Abstract

We present a bow-tie elliptical ring-core multi-mode fiber (BT-ERC-MMF) that features an elliptical ring-core structure and two symmetrical bow-tie stress-applying parts (SAPs). This special fiber design breaking geometry and stress symmetry fully separates the two- or four-fold degenerate modes in traditional circular symmetry fiber with strong mode coupling during mode-division multiplexing (MDM) transmission. The designed fiber is able to support 53 fully degeneracy-lifted eigenmodes with minimum effective index difference between adjacent modes larger than 1.59 × 10−4 at 1550 nm, facilitating potential fiber eigenmode multiplexing transmission without using multiple-input multiple-output digital signal processing (MIMO-DSP) technique. The effect of bending on the designed fiber is investigated based on conformal mapping. Broadband performance including effective modal index (neff), effective index difference (Δneff), effective mode area (Aeff), nonlinearity and chromatic dispersion (D) is also comprehensively studied over the whole C band ranging from 1530 to 1565 nm. The designed fiber targets emerging applications in low-crosstalk direct fiber eigenmode-division multiplexing combined with the mature wavelength-division multiplexing (WDM) technique to increase transmission capacity and spectral efficiency.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Design of PANDA-type elliptical-core multimode fiber supporting 24 fully lifted eigenmodes

Shi Chen and Jian Wang
Opt. Lett. 43(15) 3718-3721 (2018)

Design of PANDA ring-core fiber with 10 polarization-maintaining modes

Haozhe Yan, Shangyuan Li, Zhengyang Xie, Xiaoping Zheng, Hanyi Zhang, and Bingkun Zhou
Photon. Res. 5(1) 1-5 (2017)

References

  • View by:
  • |
  • |
  • |

  1. D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7, 354–362 (2013).
  2. G. Li, N. Bai, N. Zhao, and C. Xia, “Space-division multiplexing: the next frontier in optical communication,” Adv. Opt. Photonics 6, 414–487 (2014).
  3. S. Randel, R. Ryf, A. Sierra, P. J. Winzer, A. H. Gnauck, C. A. Bolle, R. J. Essiambre, D. W. Peckham, A. McCurdy, and R. Lingle., “6×56-Gb/s mode-division multiplexed transmission over 33-km few-mode fiber enabled by 6×6 MIMO equalization,” Opt. Express 19(17), 16697–16707 (2011).
    [PubMed]
  4. R. Ryf, N. K. Fontaine, H. Chen, B. Guan, B. Huang, M. Esmaeelpour, A. H. Gnauck, S. Randel, S. J. B. Yoo, A. M. J. Koonen, R. Shubochkin, Y. Sun, and R. Lingle., “Mode-multiplexed transmission over conventional graded-index multimode fibers,” Opt. Express 23(1), 235–246 (2015).
    [PubMed]
  5. N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
    [PubMed]
  6. A. Wang, L. Zhu, J. Liu, C. Du, Q. Mo, and J. Wang, “Demonstration of hybrid orbital angular momentum multiplexing and time-division multiplexing passive optical network,” Opt. Express 23(23), 29457–29466 (2015).
    [PubMed]
  7. S. Chen, J. Liu, Y. Zhao, L. Zhu, A. Wang, S. Li, J. Du, C. Du, Q. Mo, and J. Wang, “Full-duplex bidirectional data transmission link using twisted lights multiplexing over 1.1-km orbital angular momentum fiber,” Sci. Rep. 6, 38181 (2016).
    [PubMed]
  8. J. Wang, “Metasurfaces enabling structured light manipulation: advances and perspectives,” Chin. Opt. Lett 16(5), 050006 (2018).
    [PubMed]
  9. A. Wang, L. Zhu, S. Chen, C. Du, Q. Mo, and J. Wang, “Characterization of LDPC-coded orbital angular momentum modes transmission and multiplexing over a 50-km fiber,” Opt. Express 24(11), 11716–11726 (2016).
    [PubMed]
  10. L. Zhu, A. Wang, S. Chen, J. Liu, Q. Mo, C. Du, and J. Wang, “Orbital angular momentum mode groups multiplexing transmission over 2.6-km conventional multi-mode fiber,” Opt. Express 25(21), 25637–25645 (2017).
    [PubMed]
  11. J. Wang, “Advances in communications using optical vortices,” Photon. Res. 4(5), B14–B28 (2016).
  12. J. Wang, “Data information transfer using complex optical fields: a review and perspective,” Chin. Opt. Lett. 15(3), 030005 (2017).
  13. S. Ramachandran, P. Kristensen, and M. F. Yan, “Generation and propagation of radially polarized beams in optical fibers,” Opt. Lett. 34(16), 2525–2527 (2009).
    [PubMed]
  14. Y. Yue, Y. Yan, N. Ahmed, J. Y. Yang, L. Zhang, Y. Ren, H. Huang, K. M. Birnbaum, B. I. Erkmen, S. Dolinar, M. Tur, and A. E. Willner, “Mode properties and propagation effects of optical orbital angular momentum (OAM) modes in a ring fiber,” IEEE Photonics J. 4, 535–543 (2012).
  15. C. Brunet, P. Vaity, Y. Messaddeq, S. LaRochelle, and L. A. Rusch, “Design, fabrication and validation of an OAM fiber supporting 36 states,” Opt. Express 22(21), 26117–26127 (2014).
    [PubMed]
  16. J. Liu, S. Li, L. Zhu, A. Wang, S. Chen, C. Klitis, C. Du, Q. Mo, M. Sorel, S. Yu, X. Cai, and J. Wang, “Direct fiber vector eigenmode multiplexing transmission seeded by integrated optical vortex emitters,” Light Sci. Appl. 7, 17148 (2018).
  17. E. Ip, G. Milione, M. J. Li, N. Cvijetic, K. Kanonakis, J. Stone, G. Peng, X. Prieto, C. Montero, V. Moreno, and J. Liñares, “SDM transmission of real-time 10GbE traffic using commercial SFP + transceivers over 0.5km elliptical-core few-mode fiber,” Opt. Express 23(13), 17120–17126 (2015).
    [PubMed]
  18. J. Liang, Q. Mo, S. Fu, M. Tang, P. Shum, and D. Liu, “Design and fabrication of elliptical-core few-mode fiber for MIMO-less data transmission,” Opt. Lett. 41(13), 3058–3061 (2016).
    [PubMed]
  19. L. Wang, J. Ai, L. Zhu, A. Wang, S. Fu, C. Du, Q. Mo, and J. Wang, “MDM transmission of CAP-16 signals over 1.1-km antipbending trench-assisted elliptical-core few-mode fiber in passive optical networks,” Opt. Express 25, 22991–23002 (2017).
    [PubMed]
  20. L. Wang, R. M. Nejad, A. Corsi, J. Lin, Y. Messaddeq, L. A. Rusch, and S. LaRochelle, “MIMO-free transmission over six vector modes in a polarization maintaining elliptical ring core,” in Optical Fiber Communication Conference (Optical Society of America, 2017), paper Tu2J.2 (2017).
  21. L. Wang and S. LaRochelle, “Design of eight-mode polarization-maintaining few-mode fiber for multiple-input multiple-output-free spatial division multiplexing,” Opt. Lett. 40(24), 5846–5849 (2015).
    [PubMed]
  22. H. Yan, S. Li, Z. Xie, X. Zheng, H. Zhang, and B. Zhou, “Design of PANDA ring-core fiber with 10 polarization-maintaining modes,” Photon. Res. 5, 1–5 (2017).
  23. H. Xiao, H. Li, G. Ren, Y. Dong, S. Xiao, J. Liu, B. Wei, and S. Jian, “Polarization-Maintaining Supermode Fiber Supporting 20 Modes,” IEEE Photonics Technol. Lett. 29, 1340–1343 (2017).
  24. J. W. Fleming, “Dispersion in GeO2-SiO2 glasses,” Appl. Opt. 23(24), 4486–4493 (1984).
    [PubMed]
  25. V. Brückner, “To the use of Sellmeier formula,” in Elements of Optical Networking-Basics and practice of optical data communication (1st ed.) Chap. 3.4.1. (Vieweg + Teubner Verlag, Springer, 2011).
  26. R. Guan, F. Zhu, Z. Gan, D. Huang, and S. Liu, “Stress birefringence analysis of polarization maintaining optical fibers,” Opt. Fiber Technol. 11, 240–254 (2005).
  27. S. H. Wemple, D. A. Pinnow, T. C. Rich, R. E. Jaeger, and L. G. Van Uitert, “Binary SiO2-B2O3 glass system: refractive index behavior and energy gap considerations,” J. Appl. Phys. 44, 5432–5437 (1973).
  28. J. Zhao, M. Tang, K. Oh, Z. Feng, C. Zhao, R. Liao, S. Fu, P. P. Shum, and D. Liu, “Polarization-maintaining few mode fiber composed of a central circular-hole and an elliptical-ring core,” Photon. Res. 5, 261–266 (2017).
  29. L. Wang, R. M. Nejad, A. Corsi, J. Lin, Y. Messaddeq, L. Rusch, and S. LaRochelle, “Linearly polarized vector modes: Enabling MIMO-free mode-division multiplexing,” Opt. Express 25(10), 11736–11749 (2017).
    [PubMed]
  30. M. Heiblum and J. H. Harris, “Analysis of curved optical waveguides by conformal transformation,” IEEE J. Quantum Electron. 11, 75–83 (1975).
  31. D. Marcuse, “Influence of curvature on the losses of doubly clad fibers,” Appl. Opt. 21(23), 4208–4213 (1982).
    [PubMed]
  32. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2001).
  33. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman & Hall, 1983).
  34. C. D. Poole, J. M. Wiesenfeld, D. J. DiGiovanni, and A. M. Vengsarkar, “Optical fiber-based dispersion compensation using higher order modes near cutoff,” J. Lightwave Technol. 12, 1746–1758 (1994).
  35. J. Noda, K. Okamoto, and Y. Sasak, “Polarization-maintaining fibers and their applications,” J. Lightwave Technol. 4, 1071–1089 (1986).
  36. O. Frazão, J. M. T. Baptista, and J. L. Santos, “Recent advances in high-birefringence fiber loop mirror sensors,” Sensors (Basel) 7(11), 2970–2983 (2007).
    [PubMed]

