Abstract

High transparency in the infrared (IR) region is desirable for most common IR materials and devices, due to their high interfacial reflectance, resulting from the high refractive indices of constituent substances. Herein, a new strategy, with using phase-separated polystyrene (PS)/polymethylmethacrylate (PMMA) blends as masks, is proposed to fabricate subwavelength structures for Si with significantly enhanced mid-IR transmission. Maximum transmittance approaching to 70% and 90% are achieved with single and double- side structured Si respectively. The fabricated subwavelength structures are short-range ordered amorphous photonic structures (APSs). By using different spin-coating speeds and molar ratios of PS to PMMA and by adjusting the etching duration time, tunable enhanced transmission are also obtained. The good performance of high transmission is confirmed by mid-IR thermal imaging experiments. Furthermore, the enhanced transmission is effective over a wide range of incident angles up to 50° and well maintained at high temperatures up to 600 °C.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles

References

  • View by:
  • |
  • |
  • |

  1. P. Klocek, Handbook of Infrared Optical Materials (Marcel Dekker, 1991).
  2. M. Born and E. Wolf, Principles of Optics (Cambridge University, 1999).
  3. H. A. Macleod, Thin-film optical filters (CRC, 2001).
  4. H. K. Raut, V. A. Ganesh, A. S. Nair, and S. Ramakrishna, “Anti-reflective coatings: A critical, in-depth review,” Energy Environ. Sci. 4(10), 3779–3804 (2011).
    [Crossref]
  5. Y. Q. Pan, L. X. Hang, Z. S. Wu, and Y. B. Yin, “Design and fabrication of ultra broadband infrared antireflection hard coatings on ZnSe in the range from 2 to 16 μm,” Infrared Phys. Technol. 52(5), 193–195 (2009).
    [Crossref]
  6. R. Z. Moghadam, H. Ahmadvand, and M. Jannesari, “Design and fabrication of multi-layers infrared antireflection coating consisting of ZnS and Ge on ZnS substrate,” Infrared Phys. Technol. 75, 18–21 (2016).
    [Crossref]
  7. A. Szeghalmi, M. Helgert, R. Brunner, F. Heyroth, U. Gösele, and M. Knez, “Atomic layer deposition of Al2O3 and TiO2 multilayers for applications as bandpass filters and antireflection coatings,” Appl. Opt. 48(9), 1727–1732 (2009).
    [Crossref] [PubMed]
  8. B. M. Wang, J. S. Price, and N. C. Giebink, “Durable broadband ultralow index fluoropolymer antireflection coatings for plastic optics,” Optica 4(2), 239–242 (2017).
    [Crossref]
  9. J. Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. F. Chen, S. Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1(3), 176–179 (2007).
    [Crossref]
  10. X. X. Zhang, S. Cai, D. You, L. H. Yan, H. B. Lv, X. D. Yuan, and B. Jiang, “Template-free sol-gel preparation of superhydrophobic ormosil films for double-wavelength broadband antireflective coatings,” Adv. Funct. Mater. 23(35), 4361–4365 (2013).
    [Crossref]
  11. A. Yildirim, T. Khudiyev, B. Daglar, H. Budunoglu, A. K. Okyay, and M. Bayindir, “Superhydrophobic and omnidirectional antireflective surfaces from nanostructured ormosil colloids,” ACS Appl. Mater. Interfaces 5(3), 853–860 (2013).
    [Crossref] [PubMed]
  12. S. Walheim, E. Schäffer, J. Mlynek, and U. Steiner, “Nanophase-separated polymer films as high-performance antireflection coatings,” Science 283(5401), 520–522 (1999).
    [Crossref] [PubMed]
  13. W. Joo, M. S. Park, and J. K. Kim, “Block copolymer film with sponge-like nanoporous strucutre for antireflection coating,” Langmuir 22(19), 7960–7963 (2006).
    [Crossref] [PubMed]
  14. X. Li, J. P. Gao, L. J. Xue, and Y. C. Han, “Porous polymer films with gradient‐refractive‐index structure for broadband and omnidirectional antireflection coatings,” Adv. Funct. Mater. 20(2), 259–265 (2010).
