Abstract

We recently demonstrated a new two-dimensional imaging paradigm called dual-beam manually actuated distortion-corrected imaging (DMDI). This technique uses a single mechanical scanner and two spatially separated beams to determine relative sample velocity and simultaneously corrects image distortions due to manual actuation. DMDI was first demonstrated using a rotating dual-beam micromotor catheter. Here, we present a new implementation of DMDI using a single axis galvanometer to scan a pair of beams in approximately parallel lines onto a sample. Furthermore, we present a method for automated distortion correction based on frame co-registration between images acquired by the two beams. Distortion correction is possible for manually actuated motion both perpendicular and parallel to the galvanometer-scanned lines. Using en face OCT as the imaging modality, we demonstrate DMDI and the automated distortion correction algorithm for imaging a printed paper phantom, a dragon fruit, and a fingerprint.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Dual-beam manually-actuated distortion-corrected imaging (DMDI) with micromotor catheters

Anthony M. D. Lee, Geoffrey Hohert, Patricia T. Angkiriwang, Calum MacAulay, and Pierre Lane
Opt. Express 25(18) 22164-22177 (2017)

Ultrahigh speed en face OCT capsule for endoscopic imaging

Kaicheng Liang, Giovanni Traverso, Hsiang-Chieh Lee, Osman Oguz Ahsen, Zhao Wang, Benjamin Potsaid, Michael Giacomelli, Vijaysekhar Jayaraman, Ross Barman, Alex Cable, Hiroshi Mashimo, Robert Langer, and James G. Fujimoto
Biomed. Opt. Express 6(4) 1146-1163 (2015)

Correction of image distortions in endoscopic optical coherence tomography based on two-axis scanning MEMS mirrors

Donglin Wang, Peng Liang, Sean Samuelson, Hongzhi Jia, Junshan Ma, and Huikai Xie
Biomed. Opt. Express 4(10) 2066-2077 (2013)

References

  • View by:
  • |
  • |
  • |

  1. D. C. Adams, Y. Wang, L. P. Hariri, and M. J. Suter, “Advances in Endoscopic Optical Coherence Tomography Catheter Designs,” IEEE J. Sel. Top. Quantum Electron. 22(3), 210–221 (2016).
    [Crossref]
  2. C. Zhou, J. G. Fujimoto, T.-H. Tsai, and H. Mashimo, “Endoscopic Optical Coherence Tomography,” in Optical Coherence Tomography: Technology and Applications, 2nd ed., W. Drexler and J. G. Fujimoto, eds. (Springer International Publishing, Switzerland, 2015), pp. 2077–2108.
  3. M. J. Gora, J. S. Sauk, R. W. Carruth, K. A. Gallagher, M. J. Suter, N. S. Nishioka, L. E. Kava, M. Rosenberg, B. E. Bouma, and G. J. Tearney, “Tethered capsule endomicroscopy enables less invasive imaging of gastrointestinal tract microstructure,” Nat. Med. 19(2), 238–240 (2013).
    [Crossref] [PubMed]
  4. K. Liang, G. Traverso, H.-C. Lee, O. O. Ahsen, Z. Wang, B. Potsaid, M. Giacomelli, V. Jayaraman, R. Barman, A. Cable, H. Mashimo, R. Langer, and J. G. Fujimoto, “Ultrahigh speed en face OCT capsule for endoscopic imaging,” Biomed. Opt. Express 6(4), 1146–1163 (2015).
    [Crossref] [PubMed]
  5. B. Y. Yeo, R. A. McLaughlin, R. W. Kirk, and D. D. Sampson, “Enabling freehand lateral scanning of optical coherence tomography needle probes with a magnetic tracking system,” Biomed. Opt. Express 3(7), 1565–1578 (2012).
    [Crossref] [PubMed]
  6. B. Lau, R. A. McLaughlin, A. Curatolo, R. W. Kirk, D. K. Gerstmann, and D. D. Sampson, “Imaging true 3D endoscopic anatomy by incorporating magnetic tracking with optical coherence tomography: proof-of-principle for airways,” Opt. Express 18(26), 27173–27180 (2010).
    [Crossref] [PubMed]
  7. J. Ren, J. Wu, E. J. McDowell, and C. Yang, “Manual-scanning optical coherence tomography probe based on position tracking,” Opt. Lett. 34(21), 3400–3402 (2009).
    [Crossref] [PubMed]
  8. N. Iftimia, G. Maguluri, E. W. Chang, S. Chang, J. Magill, and W. Brugge, “Hand scanning optical coherence tomography imaging using encoder feedback,” Opt. Lett. 39(24), 6807–6810 (2014).
    [Crossref] [PubMed]
  9. P. Pande, G. L. Monroy, R. M. Nolan, R. L. Shelton, and S. A. Boppart, “Sensor-Based Technique for Manually Scanned Hand-Held Optical Coherence Tomography Imaging,” J. Sens. 2016, 8154809 (2016).
    [Crossref] [PubMed]
  10. A. Ahmad, S. G. Adie, E. J. Chaney, U. Sharma, and S. A. Boppart, “Cross-correlation-based image acquisition technique for manually-scanned optical coherence tomography,” Opt. Express 17(10), 8125–8136 (2009).
    [Crossref] [PubMed]
  11. X. Liu, Y. Huang, and J. U. Kang, “Distortion-free freehand-scanning OCT implemented with real-time scanning speed variance correction,” Opt. Express 20(15), 16567–16583 (2012).
    [Crossref]
  12. Y. Wang, Y. Wang, A. Akansu, K. D. Belfield, B. Hubbi, and X. Liu, “Robust motion tracking based on adaptive speckle decorrelation analysis of OCT signal,” Biomed. Opt. Express 6(11), 4302–4316 (2015).
    [Crossref] [PubMed]
  13. N. Uribe-Patarroyo and B. E. Bouma, “Rotational distortion correction in endoscopic optical coherence tomography based on speckle decorrelation,” Opt. Lett. 40(23), 5518–5521 (2015).
    [Crossref] [PubMed]
  14. A. M. D. Lee, G. Hohert, P. T. Angkiriwang, C. MacAulay, and P. Lane, “Dual-beam manually-actuated distortion-corrected imaging (DMDI) with micromotor catheters,” Opt. Express 25(18), 22164–22177 (2017).
    [Crossref] [PubMed]
  15. H. Pahlevaninezhad, A. M. D. Lee, T. Shaipanich, R. Raizada, L. Cahill, G. Hohert, V. X. D. Yang, S. Lam, C. MacAulay, and P. Lane, “A high-efficiency fiber-based imaging system for co-registered autofluorescence and optical coherence tomography,” Biomed. Opt. Express 5(9), 2978–2987 (2014).
    [Crossref] [PubMed]

2017 (1)

2016 (2)

D. C. Adams, Y. Wang, L. P. Hariri, and M. J. Suter, “Advances in Endoscopic Optical Coherence Tomography Catheter Designs,” IEEE J. Sel. Top. Quantum Electron. 22(3), 210–221 (2016).
[Crossref]

P. Pande, G. L. Monroy, R. M. Nolan, R. L. Shelton, and S. A. Boppart, “Sensor-Based Technique for Manually Scanned Hand-Held Optical Coherence Tomography Imaging,” J. Sens. 2016, 8154809 (2016).
[Crossref] [PubMed]

2015 (3)

2014 (2)

2013 (1)

M. J. Gora, J. S. Sauk, R. W. Carruth, K. A. Gallagher, M. J. Suter, N. S. Nishioka, L. E. Kava, M. Rosenberg, B. E. Bouma, and G. J. Tearney, “Tethered capsule endomicroscopy enables less invasive imaging of gastrointestinal tract microstructure,” Nat. Med. 19(2), 238–240 (2013).
[Crossref] [PubMed]

2012 (2)

2010 (1)

2009 (2)

Adams, D. C.

D. C. Adams, Y. Wang, L. P. Hariri, and M. J. Suter, “Advances in Endoscopic Optical Coherence Tomography Catheter Designs,” IEEE J. Sel. Top. Quantum Electron. 22(3), 210–221 (2016).
[Crossref]

Adie, S. G.

Ahmad, A.

Ahsen, O. O.

Akansu, A.

Angkiriwang, P. T.

Barman, R.

Belfield, K. D.

Boppart, S. A.

P. Pande, G. L. Monroy, R. M. Nolan, R. L. Shelton, and S. A. Boppart, “Sensor-Based Technique for Manually Scanned Hand-Held Optical Coherence Tomography Imaging,” J. Sens. 2016, 8154809 (2016).
[Crossref] [PubMed]

A. Ahmad, S. G. Adie, E. J. Chaney, U. Sharma, and S. A. Boppart, “Cross-correlation-based image acquisition technique for manually-scanned optical coherence tomography,” Opt. Express 17(10), 8125–8136 (2009).
[Crossref] [PubMed]

Bouma, B. E.

N. Uribe-Patarroyo and B. E. Bouma, “Rotational distortion correction in endoscopic optical coherence tomography based on speckle decorrelation,” Opt. Lett. 40(23), 5518–5521 (2015).
[Crossref] [PubMed]

M. J. Gora, J. S. Sauk, R. W. Carruth, K. A. Gallagher, M. J. Suter, N. S. Nishioka, L. E. Kava, M. Rosenberg, B. E. Bouma, and G. J. Tearney, “Tethered capsule endomicroscopy enables less invasive imaging of gastrointestinal tract microstructure,” Nat. Med. 19(2), 238–240 (2013).
[Crossref] [PubMed]

Brugge, W.

Cable, A.

Cahill, L.

Carruth, R. W.

M. J. Gora, J. S. Sauk, R. W. Carruth, K. A. Gallagher, M. J. Suter, N. S. Nishioka, L. E. Kava, M. Rosenberg, B. E. Bouma, and G. J. Tearney, “Tethered capsule endomicroscopy enables less invasive imaging of gastrointestinal tract microstructure,” Nat. Med. 19(2), 238–240 (2013).
[Crossref] [PubMed]

Chaney, E. J.

Chang, E. W.

Chang, S.

Curatolo, A.

Fujimoto, J. G.

Gallagher, K. A.

M. J. Gora, J. S. Sauk, R. W. Carruth, K. A. Gallagher, M. J. Suter, N. S. Nishioka, L. E. Kava, M. Rosenberg, B. E. Bouma, and G. J. Tearney, “Tethered capsule endomicroscopy enables less invasive imaging of gastrointestinal tract microstructure,” Nat. Med. 19(2), 238–240 (2013).
[Crossref] [PubMed]

Gerstmann, D. K.

Giacomelli, M.

Gora, M. J.

M. J. Gora, J. S. Sauk, R. W. Carruth, K. A. Gallagher, M. J. Suter, N. S. Nishioka, L. E. Kava, M. Rosenberg, B. E. Bouma, and G. J. Tearney, “Tethered capsule endomicroscopy enables less invasive imaging of gastrointestinal tract microstructure,” Nat. Med. 19(2), 238–240 (2013).
[Crossref] [PubMed]

Hariri, L. P.

D. C. Adams, Y. Wang, L. P. Hariri, and M. J. Suter, “Advances in Endoscopic Optical Coherence Tomography Catheter Designs,” IEEE J. Sel. Top. Quantum Electron. 22(3), 210–221 (2016).
[Crossref]

Hohert, G.

Huang, Y.

Hubbi, B.

Iftimia, N.

Jayaraman, V.

Kang, J. U.

Kava, L. E.

M. J. Gora, J. S. Sauk, R. W. Carruth, K. A. Gallagher, M. J. Suter, N. S. Nishioka, L. E. Kava, M. Rosenberg, B. E. Bouma, and G. J. Tearney, “Tethered capsule endomicroscopy enables less invasive imaging of gastrointestinal tract microstructure,” Nat. Med. 19(2), 238–240 (2013).
[Crossref] [PubMed]

Kirk, R. W.

Lam, S.

Lane, P.

Langer, R.

Lau, B.

Lee, A. M. D.

Lee, H.-C.

Liang, K.

Liu, X.

MacAulay, C.

Magill, J.

Maguluri, G.

Mashimo, H.

McDowell, E. J.

McLaughlin, R. A.

Monroy, G. L.

P. Pande, G. L. Monroy, R. M. Nolan, R. L. Shelton, and S. A. Boppart, “Sensor-Based Technique for Manually Scanned Hand-Held Optical Coherence Tomography Imaging,” J. Sens. 2016, 8154809 (2016).
[Crossref] [PubMed]

Nishioka, N. S.

M. J. Gora, J. S. Sauk, R. W. Carruth, K. A. Gallagher, M. J. Suter, N. S. Nishioka, L. E. Kava, M. Rosenberg, B. E. Bouma, and G. J. Tearney, “Tethered capsule endomicroscopy enables less invasive imaging of gastrointestinal tract microstructure,” Nat. Med. 19(2), 238–240 (2013).
[Crossref] [PubMed]

Nolan, R. M.