2018 (2)

J. Wang, “Metasurfaces enabling structured light manipulation: advances and perspectives,” Chin. Opt. Lett 16(5), 050006 (2018).
[PubMed]

J. Liu, S. Li, L. Zhu, A. Wang, S. Chen, C. Klitis, C. Du, Q. Mo, M. Sorel, S. Yu, X. Cai, and J. Wang, “Direct fiber vector eigenmode multiplexing transmission seeded by integrated optical vortex emitters,” Light Sci. Appl. 7, 17148 (2018).

2017 (7)

2016 (4)

2015 (4)

2014 (2)

C. Brunet, P. Vaity, Y. Messaddeq, S. LaRochelle, and L. A. Rusch, “Design, fabrication and validation of an OAM fiber supporting 36 states,” Opt. Express 22(21), 26117–26127 (2014).
[PubMed]

G. Li, N. Bai, N. Zhao, and C. Xia, “Space-division multiplexing: the next frontier in optical communication,” Adv. Opt. Photonics 6, 414–487 (2014).

2013 (2)

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7, 354–362 (2013).

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[PubMed]

2012 (1)

Y. Yue, Y. Yan, N. Ahmed, J. Y. Yang, L. Zhang, Y. Ren, H. Huang, K. M. Birnbaum, B. I. Erkmen, S. Dolinar, M. Tur, and A. E. Willner, “Mode properties and propagation effects of optical orbital angular momentum (OAM) modes in a ring fiber,” IEEE Photonics J. 4, 535–543 (2012).