    [Crossref]
  15. X. Li, X. H. Yu, and Y. C. Han, “Polymer thin films for antireflection coatings,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(12), 2266–2285 (2013).
    [Crossref]
  16. D. M. Sim, M. J. Choi, Y. H. Hur, B. Nam, G. Chae, J. H. Park, and Y. S. Jung, “Ultra-high optical transparency of robust, graded-index, and anti-fogging silica coating derived from Si-containing block copolymers,” Adv. Opt. Mater. 1(6), 428–433 (2013).
    [Crossref]
  17. C. G. Bernhard, “Structural and functional adaptation in a visual system,” Endeavour 26, 79–84 (1967).
  18. D. H. Raguin and G. M. Morris, “Antireflection structured surfaces for the infrared spectral region,” Appl. Opt. 32(7), 1154–1167 (1993).
    [Crossref] [PubMed]
  19. D. G. Stavenga, S. Foletti, G. Palasantzas, and K. Arikawa, “Light on the moth-eye corneal nipple array of butterflies,” Proc. Biol. Sci. 273(1587), 661–667 (2006).
    [Crossref] [PubMed]
  20. S. A. Boden and D. M. Bagnall, “Tunable reflection minima of nanostructured antireflective surfaces,” Appl. Phys. Lett. 93(13), 133108 (2008).
    [Crossref]
  21. P. B. Clapham and M. C. Hutley, “Reduction of lens reflexion by the “Moth Eye” principle,” Nature 244(5414), 281–282 (1973).
    [Crossref]
  22. K. Hadobás, S. Kirsch, A. Carl, M. Acet, and E. F. Wassermann, “Reflection properties of nanostructure-arrayed silicon surfaces,” Nanotechnology 11(3), 161–164 (2000).
    [Crossref]
  23. J. Zhu, Z. Yu, G. F. Burkhard, C.-M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9(1), 279–282 (2009).
    [Crossref] [PubMed]
  24. W.-L. Min, B. Jiang, and P. Jiang, “Bioinspired self-cleaning antireflection coatings,” Adv. Mater. 20(20), 3914–3918 (2008).
    [Crossref]
  25. P. Kothary, B. M. Phillips, S.-Y. Leo, and P. Jiang, “Bioinspired broadband midwavelength infrared antireflection coatings on silicon,” J. Vac. Sci. Technol. B 34(4), 041807 (2016).
    [Crossref]
  26. S. Ji, J. Park, and H. Lim, “Improved antireflection properties of moth eye mimicking nanopillars on transparent glass: flat antireflection and color tuning,” Nanoscale 4(15), 4603–4610 (2012).
    [Crossref] [PubMed]
  27. Y. Ou, X. Zhu, V. Jokubavicius, R. Yakimova, N. A. Mortensen, M. Syväjärvi, S. Xiao, and H. Ou, “Broadband antireflection and light extraction enhancement in fluorescent SiC with nanodome structures,” Sci. Rep. 4(1), 4662 (2014).
    [Crossref] [PubMed]
  28. Q. Chen, G. Hubbard, P. A. Shields, C. Liu, D. W. E. Allsopp, W. N. Wang, and S. Abbott, “Broadband moth-eye antireflection coatings fabricated by low-cost nanoimprinting,” Appl. Phys. Lett. 94(26), 263118 (2009).
    [Crossref]
  29. H. K. Raut, S. S. Dinachali, Y. C. Loke, R. Ganesan, K. K. Ansah-Antwi, A. Góra, E. H. Khoo, V. A. Ganesh, M. S. M. Saifullah, and S. Ramakrishna, “Multiscale ommatidial arrays with broadband and omnidirectional antireflection and antifogging properties by sacrificial layer mediated nanoimprinting,” ACS Nano 9(2), 1305–1314 (2015).
    [Crossref] [PubMed]
  30. G. J. Tan, J.-H. Lee, Y.-H. Lan, M.-K. Wei, L.-H. Peng, I.-C. Cheng, and S.-T. Wu, “Broadband antireflection film with moth-eye-like structure for flexible display applications,” Optica 4(7), 678–683 (2017).
    [Crossref]
  31. L. Shi, Y. Zhang, B. Dong, T. Zhan, X. Liu, and J. Zi, “Amorphous photonic crystals with only short-range order,” Adv. Mater. 25(37), 5314–5320 (2013).
    [Crossref] [PubMed]
  32. B. Q. Dong, T. R. Zhan, X. H. Liu, L. P. Jiang, F. Liu, X. H. Hu, and J. Zi, “Optical response of a disordered bicontinuous macroporous structure in the longhorn beetle Sphingnotus mirabilis,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 84(1), 011915 (2011).
    [Crossref] [PubMed]