P. Pande, G. L. Monroy, R. M. Nolan, R. L. Shelton, and S. A. Boppart, “Sensor-Based Technique for Manually Scanned Hand-Held Optical Coherence Tomography Imaging,” J. Sens. 2016, 8154809 (2016).
[Crossref] [PubMed]

Pahlevaninezhad, H.

Pande, P.

P. Pande, G. L. Monroy, R. M. Nolan, R. L. Shelton, and S. A. Boppart, “Sensor-Based Technique for Manually Scanned Hand-Held Optical Coherence Tomography Imaging,” J. Sens. 2016, 8154809 (2016).
[Crossref] [PubMed]

Potsaid, B.

Raizada, R.

Ren, J.

Rosenberg, M.

M. J. Gora, J. S. Sauk, R. W. Carruth, K. A. Gallagher, M. J. Suter, N. S. Nishioka, L. E. Kava, M. Rosenberg, B. E. Bouma, and G. J. Tearney, “Tethered capsule endomicroscopy enables less invasive imaging of gastrointestinal tract microstructure,” Nat. Med. 19(2), 238–240 (2013).
[Crossref] [PubMed]

Sampson, D. D.

Sauk, J. S.

M. J. Gora, J. S. Sauk, R. W. Carruth, K. A. Gallagher, M. J. Suter, N. S. Nishioka, L. E. Kava, M. Rosenberg, B. E. Bouma, and G. J. Tearney, “Tethered capsule endomicroscopy enables less invasive imaging of gastrointestinal tract microstructure,” Nat. Med. 19(2), 238–240 (2013).
[Crossref] [PubMed]

Shaipanich, T.

Sharma, U.

Shelton, R. L.

P. Pande, G. L. Monroy, R. M. Nolan, R. L. Shelton, and S. A. Boppart, “Sensor-Based Technique for Manually Scanned Hand-Held Optical Coherence Tomography Imaging,” J. Sens. 2016, 8154809 (2016).
[Crossref] [PubMed]

Suter, M. J.

D. C. Adams, Y. Wang, L. P. Hariri, and M. J. Suter, “Advances in Endoscopic Optical Coherence Tomography Catheter Designs,” IEEE J. Sel. Top. Quantum Electron. 22(3), 210–221 (2016).
[Crossref]

M. J. Gora, J. S. Sauk, R. W. Carruth, K. A. Gallagher, M. J. Suter, N. S. Nishioka, L. E. Kava, M. Rosenberg, B. E. Bouma, and G. J. Tearney, “Tethered capsule endomicroscopy enables less invasive imaging of gastrointestinal tract microstructure,” Nat. Med. 19(2), 238–240 (2013).
[Crossref] [PubMed]

Tearney, G. J.

M. J. Gora, J. S. Sauk, R. W. Carruth, K. A. Gallagher, M. J. Suter, N. S. Nishioka, L. E. Kava, M. Rosenberg, B. E. Bouma, and G. J. Tearney, “Tethered capsule endomicroscopy enables less invasive imaging of gastrointestinal tract microstructure,” Nat. Med. 19(2), 238–240 (2013).
[Crossref] [PubMed]

Traverso, G.

Uribe-Patarroyo, N.

Wang, Y.

Wang, Z.

Wu, J.

Yang, C.

Yang, V. X. D.

Yeo, B. Y.

Biomed. Opt. Express (4)

IEEE J. Sel. Top. Quantum Electron. (1)

D. C. Adams, Y. Wang, L. P. Hariri, and M. J. Suter, “Advances in Endoscopic Optical Coherence Tomography Catheter Designs,” IEEE J. Sel. Top. Quantum Electron. 22(3), 210–221 (2016).
[Crossref]

J. Sens. (1)

P. Pande, G. L. Monroy, R. M. Nolan, R. L. Shelton, and S. A. Boppart, “Sensor-Based Technique for Manually Scanned Hand-Held Optical Coherence Tomography Imaging,” J. Sens. 2016, 8154809 (2016).
[Crossref] [PubMed]

Nat. Med. (1)

M. J. Gora, J. S. Sauk, R. W. Carruth, K. A. Gallagher, M. J. Suter, N. S. Nishioka, L. E. Kava, M. Rosenberg, B. E. Bouma, and G. J. Tearney, “Tethered capsule endomicroscopy enables less invasive imaging of gastrointestinal tract microstructure,” Nat. Med. 19(2), 238–240 (2013).
[Crossref] [PubMed]

Opt. Express (4)

Opt. Lett. (3)

Other (1)

C. Zhou, J. G. Fujimoto, T.-H. Tsai, and H. Mashimo, “Endoscopic Optical Coherence Tomography,” in Optical Coherence Tomography: Technology and Applications, 2nd ed., W. Drexler and J. G. Fujimoto, eds. (Springer International Publishing, Switzerland, 2015), pp. 2077–2108.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Dual channel OCT imaging system and galvanometer configuration. a) Schematic of the dual-beam galvanometer imaging head. DFP = dual fiber pigtail, GRIN = graded index lens. Approximate paths of beams A and B are shown in blue and red respectively. b) Detailed view of the scan pattern at the sample with x,y-axes, scan lengths lA, and lB, yoffset, and scan pattern function S(y) defined.
Fig. 2
Fig. 2 Example of extraneous triplet removal from candidate triplets (ΔyAB values not shown) to yield the largest valid set of triplets with monotonically ordered frA and frB. a) 13 candidate triplets with a largest valid set length of 5. b) Removal of (7,8) triplet leaves 12 candidate triplets with largest valid set length of 9. c) Removal of (11,25) triplet leaves the maximum valid set length of 11, corresponding to the HCTP.
Fig. 3
Fig. 3 DMDI of a) a printed paper QR code phantom mounted at an angle. The approximate start positions of the A and B beams are labeled and shown with an arrow indicating the actuation direction along the x axis viewed as if the sample was stationary. b) Preprocessed and y-calibrated en face OCT images A(fr,y) and B(fr,y). c) (frA,frB) (upper) and (frA,ΔyAB) (lower) maximum intensity projections (MIP) of the 3D FOXC (frame-offset cross-correction) matrix. d) (frA,frB) (upper) and (frA,ΔyAB) (lower) projections of the HCTP (high correlation triplet pathway) as green circles (n = 116) and filtered triplets as red crosses (n = 3). e) Extracted x and y velocities and displacements as a function of time. f) Distortion corrected A(X,Y) and B(X,Y) images.
Fig. 4
Fig. 4 DMDI imaging of a) cut dragon fruit. The orange box approximately shows the imaged region. b-f) image panels are arranged and annotated as in Fig. 3.
Fig. 5
Fig. 5 DMDI imaging of a) a finger. b-f) image panels are arranged and annotated as in Fig. 3.

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

t ( f r , n ) = ( f r n f r + n + N r e f + n i n a c t i v e ) Δ t A l i n e
y A ( n ) = l A ( n n a c t i v e 1 1 2 ) , n [ 0 , n a c t i v e 1 ]
y B ( n ) = l A 2 y o f f s e t + l B ( n ( n a c t i v e 1 ) ) , n [ 0 , n a c t i v e 1 ]
S f r ( y ) = 1 2 [ b A ( y ) b B ( y ) ]
F f r ( y ) = 1 2 [ b A ( y ) + b B ( y ) ]
S ( y ) = S f r ( y ) v x , c a l f g a l v o
F ( y ) = F f r ( y ) v x , c a l f g a l v o .
v ¯ x , A B , k = S ( y A , k ) + S ( y B , k ) t B , k t A , k
v ¯ y , A B , k = y B ( n B , k ) y A ( n A , k ) t B , k t A , k .
v ( x , y ) ( t ) = k ( v ¯ ( x , y ) , A B , k w k ( t ) ) k w k ( t )
w k ( t ) = { 1 | t B , k t A , k | + 1 , t [ t B , k , t A , k ] 0 , e l s e w h e r e .
v ¯ x , A B , k = d 0 f f r ( f r B , k f r A , k )
v ¯ y , A B , k = Δ y A B , k f f r ( f r B , k f r A , k )
t ( A , B ) , k , f r = f r ( A , B ) Δ t f r = f r ( A , B ) 1 f f r .
X A ( t ) = d x ( t ) + S F Y A ( n , t ) = y A ( n ) + d y ( t )
X B ( t ) = d x ( t ) S F Y B ( n , t ) = y B ( n ) + d y ( t )
v ¯ y = ± y o v e r l a p d 0 v ¯ x

Metrics