, The Blue Laser Diode (Springer, 1997).
  3. S. Nakamura, “Current status of GaN-based solid-state lighting,” MRS Bull. 34(02), 101–107 (2009).
    [Crossref]
  4. S. V. -Felip, A. Mukhtarova, Q. Pan, G. Altamura, L. Grenet, C. Durand, C. Bougerol, D. Peyrade, F. G. -Posada, J. Eymery, and E. Monroy, “Photovoltaic response of InGaN/GaN multiple-quantum well solar cells,” Jpn. J. Appl. Phys. 52, 08JH05 (2013).
  5. X. F. Li, X. H. Zheng, D. Y. Zhang, Y. Y. Wu, X. M. Shen, J. F. Wang, and H. Yang, “InGaN/GaN Multiple Quantum Well Solar Cells with Good Open-Circuit Voltage and Concentrator Action,” Jpn. J. Appl. Phys. 51(9R), 092301 (2012).
    [Crossref]
  6. D. H. Lien, Y. H. Hsiao, S. G. Yang, M. L. Tsai, T. C. Wei, S. C. Lee, and J. H. He, “Harsh Photovoltaics using InGaN/GaN multiple quantum well schemes,” Nano Energy 11, 104–109 (2015).
    [Crossref]
  7. J. Wu, W. Walukiewicz, K. M. Yu, W. Shan, J. W. Ager, E. E. Haller, H. Lu, W. J. Schaff, W. K. Metzger, and S. Kurtz, “Superior radiation resistance of In1−xGaxN alloys: Full-solar-spectrum photovoltaic material system,” J. Appl. Phys. 94(10), 6477–6482 (2003).
    [Crossref]
  8. V. A. De, Endoreversible Thermodynamics of Solar Energy Conversion (Oxford University, 1992).
  9. J. Q. Wu, “When group-III nitrides go infrared: New properties and perspectives,” J. Appl. Phys. 106(1), 011101 (2009).
    [Crossref]
  10. Y. Yamada, T. Saito, N. Kato, E. Kobayashi, T. Taguchi, H. Kudo, and H. Okagawa, “Spatially separated intrinsic emission components in InxGa1−xN ternary alloys,” Phys. Rev. B 80(19), 195202 (2009).
    [Crossref]
  11. Z. J. Shang, X. H. Zheng, C. Yang, Y. Chen, B. Li, L. Sun, Z. Tang, and D. G. Zhao, “Carrier thermalization under stimulated emission in In0.17Ga0.83N epilayer at room temperature,” Appl. Phys. Lett. 105(23), 232104 (2014).
    [Crossref]
  12. X. Gao, Z. Shi, Y. Jiang, S. Zhang, C. Qin, J. Yuan, Y. Liu, P. Grünberg, and Y. Wang, “Monolithic III-nitride photonic integration toward multifunctional devices,” Opt. Lett. 42(23), 4853–4856 (2017).
    [Crossref] [PubMed]
  13. M. Peng, Z. Li, C. Liu, Q. Zheng, X. Shi, M. Song, Y. Zhang, S. Du, J. Zhai, and Z. L. Wang, “High-Resolution Dynamic Pressure Sensor Array Based on Piezo-Phototronic Effect Tuned Photoluminescence Imaging,” ACS Nano 9(3), 3143–3150 (2015).
    [Crossref] [PubMed]
  14. C. Du, C. Jiang, P. Zuo, X. Huang, X. Pu, Z. Zhao, Y. Zhou, L. Li, H. Chen, W. Hu, and Z. L. Wang, “Piezo-Phototronic Effect Controlled Dual-Channel Visible light Communication (PVLC) Using InGaN/GaN Multiquantum Well Nanopillars,” Small 11(45), 6071–6077 (2015).
    [Crossref] [PubMed]
  15. M. Tchernycheva, A. Messanvi, A. de Luna Bugallo, G. Jacopin, P. Lavenus, L. Rigutti, H. Zhang, Y. Halioua, F. H. Julien, J. Eymery, and C. Durand, “Integrated Photonic Platform Based on InGaN/GaN Nanowire Emitters and Detectors,” Nano Lett. 14(6), 3515–3520 (2014).
    [Crossref] [PubMed]
  16. S. Lee, Y. Honda, and H. Amano, “Effect of piezoelectric field on carrier dynamics in InGaN-based solar cells,” J. Phys. D Appl. Phys. 49(2), 025103 (2016).
    [Crossref]
  17. M. Peng, Y. Zhang, Y. Liu, M. Song, J. Zhai, and Z. L. Wang, “Magnetic-mechanical-electrical-optical coupling effects in GaN-based LED/rare-earth Terfenol-D structures,” Adv. Mater. 26(39), 6767–6772 (2014).
    [Crossref] [PubMed]
  18. H. Y. Wu, Z. G. Ma, Y. Jiang, L. Wang, H. J. Yang, Y. F. Li, P. Zuo, H. Q. Jia, W. X. Wang, J. M. Zhou, W. M. Liu, and H. Chen, “Direct observation of the carrier transport process in InGaN quantum wells with a pn-junction,” Chin. Phys. B 25(11), 117803 (2016).
    [Crossref]
  19. X. H. Zheng, L. J. Tang, D. Y. Zhang, J. R. Dong, and H. Yang, “Effect of contact spreading layer on photovoltaic response of InGaN-based solar cells,” Phys. Status Solidi., A Appl. Mater. Sci. 208(1), 199–201 (2011).
    [Crossref]
  20. S. M. Sze, Semiconductor Devices: Physics and Technology (Wiley, 2002), 2nd Edition.
  21. T. Takeuchi, C. Wetzel, S. Yamaguchi, H. Sakai, H. Amano, I. Akasaki, Y. Kaneko, S. Nakagawa, Y. Yamaoka, and N. Yamada, “Determination of piezoelectric fields in strained GaInN quantum wells using the quantum confined Stark effect,” Appl. Phys. Lett. 73(12), 1691–1693 (1998).
    [Crossref]
  22. H. S. Chen, Z. H. Liu, P. Y. Shih, C. Y. Su, C. Y. Chen, C. H. Lin, Y. F. Yao, Y. W. Kiang, and C. C. Yang, “Independent variations of applied voltage and injection current for controlling the quantum-confined Stark effect in an InGaN/GaN quantum-well light-emitting diode,” Opt. Express 22(7), 8367–8375 (2014).
    [Crossref] [PubMed]
  23. M. Meneghini, N. Trivellin, M. Pavesi, M. Manfredi, U. Zehnder, B. Hahn, G. Meneghesso, and E. Zanoni, “Leakage current and reverse-bias luminescence in InGaN-based light-emitting diodes,” Appl. Phys. Lett. 95(17), 173507 (2009).
    [Crossref]
  24. H. Y. Wei, G. S. Wang, J. J. Shi, H. J. Wu, Y. H. Luo, D. M. Li, and Q. B. Meng, “Fumed SiO2 modified electrolytes for quantum dot sensitized solar cells with efficiency exceeding 11% and better stability,” J. Mater. Chem. A Mater. Energy Sustain. 4(37), 14194–14203 (2016).
    [Crossref]
  25. E. Sari, S. Nizamoglu, I.-H. Lee, J.-H. Baek, and H. V. Demir, “Electric field dependent radiative decay kinetics of polar InGaN/GaN quantum heterostructures at low fields,” Appl. Phys. Lett. 94(21), 211107 (2009).
    [Crossref]
  26. E. Sari, S. Nizamoglu, J.-H. Choi, S.-J. Lee, K.-H. Baik, I.-H. Lee, J.-H. Baek, S.-M. Hwang, and H. V. Demir, “Opposite carrier dynamics and optical absorption characteristics under external electric field in nonpolar vs. polar InGaN/GaN based quantum heterostructures,” Opt. Express 19(6), 5442–5450 (2011).
    [Crossref] [PubMed]
  27. D. H. Levi, D. R. Wake, M. V. Klein, S. Kumar, and H. Morkoç, “Density dependence of nonresonant tunneling in asymmetric coupled quantum wells,” Phys. Rev. B Condens. Matter 45(8), 4274–4279 (1992).
    [Crossref] [PubMed]
  28. M. A. Maur, B. Galler, I. Pietzonka, M. Strassburg, H. Lugauer, and A. D. Carlo, “Trap-assisted tunneling in InGaN/GaN single-quantum-well light-emitting diodes,” Appl. Phys. Lett. 105(13), 133504 (2014).
    [Crossref]

2017 (1)

2016 (3)

S. Lee, Y. Honda, and H. Amano, “Effect of piezoelectric field on carrier dynamics in InGaN-based solar cells,” J. Phys. D Appl. Phys. 49(2), 025103 (2016).
[Crossref]

H. Y. Wu, Z. G. Ma, Y. Jiang, L. Wang, H. J. Yang, Y. F. Li, P. Zuo, H. Q. Jia, W. X. Wang, J. M. Zhou, W. M. Liu, and H. Chen, “Direct observation of the carrier transport process in InGaN quantum wells with a pn-junction,” Chin. Phys. B 25(11), 117803 (2016).
[Crossref]

H. Y. Wei, G. S. Wang, J. J. Shi, H. J. Wu, Y. H. Luo, D. M. Li, and Q. B. Meng, “Fumed SiO2 modified electrolytes for quantum dot sensitized solar cells with efficiency exceeding 11% and better stability,” J. Mater. Chem. A Mater. Energy Sustain. 4(37), 14194–14203 (2016).
[Crossref]

2015 (3)

M. Peng, Z. Li, C. Liu, Q. Zheng, X. Shi, M. Song, Y. Zhang, S. Du, J. Zhai, and Z. L. Wang, “High-Resolution Dynamic Pressure Sensor Array Based on Piezo-Phototronic Effect Tuned Photoluminescence Imaging,” ACS Nano 9(3), 3143–3150 (2015).
[Crossref] [PubMed]

C. Du, C. Jiang, P. Zuo, X. Huang, X. Pu, Z. Zhao, Y. Zhou, L. Li, H. Chen, W. Hu, and Z. L. Wang, “Piezo-Phototronic Effect Controlled Dual-Channel Visible light Communication (PVLC) Using InGaN/GaN Multiquantum Well Nanopillars,” Small 11(45), 6071–6077 (2015).
[Crossref] [PubMed]

D. H. Lien, Y. H. Hsiao, S. G. Yang, M. L. Tsai, T. C. Wei, S. C. Lee, and J. H. He, “Harsh Photovoltaics using InGaN/GaN multiple quantum well schemes,” Nano Energy 11, 104–109 (2015).
[Crossref]

2014 (5)

Z. J. Shang, X. H. Zheng, C. Yang, Y. Chen, B. Li, L. Sun, Z. Tang, and D. G. Zhao, “Carrier thermalization under stimulated emission in In0.17Ga0.83N epilayer at room temperature,” Appl. Phys. Lett. 105(23), 232104 (2014).
[Crossref]

M. Tchernycheva, A. Messanvi, A. de Luna Bugallo, G. Jacopin, P. Lavenus, L. Rigutti, H. Zhang, Y. Halioua, F. H. Julien, J. Eymery, and C. Durand, “Integrated Photonic Platform Based on InGaN/GaN Nanowire Emitters and Detectors,” Nano Lett. 14(6), 3515–3520 (2014).
[Crossref] [PubMed]

M. Peng, Y. Zhang, Y. Liu, M. Song, J. Zhai, and Z. L. Wang, “Magnetic-mechanical-electrical-optical coupling effects in GaN-based LED/rare-earth Terfenol-D structures,” Adv. Mater. 26(39), 6767–6772 (2014).
[Crossref] [PubMed]

H. S. Chen, Z. H. Liu, P. Y. Shih, C. Y. Su, C. Y. Chen, C. H. Lin, Y. F. Yao, Y. W. Kiang, and C. C. Yang, “Independent variations of applied voltage and injection current for controlling the quantum-confined Stark effect in an InGaN/GaN quantum-well light-emitting diode,” Opt. Express 22(7), 8367–8375 (2014).
[Crossref] [PubMed]

M. A. Maur, B. Galler, I. Pietzonka, M. Strassburg, H. Lugauer, and A. D. Carlo, “Trap-assisted tunneling in InGaN/GaN single-quantum-well light-emitting diodes,” Appl. Phys. Lett. 105(13), 133504 (2014).
[Crossref]

2013 (1)

S. V. -Felip, A. Mukhtarova, Q. Pan, G. Altamura, L. Grenet, C. Durand, C. Bougerol, D. Peyrade, F. G. -Posada, J. Eymery, and E. Monroy, “Photovoltaic response of InGaN/GaN multiple-quantum well solar cells,” Jpn. J. Appl. Phys. 52, 08JH05 (2013).

2012 (1)

X. F. Li, X. H. Zheng, D. Y. Zhang, Y. Y. Wu, X. M. Shen, J. F. Wang, and H. Yang, “InGaN/GaN Multiple Quantum Well Solar Cells with Good Open-Circuit Voltage and Concentrator Action,” Jpn. J. Appl. Phys. 51(9R), 092301 (2012).
[Crossref]

2011 (2)

2009 (5)

M. Meneghini, N. Trivellin, M. Pavesi, M. Manfredi, U. Zehnder, B. Hahn, G. Meneghesso, and E. Zanoni, “Leakage current and reverse-bias luminescence in InGaN-based light-emitting diodes,” Appl. Phys. Lett. 95(17), 173507 (2009).
[Crossref]

E. Sari, S. Nizamoglu, I.-H. Lee, J.-H. Baek, and H. V. Demir, “Electric field dependent radiative decay kinetics of polar InGaN/GaN quantum heterostructures at low fields,” Appl. Phys. Lett. 94(21), 211107 (2009).
[Crossref]

S. Nakamura, “Current status of GaN-based solid-state lighting,” MRS Bull. 34(02), 101–107 (2009).
[Crossref]

J. Q. Wu, “When group-III nitrides go infrared: New properties and perspectives,” J. Appl. Phys. 106(1), 011101 (2009).
[Crossref]

Y. Yamada, T. Saito, N. Kato, E. Kobayashi, T. Taguchi, H. Kudo, and H. Okagawa, “Spatially separated intrinsic emission components in InxGa1−xN ternary alloys,” Phys. Rev. B 80(19), 195202 (2009).
[Crossref]

2003 (1)

J. Wu, W. Walukiewicz, K. M. Yu, W. Shan, J. W. Ager, E. E. Haller, H. Lu, W. J. Schaff, W. K. Metzger, and S. Kurtz, “Superior radiation resistance of In1−xGaxN alloys: Full-solar-spectrum photovoltaic material system,” J. Appl. Phys. 94(10), 6477–6482 (2003).
[Crossref]

1998 (1)

T. Takeuchi, C. Wetzel, S. Yamaguchi, H. Sakai, H. Amano, I. Akasaki, Y. Kaneko, S. Nakagawa, Y. Yamaoka, and N. Yamada, “Determination of piezoelectric fields in strained GaInN quantum wells using the quantum confined Stark effect,” Appl. Phys. Lett. 73(12), 1691–1693 (1998).
[Crossref]

1992 (1)

D. H. Levi, D. R. Wake, M. V. Klein, S. Kumar, and H. Morkoç, “Density dependence of nonresonant tunneling in asymmetric coupled quantum wells,” Phys. Rev. B Condens. Matter 45(8), 4274–4279 (1992).
[Crossref] [PubMed]

Ager, J. W.

J. Wu, W. Walukiewicz, K. M. Yu, W. Shan, J. W. Ager, E. E. Haller, H. Lu, W. J. Schaff, W. K. Metzger, and S. Kurtz, “Superior radiation resistance of In1−xGaxN alloys: Full-solar-spectrum photovoltaic material system,” J. Appl. Phys. 94(10), 6477–6482 (2003).
[Crossref]

Akasaki, I.

T. Takeuchi, C. Wetzel, S. Yamaguchi, H. Sakai, H. Amano, I. Akasaki, Y. Kaneko, S. Nakagawa, Y. Yamaoka, and N. Yamada, “Determination of piezoelectric fields in strained GaInN quantum wells using the quantum confined Stark effect,” Appl. Phys. Lett. 73(12), 1691–1693 (1998).
[Crossref]

Altamura, G.

S. V. -Felip, A. Mukhtarova, Q. Pan, G. Altamura, L. Grenet, C. Durand, C. Bougerol, D. Peyrade, F. G. -Posada, J. Eymery, and E. Monroy, “Photovoltaic response of InGaN/GaN multiple-quantum well solar cells,” Jpn. J. Appl. Phys. 52, 08JH05 (2013).

Amano, H.

S. Lee, Y. Honda, and H. Amano, “Effect of piezoelectric field on carrier dynamics in InGaN-based solar cells,” J. Phys. D Appl. Phys. 49(2), 025103 (2016).
[Crossref]

T. Takeuchi, C. Wetzel, S. Yamaguchi, H. Sakai, H. Amano, I. Akasaki, Y. Kaneko, S. Nakagawa, Y. Yamaoka, and N. Yamada, “Determination of piezoelectric fields in strained GaInN quantum wells using the quantum confined Stark effect,” Appl. Phys. Lett. 73(12), 1691–1693 (1998).
[Crossref]

Baek, J.-H.

Baik, K.-H.

Bougerol, C.

S. V. -Felip, A. Mukhtarova, Q. Pan, G. Altamura, L. Grenet, C. Durand, C. Bougerol, D. Peyrade, F. G. -Posada, J. Eymery, and E. Monroy, “Photovoltaic response of InGaN/GaN multiple-quantum well solar cells,” Jpn. J. Appl. Phys. 52, 08JH05 (2013).

Carlo, A. D.

M. A. Maur, B. Galler, I. Pietzonka, M. Strassburg, H. Lugauer, and A. D. Carlo, “Trap-assisted tunneling in InGaN/GaN single-quantum-well light-emitting diodes,” Appl. Phys. Lett. 105(13), 133504 (2014).
[Crossref]

Chen, C. Y.

Chen, H.

H. Y. Wu, Z. G. Ma, Y. Jiang, L. Wang, H. J. Yang, Y. F. Li, P. Zuo, H. Q. Jia, W. X. Wang, J. M. Zhou, W. M. Liu, and H. Chen, “Direct observation of the carrier transport process in InGaN quantum wells with a pn-junction,” Chin. Phys. B 25(11), 117803 (2016).
[Crossref]

C. Du, C. Jiang, P. Zuo, X. Huang, X. Pu, Z. Zhao, Y. Zhou, L. Li, H. Chen, W. Hu, and Z. L. Wang, “Piezo-Phototronic Effect Controlled Dual-Channel Visible light Communication (PVLC) Using InGaN/GaN Multiquantum Well Nanopillars,” Small 11(45), 6071–6077 (2015).
[Crossref] [PubMed]

Chen, H. S.

Chen, Y.

Z. J. Shang, X. H. Zheng, C. Yang, Y. Chen, B. Li, L. Sun, Z. Tang, and D. G. Zhao, “Carrier thermalization under stimulated emission in In0.17Ga0.83N epilayer at room temperature,” Appl. Phys. Lett. 105(23), 232104 (2014).
[Crossref]

Choi, J.-H.

de Luna Bugallo, A.

M. Tchernycheva, A. Messanvi, A. de Luna Bugallo, G. Jacopin, P. Lavenus, L. Rigutti, H. Zhang, Y. Halioua, F. H. Julien, J. Eymery, and C. Durand, “Integrated Photonic Platform Based on InGaN/GaN Nanowire Emitters and Detectors,” Nano Lett. 14(6), 3515–3520 (2014).
[Crossref] [PubMed]

Demir, H. V.

Dong, J. R.

X. H. Zheng, L. J. Tang, D. Y. Zhang, J. R. Dong, and H. Yang, “Effect of contact spreading layer on photovoltaic response of InGaN-based solar cells,” Phys. Status Solidi., A Appl. Mater. Sci. 208(1), 199–201 (2011).
[Crossref]

Du, C.

C. Du, C. Jiang, P. Zuo, X. Huang, X. Pu, Z. Zhao, Y. Zhou, L. Li, H. Chen, W. Hu, and Z. L. Wang, “Piezo-Phototronic Effect Controlled Dual-Channel Visible light Communication (PVLC) Using InGaN/GaN Multiquantum Well Nanopillars,” Small 11(45), 6071–6077 (2015).
[Crossref] [PubMed]

Du, S.

M. Peng, Z. Li, C. Liu, Q. Zheng, X. Shi, M. Song, Y. Zhang, S. Du, J. Zhai, and Z. L. Wang, “High-Resolution Dynamic Pressure Sensor Array Based on Piezo-Phototronic Effect Tuned Photoluminescence Imaging,” ACS Nano 9(3), 3143–3150 (2015).
[Crossref] [PubMed]

Durand, C.

M. Tchernycheva, A. Messanvi, A. de Luna Bugallo, G. Jacopin, P. Lavenus, L. Rigutti, H. Zhang, Y. Halioua, F. H. Julien, J. Eymery, and C. Durand, “Integrated Photonic Platform Based on InGaN/GaN Nanowire Emitters and Detectors,” Nano Lett. 14(6), 3515–3520 (2014).
[Crossref] [PubMed]

S. V. -Felip, A. Mukhtarova, Q. Pan, G. Altamura, L. Grenet, C. Durand, C. Bougerol, D. Peyrade, F. G. -Posada, J. Eymery, and E. Monroy, “Photovoltaic response of InGaN/GaN multiple-quantum well solar cells,” Jpn. J. Appl. Phys. 52, 08JH05 (2013).

Eymery, J.

M. Tchernycheva, A. Messanvi, A. de Luna Bugallo, G. Jacopin, P. Lavenus, L. Rigutti, H. Zhang, Y. Halioua, F. H. Julien, J. Eymery, and C. Durand, “Integrated Photonic Platform Based on InGaN/GaN Nanowire Emitters and Detectors,” Nano Lett. 14(6), 3515–3520 (2014).
[Crossref] [PubMed]

S. V. -Felip, A. Mukhtarova, Q. Pan, G. Altamura, L. Grenet, C. Durand, C. Bougerol, D. Peyrade, F. G. -Posada, J. Eymery, and E. Monroy, “Photovoltaic response of InGaN/GaN multiple-quantum well solar cells,” Jpn. J. Appl. Phys. 52, 08JH05 (2013).

-Felip, S. V.

S. V. -Felip, A. Mukhtarova, Q. Pan, G. Altamura, L. Grenet, C. Durand, C. Bougerol, D. Peyrade, F. G. -Posada, J. Eymery, and E. Monroy, “Photovoltaic response of InGaN/GaN multiple-quantum well solar cells,” Jpn. J. Appl. Phys. 52, 08JH05 (2013).

Galler, B.

M. A. Maur, B. Galler, I. Pietzonka, M. Strassburg, H. Lugauer, and A. D. Carlo, “Trap-assisted tunneling in InGaN/GaN single-quantum-well light-emitting diodes,” Appl. Phys. Lett. 105(13), 133504 (2014).
[Crossref]

Gao, X.

Grenet, L.

S. V. -Felip, A. Mukhtarova, Q. Pan, G. Altamura, L. Grenet, C. Durand, C. Bougerol, D. Peyrade, F. G. -Posada, J. Eymery, and E. Monroy, “Photovoltaic response of InGaN/GaN multiple-quantum well solar cells,” Jpn. J. Appl. Phys. 52, 08JH05 (2013).

Grünberg, P.

Hahn, B.

M. Meneghini, N. Trivellin, M. Pavesi, M. Manfredi, U. Zehnder, B. Hahn, G. Meneghesso, and E. Zanoni, “Leakage current and reverse-bias luminescence in InGaN-based light-emitting diodes,” Appl. Phys. Lett. 95(17), 173507 (2009).
[Crossref]

Halioua, Y.

M. Tchernycheva, A. Messanvi, A. de Luna Bugallo, G. Jacopin, P. Lavenus, L. Rigutti, H. Zhang, Y. Halioua, F. H. Julien, J. Eymery, and C. Durand, “Integrated Photonic Platform Based on InGaN/GaN Nanowire Emitters and Detectors,” Nano Lett. 14(6), 3515–3520 (2014).
[Crossref] [PubMed]

Haller, E. E.

J. Wu, W. Walukiewicz, K. M. Yu, W. Shan, J. W. Ager, E. E. Haller, H. Lu, W. J. Schaff, W. K. Metzger, and S. Kurtz, “Superior radiation resistance of In1−xGaxN alloys: Full-solar-spectrum photovoltaic material system,” J. Appl. Phys. 94(10), 6477–6482 (2003).
[Crossref]

He, J. H.

D. H. Lien, Y. H. Hsiao, S. G. Yang, M. L. Tsai, T. C. Wei, S. C. Lee, and J. H. He, “Harsh Photovoltaics using InGaN/GaN multiple quantum well schemes,” Nano Energy 11, 104–109 (2015).
[Crossref]

Honda, Y.

S. Lee, Y. Honda, and H. Amano, “Effect of piezoelectric field on carrier dynamics in InGaN-based solar cells,” J. Phys. D Appl. Phys. 49(2), 025103 (2016).
[Crossref]

Hsiao, Y. H.

D. H. Lien, Y. H. Hsiao, S. G. Yang, M. L. Tsai, T. C. Wei, S. C. Lee, and J. H. He, “Harsh Photovoltaics using InGaN/GaN multiple quantum well schemes,” Nano Energy 11, 104–109 (2015).
[Crossref]

Hu, W.

C. Du, C. Jiang, P. Zuo, X. Huang, X. Pu, Z. Zhao, Y. Zhou, L. Li, H. Chen, W. Hu, and Z. L. Wang, “Piezo-Phototronic Effect Controlled Dual-Channel Visible light Communication (PVLC) Using InGaN/GaN Multiquantum Well Nanopillars,” Small 11(45), 6071–6077 (2015).
[Crossref] [PubMed]

Huang, X.

C. Du, C. Jiang, P. Zuo, X. Huang, X. Pu, Z. Zhao, Y. Zhou, L. Li, H. Chen, W. Hu, and Z. L. Wang, “Piezo-Phototronic Effect Controlled Dual-Channel Visible light Communication (PVLC) Using InGaN/GaN Multiquantum Well Nanopillars,” Small 11(45), 6071–6077 (2015).
[Crossref] [PubMed]

Hwang, S.-M.

Jacopin, G.

M. Tchernycheva, A. Messanvi, A. de Luna Bugallo, G. Jacopin, P. Lavenus, L. Rigutti, H. Zhang, Y. Halioua, F. H. Julien, J. Eymery, and C. Durand, “Integrated Photonic Platform Based on InGaN/GaN Nanowire Emitters and Detectors,” Nano Lett. 14(6), 3515–3520 (2014).
[Crossref] [PubMed]

Jia, H. Q.

H. Y. Wu, Z. G. Ma, Y. Jiang, L. Wang, H. J. Yang, Y. F. Li, P. Zuo, H. Q. Jia, W. X. Wang, J. M. Zhou, W. M. Liu, and H. Chen, “Direct observation of the carrier transport process in InGaN quantum wells with a pn-junction,” Chin. Phys. B 25(11), 117803 (2016).
[Crossref]

Jiang, C.

C. Du, C. Jiang, P. Zuo, X. Huang, X. Pu, Z. Zhao, Y. Zhou, L. Li, H. Chen, W. Hu, and Z. L. Wang, “Piezo-Phototronic Effect Controlled Dual-Channel Visible light Communication (PVLC) Using InGaN/GaN Multiquantum Well Nanopillars,” Small 11(45), 6071–6077 (2015).
[Crossref] [PubMed]

Jiang, Y.

X. Gao, Z. Shi, Y. Jiang, S. Zhang, C. Qin, J. Yuan, Y. Liu, P. Grünberg, and Y. Wang, “Monolithic III-nitride photonic integration toward multifunctional devices,” Opt. Lett. 42(23), 4853–4856 (2017).
[Crossref] [PubMed]

H. Y. Wu, Z. G. Ma, Y. Jiang, L. Wang, H. J. Yang, Y. F. Li, P. Zuo, H. Q. Jia, W. X. Wang, J. M. Zhou, W. M. Liu, and H. Chen, “Direct observation of the carrier transport process in InGaN quantum wells with a pn-junction,” Chin. Phys. B 25(11), 117803 (2016).
[Crossref]

Julien, F. H.

M. Tchernycheva, A. Messanvi, A. de Luna Bugallo, G. Jacopin, P. Lavenus, L. Rigutti, H. Zhang, Y. Halioua, F. H. Julien, J. Eymery, and C. Durand, “Integrated Photonic Platform Based on InGaN/GaN Nanowire Emitters and Detectors,” Nano Lett. 14(6), 3515–3520 (2014).
[Crossref] [PubMed]

Kaneko, Y.

T. Takeuchi, C. Wetzel, S. Yamaguchi, H. Sakai, H. Amano, I. Akasaki, Y. Kaneko, S. Nakagawa, Y. Yamaoka, and N. Yamada, “Determination of piezoelectric fields in strained GaInN quantum wells using the quantum confined Stark effect,” Appl. Phys. Lett. 73(12), 1691–1693 (1998).
[Crossref]

Kato, N.

Y. Yamada, T. Saito, N. Kato, E. Kobayashi, T. Taguchi, H. Kudo, and H. Okagawa, “Spatially separated intrinsic emission components in InxGa1−xN ternary alloys,” Phys. Rev. B 80(19), 195202 (2009).
[Crossref]

Kiang, Y. W.

Klein, M. V.

D. H. Levi, D. R. Wake, M. V. Klein, S. Kumar, and H. Morkoç, “Density dependence of nonresonant tunneling in asymmetric coupled quantum wells,” Phys. Rev. B Condens. Matter 45(8), 4274–4279 (1992).
[Crossref] [PubMed]

Kobayashi, E.

Y. Yamada, T. Saito, N. Kato, E. Kobayashi, T. Taguchi, H. Kudo, and H. Okagawa, “Spatially separated intrinsic emission components in InxGa1−xN ternary alloys,” Phys. Rev. B 80(19), 195202 (2009).
[Crossref]

Kudo, H.

Y. Yamada, T. Saito, N. Kato, E. Kobayashi, T. Taguchi, H. Kudo, and H. Okagawa, “Spatially separated intrinsic emission components in InxGa1−xN ternary alloys,” Phys. Rev. B 80(19), 195202 (2009).
[Crossref]

Kumar, S.

D. H. Levi, D. R. Wake, M. V. Klein, S. Kumar, and H. Morkoç, “Density dependence of nonresonant tunneling in asymmetric coupled quantum wells,” Phys. Rev. B Condens. Matter 45(8), 4274–4279 (1992).
[Crossref] [PubMed]

Kurtz, S.

J. Wu, W. Walukiewicz, K. M. Yu, W. Shan, J. W. Ager, E. E. Haller, H. Lu, W. J. Schaff, W. K. Metzger, and S. Kurtz, “Superior radiation resistance of In1−xGaxN alloys: Full-solar-spectrum photovoltaic material system,” J. Appl. Phys. 94(10), 6477–6482 (2003).
[Crossref]

Lavenus, P.

M. Tchernycheva, A. Messanvi, A. de Luna Bugallo, G. Jacopin, P. Lavenus, L. Rigutti, H. Zhang, Y. Halioua, F. H. Julien, J. Eymery, and C. Durand, “Integrated Photonic Platform Based on InGaN/GaN Nanowire Emitters and Detectors,” Nano Lett. 14(6), 3515–3520 (2014).
[Crossref] [PubMed]

Lee, I.-H.

Lee, S.

S. Lee, Y. Honda, and H. Amano, “Effect of piezoelectric field on carrier dynamics in InGaN-based solar cells,” J. Phys. D Appl. Phys. 49(2), 025103 (2016).
[Crossref]

Lee, S. C.

D. H. Lien, Y. H. Hsiao, S. G. Yang, M. L. Tsai, T. C. Wei, S. C. Lee, and J. H. He, “Harsh Photovoltaics using InGaN/GaN multiple quantum well schemes,” Nano Energy 11, 104–109 (2015).
[Crossref]

Lee, S.-J.

Levi, D. H.

D. H. Levi, D. R. Wake, M. V. Klein, S. Kumar, and H. Morkoç, “Density dependence of nonresonant tunneling in asymmetric coupled quantum wells,” Phys. Rev. B Condens. Matter 45(8), 4274–4279 (1992).
[Crossref] [PubMed]

Li, B.

Z. J. Shang, X. H. Zheng, C. Yang, Y. Chen, B. Li, L. Sun, Z. Tang, and D. G. Zhao, “Carrier thermalization under stimulated emission in In0.17Ga0.83N epilayer at room temperature,” Appl. Phys. Lett. 105(23), 232104 (2014).
[Crossref]

Li, D. M.

H. Y. Wei, G. S. Wang, J. J. Shi, H. J. Wu, Y. H. Luo, D. M. Li, and Q. B. Meng, “Fumed SiO2 modified electrolytes for quantum dot sensitized solar cells with efficiency exceeding 11% and better stability,” J. Mater. Chem. A Mater. Energy Sustain. 4(37), 14194–14203 (2016).
[Crossref]

Li, L.

C. Du, C. Jiang, P. Zuo, X. Huang, X. Pu, Z. Zhao, Y. Zhou, L. Li, H. Chen, W. Hu, and Z. L. Wang, “Piezo-Phototronic Effect Controlled Dual-Channel Visible light Communication (PVLC) Using InGaN/GaN Multiquantum Well Nanopillars,” Small 11(45), 6071–6077 (2015).
[Crossref] [PubMed]

Li, X. F.

X. F. Li, X. H. Zheng, D. Y. Zhang, Y. Y. Wu, X. M. Shen, J. F. Wang, and H. Yang, “InGaN/GaN Multiple Quantum Well Solar Cells with Good Open-Circuit Voltage and Concentrator Action,” Jpn. J. Appl. Phys. 51(9R), 092301 (2012).
[Crossref]

Li, Y. F.

H. Y. Wu, Z. G. Ma, Y. Jiang, L. Wang, H. J. Yang, Y. F. Li, P. Zuo, H. Q. Jia, W. X. Wang, J. M. Zhou, W. M. Liu, and H. Chen, “Direct observation of the carrier transport process in InGaN quantum wells with a pn-junction,” Chin. Phys. B 25(11), 117803 (2016).
[Crossref]

Li, Z.

M. Peng, Z. Li, C. Liu, Q. Zheng, X. Shi, M. Song, Y. Zhang, S. Du, J. Zhai, and Z. L. Wang, “High-Resolution Dynamic Pressure Sensor Array Based on Piezo-Phototronic Effect Tuned Photoluminescence Imaging,” ACS Nano 9(3), 3143–3150 (2015).
[Crossref] [PubMed]

Lien, D. H.

D. H. Lien, Y. H. Hsiao, S. G. Yang, M. L. Tsai, T. C. Wei, S. C. Lee, and J. H. He, “Harsh Photovoltaics using InGaN/GaN multiple quantum well schemes,” Nano Energy 11, 104–109 (2015).
[Crossref]

Lin, C. H.

Liu, C.

M. Peng, Z. Li, C. Liu, Q. Zheng, X. Shi, M. Song, Y. Zhang, S. Du, J. Zhai, and Z. L. Wang, “High-Resolution Dynamic Pressure Sensor Array Based on Piezo-Phototronic Effect Tuned Photoluminescence Imaging,” ACS Nano 9(3), 3143–3150 (2015).
[Crossref] [PubMed]

Liu, W. M.

H. Y. Wu, Z. G. Ma, Y. Jiang, L. Wang, H. J. Yang, Y. F. Li, P. Zuo, H. Q. Jia, W. X. Wang, J. M. Zhou, W. M. Liu, and H. Chen, “Direct observation of the carrier transport process in InGaN quantum wells with a pn-junction,” Chin. Phys. B 25(11), 117803 (2016).
[Crossref]

Liu, Y.

X. Gao, Z. Shi, Y. Jiang, S. Zhang, C. Qin, J. Yuan, Y. Liu, P. Grünberg, and Y. Wang, “Monolithic III-nitride photonic integration toward multifunctional devices,” Opt. Lett. 42(23), 4853–4856 (2017).
[Crossref] [PubMed]

M. Peng, Y. Zhang, Y. Liu, M. Song, J. Zhai, and Z. L. Wang, “Magnetic-mechanical-electrical-optical coupling effects in GaN-based LED/rare-earth Terfenol-D structures,” Adv. Mater. 26(39), 6767–6772 (2014).
[Crossref] [PubMed]

Liu, Z. H.

Lu, H.

J. Wu, W. Walukiewicz, K. M. Yu, W. Shan, J. W. Ager, E. E. Haller, H. Lu, W. J. Schaff, W. K. Metzger, and S. Kurtz, “Superior radiation resistance of In1−xGaxN alloys: Full-solar-spectrum photovoltaic material system,” J. Appl. Phys. 94(10), 6477–6482 (2003).
[Crossref]

Lugauer, H.

M. A. Maur, B. Galler, I. Pietzonka, M. Strassburg, H. Lugauer, and A. D. Carlo, “Trap-assisted tunneling in InGaN/GaN single-quantum-well light-emitting diodes,” Appl. Phys. Lett. 105(13), 133504 (2014).
[Crossref]

Luo, Y. H.

H. Y. Wei, G. S. Wang, J. J. Shi, H. J. Wu, Y. H. Luo, D. M. Li, and Q. B. Meng, “Fumed SiO2 modified electrolytes for quantum dot sensitized solar cells with efficiency exceeding 11% and better stability,” J. Mater. Chem. A Mater. Energy Sustain. 4(37), 14194–14203 (2016).
[Crossref]

Ma, Z. G.

H. Y. Wu, Z. G. Ma, Y. Jiang, L. Wang, H. J. Yang, Y. F. Li, P. Zuo, H. Q. Jia, W. X. Wang, J. M. Zhou, W. M. Liu, and H. Chen, “Direct observation of the carrier transport process in InGaN quantum wells with a pn-junction,” Chin. Phys. B 25(11), 117803 (2016).
[Crossref]

Manfredi, M.

M. Meneghini, N. Trivellin, M. Pavesi, M. Manfredi, U. Zehnder, B. Hahn, G. Meneghesso, and E. Zanoni, “Leakage current and reverse-bias luminescence in InGaN-based light-emitting diodes,” Appl. Phys. Lett. 95(17), 173507 (2009).
[Crossref]

Maur, M. A.

M. A. Maur, B. Galler, I. Pietzonka, M. Strassburg, H. Lugauer, and A. D. Carlo, “Trap-assisted tunneling in InGaN/GaN single-quantum-well light-emitting diodes,” Appl. Phys. Lett. 105(13), 133504 (2014).
[Crossref]

Meneghesso, G.

M. Meneghini, N. Trivellin, M. Pavesi, M. Manfredi, U. Zehnder, B. Hahn, G. Meneghesso, and E. Zanoni, “Leakage current and reverse-bias luminescence in InGaN-based light-emitting diodes,” Appl. Phys. Lett. 95(17), 173507 (2009).
[Crossref]

Meneghini, M.

M. Meneghini, N. Trivellin, M. Pavesi, M. Manfredi, U. Zehnder, B. Hahn, G. Meneghesso, and E. Zanoni, “Leakage current and reverse-bias luminescence in InGaN-based light-emitting diodes,” Appl. Phys. Lett. 95(17), 173507 (2009).
[Crossref]

Meng, Q. B.

H. Y. Wei, G. S. Wang, J. J. Shi, H. J. Wu, Y. H. Luo, D. M. Li, and Q. B. Meng, “Fumed SiO2 modified electrolytes for quantum dot sensitized solar cells with efficiency exceeding 11% and better stability,” J. Mater. Chem. A Mater. Energy Sustain. 4(37), 14194–14203 (2016).
[Crossref]

Messanvi, A.

M. Tchernycheva, A. Messanvi, A. de Luna Bugallo, G. Jacopin, P. Lavenus, L. Rigutti, H. Zhang, Y. Halioua, F. H. Julien, J. Eymery, and C. Durand, “Integrated Photonic Platform Based on InGaN/GaN Nanowire Emitters and Detectors,” Nano Lett. 14(6), 3515–3520 (2014).
[Crossref] [PubMed]

Metzger, W. K.

J. Wu, W. Walukiewicz, K. M. Yu, W. Shan, J. W. Ager, E. E. Haller, H. Lu, W. J. Schaff, W. K. Metzger, and S. Kurtz, “Superior radiation resistance of In1−xGaxN alloys: Full-solar-spectrum photovoltaic material system,” J. Appl. Phys. 94(10), 6477–6482 (2003).
[Crossref]

Monroy, E.

S. V. -Felip, A. Mukhtarova, Q. Pan, G. Altamura, L. Grenet, C. Durand, C. Bougerol, D. Peyrade, F. G. -Posada, J. Eymery, and E. Monroy, “Photovoltaic response of InGaN/GaN multiple-quantum well solar cells,” Jpn. J. Appl. Phys. 52, 08JH05 (2013).

Morkoç, H.

D. H. Levi, D. R. Wake, M. V. Klein, S. Kumar, and H. Morkoç, “Density dependence of nonresonant tunneling in asymmetric coupled quantum wells,” Phys. Rev. B Condens. Matter 45(8), 4274–4279 (1992).
[Crossref] [PubMed]

Mukhtarova, A.

S. V. -Felip, A. Mukhtarova, Q. Pan, G. Altamura, L. Grenet, C. Durand, C. Bougerol, D. Peyrade, F. G. -Posada, J. Eymery, and E. Monroy, “Photovoltaic response of InGaN/GaN multiple-quantum well solar cells,” Jpn. J. Appl. Phys. 52, 08JH05 (2013).

Nakagawa, S.

T. Takeuchi, C. Wetzel, S. Yamaguchi, H. Sakai, H. Amano, I. Akasaki, Y. Kaneko, S. Nakagawa, Y. Yamaoka, and N. Yamada, “Determination of piezoelectric fields in strained GaInN quantum wells using the quantum confined Stark effect,” Appl. Phys. Lett. 73(12), 1691–1693 (1998).
[Crossref]

Nakamura, S.

S. Nakamura, “Current status of GaN-based solid-state lighting,” MRS Bull. 34(02), 101–107 (2009).
[Crossref]

Nizamoglu, S.

Okagawa, H.

Y. Yamada, T. Saito, N. Kato, E. Kobayashi, T. Taguchi, H. Kudo, and H. Okagawa, “Spatially separated intrinsic emission components in InxGa1−xN ternary alloys,” Phys. Rev. B 80(19), 195202 (2009).
[Crossref]

Pan, Q.

S. V. -Felip, A. Mukhtarova, Q. Pan, G. Altamura, L. Grenet, C. Durand, C. Bougerol, D. Peyrade, F. G. -Posada, J. Eymery, and E. Monroy, “Photovoltaic response of InGaN/GaN multiple-quantum well solar cells,” Jpn. J. Appl. Phys. 52, 08JH05 (2013).

Pavesi, M.

M. Meneghini, N. Trivellin, M. Pavesi, M. Manfredi, U. Zehnder, B. Hahn, G. Meneghesso, and E. Zanoni, “Leakage current and reverse-bias luminescence in InGaN-based light-emitting diodes,” Appl. Phys. Lett. 95(17), 173507 (2009).
[Crossref]

Peng, M.

M. Peng, Z. Li, C. Liu, Q. Zheng, X. Shi, M. Song, Y. Zhang, S. Du, J. Zhai, and Z. L. Wang, “High-Resolution Dynamic Pressure Sensor Array Based on Piezo-Phototronic Effect Tuned Photoluminescence Imaging,” ACS Nano 9(3), 3143–3150 (2015).
[Crossref] [PubMed]

M. Peng, Y. Zhang, Y. Liu, M. Song, J. Zhai, and Z. L. Wang, “Magnetic-mechanical-electrical-optical coupling effects in GaN-based LED/rare-earth Terfenol-D structures,” Adv. Mater. 26(39), 6767–6772 (2014).
[Crossref] [PubMed]

Peyrade, D.

S. V. -Felip, A. Mukhtarova, Q. Pan, G. Altamura, L. Grenet, C. Durand, C. Bougerol, D. Peyrade, F. G. -Posada, J. Eymery, and E. Monroy, “Photovoltaic response of InGaN/GaN multiple-quantum well solar cells,” Jpn. J. Appl. Phys. 52, 08JH05 (2013).

Pietzonka, I.

M. A. Maur, B. Galler, I. Pietzonka, M. Strassburg, H. Lugauer, and A. D. Carlo, “Trap-assisted tunneling in InGaN/GaN single-quantum-well light-emitting diodes,” Appl. Phys. Lett. 105(13), 133504 (2014).
[Crossref]

-Posada, F. G.

S. V. -Felip, A. Mukhtarova, Q. Pan, G. Altamura, L. Grenet, C. Durand, C. Bougerol, D. Peyrade, F. G. -Posada, J. Eymery, and E. Monroy, “Photovoltaic response of InGaN/GaN multiple-quantum well solar cells,” Jpn. J. Appl. Phys. 52, 08JH05 (2013).

Pu, X.

C. Du, C. Jiang, P. Zuo, X. Huang, X. Pu, Z. Zhao, Y. Zhou, L. Li, H. Chen, W. Hu, and Z. L. Wang, “Piezo-Phototronic Effect Controlled Dual-Channel Visible light Communication (PVLC) Using InGaN/GaN Multiquantum Well Nanopillars,” Small 11(45), 6071–6077 (2015).
[Crossref] [PubMed]

Qin, C.

Rigutti, L.

M. Tchernycheva, A. Messanvi, A. de Luna Bugallo, G. Jacopin, P. Lavenus, L. Rigutti, H. Zhang, Y. Halioua, F. H. Julien, J. Eymery, and C. Durand, “Integrated Photonic Platform Based on InGaN/GaN Nanowire Emitters and Detectors,” Nano Lett. 14(6), 3515–3520 (2014).
[Crossref] [PubMed]

Saito, T.

Y. Yamada, T. Saito, N. Kato, E. Kobayashi, T. Taguchi, H. Kudo, and H. Okagawa, “Spatially separated intrinsic emission components in InxGa1−xN ternary alloys,” Phys. Rev. B 80(19), 195202 (2009).
[Crossref]

Sakai, H.

T. Takeuchi, C. Wetzel, S. Yamaguchi, H. Sakai, H. Amano, I. Akasaki, Y. Kaneko, S. Nakagawa, Y. Yamaoka, and N. Yamada, “Determination of piezoelectric fields in strained GaInN quantum wells using the quantum confined Stark effect,” Appl. Phys. Lett. 73(12), 1691–1693 (1998).
[Crossref]

Sari, E.

Schaff, W. J.

J. Wu, W. Walukiewicz, K. M. Yu, W. Shan, J. W. Ager, E. E. Haller, H. Lu, W. J. Schaff, W. K. Metzger, and S. Kurtz, “Superior radiation resistance of In1−xGaxN alloys: Full-solar-spectrum photovoltaic material system,” J. Appl. Phys. 94(10), 6477–6482 (2003).
[Crossref]

Shan, W.

J. Wu, W. Walukiewicz, K. M. Yu, W. Shan, J. W. Ager, E. E. Haller, H. Lu, W. J. Schaff, W. K. Metzger, and S. Kurtz, “Superior radiation resistance of In1−xGaxN alloys: Full-solar-spectrum photovoltaic material system,” J. Appl. Phys. 94(10), 6477–6482 (2003).
[Crossref]

Shang, Z. J.

Z. J. Shang, X. H. Zheng, C. Yang, Y. Chen, B. Li, L. Sun, Z. Tang, and D. G. Zhao, “Carrier thermalization under stimulated emission in In0.17Ga0.83N epilayer at room temperature,” Appl. Phys. Lett. 105(23), 232104 (2014).
[Crossref]

Shen, X. M.

X. F. Li, X. H. Zheng, D. Y. Zhang, Y. Y. Wu, X. M. Shen, J. F. Wang, and H. Yang, “InGaN/GaN Multiple Quantum Well Solar Cells with Good Open-Circuit Voltage and Concentrator Action,” Jpn. J. Appl. Phys. 51(9R), 092301 (2012).
[Crossref]

Shi, J. J.

H. Y. Wei, G. S. Wang, J. J. Shi, H. J. Wu, Y. H. Luo, D. M. Li, and Q. B. Meng, “Fumed SiO2 modified electrolytes for quantum dot sensitized solar cells with efficiency exceeding 11% and better stability,” J. Mater. Chem. A Mater. Energy Sustain. 4(37), 14194–14203 (2016).
[Crossref]

Shi, X.

M. Peng, Z. Li, C. Liu, Q. Zheng, X. Shi, M. Song, Y. Zhang, S. Du, J. Zhai, and Z. L. Wang, “High-Resolution Dynamic Pressure Sensor Array Based on Piezo-Phototronic Effect Tuned Photoluminescence Imaging,” ACS Nano 9(3), 3143–3150 (2015).
[Crossref] [PubMed]

Shi, Z.

Shih, P. Y.

Song, M.

M. Peng, Z. Li, C. Liu, Q. Zheng, X. Shi, M. Song, Y. Zhang, S. Du, J. Zhai, and Z. L. Wang, “High-Resolution Dynamic Pressure Sensor Array Based on Piezo-Phototronic Effect Tuned Photoluminescence Imaging,” ACS Nano 9(3), 3143–3150 (2015).
[Crossref] [PubMed]

M. Peng, Y. Zhang, Y. Liu, M. Song, J. Zhai, and Z. L. Wang, “Magnetic-mechanical-electrical-optical coupling effects in GaN-based LED/rare-earth Terfenol-D structures,” Adv. Mater. 26(39), 6767–6772 (2014).
[Crossref] [PubMed]

Strassburg, M.

M. A. Maur, B. Galler, I. Pietzonka, M. Strassburg, H. Lugauer, and A. D. Carlo, “Trap-assisted tunneling in InGaN/GaN single-quantum-well light-emitting diodes,” Appl. Phys. Lett. 105(13), 133504 (2014).
[Crossref]

Su, C. Y.

Sun, L.

Z. J. Shang, X. H. Zheng, C. Yang, Y. Chen, B. Li, L. Sun, Z. Tang, and D. G. Zhao, “Carrier thermalization under stimulated emission in In0.17Ga0.83N epilayer at room temperature,” Appl. Phys. Lett. 105(23), 232104 (2014).
[Crossref]

Taguchi, T.

Y. Yamada, T. Saito, N. Kato, E. Kobayashi, T. Taguchi, H. Kudo, and H. Okagawa, “Spatially separated intrinsic emission components in InxGa1−xN ternary alloys,” Phys. Rev. B 80(19), 195202 (2009).
[Crossref]

Takeuchi, T.

T. Takeuchi, C. Wetzel, S. Yamaguchi, H. Sakai, H. Amano, I. Akasaki, Y. Kaneko, S. Nakagawa, Y. Yamaoka, and N. Yamada, “Determination of piezoelectric fields in strained GaInN quantum wells using the quantum confined Stark effect,” Appl. Phys. Lett. 73(12), 1691–1693 (1998).
[Crossref]

Tang, L. J.

X. H. Zheng, L. J. Tang, D. Y. Zhang, J. R. Dong, and H. Yang, “Effect of contact spreading layer on photovoltaic response of InGaN-based solar cells,” Phys. Status Solidi., A Appl. Mater. Sci. 208(1), 199–201 (2011).
[Crossref]

Tang, Z.

Z. J. Shang, X. H. Zheng, C. Yang, Y. Chen, B. Li, L. Sun, Z. Tang, and D. G. Zhao, “Carrier thermalization under stimulated emission in In0.17Ga0.83N epilayer at room temperature,” Appl. Phys. Lett. 105(23), 232104 (2014).
[Crossref]

Tchernycheva, M.

M. Tchernycheva, A. Messanvi, A. de Luna Bugallo, G. Jacopin, P. Lavenus, L. Rigutti, H. Zhang, Y. Halioua, F. H. Julien, J. Eymery, and C. Durand, “Integrated Photonic Platform Based on InGaN/GaN Nanowire Emitters and Detectors,” Nano Lett. 14(6), 3515–3520 (2014).
[Crossref] [PubMed]

Trivellin, N.

M. Meneghini, N. Trivellin, M. Pavesi, M. Manfredi, U. Zehnder, B. Hahn, G. Meneghesso, and E. Zanoni, “Leakage current and reverse-bias luminescence in InGaN-based light-emitting diodes,” Appl. Phys. Lett. 95(17), 173507 (2009).
[Crossref]

Tsai, M. L.

D. H. Lien, Y. H. Hsiao, S. G. Yang, M. L. Tsai, T. C. Wei, S. C. Lee, and J. H. He, “Harsh Photovoltaics using InGaN/GaN multiple quantum well schemes,” Nano Energy 11, 104–109 (2015).
[Crossref]

Wake, D. R.

D. H. Levi, D. R. Wake, M. V. Klein, S. Kumar, and H. Morkoç, “Density dependence of nonresonant tunneling in asymmetric coupled quantum wells,” Phys. Rev. B Condens. Matter 45(8), 4274–4279 (1992).
[Crossref] [PubMed]

Walukiewicz, W.

J. Wu, W. Walukiewicz, K. M. Yu, W. Shan, J. W. Ager, E. E. Haller, H. Lu, W. J. Schaff, W. K. Metzger, and S. Kurtz, “Superior radiation resistance of In1−xGaxN alloys: Full-solar-spectrum photovoltaic material system,” J. Appl. Phys. 94(10), 6477–6482 (2003).
[Crossref]

Wang, G. S.

H. Y. Wei, G. S. Wang, J. J. Shi, H. J. Wu, Y. H. Luo, D. M. Li, and Q. B. Meng, “Fumed SiO2 modified electrolytes for quantum dot sensitized solar cells with efficiency exceeding 11% and better stability,” J. Mater. Chem. A Mater. Energy Sustain. 4(37), 14194–14203 (2016).
[Crossref]

Wang, J. F.

X. F. Li, X. H. Zheng, D. Y. Zhang, Y. Y. Wu, X. M. Shen, J. F. Wang, and H. Yang, “InGaN/GaN Multiple Quantum Well Solar Cells with Good Open-Circuit Voltage and Concentrator Action,” Jpn. J. Appl. Phys. 51(9R), 092301 (2012).
[Crossref]

Wang, L.

H. Y. Wu, Z. G. Ma, Y. Jiang, L. Wang, H. J. Yang, Y. F. Li, P. Zuo, H. Q. Jia, W. X. Wang, J. M. Zhou, W. M. Liu, and H. Chen, “Direct observation of the carrier transport process in InGaN quantum wells with a pn-junction,” Chin. Phys. B 25(11), 117803 (2016).
[Crossref]

Wang, W. X.

H. Y. Wu, Z. G. Ma, Y. Jiang, L. Wang, H. J. Yang, Y. F. Li, P. Zuo, H. Q. Jia, W. X. Wang, J. M. Zhou, W. M. Liu, and H. Chen, “Direct observation of the carrier transport process in InGaN quantum wells with a pn-junction,” Chin. Phys. B 25(11), 117803 (2016).
[Crossref]

Wang, Y.

Wang, Z. L.

M. Peng, Z. Li, C. Liu, Q. Zheng, X. Shi, M. Song, Y. Zhang, S. Du, J. Zhai, and Z. L. Wang, “High-Resolution Dynamic Pressure Sensor Array Based on Piezo-Phototronic Effect Tuned Photoluminescence Imaging,” ACS Nano 9(3), 3143–3150 (2015).
[Crossref] [PubMed]

C. Du, C. Jiang, P. Zuo, X. Huang, X. Pu, Z. Zhao, Y. Zhou, L. Li, H. Chen, W. Hu, and Z. L. Wang, “Piezo-Phototronic Effect Controlled Dual-Channel Visible light Communication (PVLC) Using InGaN/GaN Multiquantum Well Nanopillars,” Small 11(45), 6071–6077 (2015).
[Crossref] [PubMed]

M. Peng, Y. Zhang, Y. Liu, M. Song, J. Zhai, and Z. L. Wang, “Magnetic-mechanical-electrical-optical coupling effects in GaN-based LED/rare-earth Terfenol-D structures,” Adv. Mater. 26(39), 6767–6772 (2014).
[Crossref] [PubMed]

Wei, H. Y.

H. Y. Wei, G. S. Wang, J. J. Shi, H. J. Wu, Y. H. Luo, D. M. Li, and Q. B. Meng, “Fumed SiO2 modified electrolytes for quantum dot sensitized solar cells with efficiency exceeding 11% and better stability,” J. Mater. Chem. A Mater. Energy Sustain. 4(37), 14194–14203 (2016).
[Crossref]

Wei, T. C.

D. H. Lien, Y. H. Hsiao, S. G. Yang, M. L. Tsai, T. C. Wei, S. C. Lee, and J. H. He, “Harsh Photovoltaics using InGaN/GaN multiple quantum well schemes,” Nano Energy 11, 104–109 (2015).
[Crossref]

Wetzel, C.

T. Takeuchi, C. Wetzel, S. Yamaguchi, H. Sakai, H. Amano, I. Akasaki, Y. Kaneko, S. Nakagawa, Y. Yamaoka, and N. Yamada, “Determination of piezoelectric fields in strained GaInN quantum wells using the quantum confined Stark effect,” Appl. Phys. Lett. 73(12), 1691–1693 (1998).
[Crossref]

Wu, H. J.

H. Y. Wei, G. S. Wang, J. J. Shi, H. J. Wu, Y. H. Luo, D. M. Li, and Q. B. Meng, “Fumed SiO2 modified electrolytes for quantum dot sensitized solar cells with efficiency exceeding 11% and better stability,” J. Mater. Chem. A Mater. Energy Sustain. 4(37), 14194–14203 (2016).
[Crossref]

Wu, H. Y.

H. Y. Wu, Z. G. Ma, Y. Jiang, L. Wang, H. J. Yang, Y. F. Li, P. Zuo, H. Q. Jia, W. X. Wang, J. M. Zhou, W. M. Liu, and H. Chen, “Direct observation of the carrier transport process in InGaN quantum wells with a pn-junction,” Chin. Phys. B 25(11), 117803 (2016).
[Crossref]

Wu, J.

J. Wu, W. Walukiewicz, K. M. Yu, W. Shan, J. W. Ager, E. E. Haller, H. Lu, W. J. Schaff, W. K. Metzger, and S. Kurtz, “Superior radiation resistance of In1−xGaxN alloys: Full-solar-spectrum photovoltaic material system,” J. Appl. Phys. 94(10), 6477–6482 (2003).
[Crossref]

Wu, J. Q.

J. Q. Wu, “When group-III nitrides go infrared: New properties and perspectives,” J. Appl. Phys. 106(1), 011101 (2009).
[Crossref]

Wu, Y. Y.

X. F. Li, X. H. Zheng, D. Y. Zhang, Y. Y. Wu, X. M. Shen, J. F. Wang, and H. Yang, “InGaN/GaN Multiple Quantum Well Solar Cells with Good Open-Circuit Voltage and Concentrator Action,” Jpn. J. Appl. Phys. 51(9R), 092301 (2012).
[Crossref]

Yamada, N.

T. Takeuchi, C. Wetzel, S. Yamaguchi, H. Sakai, H. Amano, I. Akasaki, Y. Kaneko, S. Nakagawa, Y. Yamaoka, and N. Yamada, “Determination of piezoelectric fields in strained GaInN quantum wells using the quantum confined Stark effect,” Appl. Phys. Lett. 73(12), 1691–1693 (1998).
[Crossref]

Yamada, Y.

Y. Yamada, T. Saito, N. Kato, E. Kobayashi, T. Taguchi, H. Kudo, and H. Okagawa, “Spatially separated intrinsic emission components in InxGa1−xN ternary alloys,” Phys. Rev. B 80(19), 195202 (2009).
[Crossref]

Yamaguchi, S.

T. Takeuchi, C. Wetzel, S. Yamaguchi, H. Sakai, H. Amano, I. Akasaki, Y. Kaneko, S. Nakagawa, Y. Yamaoka, and N. Yamada, “Determination of piezoelectric fields in strained GaInN quantum wells using the quantum confined Stark effect,” Appl. Phys. Lett. 73(12), 1691–1693 (1998).
[Crossref]

Yamaoka, Y.

T. Takeuchi, C. Wetzel, S. Yamaguchi, H. Sakai, H. Amano, I. Akasaki, Y. Kaneko, S. Nakagawa, Y. Yamaoka, and N. Yamada, “Determination of piezoelectric fields in strained GaInN quantum wells using the quantum confined Stark effect,” Appl. Phys. Lett. 73(12), 1691–1693 (1998).
[Crossref]

Yang, C.

Z. J. Shang, X. H. Zheng, C. Yang, Y. Chen, B. Li, L. Sun, Z. Tang, and D. G. Zhao, “Carrier thermalization under stimulated emission in In0.17Ga0.83N epilayer at room temperature,” Appl. Phys. Lett. 105(23), 232104 (2014).
[Crossref]

Yang, C. C.

Yang, H.

X. F. Li, X. H. Zheng, D. Y. Zhang, Y. Y. Wu, X. M. Shen, J. F. Wang, and H. Yang, “InGaN/GaN Multiple Quantum Well Solar Cells with Good Open-Circuit Voltage and Concentrator Action,” Jpn. J. Appl. Phys. 51(9R), 092301 (2012).
[Crossref]

X. H. Zheng, L. J. Tang, D. Y. Zhang, J. R. Dong, and H. Yang, “Effect of contact spreading layer on photovoltaic response of InGaN-based solar cells,” Phys. Status Solidi., A Appl. Mater. Sci. 208(1), 199–201 (2011).
[Crossref]

Yang, H. J.

H. Y. Wu, Z. G. Ma, Y. Jiang, L. Wang, H. J. Yang, Y. F. Li, P. Zuo, H. Q. Jia, W. X. Wang, J. M. Zhou, W. M. Liu, and H. Chen, “Direct observation of the carrier transport process in InGaN quantum wells with a pn-junction,” Chin. Phys. B 25(11), 117803 (2016).
[Crossref]

Yang, S. G.

D. H. Lien, Y. H. Hsiao, S. G. Yang, M. L. Tsai, T. C. Wei, S. C. Lee, and J. H. He, “Harsh Photovoltaics using InGaN/GaN multiple quantum well schemes,” Nano Energy 11, 104–109 (2015).
[Crossref]

Yao, Y. F.

Yu, K. M.

J. Wu, W. Walukiewicz, K. M. Yu, W. Shan, J. W. Ager, E. E. Haller, H. Lu, W. J. Schaff, W. K. Metzger, and S. Kurtz, “Superior radiation resistance of In1−xGaxN alloys: Full-solar-spectrum photovoltaic material system,” J. Appl. Phys. 94(10), 6477–6482 (2003).
[Crossref]

Yuan, J.

Zanoni, E.

M. Meneghini, N. Trivellin, M. Pavesi, M. Manfredi, U. Zehnder, B. Hahn, G. Meneghesso, and E. Zanoni, “Leakage current and reverse-bias luminescence in InGaN-based light-emitting diodes,” Appl. Phys. Lett. 95(17), 173507 (2009).
[Crossref]

Zehnder, U.

M. Meneghini, N. Trivellin, M. Pavesi, M. Manfredi, U. Zehnder, B. Hahn, G. Meneghesso, and E. Zanoni, “Leakage current and reverse-bias luminescence in InGaN-based light-emitting diodes,” Appl. Phys. Lett. 95(17), 173507 (2009).
[Crossref]

Zhai, J.

M. Peng, Z. Li, C. Liu, Q. Zheng, X. Shi, M. Song, Y. Zhang, S. Du, J. Zhai, and Z. L. Wang, “High-Resolution Dynamic Pressure Sensor Array Based on Piezo-Phototronic Effect Tuned Photoluminescence Imaging,” ACS Nano 9(3), 3143–3150 (2015).
[Crossref] [PubMed]

M. Peng, Y. Zhang, Y. Liu, M. Song, J. Zhai, and Z. L. Wang, “Magnetic-mechanical-electrical-optical coupling effects in GaN-based LED/rare-earth Terfenol-D structures,” Adv. Mater. 26(39), 6767–6772 (2014).
[Crossref] [PubMed]

Zhang, D. Y.

X. F. Li, X. H. Zheng, D. Y. Zhang, Y. Y. Wu, X. M. Shen, J. F. Wang, and H. Yang, “InGaN/GaN Multiple Quantum Well Solar Cells with Good Open-Circuit Voltage and Concentrator Action,” Jpn. J. Appl. Phys. 51(9R), 092301 (2012).
[Crossref]

X. H. Zheng, L. J. Tang, D. Y. Zhang, J. R. Dong, and H. Yang, “Effect of contact spreading layer on photovoltaic response of InGaN-based solar cells,” Phys. Status Solidi., A Appl. Mater. Sci. 208(1), 199–201 (2011).
[Crossref]

Zhang, H.

M. Tchernycheva, A. Messanvi, A. de Luna Bugallo, G. Jacopin, P. Lavenus, L. Rigutti, H. Zhang, Y. Halioua, F. H. Julien, J. Eymery, and C. Durand, “Integrated Photonic Platform Based on InGaN/GaN Nanowire Emitters and Detectors,” Nano Lett. 14(6), 3515–3520 (2014).
[Crossref] [PubMed]

Zhang, S.

Zhang, Y.

M. Peng, Z. Li, C. Liu, Q. Zheng, X. Shi, M. Song, Y. Zhang, S. Du, J. Zhai, and Z. L. Wang, “High-Resolution Dynamic Pressure Sensor Array Based on Piezo-Phototronic Effect Tuned Photoluminescence Imaging,” ACS Nano 9(3), 3143–3150 (2015).
[Crossref] [PubMed]

M. Peng, Y. Zhang, Y. Liu, M. Song, J. Zhai, and Z. L. Wang, “Magnetic-mechanical-electrical-optical coupling effects in GaN-based LED/rare-earth Terfenol-D structures,” Adv. Mater. 26(39), 6767–6772 (2014).
[Crossref] [PubMed]

Zhao, D. G.

Z. J. Shang, X. H. Zheng, C. Yang, Y. Chen, B. Li, L. Sun, Z. Tang, and D. G. Zhao, “Carrier thermalization under stimulated emission in In0.17Ga0.83N epilayer at room temperature,” Appl. Phys. Lett. 105(23), 232104 (2014).
[Crossref]

Zhao, Z.

C. Du, C. Jiang, P. Zuo, X. Huang, X. Pu, Z. Zhao, Y. Zhou, L. Li, H. Chen, W. Hu, and Z. L. Wang, “Piezo-Phototronic Effect Controlled Dual-Channel Visible light Communication (PVLC) Using InGaN/GaN Multiquantum Well Nanopillars,” Small 11(45), 6071–6077 (2015).
[Crossref] [PubMed]

Zheng, Q.

M. Peng, Z. Li, C. Liu, Q. Zheng, X. Shi, M. Song, Y. Zhang, S. Du, J. Zhai, and Z. L. Wang, “High-Resolution Dynamic Pressure Sensor Array Based on Piezo-Phototronic Effect Tuned Photoluminescence Imaging,” ACS Nano 9(3), 3143–3150 (2015).
[Crossref] [PubMed]

Zheng, X. H.

Z. J. Shang, X. H. Zheng, C. Yang, Y. Chen, B. Li, L. Sun, Z. Tang, and D. G. Zhao, “Carrier thermalization under stimulated emission in In0.17Ga0.83N epilayer at room temperature,” Appl. Phys. Lett. 105(23), 232104 (2014).
[Crossref]

X. F. Li, X. H. Zheng, D. Y. Zhang, Y. Y. Wu, X. M. Shen, J. F. Wang, and H. Yang, “InGaN/GaN Multiple Quantum Well Solar Cells with Good Open-Circuit Voltage and Concentrator Action,” Jpn. J. Appl. Phys. 51(9R), 092301 (2012).
[Crossref]

X. H. Zheng, L. J. Tang, D. Y. Zhang, J. R. Dong, and H. Yang, “Effect of contact spreading layer on photovoltaic response of InGaN-based solar cells,” Phys. Status Solidi., A Appl. Mater. Sci. 208(1), 199–201 (2011).
[Crossref]

Zhou, J. M.

H. Y. Wu, Z. G. Ma, Y. Jiang, L. Wang, H. J. Yang, Y. F. Li, P. Zuo, H. Q. Jia, W. X. Wang, J. M. Zhou, W. M. Liu, and H. Chen, “Direct observation of the carrier transport process in InGaN quantum wells with a pn-junction,” Chin. Phys. B 25(11), 117803 (2016).
[Crossref]

Zhou, Y.

C. Du, C. Jiang, P. Zuo, X. Huang, X. Pu, Z. Zhao, Y. Zhou, L. Li, H. Chen, W. Hu, and Z. L. Wang, “Piezo-Phototronic Effect Controlled Dual-Channel Visible light Communication (PVLC) Using InGaN/GaN Multiquantum Well Nanopillars,” Small 11(45), 6071–6077 (2015).
[Crossref] [PubMed]

Zuo, P.

H. Y. Wu, Z. G. Ma, Y. Jiang, L. Wang, H. J. Yang, Y. F. Li, P. Zuo, H. Q. Jia, W. X. Wang, J. M. Zhou, W. M. Liu, and H. Chen, “Direct observation of the carrier transport process in InGaN quantum wells with a pn-junction,” Chin. Phys. B 25(11), 117803 (2016).
[Crossref]

C. Du, C. Jiang, P. Zuo, X. Huang, X. Pu, Z. Zhao, Y. Zhou, L. Li, H. Chen, W. Hu, and Z. L. Wang, “Piezo-Phototronic Effect Controlled Dual-Channel Visible light Communication (PVLC) Using InGaN/GaN Multiquantum Well Nanopillars,” Small 11(45), 6071–6077 (2015).
[Crossref] [PubMed]

ACS Nano (1)

M. Peng, Z. Li, C. Liu, Q. Zheng, X. Shi, M. Song, Y. Zhang, S. Du, J. Zhai, and Z. L. Wang, “High-Resolution Dynamic Pressure Sensor Array Based on Piezo-Phototronic Effect Tuned Photoluminescence Imaging,” ACS Nano 9(3), 3143–3150 (2015).
[Crossref] [PubMed]

Adv. Mater. (1)

M. Peng, Y. Zhang, Y. Liu, M. Song, J. Zhai, and Z. L. Wang, “Magnetic-mechanical-electrical-optical coupling effects in GaN-based LED/rare-earth Terfenol-D structures,” Adv. Mater. 26(39), 6767–6772 (2014).
[Crossref] [PubMed]

Appl. Phys. Lett. (5)

Z. J. Shang, X. H. Zheng, C. Yang, Y. Chen, B. Li, L. Sun, Z. Tang, and D. G. Zhao, “Carrier thermalization under stimulated emission in In0.17Ga0.83N epilayer at room temperature,” Appl. Phys. Lett. 105(23), 232104 (2014).
[Crossref]

T. Takeuchi, C. Wetzel, S. Yamaguchi, H. Sakai, H. Amano, I. Akasaki, Y. Kaneko, S. Nakagawa, Y. Yamaoka, and N. Yamada, “Determination of piezoelectric fields in strained GaInN quantum wells using the quantum confined Stark effect,” Appl. Phys. Lett. 73(12), 1691–1693 (1998).
[Crossref]

M. Meneghini, N. Trivellin, M. Pavesi, M. Manfredi, U. Zehnder, B. Hahn, G. Meneghesso, and E. Zanoni, “Leakage current and reverse-bias luminescence in InGaN-based light-emitting diodes,” Appl. Phys. Lett. 95(17), 173507 (2009).
[Crossref]

E. Sari, S. Nizamoglu, I.-H. Lee, J.-H. Baek, and H. V. Demir, “Electric field dependent radiative decay kinetics of polar InGaN/GaN quantum heterostructures at low fields,” Appl. Phys. Lett. 94(21), 211107 (2009).
[Crossref]

M. A. Maur, B. Galler, I. Pietzonka, M. Strassburg, H. Lugauer, and A. D. Carlo, “Trap-assisted tunneling in InGaN/GaN single-quantum-well light-emitting diodes,” Appl. Phys. Lett. 105(13), 133504 (2014).
[Crossref]

Chin. Phys. B (1)

H. Y. Wu, Z. G. Ma, Y. Jiang, L. Wang, H. J. Yang, Y. F. Li, P. Zuo, H. Q. Jia, W. X. Wang, J. M. Zhou, W. M. Liu, and H. Chen, “Direct observation of the carrier transport process in InGaN quantum wells with a pn-junction,” Chin. Phys. B 25(11), 117803 (2016).
[Crossref]

J. Appl. Phys. (2)

J. Wu, W. Walukiewicz, K. M. Yu, W. Shan, J. W. Ager, E. E. Haller, H. Lu, W. J. Schaff, W. K. Metzger, and S. Kurtz, “Superior radiation resistance of In1−xGaxN alloys: Full-solar-spectrum photovoltaic material system,” J. Appl. Phys. 94(10), 6477–6482 (2003).
[Crossref]

J. Q. Wu, “When group-III nitrides go infrared: New properties and perspectives,” J. Appl. Phys. 106(1), 011101 (2009).
[Crossref]

J. Mater. Chem. A Mater. Energy Sustain. (1)

H. Y. Wei, G. S. Wang, J. J. Shi, H. J. Wu, Y. H. Luo, D. M. Li, and Q. B. Meng, “Fumed SiO2 modified electrolytes for quantum dot sensitized solar cells with efficiency exceeding 11% and better stability,” J. Mater. Chem. A Mater. Energy Sustain. 4(37), 14194–14203 (2016).
[Crossref]

J. Phys. D Appl. Phys. (1)

S. Lee, Y. Honda, and H. Amano, “Effect of piezoelectric field on carrier dynamics in InGaN-based solar cells,” J. Phys. D Appl. Phys. 49(2), 025103 (2016).
[Crossref]

Jpn. J. Appl. Phys. (2)

S. V. -Felip, A. Mukhtarova, Q. Pan, G. Altamura, L. Grenet, C. Durand, C. Bougerol, D. Peyrade, F. G. -Posada, J. Eymery, and E. Monroy, “Photovoltaic response of InGaN/GaN multiple-quantum well solar cells,” Jpn. J. Appl. Phys. 52, 08JH05 (2013).

X. F. Li, X. H. Zheng, D. Y. Zhang, Y. Y. Wu, X. M. Shen, J. F. Wang, and H. Yang, “InGaN/GaN Multiple Quantum Well Solar Cells with Good Open-Circuit Voltage and Concentrator Action,” Jpn. J. Appl. Phys. 51(9R), 092301 (2012).
[Crossref]

MRS Bull. (1)

S. Nakamura, “Current status of GaN-based solid-state lighting,” MRS Bull. 34(02), 101–107 (2009).
[Crossref]

Nano Energy (1)

D. H. Lien, Y. H. Hsiao, S. G. Yang, M. L. Tsai, T. C. Wei, S. C. Lee, and J. H. He, “Harsh Photovoltaics using InGaN/GaN multiple quantum well schemes,” Nano Energy 11, 104–109 (2015).
[Crossref]

Nano Lett. (1)

M. Tchernycheva, A. Messanvi, A. de Luna Bugallo, G. Jacopin, P. Lavenus, L. Rigutti, H. Zhang, Y. Halioua, F. H. Julien, J. Eymery, and C. Durand, “Integrated Photonic Platform Based on InGaN/GaN Nanowire Emitters and Detectors,” Nano Lett. 14(6), 3515–3520 (2014).
[Crossref] [PubMed]

Opt. Express (2)

Opt. Lett. (1)

Phys. Rev. B (1)

Y. Yamada, T. Saito, N. Kato, E. Kobayashi, T. Taguchi, H. Kudo, and H. Okagawa, “Spatially separated intrinsic emission components in InxGa1−xN ternary alloys,” Phys. Rev. B 80(19), 195202 (2009).
[Crossref]

Phys. Rev. B Condens. Matter (1)

D. H. Levi, D. R. Wake, M. V. Klein, S. Kumar, and H. Morkoç, “Density dependence of nonresonant tunneling in asymmetric coupled quantum wells,” Phys. Rev. B Condens. Matter 45(8), 4274–4279 (1992).
[Crossref] [PubMed]

Phys. Status Solidi., A Appl. Mater. Sci. (1)

X. H. Zheng, L. J. Tang, D. Y. Zhang, J. R. Dong, and H. Yang, “Effect of contact spreading layer on photovoltaic response of InGaN-based solar cells,” Phys. Status Solidi., A Appl. Mater. Sci. 208(1), 199–201 (2011).
[Crossref]

Small (1)

C. Du, C. Jiang, P. Zuo, X. Huang, X. Pu, Z. Zhao, Y. Zhou, L. Li, H. Chen, W. Hu, and Z. L. Wang, “Piezo-Phototronic Effect Controlled Dual-Channel Visible light Communication (PVLC) Using InGaN/GaN Multiquantum Well Nanopillars,” Small 11(45), 6071–6077 (2015).
[Crossref] [PubMed]

Other (4)

S. M. Sze, Semiconductor Devices: Physics and Technology (Wiley, 2002), 2nd Edition.

V. A. De, Endoreversible Thermodynamics of Solar Energy Conversion (Oxford University, 1992).

B. Metz, O. Davidson, P. Bosch, R. Dave, and L. Meyer, Climate Change 2007: Mitigation of Climate Change (Cambridge University, 2007).

S. Nakamura, S. J. Pearton, and G. Fasol, The Blue Laser Diode (Springer, 1997).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) Schematic description of the InGaN/GaN photovoltaic cell structure. (b) The plane-view optical microscopy image and (c) the spatial PL image of a fabricated photovoltaic cell with 1 × 1 mm2 mesa.
Fig. 2
Fig. 2 (a) The current-voltage curves of the InGaN/GaN photovoltaic cell under different optical powers illuminated by the 375nm laser diode. (b) Its key parameters of Voc and Isc as a function of the incident optical power.
Fig. 3
Fig. 3 (a) The steady-state PL spectra of the InGaN-based MQW photovoltaic cell under different external bias voltages at the constant excitation power of 6.03 mW/cm2. The dependence of (b) its integrated PL intensity and net photocurrent, (c) its PL peak wavelength and FWHM on the external bias voltage, respectively.
Fig. 4
Fig. 4 (a) The normalized TRPL decay curves of InGaN-based photovoltaic cell as the function of external bias voltage at room temperature. (b) Carrier lifetimes τ1 and τ2 of the slow and fast PL decays, (c) their respective weight ratio A1/(A1 + A2), and (d) the effective carrier lifetime τeff of the overall TRPL decay under different bias voltages.
Fig. 5
Fig. 5 The physical mechanism of the photoelectric conversion in InGaN-based QW photovoltaic cell modulated by (a) positive bias, (b) zero bias and (c) negative bias, respectively.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

I o (V)= I d (V) I net (V)= I s ( e qV/nKT 1) I net (V).
I net (V)=| I o (V) I d (V) |.
I sc = I net (0)= qη(0) hv P.
V oc = nKT q In( I net ( V oc ) I s +1), I net ( V oc )~P,
FF= P max / I sc V oc .
η= P max /P=FF I sc V oc /P.
L L 0 = A 1 * e t τ 1 + A 2 * e t τ 2 .
τ eff = ( A 1 * τ 1 2 + A 2 * τ 2 2 ) A 1 * τ 1 + A 2 * τ 2 .

Metrics