2011 (1)

2009 (1)

2007 (1)

O. Frazão, J. M. T. Baptista, and J. L. Santos, “Recent advances in high-birefringence fiber loop mirror sensors,” Sensors (Basel) 7(11), 2970–2983 (2007).
[PubMed]

2005 (1)

R. Guan, F. Zhu, Z. Gan, D. Huang, and S. Liu, “Stress birefringence analysis of polarization maintaining optical fibers,” Opt. Fiber Technol. 11, 240–254 (2005).

1994 (1)

C. D. Poole, J. M. Wiesenfeld, D. J. DiGiovanni, and A. M. Vengsarkar, “Optical fiber-based dispersion compensation using higher order modes near cutoff,” J. Lightwave Technol. 12, 1746–1758 (1994).

1986 (1)

J. Noda, K. Okamoto, and Y. Sasak, “Polarization-maintaining fibers and their applications,” J. Lightwave Technol. 4, 1071–1089 (1986).

1984 (1)

1982 (1)

1975 (1)

M. Heiblum and J. H. Harris, “Analysis of curved optical waveguides by conformal transformation,” IEEE J. Quantum Electron. 11, 75–83 (1975).

1973 (1)

S. H. Wemple, D. A. Pinnow, T. C. Rich, R. E. Jaeger, and L. G. Van Uitert, “Binary SiO2-B2O3 glass system: refractive index behavior and energy gap considerations,” J. Appl. Phys. 44, 5432–5437 (1973).

Ahmed, N.

Y. Yue, Y. Yan, N. Ahmed, J. Y. Yang, L. Zhang, Y. Ren, H. Huang, K. M. Birnbaum, B. I. Erkmen, S. Dolinar, M. Tur, and A. E. Willner, “Mode properties and propagation effects of optical orbital angular momentum (OAM) modes in a ring fiber,” IEEE Photonics J. 4, 535–543 (2012).

Ai, J.

Bai, N.

G. Li, N. Bai, N. Zhao, and C. Xia, “Space-division multiplexing: the next frontier in optical communication,” Adv. Opt. Photonics 6, 414–487 (2014).

Baptista, J. M. T.

O. Frazão, J. M. T. Baptista, and J. L. Santos, “Recent advances in high-birefringence fiber loop mirror sensors,” Sensors (Basel) 7(11), 2970–2983 (2007).
[PubMed]

Birnbaum, K. M.

Y. Yue, Y. Yan, N. Ahmed, J. Y. Yang, L. Zhang, Y. Ren, H. Huang, K. M. Birnbaum, B. I. Erkmen, S. Dolinar, M. Tur, and A. E. Willner, “Mode properties and propagation effects of optical orbital angular momentum (OAM) modes in a ring fiber,” IEEE Photonics J. 4, 535–543 (2012).

Bolle, C. A.

Bozinovic, N.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[PubMed]

Brunet, C.

Cai, X.

J. Liu, S. Li, L. Zhu, A. Wang, S. Chen, C. Klitis, C. Du, Q. Mo, M. Sorel, S. Yu, X. Cai, and J. Wang, “Direct fiber vector eigenmode multiplexing transmission seeded by integrated optical vortex emitters,” Light Sci. Appl. 7, 17148 (2018).

Chen, H.

Chen, S.

J. Liu, S. Li, L. Zhu, A. Wang, S. Chen, C. Klitis, C. Du, Q. Mo, M. Sorel, S. Yu, X. Cai, and J. Wang, “Direct fiber vector eigenmode multiplexing transmission seeded by integrated optical vortex emitters,” Light Sci. Appl. 7, 17148 (2018).

L. Zhu, A. Wang, S. Chen, J. Liu, Q. Mo, C. Du, and J. Wang, “Orbital angular momentum mode groups multiplexing transmission over 2.6-km conventional multi-mode fiber,” Opt. Express 25(21), 25637–25645 (2017).
[PubMed]

S. Chen, J. Liu, Y. Zhao, L. Zhu, A. Wang, S. Li, J. Du, C. Du, Q. Mo, and J. Wang, “Full-duplex bidirectional data transmission link using twisted lights multiplexing over 1.1-km orbital angular momentum fiber,” Sci. Rep. 6, 38181 (2016).
[PubMed]

A. Wang, L. Zhu, S. Chen, C. Du, Q. Mo, and J. Wang, “Characterization of LDPC-coded orbital angular momentum modes transmission and multiplexing over a 50-km fiber,” Opt. Express 24(11), 11716–11726 (2016).
[PubMed]

Corsi, A.

Cvijetic, N.

DiGiovanni, D. J.

C. D. Poole, J. M. Wiesenfeld, D. J. DiGiovanni, and A. M. Vengsarkar, “Optical fiber-based dispersion compensation using higher order modes near cutoff,” J. Lightwave Technol. 12, 1746–1758 (1994).

Dolinar, S.

Y. Yue, Y. Yan, N. Ahmed, J. Y. Yang, L. Zhang, Y. Ren, H. Huang, K. M. Birnbaum, B. I. Erkmen, S. Dolinar, M. Tur, and A. E. Willner, “Mode properties and propagation effects of optical orbital angular momentum (OAM) modes in a ring fiber,” IEEE Photonics J. 4, 535–543 (2012).

Dong, Y.

H. Xiao, H. Li, G. Ren, Y. Dong, S. Xiao, J. Liu, B. Wei, and S. Jian, “Polarization-Maintaining Supermode Fiber Supporting 20 Modes,” IEEE Photonics Technol. Lett. 29, 1340–1343 (2017).

Du, C.

Du, J.

S. Chen, J. Liu, Y. Zhao, L. Zhu, A. Wang, S. Li, J. Du, C. Du, Q. Mo, and J. Wang, “Full-duplex bidirectional data transmission link using twisted lights multiplexing over 1.1-km orbital angular momentum fiber,” Sci. Rep. 6, 38181 (2016).
[PubMed]

Erkmen, B. I.

Y. Yue, Y. Yan, N. Ahmed, J. Y. Yang, L. Zhang, Y. Ren, H. Huang, K. M. Birnbaum, B. I. Erkmen, S. Dolinar, M. Tur, and A. E. Willner, “Mode properties and propagation effects of optical orbital angular momentum (OAM) modes in a ring fiber,” IEEE Photonics J. 4, 535–543 (2012).

Esmaeelpour, M.

Essiambre, R. J.

Feng, Z.

Fini, J. M.

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7, 354–362 (2013).

Fleming, J. W.

Fontaine, N. K.

Frazão, O.

O. Frazão, J. M. T. Baptista, and J. L. Santos, “Recent advances in high-birefringence fiber loop mirror sensors,” Sensors (Basel) 7(11), 2970–2983 (2007).
[PubMed]

Fu, S.

Gan, Z.

R. Guan, F. Zhu, Z. Gan, D. Huang, and S. Liu, “Stress birefringence analysis of polarization maintaining optical fibers,” Opt. Fiber Technol. 11, 240–254 (2005).

Gnauck, A. H.

Guan, B.

Guan, R.

R. Guan, F. Zhu, Z. Gan, D. Huang, and S. Liu, “Stress birefringence analysis of polarization maintaining optical fibers,” Opt. Fiber Technol. 11, 240–254 (2005).

Harris, J. H.

M. Heiblum and J. H. Harris, “Analysis of curved optical waveguides by conformal transformation,” IEEE J. Quantum Electron. 11, 75–83 (1975).

Heiblum, M.

M. Heiblum and J. H. Harris, “Analysis of curved optical waveguides by conformal transformation,” IEEE J. Quantum Electron. 11, 75–83 (1975).

Huang, B.

Huang, D.

R. Guan, F. Zhu, Z. Gan, D. Huang, and S. Liu, “Stress birefringence analysis of polarization maintaining optical fibers,” Opt. Fiber Technol. 11, 240–254 (2005).

Huang, H.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[PubMed]

Y. Yue, Y. Yan, N. Ahmed, J. Y. Yang, L. Zhang, Y. Ren, H. Huang, K. M. Birnbaum, B. I. Erkmen, S. Dolinar, M. Tur, and A. E. Willner, “Mode properties and propagation effects of optical orbital angular momentum (OAM) modes in a ring fiber,” IEEE Photonics J. 4, 535–543 (2012).

Ip, E.

Jaeger, R. E.

S. H. Wemple, D. A. Pinnow, T. C. Rich, R. E. Jaeger, and L. G. Van Uitert, “Binary SiO2-B2O3 glass system: refractive index behavior and energy gap considerations,” J. Appl. Phys. 44, 5432–5437 (1973).

Jian, S.

H. Xiao, H. Li, G. Ren, Y. Dong, S. Xiao, J. Liu, B. Wei, and S. Jian, “Polarization-Maintaining Supermode Fiber Supporting 20 Modes,” IEEE Photonics Technol. Lett. 29, 1340–1343 (2017).

Kanonakis, K.

Klitis, C.

J. Liu, S. Li, L. Zhu, A. Wang, S. Chen, C. Klitis, C. Du, Q. Mo, M. Sorel, S. Yu, X. Cai, and J. Wang, “Direct fiber vector eigenmode multiplexing transmission seeded by integrated optical vortex emitters,” Light Sci. Appl. 7, 17148 (2018).

Koonen, A. M. J.

Kristensen, P.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[PubMed]

S. Ramachandran, P. Kristensen, and M. F. Yan, “Generation and propagation of radially polarized beams in optical fibers,” Opt. Lett. 34(16), 2525–2527 (2009).
[PubMed]

LaRochelle, S.

Li, G.

G. Li, N. Bai, N. Zhao, and C. Xia, “Space-division multiplexing: the next frontier in optical communication,” Adv. Opt. Photonics 6, 414–487 (2014).

Li, H.

H. Xiao, H. Li, G. Ren, Y. Dong, S. Xiao, J. Liu, B. Wei, and S. Jian, “Polarization-Maintaining Supermode Fiber Supporting 20 Modes,” IEEE Photonics Technol. Lett. 29, 1340–1343 (2017).

Li, M. J.

Li, S.

J. Liu, S. Li, L. Zhu, A. Wang, S. Chen, C. Klitis, C. Du, Q. Mo, M. Sorel, S. Yu, X. Cai, and J. Wang, “Direct fiber vector eigenmode multiplexing transmission seeded by integrated optical vortex emitters,” Light Sci. Appl. 7, 17148 (2018).

H. Yan, S. Li, Z. Xie, X. Zheng, H. Zhang, and B. Zhou, “Design of PANDA ring-core fiber with 10 polarization-maintaining modes,” Photon. Res. 5, 1–5 (2017).

S. Chen, J. Liu, Y. Zhao, L. Zhu, A. Wang, S. Li, J. Du, C. Du, Q. Mo, and J. Wang, “Full-duplex bidirectional data transmission link using twisted lights multiplexing over 1.1-km orbital angular momentum fiber,” Sci. Rep. 6, 38181 (2016).
[PubMed]

Liang, J.

Liao, R.

Lin, J.

Liñares, J.

Lingle, R.

Liu, D.

Liu, J.

J. Liu, S. Li, L. Zhu, A. Wang, S. Chen, C. Klitis, C. Du, Q. Mo, M. Sorel, S. Yu, X. Cai, and J. Wang, “Direct fiber vector eigenmode multiplexing transmission seeded by integrated optical vortex emitters,” Light Sci. Appl. 7, 17148 (2018).

H. Xiao, H. Li, G. Ren, Y. Dong, S. Xiao, J. Liu, B. Wei, and S. Jian, “Polarization-Maintaining Supermode Fiber Supporting 20 Modes,” IEEE Photonics Technol. Lett. 29, 1340–1343 (2017).

L. Zhu, A. Wang, S. Chen, J. Liu, Q. Mo, C. Du, and J. Wang, “Orbital angular momentum mode groups multiplexing transmission over 2.6-km conventional multi-mode fiber,” Opt. Express 25(21), 25637–25645 (2017).
[PubMed]

S. Chen, J. Liu, Y. Zhao, L. Zhu, A. Wang, S. Li, J. Du, C. Du, Q. Mo, and J. Wang, “Full-duplex bidirectional data transmission link using twisted lights multiplexing over 1.1-km orbital angular momentum fiber,” Sci. Rep. 6, 38181 (2016).
[PubMed]

A. Wang, L. Zhu, J. Liu, C. Du, Q. Mo, and J. Wang, “Demonstration of hybrid orbital angular momentum multiplexing and time-division multiplexing passive optical network,” Opt. Express 23(23), 29457–29466 (2015).
[PubMed]

Liu, S.

R. Guan, F. Zhu, Z. Gan, D. Huang, and S. Liu, “Stress birefringence analysis of polarization maintaining optical fibers,” Opt. Fiber Technol. 11, 240–254 (2005).

Marcuse, D.

McCurdy, A.

Messaddeq, Y.

Milione, G.

Mo, Q.

J. Liu, S. Li, L. Zhu, A. Wang, S. Chen, C. Klitis, C. Du, Q. Mo, M. Sorel, S. Yu, X. Cai, and J. Wang, “Direct fiber vector eigenmode multiplexing transmission seeded by integrated optical vortex emitters,” Light Sci. Appl. 7, 17148 (2018).

L. Wang, J. Ai, L. Zhu, A. Wang, S. Fu, C. Du, Q. Mo, and J. Wang, “MDM transmission of CAP-16 signals over 1.1-km antipbending trench-assisted elliptical-core few-mode fiber in passive optical networks,” Opt. Express 25, 22991–23002 (2017).
[PubMed]

L. Zhu, A. Wang, S. Chen, J. Liu, Q. Mo, C. Du, and J. Wang, “Orbital angular momentum mode groups multiplexing transmission over 2.6-km conventional multi-mode fiber,” Opt. Express 25(21), 25637–25645 (2017).
[PubMed]

S. Chen, J. Liu, Y. Zhao, L. Zhu, A. Wang, S. Li, J. Du, C. Du, Q. Mo, and J. Wang, “Full-duplex bidirectional data transmission link using twisted lights multiplexing over 1.1-km orbital angular momentum fiber,” Sci. Rep. 6, 38181 (2016).
[PubMed]

J. Liang, Q. Mo, S. Fu, M. Tang, P. Shum, and D. Liu, “Design and fabrication of elliptical-core few-mode fiber for MIMO-less data transmission,” Opt. Lett. 41(13), 3058–3061 (2016).
[PubMed]

A. Wang, L. Zhu, S. Chen, C. Du, Q. Mo, and J. Wang, “Characterization of LDPC-coded orbital angular momentum modes transmission and multiplexing over a 50-km fiber,” Opt. Express 24(11), 11716–11726 (2016).
[PubMed]

A. Wang, L. Zhu, J. Liu, C. Du, Q. Mo, and J. Wang, “Demonstration of hybrid orbital angular momentum multiplexing and time-division multiplexing passive optical network,” Opt. Express 23(23), 29457–29466 (2015).
[PubMed]

Montero, C.

Moreno, V.

Nejad, R. M.

Nelson, L. E.

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7, 354–362 (2013).

Noda, J.

J. Noda, K. Okamoto, and Y. Sasak, “Polarization-maintaining fibers and their applications,” J. Lightwave Technol. 4, 1071–1089 (1986).

Oh, K.

Okamoto, K.

J. Noda, K. Okamoto, and Y. Sasak, “Polarization-maintaining fibers and their applications,” J. Lightwave Technol. 4, 1071–1089 (1986).

Peckham, D. W.

Peng, G.

Pinnow, D. A.

S. H. Wemple, D. A. Pinnow, T. C. Rich, R. E. Jaeger, and L. G. Van Uitert, “Binary SiO2-B2O3 glass system: refractive index behavior and energy gap considerations,” J. Appl. Phys. 44, 5432–5437 (1973).

Poole, C. D.

C. D. Poole, J. M. Wiesenfeld, D. J. DiGiovanni, and A. M. Vengsarkar, “Optical fiber-based dispersion compensation using higher order modes near cutoff,” J. Lightwave Technol. 12, 1746–1758 (1994).

Prieto, X.

Ramachandran, S.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[PubMed]

S. Ramachandran, P. Kristensen, and M. F. Yan, “Generation and propagation of radially polarized beams in optical fibers,” Opt. Lett. 34(16), 2525–2527 (2009).
[PubMed]

Randel, S.

Ren, G.

H. Xiao, H. Li, G. Ren, Y. Dong, S. Xiao, J. Liu, B. Wei, and S. Jian, “Polarization-Maintaining Supermode Fiber Supporting 20 Modes,” IEEE Photonics Technol. Lett. 29, 1340–1343 (2017).

Ren, Y.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[PubMed]

Y. Yue, Y. Yan, N. Ahmed, J. Y. Yang, L. Zhang, Y. Ren, H. Huang, K. M. Birnbaum, B. I. Erkmen, S. Dolinar, M. Tur, and A. E. Willner, “Mode properties and propagation effects of optical orbital angular momentum (OAM) modes in a ring fiber,” IEEE Photonics J. 4, 535–543 (2012).

Rich, T. C.

S. H. Wemple, D. A. Pinnow, T. C. Rich, R. E. Jaeger, and L. G. Van Uitert, “Binary SiO2-B2O3 glass system: refractive index behavior and energy gap considerations,” J. Appl. Phys. 44, 5432–5437 (1973).

Richardson, D. J.

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7, 354–362 (2013).

Rusch, L.

Rusch, L. A.

Ryf, R.

Santos, J. L.

O. Frazão, J. M. T. Baptista, and J. L. Santos, “Recent advances in high-birefringence fiber loop mirror sensors,” Sensors (Basel) 7(11), 2970–2983 (2007).
[PubMed]

Sasak, Y.

J. Noda, K. Okamoto, and Y. Sasak, “Polarization-maintaining fibers and their applications,” J. Lightwave Technol. 4, 1071–1089 (1986).

Shubochkin, R.

Shum, P.

Shum, P. P.

Sierra, A.

Sorel, M.

J. Liu, S. Li, L. Zhu, A. Wang, S. Chen, C. Klitis, C. Du, Q. Mo, M. Sorel, S. Yu, X. Cai, and J. Wang, “Direct fiber vector eigenmode multiplexing transmission seeded by integrated optical vortex emitters,” Light Sci. Appl. 7, 17148 (2018).

Stone, J.

Sun, Y.

Tang, M.

Tur, M.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[PubMed]

Y. Yue, Y. Yan, N. Ahmed, J. Y. Yang, L. Zhang, Y. Ren, H. Huang, K. M. Birnbaum, B. I. Erkmen, S. Dolinar, M. Tur, and A. E. Willner, “Mode properties and propagation effects of optical orbital angular momentum (OAM) modes in a ring fiber,” IEEE Photonics J. 4, 535–543 (2012).

Vaity, P.

Van Uitert, L. G.

S. H. Wemple, D. A. Pinnow, T. C. Rich, R. E. Jaeger, and L. G. Van Uitert, “Binary SiO2-B2O3 glass system: refractive index behavior and energy gap considerations,” J. Appl. Phys. 44, 5432–5437 (1973).

Vengsarkar, A. M.

C. D. Poole, J. M. Wiesenfeld, D. J. DiGiovanni, and A. M. Vengsarkar, “Optical fiber-based dispersion compensation using higher order modes near cutoff,” J. Lightwave Technol. 12, 1746–1758 (1994).

Wang, A.

Wang, J.

J. Liu, S. Li, L. Zhu, A. Wang, S. Chen, C. Klitis, C. Du, Q. Mo, M. Sorel, S. Yu, X. Cai, and J. Wang, “Direct fiber vector eigenmode multiplexing transmission seeded by integrated optical vortex emitters,” Light Sci. Appl. 7, 17148 (2018).

J. Wang, “Metasurfaces enabling structured light manipulation: advances and perspectives,” Chin. Opt. Lett 16(5), 050006 (2018).
[PubMed]

L. Zhu, A. Wang, S. Chen, J. Liu, Q. Mo, C. Du, and J. Wang, “Orbital angular momentum mode groups multiplexing transmission over 2.6-km conventional multi-mode fiber,” Opt. Express 25(21), 25637–25645 (2017).
[PubMed]

L. Wang, J. Ai, L. Zhu, A. Wang, S. Fu, C. Du, Q. Mo, and J. Wang, “MDM transmission of CAP-16 signals over 1.1-km antipbending trench-assisted elliptical-core few-mode fiber in passive optical networks,” Opt. Express 25, 22991–23002 (2017).
[PubMed]

J. Wang, “Data information transfer using complex optical fields: a review and perspective,” Chin. Opt. Lett. 15(3), 030005 (2017).

J. Wang, “Advances in communications using optical vortices,” Photon. Res. 4(5), B14–B28 (2016).

S. Chen, J. Liu, Y. Zhao, L. Zhu, A. Wang, S. Li, J. Du, C. Du, Q. Mo, and J. Wang, “Full-duplex bidirectional data transmission link using twisted lights multiplexing over 1.1-km orbital angular momentum fiber,” Sci. Rep. 6, 38181 (2016).
[PubMed]

A. Wang, L. Zhu, S. Chen, C. Du, Q. Mo, and J. Wang, “Characterization of LDPC-coded orbital angular momentum modes transmission and multiplexing over a 50-km fiber,” Opt. Express 24(11), 11716–11726 (2016).
[PubMed]

A. Wang, L. Zhu, J. Liu, C. Du, Q. Mo, and J. Wang, “Demonstration of hybrid orbital angular momentum multiplexing and time-division multiplexing passive optical network,” Opt. Express 23(23), 29457–29466 (2015).
[PubMed]

Wang, L.

Wei, B.

H. Xiao, H. Li, G. Ren, Y. Dong, S. Xiao, J. Liu, B. Wei, and S. Jian, “Polarization-Maintaining Supermode Fiber Supporting 20 Modes,” IEEE Photonics Technol. Lett. 29, 1340–1343 (2017).

Wemple, S. H.

S. H. Wemple, D. A. Pinnow, T. C. Rich, R. E. Jaeger, and L. G. Van Uitert, “Binary SiO2-B2O3 glass system: refractive index behavior and energy gap considerations,” J. Appl. Phys. 44, 5432–5437 (1973).

Wiesenfeld, J. M.

C. D. Poole, J. M. Wiesenfeld, D. J. DiGiovanni, and A. M. Vengsarkar, “Optical fiber-based dispersion compensation using higher order modes near cutoff,” J. Lightwave Technol. 12, 1746–1758 (1994).

Willner, A. E.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[PubMed]

Y. Yue, Y. Yan, N. Ahmed, J. Y. Yang, L. Zhang, Y. Ren, H. Huang, K. M. Birnbaum, B. I. Erkmen, S. Dolinar, M. Tur, and A. E. Willner, “Mode properties and propagation effects of optical orbital angular momentum (OAM) modes in a ring fiber,” IEEE Photonics J. 4, 535–543 (2012).

Winzer, P. J.

Xia, C.

G. Li, N. Bai, N. Zhao, and C. Xia, “Space-division multiplexing: the next frontier in optical communication,” Adv. Opt. Photonics 6, 414–487 (2014).

Xiao, H.

H. Xiao, H. Li, G. Ren, Y. Dong, S. Xiao, J. Liu, B. Wei, and S. Jian, “Polarization-Maintaining Supermode Fiber Supporting 20 Modes,” IEEE Photonics Technol. Lett. 29, 1340–1343 (2017).

Xiao, S.

H. Xiao, H. Li, G. Ren, Y. Dong, S. Xiao, J. Liu, B. Wei, and S. Jian, “Polarization-Maintaining Supermode Fiber Supporting 20 Modes,” IEEE Photonics Technol. Lett. 29, 1340–1343 (2017).

Xie, Z.

Yan, H.

Yan, M. F.

Yan, Y.

Y. Yue, Y. Yan, N. Ahmed, J. Y. Yang, L. Zhang, Y. Ren, H. Huang, K. M. Birnbaum, B. I. Erkmen, S. Dolinar, M. Tur, and A. E. Willner, “Mode properties and propagation effects of optical orbital angular momentum (OAM) modes in a ring fiber,” IEEE Photonics J. 4, 535–543 (2012).

Yang, J. Y.

Y. Yue, Y. Yan, N. Ahmed, J. Y. Yang, L. Zhang, Y. Ren, H. Huang, K. M. Birnbaum, B. I. Erkmen, S. Dolinar, M. Tur, and A. E. Willner, “Mode properties and propagation effects of optical orbital angular momentum (OAM) modes in a ring fiber,” IEEE Photonics J. 4, 535–543 (2012).

Yoo, S. J. B.

Yu, S.

J. Liu, S. Li, L. Zhu, A. Wang, S. Chen, C. Klitis, C. Du, Q. Mo, M. Sorel, S. Yu, X. Cai, and J. Wang, “Direct fiber vector eigenmode multiplexing transmission seeded by integrated optical vortex emitters,” Light Sci. Appl. 7, 17148 (2018).

Yue, Y.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[PubMed]

Y. Yue, Y. Yan, N. Ahmed, J. Y. Yang, L. Zhang, Y. Ren, H. Huang, K. M. Birnbaum, B. I. Erkmen, S. Dolinar, M. Tur, and A. E. Willner, “Mode properties and propagation effects of optical orbital angular momentum (OAM) modes in a ring fiber,” IEEE Photonics J. 4, 535–543 (2012).

Zhang, H.

Zhang, L.

Y. Yue, Y. Yan, N. Ahmed, J. Y. Yang, L. Zhang, Y. Ren, H. Huang, K. M. Birnbaum, B. I. Erkmen, S. Dolinar, M. Tur, and A. E. Willner, “Mode properties and propagation effects of optical orbital angular momentum (OAM) modes in a ring fiber,” IEEE Photonics J. 4, 535–543 (2012).

Zhao, C.

Zhao, J.

Zhao, N.

G. Li, N. Bai, N. Zhao, and C. Xia, “Space-division multiplexing: the next frontier in optical communication,” Adv. Opt. Photonics 6, 414–487 (2014).

Zhao, Y.

S. Chen, J. Liu, Y. Zhao, L. Zhu, A. Wang, S. Li, J. Du, C. Du, Q. Mo, and J. Wang, “Full-duplex bidirectional data transmission link using twisted lights multiplexing over 1.1-km orbital angular momentum fiber,” Sci. Rep. 6, 38181 (2016).
[PubMed]

Zheng, X.

Zhou, B.

Zhu, F.

R. Guan, F. Zhu, Z. Gan, D. Huang, and S. Liu, “Stress birefringence analysis of polarization maintaining optical fibers,” Opt. Fiber Technol. 11, 240–254 (2005).

Zhu, L.

Adv. Opt. Photonics (1)

G. Li, N. Bai, N. Zhao, and C. Xia, “Space-division multiplexing: the next frontier in optical communication,” Adv. Opt. Photonics 6, 414–487 (2014).

Appl. Opt. (2)

Chin. Opt. Lett (1)

J. Wang, “Metasurfaces enabling structured light manipulation: advances and perspectives,” Chin. Opt. Lett 16(5), 050006 (2018).
[PubMed]

Chin. Opt. Lett. (1)

IEEE J. Quantum Electron. (1)

M. Heiblum and J. H. Harris, “Analysis of curved optical waveguides by conformal transformation,” IEEE J. Quantum Electron. 11, 75–83 (1975).

IEEE Photonics J. (1)

Y. Yue, Y. Yan, N. Ahmed, J. Y. Yang, L. Zhang, Y. Ren, H. Huang, K. M. Birnbaum, B. I. Erkmen, S. Dolinar, M. Tur, and A. E. Willner, “Mode properties and propagation effects of optical orbital angular momentum (OAM) modes in a ring fiber,” IEEE Photonics J. 4, 535–543 (2012).

IEEE Photonics Technol. Lett. (1)

H. Xiao, H. Li, G. Ren, Y. Dong, S. Xiao, J. Liu, B. Wei, and S. Jian, “Polarization-Maintaining Supermode Fiber Supporting 20 Modes,” IEEE Photonics Technol. Lett. 29, 1340–1343 (2017).

J. Appl. Phys. (1)

S. H. Wemple, D. A. Pinnow, T. C. Rich, R. E. Jaeger, and L. G. Van Uitert, “Binary SiO2-B2O3 glass system: refractive index behavior and energy gap considerations,” J. Appl. Phys. 44, 5432–5437 (1973).

J. Lightwave Technol. (2)

C. D. Poole, J. M. Wiesenfeld, D. J. DiGiovanni, and A. M. Vengsarkar, “Optical fiber-based dispersion compensation using higher order modes near cutoff,” J. Lightwave Technol. 12, 1746–1758 (1994).

J. Noda, K. Okamoto, and Y. Sasak, “Polarization-maintaining fibers and their applications,” J. Lightwave Technol. 4, 1071–1089 (1986).

Light Sci. Appl. (1)

J. Liu, S. Li, L. Zhu, A. Wang, S. Chen, C. Klitis, C. Du, Q. Mo, M. Sorel, S. Yu, X. Cai, and J. Wang, “Direct fiber vector eigenmode multiplexing transmission seeded by integrated optical vortex emitters,” Light Sci. Appl. 7, 17148 (2018).

Nat. Photonics (1)

D. J. Richardson, J. M. Fini, and L. E. Nelson, “Space-division multiplexing in optical fibres,” Nat. Photonics 7, 354–362 (2013).

Opt. Express (9)

L. Wang, R. M. Nejad, A. Corsi, J. Lin, Y. Messaddeq, L. Rusch, and S. LaRochelle, “Linearly polarized vector modes: Enabling MIMO-free mode-division multiplexing,” Opt. Express 25(10), 11736–11749 (2017).
[PubMed]

L. Wang, J. Ai, L. Zhu, A. Wang, S. Fu, C. Du, Q. Mo, and J. Wang, “MDM transmission of CAP-16 signals over 1.1-km antipbending trench-assisted elliptical-core few-mode fiber in passive optical networks,” Opt. Express 25, 22991–23002 (2017).
[PubMed]

L. Zhu, A. Wang, S. Chen, J. Liu, Q. Mo, C. Du, and J. Wang, “Orbital angular momentum mode groups multiplexing transmission over 2.6-km conventional multi-mode fiber,” Opt. Express 25(21), 25637–25645 (2017).
[PubMed]

S. Randel, R. Ryf, A. Sierra, P. J. Winzer, A. H. Gnauck, C. A. Bolle, R. J. Essiambre, D. W. Peckham, A. McCurdy, and R. Lingle., “6×56-Gb/s mode-division multiplexed transmission over 33-km few-mode fiber enabled by 6×6 MIMO equalization,” Opt. Express 19(17), 16697–16707 (2011).
[PubMed]

C. Brunet, P. Vaity, Y. Messaddeq, S. LaRochelle, and L. A. Rusch, “Design, fabrication and validation of an OAM fiber supporting 36 states,” Opt. Express 22(21), 26117–26127 (2014).
[PubMed]

R. Ryf, N. K. Fontaine, H. Chen, B. Guan, B. Huang, M. Esmaeelpour, A. H. Gnauck, S. Randel, S. J. B. Yoo, A. M. J. Koonen, R. Shubochkin, Y. Sun, and R. Lingle., “Mode-multiplexed transmission over conventional graded-index multimode fibers,” Opt. Express 23(1), 235–246 (2015).
[PubMed]

E. Ip, G. Milione, M. J. Li, N. Cvijetic, K. Kanonakis, J. Stone, G. Peng, X. Prieto, C. Montero, V. Moreno, and J. Liñares, “SDM transmission of real-time 10GbE traffic using commercial SFP + transceivers over 0.5km elliptical-core few-mode fiber,” Opt. Express 23(13), 17120–17126 (2015).
[PubMed]

A. Wang, L. Zhu, J. Liu, C. Du, Q. Mo, and J. Wang, “Demonstration of hybrid orbital angular momentum multiplexing and time-division multiplexing passive optical network,” Opt. Express 23(23), 29457–29466 (2015).
[PubMed]

A. Wang, L. Zhu, S. Chen, C. Du, Q. Mo, and J. Wang, “Characterization of LDPC-coded orbital angular momentum modes transmission and multiplexing over a 50-km fiber,” Opt. Express 24(11), 11716–11726 (2016).
[PubMed]

Opt. Fiber Technol. (1)

R. Guan, F. Zhu, Z. Gan, D. Huang, and S. Liu, “Stress birefringence analysis of polarization maintaining optical fibers,” Opt. Fiber Technol. 11, 240–254 (2005).

Opt. Lett. (3)

Photon. Res. (3)

Sci. Rep. (1)

S. Chen, J. Liu, Y. Zhao, L. Zhu, A. Wang, S. Li, J. Du, C. Du, Q. Mo, and J. Wang, “Full-duplex bidirectional data transmission link using twisted lights multiplexing over 1.1-km orbital angular momentum fiber,” Sci. Rep. 6, 38181 (2016).
[PubMed]

Science (1)

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[PubMed]

Sensors (Basel) (1)

O. Frazão, J. M. T. Baptista, and J. L. Santos, “Recent advances in high-birefringence fiber loop mirror sensors,” Sensors (Basel) 7(11), 2970–2983 (2007).
[PubMed]

Other (4)

G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2001).

A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman & Hall, 1983).

L. Wang, R. M. Nejad, A. Corsi, J. Lin, Y. Messaddeq, L. A. Rusch, and S. LaRochelle, “MIMO-free transmission over six vector modes in a polarization maintaining elliptical ring core,” in Optical Fiber Communication Conference (Optical Society of America, 2017), paper Tu2J.2 (2017).

V. Brückner, “To the use of Sellmeier formula,” in Elements of Optical Networking-Basics and practice of optical data communication (1st ed.) Chap. 3.4.1. (Vieweg + Teubner Verlag, Springer, 2011).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 (a) Schematic cross-section and (b) refractive index profile of the designed BT-ERC-MMF.
Fig. 2
Fig. 2 Colormaps of (a) the minimum Δneff values between adjacent modes and (b) corresponding mode number as functions of d1 and ax when fixing Δ = 2.5% and e = 2. Minimum Δneff values between adjacent modes as functions of r2 and d2 with θ respectively taking (c) 60°, (d) 90°, (e) 120°and (f) 150°when fixing m = 30%.
Fig. 3
Fig. 3 Minimum Δneff values of the targeted BT-ERC-MMF structure at 1550 nm with mesh size varying from 1000 nm to 100 nm.
Fig. 4
Fig. 4 (a) Von Mises stress distribution and (b) geometric and stress-induced birefringence (Nx-Ny) in transverse cross section of the designed BT-ERC-MMF. (c) The intensity profiles and electric field polarization directions (blue arrow surface) for nine eigenmodes (EM1, EM7, EM13, EM20, EM26, EM32, EM38, EM45 and EM53).
Fig. 5
Fig. 5 (a) neff, (b) Δneff, (c) Aeff, (d) nonlinearity and (e) D for all fiber eigenmodes versus wavelength over the whole C band.

Tables (5)

Tables Icon

Table 1 Parameters Swept to Determine the BT-ERC-MMF Structure

Tables Icon

Table 2 Optimal Design Supporting the Most Number of Fully Degeneracy-lifted Eigenmodes with Minimum Δneff >10−4 under Different Δ

Tables Icon

Table 3 Optimal Design Supporting the Most Number of Fully Degeneracy-lifted Eigenmodes with Minimum Δneff >10−4 under Different Ellipticity when Fixing Δ = 2.5%

Tables Icon

Table 4 Calculated Δneff, Aeff, γ, D and ER for all 53 Eigenmodes at 1550 nm

Tables Icon

Table 5 Mode Number, Minimum Δneff between Adjacent Modes, and Maximum Bend-induced Confinement Loss α (dB/km) along x- and y-axesa

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

α=(1m) α 0 +m α 1

Metrics