  33. J. W. Cahn and J. E. Hilliard, “Free energy of a nonuniform system. I. Interfacial free energy,” J. Chem. Phys. 28(2), 258–267 (1958).
    [Crossref]
  34. J. Zhu, L.-Q. Chen, J. Shen, and V. Tikare, “Coarsening kinetics from a variable-mobility Cahn-Hilliard equation: application of a semi-implicit Fourier spectral method,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 60(44 Pt A), 3564–3572 (1999).
    [Crossref] [PubMed]
  35. K. Tanaka, A. Takahara, and T. Kajiyama, “Film thickness dependence of the surface structure of immiscible polystyrene/poly (methyl methacrylate) blends,” Macromolecules 29(9), 3232–3239 (1996).
    [Crossref]
  36. S. Walheim, M. Böltau, J. Mlynek, G. Krausch, and U. Steiner, “Structure formation via polymer demixing in spin-cast films,” Macromolecules 30(17), 4995–5003 (1997).
    [Crossref]
  37. M. Ibn-Elhaj and M. Schadt, “Optical polymer thin films with isotropic and anisotropic nano-corrugated surface topologies,” Nature 410(6830), 796–799 (2001).
    [Crossref] [PubMed]
  38. A. Cadby, R. Dean, A. M. Fox, R. A. L. Jones, and D. G. Lidzey, “Mapping the fluorescence decay lifetime of a conjugated polymer in a phase-separated blend using a scanning near-field optical microscope,” Nano Lett. 5(11), 2232–2237 (2005).
    [Crossref] [PubMed]
  39. Y. G. Liao, Z. H. Su, X. G. Ye, Y. Q. Li, J. C. You, T. F. Shi, and L. J. An, “Kinetics of surface phase separation for PMMA/SAN thin films studied by in situ atomic force microscopy,” Macromolecules 38(2), 211–215 (2005).
    [Crossref]
  40. L. Fang, M. Wei, C. Barry, and J. Mead, “Effect of spin speed and solution concentration on the directed assembly of polymer blends,” Macromolecules 43(23), 9747–9753 (2010).
    [Crossref]
  41. S. Ebbens, R. Hodgkinson, A. J. Parnell, A. Dunbar, S. J. Martin, P. D. Topham, N. Clarke, and J. R. Howse, “In Situ imaging and height reconstruction of phase separation processes in polymer blends during spin coating,” ACS Nano 5(6), 5124–5131 (2011).
    [Crossref] [PubMed]
  42. S. Harirchian-Saei, M. C. Wang, B. D. Gates, and M. G. Moffitt, “Directed polystyrene/poly(methyl methacrylate) phase separation and nanoparticle ordering on transparent chemically patterned substrates,” Langmuir 28(29), 10838–10848 (2012).
    [Crossref] [PubMed]
  43. H. Zhang and S. Takeoka, “Morphological evolution within spin-cast ultrathin polymer blend films clarified by a freestanding method,” Macromolecules 45(10), 4315–4321 (2012).
    [Crossref]
  44. L. Robeson, “Historical perspective of advances in the science and technology of polymer blends,” Polymers (Basel) 6(5), 1251–1265 (2014).
    [Crossref]
  45. W. Vogel, Glass Chemistry (Springer, 1994).
  46. J. Erlebacher, M. J. Aziz, A. Karma, N. Dimitrov, and K. Sieradzki, “Evolution of nanoporosity in dealloying,” Nature 410(6827), 450–453 (2001).
    [Crossref] [PubMed]
  47. J. C. Maxwell Garnett, “Colours in Metal Glasses and in Metallic Films,” Philos. Trans. R. Soc. Lond. 203(359-371), 385–420 (1904).
    [Crossref]
  48. T. C. Choy, Effective Medium Theory: Principles and Applications (Oxford University, 1999).
  49. Z. Q. Xiong, F. Y. Zhao, J. Yang, and X. H. Hu, “Comparison of optical absorption in Si nanowire and nanoporous Si structures for photovoltaic applications,” Appl. Phys. Lett. 96(18), 181903 (2010).
  50. E. D. Palik, ed., Handbook of Optical Constants of Solids (Academic, 1985).
  51. J. Zi, J. Wan, and C. Zhang, “Large frequency range of negligible transmission in one-dimensional photonic quantum well structures,” Appl. Phys. Lett. 73(15), 2084–2086 (1998).
  52. Z. M. Zhang, L. M. Hanssen, and R. U. Datla, “Polarization-dependent angular reflectance of silicon and germanium in the infrared,” Infrared Phys. Technol. 37(4), 539–546 (1996).

2017 (2)

2016 (2)

R. Z. Moghadam, H. Ahmadvand, and M. Jannesari, “Design and fabrication of multi-layers infrared antireflection coating consisting of ZnS and Ge on ZnS substrate,” Infrared Phys. Technol. 75, 18–21 (2016).
[Crossref]

P. Kothary, B. M. Phillips, S.-Y. Leo, and P. Jiang, “Bioinspired broadband midwavelength infrared antireflection coatings on silicon,” J. Vac. Sci. Technol. B 34(4), 041807 (2016).
[Crossref]

2015 (1)

H. K. Raut, S. S. Dinachali, Y. C. Loke, R. Ganesan, K. K. Ansah-Antwi, A. Góra, E. H. Khoo, V. A. Ganesh, M. S. M. Saifullah, and S. Ramakrishna, “Multiscale ommatidial arrays with broadband and omnidirectional antireflection and antifogging properties by sacrificial layer mediated nanoimprinting,” ACS Nano 9(2), 1305–1314 (2015).
[Crossref] [PubMed]

2014 (2)

L. Robeson, “Historical perspective of advances in the science and technology of polymer blends,” Polymers (Basel) 6(5), 1251–1265 (2014).
[Crossref]

Y. Ou, X. Zhu, V. Jokubavicius, R. Yakimova, N. A. Mortensen, M. Syväjärvi, S. Xiao, and H. Ou, “Broadband antireflection and light extraction enhancement in fluorescent SiC with nanodome structures,” Sci. Rep. 4(1), 4662 (2014).
[Crossref] [PubMed]

2013 (5)

X. X. Zhang, S. Cai, D. You, L. H. Yan, H. B. Lv, X. D. Yuan, and B. Jiang, “Template-free sol-gel preparation of superhydrophobic ormosil films for double-wavelength broadband antireflective coatings,” Adv. Funct. Mater. 23(35), 4361–4365 (2013).
[Crossref]

A. Yildirim, T. Khudiyev, B. Daglar, H. Budunoglu, A. K. Okyay, and M. Bayindir, “Superhydrophobic and omnidirectional antireflective surfaces from nanostructured ormosil colloids,” ACS Appl. Mater. Interfaces 5(3), 853–860 (2013).
[Crossref] [PubMed]

X. Li, X. H. Yu, and Y. C. Han, “Polymer thin films for antireflection coatings,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(12), 2266–2285 (2013).
[Crossref]

D. M. Sim, M. J. Choi, Y. H. Hur, B. Nam, G. Chae, J. H. Park, and Y. S. Jung, “Ultra-high optical transparency of robust, graded-index, and anti-fogging silica coating derived from Si-containing block copolymers,” Adv. Opt. Mater. 1(6), 428–433 (2013).
[Crossref]

L. Shi, Y. Zhang, B. Dong, T. Zhan, X. Liu, and J. Zi, “Amorphous photonic crystals with only short-range order,” Adv. Mater. 25(37), 5314–5320 (2013).
[Crossref] [PubMed]

2012 (3)

S. Harirchian-Saei, M. C. Wang, B. D. Gates, and M. G. Moffitt, “Directed polystyrene/poly(methyl methacrylate) phase separation and nanoparticle ordering on transparent chemically patterned substrates,” Langmuir 28(29), 10838–10848 (2012).
[Crossref] [PubMed]

H. Zhang and S. Takeoka, “Morphological evolution within spin-cast ultrathin polymer blend films clarified by a freestanding method,” Macromolecules 45(10), 4315–4321 (2012).
[Crossref]

S. Ji, J. Park, and H. Lim, “Improved antireflection properties of moth eye mimicking nanopillars on transparent glass: flat antireflection and color tuning,” Nanoscale 4(15), 4603–4610 (2012).
[Crossref] [PubMed]

2011 (3)

B. Q. