Abstract

As a fast-developing technique for in situ multi-element analysis method, laser induced breakdown spectroscopy - LIBS is, however, developing slowly on liquid analysis due to some technical difficulties. We propose a new method, namely capillary mode, to quantify the concentrations of the elements in solution using LIBS. A Nd:YAG laser with repetition of 10 Hz were used to analyze the solution of Na2CrO4 and no any sample preparation in measurements. The experimental results show that the splashing of liquid induced by laser pulses is decreased significantly and the pollution of mirrors is avoided effectively using liquid capillary mode. The results of quantitative analysis for liquid are also improved than other method. The calibration curves of Cr and Na are well characterized by straight lines and the regression coefficient values of the linear fit are better than 0.998. The limits of detection (LODs) of Cr and Na are determined to be 28.9 mg/L and 1.0 mg/L in this work, respectively. The experimental results show that the liquid capillary mode provides a more practical and very simple approach to improve accuracy of quantitative element analysis in liquids by LIBS technique.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Determination of trace heavy metal elements in aqueous solution using surface-enhanced laser-induced breakdown spectroscopy

Shixiang Ma, Yun Tang, Yuyang Ma, Yanwu Chu, Feng Chen, Zhenlin Hu, Zhihao Zhu, Lianbo Guo, Xiaoyan Zeng, and Yongfeng Lu
Opt. Express 27(10) 15091-15099 (2019)

On-stream analysis of iron ore slurry using laser-induced breakdown spectroscopy

Xiao Cheng, Xinyan Yang, Zhihao Zhu, Lianbo Guo, Xiangyou Li, Yongfeng Lu, and Xiaoyan Zeng
Appl. Opt. 56(33) 9144-9149 (2017)

References

  • View by:
  • |
  • |
  • |

  1. H. Ohba, M. Saeki, I. Wakaida, R. Tanabe, and Y. Ito, “Effect of liquid-sheet thickness on detection sensitivity for laser-induced breakdown spectroscopy of aqueous solution,” Opt. Express 22(20), 24478–24490 (2014).
    [Crossref] [PubMed]
  2. W. Lei, V. Motto-Ros, M. Boueri, Q. Ma, D. Zhang, L. Zheng, H. Zeng, and J. Yu, “Time-resolved characterization of laser-induced plasma from fresh potatoes,” Spectrochim. Acta B At. Spectrosc. 64(9), 891–898 (2009).
    [Crossref]
  3. A. P. M. Michel, “Review Applications of single-shot laser-induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 65(3), 185–191 (2010).
    [Crossref]
  4. J. Schlenke, L. Hildebrand, J. Moros, and J. J. Laserna, “Adaptive approach for variable noise suppression on laser-induced breakdown spectroscopy responses using stationary wavelet transform,” Anal. Chim. Acta 754, 8–19 (2012).
    [Crossref] [PubMed]
  5. L. Fornarini, F. Colao, R. Fantoni, V. Lazic, and V. Spizzicchino, “Calibration analysis of bronze samples by nanosecond laser induced breakdown spectroscopy: A theoretical and experimental approach,” Spectrochim. Acta B At. Spectrosc. 60(7-8), 1186–1201 (2005).
    [Crossref]
  6. W. Tawfik and Y. Mohamed, “Improved LIBS limit of detection of Be, Mg, Si, Mn, Fe and Cu in aluminum alloy samples using a portable echelle spectrometer with ICCD camera,” Opt. Laser Technol. 40(1), 30–38 (2008).
    [Crossref]
  7. M. Baudelet, L. Guyon, J. Yu, J. P. Wolf, T. Amodeo, E. Fréjafon, and P. Laloi, “Spectral signature of native CN bonds for bacterium detection and identification using femtosecond laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 88(6), 063901 (2006).
    [Crossref]
  8. E. C. Ferreira, D. M. Milori, E. J. Ferreira, L. M. Dos Santos, L. Martin-Neto, and A. R. Nogueira, “Evaluation of laser induced breakdown spectroscopy for multielemental determination in soils under sewage sludge application,” Talanta 85(1), 435–440 (2011).
    [Crossref] [PubMed]
  9. X. Cheng, X. Yang, Z. Zhu, L. Guo, X. Li, Y. Lu, and X. Zeng, “On-stream analysis of iron ore slurry using laser-induced breakdown spectroscopy,” Appl. Opt. 56(33), 9144–9149 (2017).
    [Crossref] [PubMed]
  10. P. Fichet, A. Toussaint, and J. F. Wagner, “Laser-induced breakdown spectroscopy: A tool for analysis of different types of liquids,” Appl. Phys., A Mater. Sci. Process. 69(7), S591–S592 (1999).
    [Crossref]
  11. J. R. Wachter and D. A. Cremers, “Determination of Uranium in Solution Using Laser-Induced Breakdown Spectroscopy,” Appl. Spectrosc. 41(6), 1042–1048 (1987).
    [Crossref]
  12. A. Ruas, A. Matsumoto, H. Ohba, K. Akaoka, and I. Wakaida, “Application of laser-induced breakdown spectroscopy to zirconium in aqueous solution,” Spectrochim. Acta B At. Spectrosc. 131, 99–106 (2017).
    [Crossref]
  13. D. M. Díaz Pace, C. A. D’Angelo, D. Bertuccelli, and G. Bertuccelli, “Analysis of heavy metals in liquids using Laser Induced Breakdown Spectroscopy by liquid-to-solid matrix conversion,” Spectrochim. Acta B At. Spectrosc. 61(8), 929–933 (2006).
    [Crossref]
  14. F. Y. Yueh, R. C. Sharma, J. P. Singh, H. Zhang, and W. A. Spencer, “Evaluation of the Potential of Laser-Induced Breakdown Spectroscopy for Detection of Trace Element in Liquid,” J. Air Waste Manag. Assoc. 52(11), 1307–1315 (2002).
    [Crossref] [PubMed]
  15. V. Lazic and S. Jovićević, “Laser induced breakdown spectroscopy inside liquids: Processes and analytical aspects,” Spectrochim. Acta B At. Spectrosc. 101, 288–311 (2014).
    [Crossref]
  16. B. Charfi and M. A. Harith, “Panoramic laser-induced breakdown spectrometry of water,” Spectrochim. Acta B At. Spectrosc. 57(7), 1141–1153 (2002).
    [Crossref]
  17. V. Lazic, S. Jovicevic, R. Fantoni, and F. Colao, “Efficient plasma and bubble generation underwater by an optimized laser excitation and its application for liquid analyses by laser-induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 62(12), 1433–1442 (2007).
    [Crossref]
  18. K. K. Kim, M. Roy, H. Kwon, J. K. Song, and S. M. Park, “Laser ablation dynamics in liquid phase: The effects of magnetic field and electrolyte,” J. Appl. Phys. 117(7), 074302 (2015).
    [Crossref]
  19. O. Samek, D. C. S. Beddows, J. Kaiser, S. V. Kukhlevsky, M. Liška, H. H. Telle, and J. Young, “Application of laser-induced breakdown spectroscopy to in situ analysis of liquid samples,” Opt. Eng. 39, 15 (2000).
  20. J. P. Singh and S. N. Thakur, Laser-Induced Breakdown Spectroscopy, (Elsevier, 2007) Chap.10.
  21. M. Wall, Z. Sun, and Z. T. Alwahabi, “Quantitative detection of metallic traces in water-based liquids by microwave-assisted laser-induced breakdown spectroscopy,” Opt. Express 24(2), 1507–1517 (2016).
    [Crossref] [PubMed]
  22. Y. Lee, S. W. Oh, and S. H. Han, “Laser-induced breakdown spectroscopy (LIBS) of heavy metal ions at the sub-parts per million level in water,” Appl. Spectrosc. 66(12), 1385–1396 (2012).
    [Crossref] [PubMed]
  23. V. Lazic, R. Fantoni, A. Palucci, and M. Ciaffi, “Sample Preparation for Repeated Measurements on a Single Liquid Droplet Using Laser-Induced Breakdown Spectroscopy,” Appl. Spectrosc. 71(4), 670–677 (2017).
    [Crossref] [PubMed]
  24. C. B. Faye, T. Amodeo, E. Fréjafon, N. Delepine-Gilon, and C. Dutouquet, “Sampling considerations when analyzing micrometric-sized particles in a liquid jet using laser induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 91, 5–11 (2014).
    [Crossref]
  25. D. C. Zhang, X. Ma, W. Q. Wen, P. J. Zhang, X. L. Zhu, B. Li, and H. P. Liu, “Influence of Laser Wavelength on Laser-induced Breakdown Spectroscopy Applied to Semi-Quantitative Analysis of Trace-Elements in a Plant Sample,” Chin. Phys. Lett. 27(6), 063202 (2010).
    [Crossref]
  26. A. Thum-Jäger and K. Rohr, “Angular emission distributions of neutrals and ions in laser ablated particle beams,” J. Phys. D Appl. Phys. 32(21), 2827–2831 (1999).
    [Crossref]
  27. L. Láska, J. Badziak, F. P. Boody, S. Gammino, K. Jungwirth, J. Krása, M. Pfeifer, K. Rohlena, J. Ullschmied, P. Parys, J. Wołowski, E. Woryna, and L. Torrisi, “Laser Production of Highly Charged Ions,” Braz. J. Phys. 34(4b), 1615–1620 (2004).
    [Crossref]
  28. Y. Yu, W. Zhou, and X. Su, “Detection of Cu in solution with double pulse laser-induced breakdown spectroscopy,” Opt. Commun. 333, 62–66 (2014).
    [Crossref]
  29. N. K. Rai and A. K. Rai, “LIBS-an efficient approach for the determination of Cr in industrial wastewater,” J. Hazard. Mater. 150(3), 835–838 (2008).
    [Crossref] [PubMed]
  30. I. K. Choi, “Chromium base high performance materials: where and how do they come from?” Met. Mater. 2(4), 245–252 (1996).
    [Crossref]
  31. E. Tognoni, V. Palleschi, M. Corsi, and G. Cristoforetti, “Quantitative micro-analysis by laser-induced breakdown spectroscopy a review of the experimental approaches,” Spectrochim. Acta B At. Spectrosc. 57(7), 1115–1130 (2002).
    [Crossref]
  32. J. Xiu, L. Dong, H. Qin, Y. Liu, and J. Yu, “Investigation of the Matrix Effect on the Accuracy of Quantitative Analysis of Trace Metals in Liquids Using Laser-Induced Breakdown Spectroscopy with Solid Substrates,” Appl. Spectrosc. 70(12), 2016–2024 (2016).
    [Crossref] [PubMed]
  33. J. S. Huang, C. B. Ke, and K. C. Lin, “Matrix effect on emission/current correlated analysis in laser-induced breakdown spectroscopy of liquid droplets,” Spectrochim. Acta B At. Spectrosc. 59(3), 321–326 (2004).
    [Crossref]
  34. J.-S. Huang, C.-B. Ke, L.-S. Huang, and K.-C. Lin, “The correlation between ion production and emission intensity in the laser-induced breakdown spectroscopy of liquid droplets,” Spectrochim. Acta B At. Spectrosc. 57(1), 35–48 (2002).
    [Crossref]
  35. C. Maury, J. B. Sirven, M. Tabarant, D. L’Hermite, J. L. Courouau, C. Gallou, N. Caron, G. Moutiers, and V. Cabuil, “Analysis of liquid sodium purity by laser-induced breakdown spectroscopy. Modeling and correction of signal fluctuation prior to quantitation of trace elements,” Spectrochim. Acta B At. Spectrosc. 82, 28 (2013).
    [Crossref]

2017 (3)

2016 (2)

2015 (1)

K. K. Kim, M. Roy, H. Kwon, J. K. Song, and S. M. Park, “Laser ablation dynamics in liquid phase: The effects of magnetic field and electrolyte,” J. Appl. Phys. 117(7), 074302 (2015).
[Crossref]

2014 (4)

V. Lazic and S. Jovićević, “Laser induced breakdown spectroscopy inside liquids: Processes and analytical aspects,” Spectrochim. Acta B At. Spectrosc. 101, 288–311 (2014).
[Crossref]

H. Ohba, M. Saeki, I. Wakaida, R. Tanabe, and Y. Ito, “Effect of liquid-sheet thickness on detection sensitivity for laser-induced breakdown spectroscopy of aqueous solution,” Opt. Express 22(20), 24478–24490 (2014).
[Crossref] [PubMed]

Y. Yu, W. Zhou, and X. Su, “Detection of Cu in solution with double pulse laser-induced breakdown spectroscopy,” Opt. Commun. 333, 62–66 (2014).
[Crossref]

C. B. Faye, T. Amodeo, E. Fréjafon, N. Delepine-Gilon, and C. Dutouquet, “Sampling considerations when analyzing micrometric-sized particles in a liquid jet using laser induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 91, 5–11 (2014).
[Crossref]

2013 (1)

C. Maury, J. B. Sirven, M. Tabarant, D. L’Hermite, J. L. Courouau, C. Gallou, N. Caron, G. Moutiers, and V. Cabuil, “Analysis of liquid sodium purity by laser-induced breakdown spectroscopy. Modeling and correction of signal fluctuation prior to quantitation of trace elements,” Spectrochim. Acta B At. Spectrosc. 82, 28 (2013).
[Crossref]

2012 (2)

Y. Lee, S. W. Oh, and S. H. Han, “Laser-induced breakdown spectroscopy (LIBS) of heavy metal ions at the sub-parts per million level in water,” Appl. Spectrosc. 66(12), 1385–1396 (2012).
[Crossref] [PubMed]

J. Schlenke, L. Hildebrand, J. Moros, and J. J. Laserna, “Adaptive approach for variable noise suppression on laser-induced breakdown spectroscopy responses using stationary wavelet transform,” Anal. Chim. Acta 754, 8–19 (2012).
[Crossref] [PubMed]

2011 (1)

E. C. Ferreira, D. M. Milori, E. J. Ferreira, L. M. Dos Santos, L. Martin-Neto, and A. R. Nogueira, “Evaluation of laser induced breakdown spectroscopy for multielemental determination in soils under sewage sludge application,” Talanta 85(1), 435–440 (2011).
[Crossref] [PubMed]

2010 (2)

A. P. M. Michel, “Review Applications of single-shot laser-induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 65(3), 185–191 (2010).
[Crossref]

D. C. Zhang, X. Ma, W. Q. Wen, P. J. Zhang, X. L. Zhu, B. Li, and H. P. Liu, “Influence of Laser Wavelength on Laser-induced Breakdown Spectroscopy Applied to Semi-Quantitative Analysis of Trace-Elements in a Plant Sample,” Chin. Phys. Lett. 27(6), 063202 (2010).
[Crossref]

2009 (1)

W. Lei, V. Motto-Ros, M. Boueri, Q. Ma, D. Zhang, L. Zheng, H. Zeng, and J. Yu, “Time-resolved characterization of laser-induced plasma from fresh potatoes,” Spectrochim. Acta B At. Spectrosc. 64(9), 891–898 (2009).
[Crossref]

2008 (2)

W. Tawfik and Y. Mohamed, “Improved LIBS limit of detection of Be, Mg, Si, Mn, Fe and Cu in aluminum alloy samples using a portable echelle spectrometer with ICCD camera,” Opt. Laser Technol. 40(1), 30–38 (2008).
[Crossref]

N. K. Rai and A. K. Rai, “LIBS-an efficient approach for the determination of Cr in industrial wastewater,” J. Hazard. Mater. 150(3), 835–838 (2008).
[Crossref] [PubMed]

2007 (1)

V. Lazic, S. Jovicevic, R. Fantoni, and F. Colao, “Efficient plasma and bubble generation underwater by an optimized laser excitation and its application for liquid analyses by laser-induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 62(12), 1433–1442 (2007).
[Crossref]

2006 (2)

M. Baudelet, L. Guyon, J. Yu, J. P. Wolf, T. Amodeo, E. Fréjafon, and P. Laloi, “Spectral signature of native CN bonds for bacterium detection and identification using femtosecond laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 88(6), 063901 (2006).
[Crossref]

D. M. Díaz Pace, C. A. D’Angelo, D. Bertuccelli, and G. Bertuccelli, “Analysis of heavy metals in liquids using Laser Induced Breakdown Spectroscopy by liquid-to-solid matrix conversion,” Spectrochim. Acta B At. Spectrosc. 61(8), 929–933 (2006).
[Crossref]

2005 (1)

L. Fornarini, F. Colao, R. Fantoni, V. Lazic, and V. Spizzicchino, “Calibration analysis of bronze samples by nanosecond laser induced breakdown spectroscopy: A theoretical and experimental approach,” Spectrochim. Acta B At. Spectrosc. 60(7-8), 1186–1201 (2005).
[Crossref]

2004 (2)

L. Láska, J. Badziak, F. P. Boody, S. Gammino, K. Jungwirth, J. Krása, M. Pfeifer, K. Rohlena, J. Ullschmied, P. Parys, J. Wołowski, E. Woryna, and L. Torrisi, “Laser Production of Highly Charged Ions,” Braz. J. Phys. 34(4b), 1615–1620 (2004).
[Crossref]

J. S. Huang, C. B. Ke, and K. C. Lin, “Matrix effect on emission/current correlated analysis in laser-induced breakdown spectroscopy of liquid droplets,” Spectrochim. Acta B At. Spectrosc. 59(3), 321–326 (2004).
[Crossref]

2002 (4)

J.-S. Huang, C.-B. Ke, L.-S. Huang, and K.-C. Lin, “The correlation between ion production and emission intensity in the laser-induced breakdown spectroscopy of liquid droplets,” Spectrochim. Acta B At. Spectrosc. 57(1), 35–48 (2002).
[Crossref]

E. Tognoni, V. Palleschi, M. Corsi, and G. Cristoforetti, “Quantitative micro-analysis by laser-induced breakdown spectroscopy a review of the experimental approaches,” Spectrochim. Acta B At. Spectrosc. 57(7), 1115–1130 (2002).
[Crossref]

F. Y. Yueh, R. C. Sharma, J. P. Singh, H. Zhang, and W. A. Spencer, “Evaluation of the Potential of Laser-Induced Breakdown Spectroscopy for Detection of Trace Element in Liquid,” J. Air Waste Manag. Assoc. 52(11), 1307–1315 (2002).
[Crossref] [PubMed]

B. Charfi and M. A. Harith, “Panoramic laser-induced breakdown spectrometry of water,” Spectrochim. Acta B At. Spectrosc. 57(7), 1141–1153 (2002).
[Crossref]

2000 (1)

O. Samek, D. C. S. Beddows, J. Kaiser, S. V. Kukhlevsky, M. Liška, H. H. Telle, and J. Young, “Application of laser-induced breakdown spectroscopy to in situ analysis of liquid samples,” Opt. Eng. 39, 15 (2000).

1999 (2)

P. Fichet, A. Toussaint, and J. F. Wagner, “Laser-induced breakdown spectroscopy: A tool for analysis of different types of liquids,” Appl. Phys., A Mater. Sci. Process. 69(7), S591–S592 (1999).
[Crossref]

A. Thum-Jäger and K. Rohr, “Angular emission distributions of neutrals and ions in laser ablated particle beams,” J. Phys. D Appl. Phys. 32(21), 2827–2831 (1999).
[Crossref]

1996 (1)

I. K. Choi, “Chromium base high performance materials: where and how do they come from?” Met. Mater. 2(4), 245–252 (1996).
[Crossref]

1987 (1)

Akaoka, K.

A. Ruas, A. Matsumoto, H. Ohba, K. Akaoka, and I. Wakaida, “Application of laser-induced breakdown spectroscopy to zirconium in aqueous solution,” Spectrochim. Acta B At. Spectrosc. 131, 99–106 (2017).
[Crossref]

Alwahabi, Z. T.

Amodeo, T.

C. B. Faye, T. Amodeo, E. Fréjafon, N. Delepine-Gilon, and C. Dutouquet, “Sampling considerations when analyzing micrometric-sized particles in a liquid jet using laser induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 91, 5–11 (2014).
[Crossref]

M. Baudelet, L. Guyon, J. Yu, J. P. Wolf, T. Amodeo, E. Fréjafon, and P. Laloi, “Spectral signature of native CN bonds for bacterium detection and identification using femtosecond laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 88(6), 063901 (2006).
[Crossref]

Badziak, J.

L. Láska, J. Badziak, F. P. Boody, S. Gammino, K. Jungwirth, J. Krása, M. Pfeifer, K. Rohlena, J. Ullschmied, P. Parys, J. Wołowski, E. Woryna, and L. Torrisi, “Laser Production of Highly Charged Ions,” Braz. J. Phys. 34(4b), 1615–1620 (2004).
[Crossref]

Baudelet, M.

M. Baudelet, L. Guyon, J. Yu, J. P. Wolf, T. Amodeo, E. Fréjafon, and P. Laloi, “Spectral signature of native CN bonds for bacterium detection and identification using femtosecond laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 88(6), 063901 (2006).
[Crossref]

Beddows, D. C. S.

O. Samek, D. C. S. Beddows, J. Kaiser, S. V. Kukhlevsky, M. Liška, H. H. Telle, and J. Young, “Application of laser-induced breakdown spectroscopy to in situ analysis of liquid samples,” Opt. Eng. 39, 15 (2000).

Bertuccelli, D.

D. M. Díaz Pace, C. A. D’Angelo, D. Bertuccelli, and G. Bertuccelli, “Analysis of heavy metals in liquids using Laser Induced Breakdown Spectroscopy by liquid-to-solid matrix conversion,” Spectrochim. Acta B At. Spectrosc. 61(8), 929–933 (2006).
[Crossref]

Bertuccelli, G.

D. M. Díaz Pace, C. A. D’Angelo, D. Bertuccelli, and G. Bertuccelli, “Analysis of heavy metals in liquids using Laser Induced Breakdown Spectroscopy by liquid-to-solid matrix conversion,” Spectrochim. Acta B At. Spectrosc. 61(8), 929–933 (2006).
[Crossref]

Boody, F. P.

L. Láska, J. Badziak, F. P. Boody, S. Gammino, K. Jungwirth, J. Krása, M. Pfeifer, K. Rohlena, J. Ullschmied, P. Parys, J. Wołowski, E. Woryna, and L. Torrisi, “Laser Production of Highly Charged Ions,” Braz. J. Phys. 34(4b), 1615–1620 (2004).
[Crossref]

Boueri, M.

W. Lei, V. Motto-Ros, M. Boueri, Q. Ma, D. Zhang, L. Zheng, H. Zeng, and J. Yu, “Time-resolved characterization of laser-induced plasma from fresh potatoes,” Spectrochim. Acta B At. Spectrosc. 64(9), 891–898 (2009).
[Crossref]

Cabuil, V.

C. Maury, J. B. Sirven, M. Tabarant, D. L’Hermite, J. L. Courouau, C. Gallou, N. Caron, G. Moutiers, and V. Cabuil, “Analysis of liquid sodium purity by laser-induced breakdown spectroscopy. Modeling and correction of signal fluctuation prior to quantitation of trace elements,” Spectrochim. Acta B At. Spectrosc. 82, 28 (2013).
[Crossref]

Caron, N.

C. Maury, J. B. Sirven, M. Tabarant, D. L’Hermite, J. L. Courouau, C. Gallou, N. Caron, G. Moutiers, and V. Cabuil, “Analysis of liquid sodium purity by laser-induced breakdown spectroscopy. Modeling and correction of signal fluctuation prior to quantitation of trace elements,” Spectrochim. Acta B At. Spectrosc. 82, 28 (2013).
[Crossref]

Charfi, B.

B. Charfi and M. A. Harith, “Panoramic laser-induced breakdown spectrometry of water,” Spectrochim. Acta B At. Spectrosc. 57(7), 1141–1153 (2002).
[Crossref]

Cheng, X.

Choi, I. K.

I. K. Choi, “Chromium base high performance materials: where and how do they come from?” Met. Mater. 2(4), 245–252 (1996).
[Crossref]

Ciaffi, M.

Colao, F.

V. Lazic, S. Jovicevic, R. Fantoni, and F. Colao, “Efficient plasma and bubble generation underwater by an optimized laser excitation and its application for liquid analyses by laser-induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 62(12), 1433–1442 (2007).
[Crossref]

L. Fornarini, F. Colao, R. Fantoni, V. Lazic, and V. Spizzicchino, “Calibration analysis of bronze samples by nanosecond laser induced breakdown spectroscopy: A theoretical and experimental approach,” Spectrochim. Acta B At. Spectrosc. 60(7-8), 1186–1201 (2005).
[Crossref]

Corsi, M.

E. Tognoni, V. Palleschi, M. Corsi, and G. Cristoforetti, “Quantitative micro-analysis by laser-induced breakdown spectroscopy a review of the experimental approaches,” Spectrochim. Acta B At. Spectrosc. 57(7), 1115–1130 (2002).
[Crossref]

Courouau, J. L.

C. Maury, J. B. Sirven, M. Tabarant, D. L’Hermite, J. L. Courouau, C. Gallou, N. Caron, G. Moutiers, and V. Cabuil, “Analysis of liquid sodium purity by laser-induced breakdown spectroscopy. Modeling and correction of signal fluctuation prior to quantitation of trace elements,” Spectrochim. Acta B At. Spectrosc. 82, 28 (2013).
[Crossref]

Cremers, D. A.

Cristoforetti, G.

E. Tognoni, V. Palleschi, M. Corsi, and G. Cristoforetti, “Quantitative micro-analysis by laser-induced breakdown spectroscopy a review of the experimental approaches,” Spectrochim. Acta B At. Spectrosc. 57(7), 1115–1130 (2002).
[Crossref]

D’Angelo, C. A.

D. M. Díaz Pace, C. A. D’Angelo, D. Bertuccelli, and G. Bertuccelli, “Analysis of heavy metals in liquids using Laser Induced Breakdown Spectroscopy by liquid-to-solid matrix conversion,” Spectrochim. Acta B At. Spectrosc. 61(8), 929–933 (2006).
[Crossref]

Delepine-Gilon, N.

C. B. Faye, T. Amodeo, E. Fréjafon, N. Delepine-Gilon, and C. Dutouquet, “Sampling considerations when analyzing micrometric-sized particles in a liquid jet using laser induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 91, 5–11 (2014).
[Crossref]

Díaz Pace, D. M.

D. M. Díaz Pace, C. A. D’Angelo, D. Bertuccelli, and G. Bertuccelli, “Analysis of heavy metals in liquids using Laser Induced Breakdown Spectroscopy by liquid-to-solid matrix conversion,” Spectrochim. Acta B At. Spectrosc. 61(8), 929–933 (2006).
[Crossref]

Dong, L.

Dos Santos, L. M.

E. C. Ferreira, D. M. Milori, E. J. Ferreira, L. M. Dos Santos, L. Martin-Neto, and A. R. Nogueira, “Evaluation of laser induced breakdown spectroscopy for multielemental determination in soils under sewage sludge application,” Talanta 85(1), 435–440 (2011).
[Crossref] [PubMed]

Dutouquet, C.

C. B. Faye, T. Amodeo, E. Fréjafon, N. Delepine-Gilon, and C. Dutouquet, “Sampling considerations when analyzing micrometric-sized particles in a liquid jet using laser induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 91, 5–11 (2014).
[Crossref]

Fantoni, R.

V. Lazic, R. Fantoni, A. Palucci, and M. Ciaffi, “Sample Preparation for Repeated Measurements on a Single Liquid Droplet Using Laser-Induced Breakdown Spectroscopy,” Appl. Spectrosc. 71(4), 670–677 (2017).
[Crossref] [PubMed]

V. Lazic, S. Jovicevic, R. Fantoni, and F. Colao, “Efficient plasma and bubble generation underwater by an optimized laser excitation and its application for liquid analyses by laser-induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 62(12), 1433–1442 (2007).
[Crossref]

L. Fornarini, F. Colao, R. Fantoni, V. Lazic, and V. Spizzicchino, “Calibration analysis of bronze samples by nanosecond laser induced breakdown spectroscopy: A theoretical and experimental approach,” Spectrochim. Acta B At. Spectrosc. 60(7-8), 1186–1201 (2005).
[Crossref]

Faye, C. B.

C. B. Faye, T. Amodeo, E. Fréjafon, N. Delepine-Gilon, and C. Dutouquet, “Sampling considerations when analyzing micrometric-sized particles in a liquid jet using laser induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 91, 5–11 (2014).
[Crossref]

Ferreira, E. C.

E. C. Ferreira, D. M. Milori, E. J. Ferreira, L. M. Dos Santos, L. Martin-Neto, and A. R. Nogueira, “Evaluation of laser induced breakdown spectroscopy for multielemental determination in soils under sewage sludge application,” Talanta 85(1), 435–440 (2011).
[Crossref] [PubMed]

Ferreira, E. J.

E. C. Ferreira, D. M. Milori, E. J. Ferreira, L. M. Dos Santos, L. Martin-Neto, and A. R. Nogueira, “Evaluation of laser induced breakdown spectroscopy for multielemental determination in soils under sewage sludge application,” Talanta 85(1), 435–440 (2011).
[Crossref] [PubMed]

Fichet, P.

P. Fichet, A. Toussaint, and J. F. Wagner, “Laser-induced breakdown spectroscopy: A tool for analysis of different types of liquids,” Appl. Phys., A Mater. Sci. Process. 69(7), S591–S592 (1999).
[Crossref]

Fornarini, L.

L. Fornarini, F. Colao, R. Fantoni, V. Lazic, and V. Spizzicchino, “Calibration analysis of bronze samples by nanosecond laser induced breakdown spectroscopy: A theoretical and experimental approach,” Spectrochim. Acta B At. Spectrosc. 60(7-8), 1186–1201 (2005).
[Crossref]

Fréjafon, E.

C. B. Faye, T. Amodeo, E. Fréjafon, N. Delepine-Gilon, and C. Dutouquet, “Sampling considerations when analyzing micrometric-sized particles in a liquid jet using laser induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 91, 5–11 (2014).
[Crossref]

M. Baudelet, L. Guyon, J. Yu, J. P. Wolf, T. Amodeo, E. Fréjafon, and P. Laloi, “Spectral signature of native CN bonds for bacterium detection and identification using femtosecond laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 88(6), 063901 (2006).
[Crossref]

Gallou, C.

C. Maury, J. B. Sirven, M. Tabarant, D. L’Hermite, J. L. Courouau, C. Gallou, N. Caron, G. Moutiers, and V. Cabuil, “Analysis of liquid sodium purity by laser-induced breakdown spectroscopy. Modeling and correction of signal fluctuation prior to quantitation of trace elements,” Spectrochim. Acta B At. Spectrosc. 82, 28 (2013).
[Crossref]

Gammino, S.

L. Láska, J. Badziak, F. P. Boody, S. Gammino, K. Jungwirth, J. Krása, M. Pfeifer, K. Rohlena, J. Ullschmied, P. Parys, J. Wołowski, E. Woryna, and L. Torrisi, “Laser Production of Highly Charged Ions,” Braz. J. Phys. 34(4b), 1615–1620 (2004).
[Crossref]

Guo, L.

Guyon, L.

M. Baudelet, L. Guyon, J. Yu, J. P. Wolf, T. Amodeo, E. Fréjafon, and P. Laloi, “Spectral signature of native CN bonds for bacterium detection and identification using femtosecond laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 88(6), 063901 (2006).
[Crossref]

Han, S. H.

Harith, M. A.

B. Charfi and M. A. Harith, “Panoramic laser-induced breakdown spectrometry of water,” Spectrochim. Acta B At. Spectrosc. 57(7), 1141–1153 (2002).
[Crossref]

Hildebrand, L.

J. Schlenke, L. Hildebrand, J. Moros, and J. J. Laserna, “Adaptive approach for variable noise suppression on laser-induced breakdown spectroscopy responses using stationary wavelet transform,” Anal. Chim. Acta 754, 8–19 (2012).
[Crossref] [PubMed]

Huang, J. S.

J. S. Huang, C. B. Ke, and K. C. Lin, “Matrix effect on emission/current correlated analysis in laser-induced breakdown spectroscopy of liquid droplets,” Spectrochim. Acta B At. Spectrosc. 59(3), 321–326 (2004).
[Crossref]

Huang, J.-S.

J.-S. Huang, C.-B. Ke, L.-S. Huang, and K.-C. Lin, “The correlation between ion production and emission intensity in the laser-induced breakdown spectroscopy of liquid droplets,” Spectrochim. Acta B At. Spectrosc. 57(1), 35–48 (2002).
[Crossref]

Huang, L.-S.

J.-S. Huang, C.-B. Ke, L.-S. Huang, and K.-C. Lin, “The correlation between ion production and emission intensity in the laser-induced breakdown spectroscopy of liquid droplets,” Spectrochim. Acta B At. Spectrosc. 57(1), 35–48 (2002).
[Crossref]

Ito, Y.

Jovicevic, S.

V. Lazic and S. Jovićević, “Laser induced breakdown spectroscopy inside liquids: Processes and analytical aspects,” Spectrochim. Acta B At. Spectrosc. 101, 288–311 (2014).
[Crossref]

V. Lazic, S. Jovicevic, R. Fantoni, and F. Colao, “Efficient plasma and bubble generation underwater by an optimized laser excitation and its application for liquid analyses by laser-induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 62(12), 1433–1442 (2007).
[Crossref]

Jungwirth, K.

L. Láska, J. Badziak, F. P. Boody, S. Gammino, K. Jungwirth, J. Krása, M. Pfeifer, K. Rohlena, J. Ullschmied, P. Parys, J. Wołowski, E. Woryna, and L. Torrisi, “Laser Production of Highly Charged Ions,” Braz. J. Phys. 34(4b), 1615–1620 (2004).
[Crossref]

Kaiser, J.

O. Samek, D. C. S. Beddows, J. Kaiser, S. V. Kukhlevsky, M. Liška, H. H. Telle, and J. Young, “Application of laser-induced breakdown spectroscopy to in situ analysis of liquid samples,” Opt. Eng. 39, 15 (2000).

Ke, C. B.

J. S. Huang, C. B. Ke, and K. C. Lin, “Matrix effect on emission/current correlated analysis in laser-induced breakdown spectroscopy of liquid droplets,” Spectrochim. Acta B At. Spectrosc. 59(3), 321–326 (2004).
[Crossref]

Ke, C.-B.

J.-S. Huang, C.-B. Ke, L.-S. Huang, and K.-C. Lin, “The correlation between ion production and emission intensity in the laser-induced breakdown spectroscopy of liquid droplets,” Spectrochim. Acta B At. Spectrosc. 57(1), 35–48 (2002).
[Crossref]

Kim, K. K.

K. K. Kim, M. Roy, H. Kwon, J. K. Song, and S. M. Park, “Laser ablation dynamics in liquid phase: The effects of magnetic field and electrolyte,” J. Appl. Phys. 117(7), 074302 (2015).
[Crossref]

Krása, J.

L. Láska, J. Badziak, F. P. Boody, S. Gammino, K. Jungwirth, J. Krása, M. Pfeifer, K. Rohlena, J. Ullschmied, P. Parys, J. Wołowski, E. Woryna, and L. Torrisi, “Laser Production of Highly Charged Ions,” Braz. J. Phys. 34(4b), 1615–1620 (2004).
[Crossref]

Kukhlevsky, S. V.

O. Samek, D. C. S. Beddows, J. Kaiser, S. V. Kukhlevsky, M. Liška, H. H. Telle, and J. Young, “Application of laser-induced breakdown spectroscopy to in situ analysis of liquid samples,” Opt. Eng. 39, 15 (2000).

Kwon, H.

K. K. Kim, M. Roy, H. Kwon, J. K. Song, and S. M. Park, “Laser ablation dynamics in liquid phase: The effects of magnetic field and electrolyte,” J. Appl. Phys. 117(7), 074302 (2015).
[Crossref]

L’Hermite, D.

C. Maury, J. B. Sirven, M. Tabarant, D. L’Hermite, J. L. Courouau, C. Gallou, N. Caron, G. Moutiers, and V. Cabuil, “Analysis of liquid sodium purity by laser-induced breakdown spectroscopy. Modeling and correction of signal fluctuation prior to quantitation of trace elements,” Spectrochim. Acta B At. Spectrosc. 82, 28 (2013).
[Crossref]

Laloi, P.

M. Baudelet, L. Guyon, J. Yu, J. P. Wolf, T. Amodeo, E. Fréjafon, and P. Laloi, “Spectral signature of native CN bonds for bacterium detection and identification using femtosecond laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 88(6), 063901 (2006).
[Crossref]

Laserna, J. J.

J. Schlenke, L. Hildebrand, J. Moros, and J. J. Laserna, “Adaptive approach for variable noise suppression on laser-induced breakdown spectroscopy responses using stationary wavelet transform,” Anal. Chim. Acta 754, 8–19 (2012).
[Crossref] [PubMed]

Láska, L.

L. Láska, J. Badziak, F. P. Boody, S. Gammino, K. Jungwirth, J. Krása, M. Pfeifer, K. Rohlena, J. Ullschmied, P. Parys, J. Wołowski, E. Woryna, and L. Torrisi, “Laser Production of Highly Charged Ions,” Braz. J. Phys. 34(4b), 1615–1620 (2004).
[Crossref]

Lazic, V.

V. Lazic, R. Fantoni, A. Palucci, and M. Ciaffi, “Sample Preparation for Repeated Measurements on a Single Liquid Droplet Using Laser-Induced Breakdown Spectroscopy,” Appl. Spectrosc. 71(4), 670–677 (2017).
[Crossref] [PubMed]

V. Lazic and S. Jovićević, “Laser induced breakdown spectroscopy inside liquids: Processes and analytical aspects,” Spectrochim. Acta B At. Spectrosc. 101, 288–311 (2014).
[Crossref]

V. Lazic, S. Jovicevic, R. Fantoni, and F. Colao, “Efficient plasma and bubble generation underwater by an optimized laser excitation and its application for liquid analyses by laser-induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 62(12), 1433–1442 (2007).
[Crossref]

L. Fornarini, F. Colao, R. Fantoni, V. Lazic, and V. Spizzicchino, “Calibration analysis of bronze samples by nanosecond laser induced breakdown spectroscopy: A theoretical and experimental approach,” Spectrochim. Acta B At. Spectrosc. 60(7-8), 1186–1201 (2005).
[Crossref]

Lee, Y.

Lei, W.

W. Lei, V. Motto-Ros, M. Boueri, Q. Ma, D. Zhang, L. Zheng, H. Zeng, and J. Yu, “Time-resolved characterization of laser-induced plasma from fresh potatoes,” Spectrochim. Acta B At. Spectrosc. 64(9), 891–898 (2009).
[Crossref]

Li, B.

D. C. Zhang, X. Ma, W. Q. Wen, P. J. Zhang, X. L. Zhu, B. Li, and H. P. Liu, “Influence of Laser Wavelength on Laser-induced Breakdown Spectroscopy Applied to Semi-Quantitative Analysis of Trace-Elements in a Plant Sample,” Chin. Phys. Lett. 27(6), 063202 (2010).
[Crossref]

Li, X.

Lin, K. C.

J. S. Huang, C. B. Ke, and K. C. Lin, “Matrix effect on emission/current correlated analysis in laser-induced breakdown spectroscopy of liquid droplets,” Spectrochim. Acta B At. Spectrosc. 59(3), 321–326 (2004).
[Crossref]

Lin, K.-C.

J.-S. Huang, C.-B. Ke, L.-S. Huang, and K.-C. Lin, “The correlation between ion production and emission intensity in the laser-induced breakdown spectroscopy of liquid droplets,” Spectrochim. Acta B At. Spectrosc. 57(1), 35–48 (2002).
[Crossref]

Liška, M.

O. Samek, D. C. S. Beddows, J. Kaiser, S. V. Kukhlevsky, M. Liška, H. H. Telle, and J. Young, “Application of laser-induced breakdown spectroscopy to in situ analysis of liquid samples,” Opt. Eng. 39, 15 (2000).

Liu, H. P.

D. C. Zhang, X. Ma, W. Q. Wen, P. J. Zhang, X. L. Zhu, B. Li, and H. P. Liu, “Influence of Laser Wavelength on Laser-induced Breakdown Spectroscopy Applied to Semi-Quantitative Analysis of Trace-Elements in a Plant Sample,” Chin. Phys. Lett. 27(6), 063202 (2010).
[Crossref]

Liu, Y.

Lu, Y.

Ma, Q.

W. Lei, V. Motto-Ros, M. Boueri, Q. Ma, D. Zhang, L. Zheng, H. Zeng, and J. Yu, “Time-resolved characterization of laser-induced plasma from fresh potatoes,” Spectrochim. Acta B At. Spectrosc. 64(9), 891–898 (2009).
[Crossref]

Ma, X.

D. C. Zhang, X. Ma, W. Q. Wen, P. J. Zhang, X. L. Zhu, B. Li, and H. P. Liu, “Influence of Laser Wavelength on Laser-induced Breakdown Spectroscopy Applied to Semi-Quantitative Analysis of Trace-Elements in a Plant Sample,” Chin. Phys. Lett. 27(6), 063202 (2010).
[Crossref]

Martin-Neto, L.

E. C. Ferreira, D. M. Milori, E. J. Ferreira, L. M. Dos Santos, L. Martin-Neto, and A. R. Nogueira, “Evaluation of laser induced breakdown spectroscopy for multielemental determination in soils under sewage sludge application,” Talanta 85(1), 435–440 (2011).
[Crossref] [PubMed]

Matsumoto, A.

A. Ruas, A. Matsumoto, H. Ohba, K. Akaoka, and I. Wakaida, “Application of laser-induced breakdown spectroscopy to zirconium in aqueous solution,” Spectrochim. Acta B At. Spectrosc. 131, 99–106 (2017).
[Crossref]

Maury, C.

C. Maury, J. B. Sirven, M. Tabarant, D. L’Hermite, J. L. Courouau, C. Gallou, N. Caron, G. Moutiers, and V. Cabuil, “Analysis of liquid sodium purity by laser-induced breakdown spectroscopy. Modeling and correction of signal fluctuation prior to quantitation of trace elements,” Spectrochim. Acta B At. Spectrosc. 82, 28 (2013).
[Crossref]

Michel, A. P. M.

A. P. M. Michel, “Review Applications of single-shot laser-induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 65(3), 185–191 (2010).
[Crossref]

Milori, D. M.

E. C. Ferreira, D. M. Milori, E. J. Ferreira, L. M. Dos Santos, L. Martin-Neto, and A. R. Nogueira, “Evaluation of laser induced breakdown spectroscopy for multielemental determination in soils under sewage sludge application,” Talanta 85(1), 435–440 (2011).
[Crossref] [PubMed]

Mohamed, Y.

W. Tawfik and Y. Mohamed, “Improved LIBS limit of detection of Be, Mg, Si, Mn, Fe and Cu in aluminum alloy samples using a portable echelle spectrometer with ICCD camera,” Opt. Laser Technol. 40(1), 30–38 (2008).
[Crossref]

Moros, J.

J. Schlenke, L. Hildebrand, J. Moros, and J. J. Laserna, “Adaptive approach for variable noise suppression on laser-induced breakdown spectroscopy responses using stationary wavelet transform,” Anal. Chim. Acta 754, 8–19 (2012).
[Crossref] [PubMed]

Motto-Ros, V.

W. Lei, V. Motto-Ros, M. Boueri, Q. Ma, D. Zhang, L. Zheng, H. Zeng, and J. Yu, “Time-resolved characterization of laser-induced plasma from fresh potatoes,” Spectrochim. Acta B At. Spectrosc. 64(9), 891–898 (2009).
[Crossref]

Moutiers, G.

C. Maury, J. B. Sirven, M. Tabarant, D. L’Hermite, J. L. Courouau, C. Gallou, N. Caron, G. Moutiers, and V. Cabuil, “Analysis of liquid sodium purity by laser-induced breakdown spectroscopy. Modeling and correction of signal fluctuation prior to quantitation of trace elements,” Spectrochim. Acta B At. Spectrosc. 82, 28 (2013).
[Crossref]

Nogueira, A. R.

E. C. Ferreira, D. M. Milori, E. J. Ferreira, L. M. Dos Santos, L. Martin-Neto, and A. R. Nogueira, “Evaluation of laser induced breakdown spectroscopy for multielemental determination in soils under sewage sludge application,” Talanta 85(1), 435–440 (2011).
[Crossref] [PubMed]

Oh, S. W.

Ohba, H.

A. Ruas, A. Matsumoto, H. Ohba, K. Akaoka, and I. Wakaida, “Application of laser-induced breakdown spectroscopy to zirconium in aqueous solution,” Spectrochim. Acta B At. Spectrosc. 131, 99–106 (2017).
[Crossref]

H. Ohba, M. Saeki, I. Wakaida, R. Tanabe, and Y. Ito, “Effect of liquid-sheet thickness on detection sensitivity for laser-induced breakdown spectroscopy of aqueous solution,” Opt. Express 22(20), 24478–24490 (2014).
[Crossref] [PubMed]

Palleschi, V.

E. Tognoni, V. Palleschi, M. Corsi, and G. Cristoforetti, “Quantitative micro-analysis by laser-induced breakdown spectroscopy a review of the experimental approaches,” Spectrochim. Acta B At. Spectrosc. 57(7), 1115–1130 (2002).
[Crossref]

Palucci, A.

Park, S. M.

K. K. Kim, M. Roy, H. Kwon, J. K. Song, and S. M. Park, “Laser ablation dynamics in liquid phase: The effects of magnetic field and electrolyte,” J. Appl. Phys. 117(7), 074302 (2015).
[Crossref]

Parys, P.

L. Láska, J. Badziak, F. P. Boody, S. Gammino, K. Jungwirth, J. Krása, M. Pfeifer, K. Rohlena, J. Ullschmied, P. Parys, J. Wołowski, E. Woryna, and L. Torrisi, “Laser Production of Highly Charged Ions,” Braz. J. Phys. 34(4b), 1615–1620 (2004).
[Crossref]

Pfeifer, M.

L. Láska, J. Badziak, F. P. Boody, S. Gammino, K. Jungwirth, J. Krása, M. Pfeifer, K. Rohlena, J. Ullschmied, P. Parys, J. Wołowski, E. Woryna, and L. Torrisi, “Laser Production of Highly Charged Ions,” Braz. J. Phys. 34(4b), 1615–1620 (2004).
[Crossref]

Qin, H.

Rai, A. K.

N. K. Rai and A. K. Rai, “LIBS-an efficient approach for the determination of Cr in industrial wastewater,” J. Hazard. Mater. 150(3), 835–838 (2008).
[Crossref] [PubMed]

Rai, N. K.

N. K. Rai and A. K. Rai, “LIBS-an efficient approach for the determination of Cr in industrial wastewater,” J. Hazard. Mater. 150(3), 835–838 (2008).
[Crossref] [PubMed]

Rohlena, K.

L. Láska, J. Badziak, F. P. Boody, S. Gammino, K. Jungwirth, J. Krása, M. Pfeifer, K. Rohlena, J. Ullschmied, P. Parys, J. Wołowski, E. Woryna, and L. Torrisi, “Laser Production of Highly Charged Ions,” Braz. J. Phys. 34(4b), 1615–1620 (2004).
[Crossref]

Rohr, K.

A. Thum-Jäger and K. Rohr, “Angular emission distributions of neutrals and ions in laser ablated particle beams,” J. Phys. D Appl. Phys. 32(21), 2827–2831 (1999).
[Crossref]

Roy, M.

K. K. Kim, M. Roy, H. Kwon, J. K. Song, and S. M. Park, “Laser ablation dynamics in liquid phase: The effects of magnetic field and electrolyte,” J. Appl. Phys. 117(7), 074302 (2015).
[Crossref]

Ruas, A.

A. Ruas, A. Matsumoto, H. Ohba, K. Akaoka, and I. Wakaida, “Application of laser-induced breakdown spectroscopy to zirconium in aqueous solution,” Spectrochim. Acta B At. Spectrosc. 131, 99–106 (2017).
[Crossref]

Saeki, M.

Samek, O.

O. Samek, D. C. S. Beddows, J. Kaiser, S. V. Kukhlevsky, M. Liška, H. H. Telle, and J. Young, “Application of laser-induced breakdown spectroscopy to in situ analysis of liquid samples,” Opt. Eng. 39, 15 (2000).

Schlenke, J.

J. Schlenke, L. Hildebrand, J. Moros, and J. J. Laserna, “Adaptive approach for variable noise suppression on laser-induced breakdown spectroscopy responses using stationary wavelet transform,” Anal. Chim. Acta 754, 8–19 (2012).
[Crossref] [PubMed]

Sharma, R. C.

F. Y. Yueh, R. C. Sharma, J. P. Singh, H. Zhang, and W. A. Spencer, “Evaluation of the Potential of Laser-Induced Breakdown Spectroscopy for Detection of Trace Element in Liquid,” J. Air Waste Manag. Assoc. 52(11), 1307–1315 (2002).
[Crossref] [PubMed]

Singh, J. P.

F. Y. Yueh, R. C. Sharma, J. P. Singh, H. Zhang, and W. A. Spencer, “Evaluation of the Potential of Laser-Induced Breakdown Spectroscopy for Detection of Trace Element in Liquid,” J. Air Waste Manag. Assoc. 52(11), 1307–1315 (2002).
[Crossref] [PubMed]

Sirven, J. B.

C. Maury, J. B. Sirven, M. Tabarant, D. L’Hermite, J. L. Courouau, C. Gallou, N. Caron, G. Moutiers, and V. Cabuil, “Analysis of liquid sodium purity by laser-induced breakdown spectroscopy. Modeling and correction of signal fluctuation prior to quantitation of trace elements,” Spectrochim. Acta B At. Spectrosc. 82, 28 (2013).
[Crossref]

Song, J. K.

K. K. Kim, M. Roy, H. Kwon, J. K. Song, and S. M. Park, “Laser ablation dynamics in liquid phase: The effects of magnetic field and electrolyte,” J. Appl. Phys. 117(7), 074302 (2015).
[Crossref]

Spencer, W. A.

F. Y. Yueh, R. C. Sharma, J. P. Singh, H. Zhang, and W. A. Spencer, “Evaluation of the Potential of Laser-Induced Breakdown Spectroscopy for Detection of Trace Element in Liquid,” J. Air Waste Manag. Assoc. 52(11), 1307–1315 (2002).
[Crossref] [PubMed]

Spizzicchino, V.

L. Fornarini, F. Colao, R. Fantoni, V. Lazic, and V. Spizzicchino, “Calibration analysis of bronze samples by nanosecond laser induced breakdown spectroscopy: A theoretical and experimental approach,” Spectrochim. Acta B At. Spectrosc. 60(7-8), 1186–1201 (2005).
[Crossref]

Su, X.

Y. Yu, W. Zhou, and X. Su, “Detection of Cu in solution with double pulse laser-induced breakdown spectroscopy,” Opt. Commun. 333, 62–66 (2014).
[Crossref]

Sun, Z.

Tabarant, M.

C. Maury, J. B. Sirven, M. Tabarant, D. L’Hermite, J. L. Courouau, C. Gallou, N. Caron, G. Moutiers, and V. Cabuil, “Analysis of liquid sodium purity by laser-induced breakdown spectroscopy. Modeling and correction of signal fluctuation prior to quantitation of trace elements,” Spectrochim. Acta B At. Spectrosc. 82, 28 (2013).
[Crossref]

Tanabe, R.

Tawfik, W.

W. Tawfik and Y. Mohamed, “Improved LIBS limit of detection of Be, Mg, Si, Mn, Fe and Cu in aluminum alloy samples using a portable echelle spectrometer with ICCD camera,” Opt. Laser Technol. 40(1), 30–38 (2008).
[Crossref]

Telle, H. H.

O. Samek, D. C. S. Beddows, J. Kaiser, S. V. Kukhlevsky, M. Liška, H. H. Telle, and J. Young, “Application of laser-induced breakdown spectroscopy to in situ analysis of liquid samples,” Opt. Eng. 39, 15 (2000).

Thum-Jäger, A.

A. Thum-Jäger and K. Rohr, “Angular emission distributions of neutrals and ions in laser ablated particle beams,” J. Phys. D Appl. Phys. 32(21), 2827–2831 (1999).
[Crossref]

Tognoni, E.

E. Tognoni, V. Palleschi, M. Corsi, and G. Cristoforetti, “Quantitative micro-analysis by laser-induced breakdown spectroscopy a review of the experimental approaches,” Spectrochim. Acta B At. Spectrosc. 57(7), 1115–1130 (2002).
[Crossref]

Torrisi, L.

L. Láska, J. Badziak, F. P. Boody, S. Gammino, K. Jungwirth, J. Krása, M. Pfeifer, K. Rohlena, J. Ullschmied, P. Parys, J. Wołowski, E. Woryna, and L. Torrisi, “Laser Production of Highly Charged Ions,” Braz. J. Phys. 34(4b), 1615–1620 (2004).
[Crossref]

Toussaint, A.

P. Fichet, A. Toussaint, and J. F. Wagner, “Laser-induced breakdown spectroscopy: A tool for analysis of different types of liquids,” Appl. Phys., A Mater. Sci. Process. 69(7), S591–S592 (1999).
[Crossref]

Ullschmied, J.

L. Láska, J. Badziak, F. P. Boody, S. Gammino, K. Jungwirth, J. Krása, M. Pfeifer, K. Rohlena, J. Ullschmied, P. Parys, J. Wołowski, E. Woryna, and L. Torrisi, “Laser Production of Highly Charged Ions,” Braz. J. Phys. 34(4b), 1615–1620 (2004).
[Crossref]

Wachter, J. R.

Wagner, J. F.

P. Fichet, A. Toussaint, and J. F. Wagner, “Laser-induced breakdown spectroscopy: A tool for analysis of different types of liquids,” Appl. Phys., A Mater. Sci. Process. 69(7), S591–S592 (1999).
[Crossref]

Wakaida, I.

A. Ruas, A. Matsumoto, H. Ohba, K. Akaoka, and I. Wakaida, “Application of laser-induced breakdown spectroscopy to zirconium in aqueous solution,” Spectrochim. Acta B At. Spectrosc. 131, 99–106 (2017).
[Crossref]

H. Ohba, M. Saeki, I. Wakaida, R. Tanabe, and Y. Ito, “Effect of liquid-sheet thickness on detection sensitivity for laser-induced breakdown spectroscopy of aqueous solution,” Opt. Express 22(20), 24478–24490 (2014).
[Crossref] [PubMed]

Wall, M.

Wen, W. Q.

D. C. Zhang, X. Ma, W. Q. Wen, P. J. Zhang, X. L. Zhu, B. Li, and H. P. Liu, “Influence of Laser Wavelength on Laser-induced Breakdown Spectroscopy Applied to Semi-Quantitative Analysis of Trace-Elements in a Plant Sample,” Chin. Phys. Lett. 27(6), 063202 (2010).
[Crossref]

Wolf, J. P.

M. Baudelet, L. Guyon, J. Yu, J. P. Wolf, T. Amodeo, E. Fréjafon, and P. Laloi, “Spectral signature of native CN bonds for bacterium detection and identification using femtosecond laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 88(6), 063901 (2006).
[Crossref]

Wolowski, J.

L. Láska, J. Badziak, F. P. Boody, S. Gammino, K. Jungwirth, J. Krása, M. Pfeifer, K. Rohlena, J. Ullschmied, P. Parys, J. Wołowski, E. Woryna, and L. Torrisi, “Laser Production of Highly Charged Ions,” Braz. J. Phys. 34(4b), 1615–1620 (2004).
[Crossref]

Woryna, E.

L. Láska, J. Badziak, F. P. Boody, S. Gammino, K. Jungwirth, J. Krása, M. Pfeifer, K. Rohlena, J. Ullschmied, P. Parys, J. Wołowski, E. Woryna, and L. Torrisi, “Laser Production of Highly Charged Ions,” Braz. J. Phys. 34(4b), 1615–1620 (2004).
[Crossref]

Xiu, J.

Yang, X.

Young, J.

O. Samek, D. C. S. Beddows, J. Kaiser, S. V. Kukhlevsky, M. Liška, H. H. Telle, and J. Young, “Application of laser-induced breakdown spectroscopy to in situ analysis of liquid samples,” Opt. Eng. 39, 15 (2000).

Yu, J.

J. Xiu, L. Dong, H. Qin, Y. Liu, and J. Yu, “Investigation of the Matrix Effect on the Accuracy of Quantitative Analysis of Trace Metals in Liquids Using Laser-Induced Breakdown Spectroscopy with Solid Substrates,” Appl. Spectrosc. 70(12), 2016–2024 (2016).
[Crossref] [PubMed]

W. Lei, V. Motto-Ros, M. Boueri, Q. Ma, D. Zhang, L. Zheng, H. Zeng, and J. Yu, “Time-resolved characterization of laser-induced plasma from fresh potatoes,” Spectrochim. Acta B At. Spectrosc. 64(9), 891–898 (2009).
[Crossref]

M. Baudelet, L. Guyon, J. Yu, J. P. Wolf, T. Amodeo, E. Fréjafon, and P. Laloi, “Spectral signature of native CN bonds for bacterium detection and identification using femtosecond laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 88(6), 063901 (2006).
[Crossref]

Yu, Y.

Y. Yu, W. Zhou, and X. Su, “Detection of Cu in solution with double pulse laser-induced breakdown spectroscopy,” Opt. Commun. 333, 62–66 (2014).
[Crossref]

Yueh, F. Y.

F. Y. Yueh, R. C. Sharma, J. P. Singh, H. Zhang, and W. A. Spencer, “Evaluation of the Potential of Laser-Induced Breakdown Spectroscopy for Detection of Trace Element in Liquid,” J. Air Waste Manag. Assoc. 52(11), 1307–1315 (2002).
[Crossref] [PubMed]

Zeng, H.

W. Lei, V. Motto-Ros, M. Boueri, Q. Ma, D. Zhang, L. Zheng, H. Zeng, and J. Yu, “Time-resolved characterization of laser-induced plasma from fresh potatoes,” Spectrochim. Acta B At. Spectrosc. 64(9), 891–898 (2009).
[Crossref]

Zeng, X.

Zhang, D.

W. Lei, V. Motto-Ros, M. Boueri, Q. Ma, D. Zhang, L. Zheng, H. Zeng, and J. Yu, “Time-resolved characterization of laser-induced plasma from fresh potatoes,” Spectrochim. Acta B At. Spectrosc. 64(9), 891–898 (2009).
[Crossref]

Zhang, D. C.

D. C. Zhang, X. Ma, W. Q. Wen, P. J. Zhang, X. L. Zhu, B. Li, and H. P. Liu, “Influence of Laser Wavelength on Laser-induced Breakdown Spectroscopy Applied to Semi-Quantitative Analysis of Trace-Elements in a Plant Sample,” Chin. Phys. Lett. 27(6), 063202 (2010).
[Crossref]

Zhang, H.

F. Y. Yueh, R. C. Sharma, J. P. Singh, H. Zhang, and W. A. Spencer, “Evaluation of the Potential of Laser-Induced Breakdown Spectroscopy for Detection of Trace Element in Liquid,” J. Air Waste Manag. Assoc. 52(11), 1307–1315 (2002).
[Crossref] [PubMed]

Zhang, P. J.

D. C. Zhang, X. Ma, W. Q. Wen, P. J. Zhang, X. L. Zhu, B. Li, and H. P. Liu, “Influence of Laser Wavelength on Laser-induced Breakdown Spectroscopy Applied to Semi-Quantitative Analysis of Trace-Elements in a Plant Sample,” Chin. Phys. Lett. 27(6), 063202 (2010).
[Crossref]

Zheng, L.

W. Lei, V. Motto-Ros, M. Boueri, Q. Ma, D. Zhang, L. Zheng, H. Zeng, and J. Yu, “Time-resolved characterization of laser-induced plasma from fresh potatoes,” Spectrochim. Acta B At. Spectrosc. 64(9), 891–898 (2009).
[Crossref]

Zhou, W.

Y. Yu, W. Zhou, and X. Su, “Detection of Cu in solution with double pulse laser-induced breakdown spectroscopy,” Opt. Commun. 333, 62–66 (2014).
[Crossref]

Zhu, X. L.

D. C. Zhang, X. Ma, W. Q. Wen, P. J. Zhang, X. L. Zhu, B. Li, and H. P. Liu, “Influence of Laser Wavelength on Laser-induced Breakdown Spectroscopy Applied to Semi-Quantitative Analysis of Trace-Elements in a Plant Sample,” Chin. Phys. Lett. 27(6), 063202 (2010).
[Crossref]

Zhu, Z.

Anal. Chim. Acta (1)

J. Schlenke, L. Hildebrand, J. Moros, and J. J. Laserna, “Adaptive approach for variable noise suppression on laser-induced breakdown spectroscopy responses using stationary wavelet transform,” Anal. Chim. Acta 754, 8–19 (2012).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

M. Baudelet, L. Guyon, J. Yu, J. P. Wolf, T. Amodeo, E. Fréjafon, and P. Laloi, “Spectral signature of native CN bonds for bacterium detection and identification using femtosecond laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 88(6), 063901 (2006).
[Crossref]

Appl. Phys., A Mater. Sci. Process. (1)

P. Fichet, A. Toussaint, and J. F. Wagner, “Laser-induced breakdown spectroscopy: A tool for analysis of different types of liquids,” Appl. Phys., A Mater. Sci. Process. 69(7), S591–S592 (1999).
[Crossref]

Appl. Spectrosc. (4)

Braz. J. Phys. (1)

L. Láska, J. Badziak, F. P. Boody, S. Gammino, K. Jungwirth, J. Krása, M. Pfeifer, K. Rohlena, J. Ullschmied, P. Parys, J. Wołowski, E. Woryna, and L. Torrisi, “Laser Production of Highly Charged Ions,” Braz. J. Phys. 34(4b), 1615–1620 (2004).
[Crossref]

Chin. Phys. Lett. (1)

D. C. Zhang, X. Ma, W. Q. Wen, P. J. Zhang, X. L. Zhu, B. Li, and H. P. Liu, “Influence of Laser Wavelength on Laser-induced Breakdown Spectroscopy Applied to Semi-Quantitative Analysis of Trace-Elements in a Plant Sample,” Chin. Phys. Lett. 27(6), 063202 (2010).
[Crossref]

J. Air Waste Manag. Assoc. (1)

F. Y. Yueh, R. C. Sharma, J. P. Singh, H. Zhang, and W. A. Spencer, “Evaluation of the Potential of Laser-Induced Breakdown Spectroscopy for Detection of Trace Element in Liquid,” J. Air Waste Manag. Assoc. 52(11), 1307–1315 (2002).
[Crossref] [PubMed]

J. Appl. Phys. (1)

K. K. Kim, M. Roy, H. Kwon, J. K. Song, and S. M. Park, “Laser ablation dynamics in liquid phase: The effects of magnetic field and electrolyte,” J. Appl. Phys. 117(7), 074302 (2015).
[Crossref]

J. Hazard. Mater. (1)

N. K. Rai and A. K. Rai, “LIBS-an efficient approach for the determination of Cr in industrial wastewater,” J. Hazard. Mater. 150(3), 835–838 (2008).
[Crossref] [PubMed]

J. Phys. D Appl. Phys. (1)

A. Thum-Jäger and K. Rohr, “Angular emission distributions of neutrals and ions in laser ablated particle beams,” J. Phys. D Appl. Phys. 32(21), 2827–2831 (1999).
[Crossref]

Met. Mater. (1)

I. K. Choi, “Chromium base high performance materials: where and how do they come from?” Met. Mater. 2(4), 245–252 (1996).
[Crossref]

Opt. Commun. (1)

Y. Yu, W. Zhou, and X. Su, “Detection of Cu in solution with double pulse laser-induced breakdown spectroscopy,” Opt. Commun. 333, 62–66 (2014).
[Crossref]

Opt. Eng. (1)

O. Samek, D. C. S. Beddows, J. Kaiser, S. V. Kukhlevsky, M. Liška, H. H. Telle, and J. Young, “Application of laser-induced breakdown spectroscopy to in situ analysis of liquid samples,” Opt. Eng. 39, 15 (2000).

Opt. Express (2)

Opt. Laser Technol. (1)

W. Tawfik and Y. Mohamed, “Improved LIBS limit of detection of Be, Mg, Si, Mn, Fe and Cu in aluminum alloy samples using a portable echelle spectrometer with ICCD camera,” Opt. Laser Technol. 40(1), 30–38 (2008).
[Crossref]

Spectrochim. Acta B At. Spectrosc. (13)

C. B. Faye, T. Amodeo, E. Fréjafon, N. Delepine-Gilon, and C. Dutouquet, “Sampling considerations when analyzing micrometric-sized particles in a liquid jet using laser induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 91, 5–11 (2014).
[Crossref]

E. Tognoni, V. Palleschi, M. Corsi, and G. Cristoforetti, “Quantitative micro-analysis by laser-induced breakdown spectroscopy a review of the experimental approaches,” Spectrochim. Acta B At. Spectrosc. 57(7), 1115–1130 (2002).
[Crossref]

J. S. Huang, C. B. Ke, and K. C. Lin, “Matrix effect on emission/current correlated analysis in laser-induced breakdown spectroscopy of liquid droplets,” Spectrochim. Acta B At. Spectrosc. 59(3), 321–326 (2004).
[Crossref]

J.-S. Huang, C.-B. Ke, L.-S. Huang, and K.-C. Lin, “The correlation between ion production and emission intensity in the laser-induced breakdown spectroscopy of liquid droplets,” Spectrochim. Acta B At. Spectrosc. 57(1), 35–48 (2002).
[Crossref]

C. Maury, J. B. Sirven, M. Tabarant, D. L’Hermite, J. L. Courouau, C. Gallou, N. Caron, G. Moutiers, and V. Cabuil, “Analysis of liquid sodium purity by laser-induced breakdown spectroscopy. Modeling and correction of signal fluctuation prior to quantitation of trace elements,” Spectrochim. Acta B At. Spectrosc. 82, 28 (2013).
[Crossref]

W. Lei, V. Motto-Ros, M. Boueri, Q. Ma, D. Zhang, L. Zheng, H. Zeng, and J. Yu, “Time-resolved characterization of laser-induced plasma from fresh potatoes,” Spectrochim. Acta B At. Spectrosc. 64(9), 891–898 (2009).
[Crossref]

A. P. M. Michel, “Review Applications of single-shot laser-induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 65(3), 185–191 (2010).
[Crossref]

L. Fornarini, F. Colao, R. Fantoni, V. Lazic, and V. Spizzicchino, “Calibration analysis of bronze samples by nanosecond laser induced breakdown spectroscopy: A theoretical and experimental approach,” Spectrochim. Acta B At. Spectrosc. 60(7-8), 1186–1201 (2005).
[Crossref]

A. Ruas, A. Matsumoto, H. Ohba, K. Akaoka, and I. Wakaida, “Application of laser-induced breakdown spectroscopy to zirconium in aqueous solution,” Spectrochim. Acta B At. Spectrosc. 131, 99–106 (2017).
[Crossref]

D. M. Díaz Pace, C. A. D’Angelo, D. Bertuccelli, and G. Bertuccelli, “Analysis of heavy metals in liquids using Laser Induced Breakdown Spectroscopy by liquid-to-solid matrix conversion,” Spectrochim. Acta B At. Spectrosc. 61(8), 929–933 (2006).
[Crossref]

V. Lazic and S. Jovićević, “Laser induced breakdown spectroscopy inside liquids: Processes and analytical aspects,” Spectrochim. Acta B At. Spectrosc. 101, 288–311 (2014).
[Crossref]

B. Charfi and M. A. Harith, “Panoramic laser-induced breakdown spectrometry of water,” Spectrochim. Acta B At. Spectrosc. 57(7), 1141–1153 (2002).
[Crossref]

V. Lazic, S. Jovicevic, R. Fantoni, and F. Colao, “Efficient plasma and bubble generation underwater by an optimized laser excitation and its application for liquid analyses by laser-induced breakdown spectroscopy,” Spectrochim. Acta B At. Spectrosc. 62(12), 1433–1442 (2007).
[Crossref]

Talanta (1)

E. C. Ferreira, D. M. Milori, E. J. Ferreira, L. M. Dos Santos, L. Martin-Neto, and A. R. Nogueira, “Evaluation of laser induced breakdown spectroscopy for multielemental determination in soils under sewage sludge application,” Talanta 85(1), 435–440 (2011).
[Crossref] [PubMed]

Other (1)

J. P. Singh and S. N. Thakur, Laser-Induced Breakdown Spectroscopy, (Elsevier, 2007) Chap.10.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 The schematic setup of the LIBS system for liquid experiment (a) liquid capillary mode; (b) bulk liquid mode (c) liquid jet mode.
Fig. 2
Fig. 2 The variation of the water evaporated from sodium chromate powder with baking time.
Fig. 3
Fig. 3 Typical LIBS spectrum of Na2CrO4 solution.
Fig. 4
Fig. 4 RSD of the Na (588.99nm) line peak intensity VS. the number of laser shots for one replica.
Fig. 5
Fig. 5 Calibration curve by (a) bulk liquid mode, (b) liquid jet mode and (c) liquid capillary mode.
Fig. 6
Fig. 6 Calibration curve of Cr by liquid capillary mode.
Fig. 7
Fig. 7 The arbitrary three moments of the target surface with different ablation mode.
Fig. 8
Fig. 8 Arbitrary three images of the target induced by laser pulses with three different modes (a) bulk mode: red arrows indicate the laser beam position, the yellow dash lines are the position of the original liquid surface and the blue arrows indicate the liquid bubbles; (b) liquid jet mode: red arrows indicate the laser beam position, the yellow arrows are the position of the liquid injector and the blue arrows indicate the liquid column; (c) capillary mode: red arrows indicate the laser beam position, the yellow dash lines are the wall of the capillary and the blue arrows indicate the liquid splash.

Metrics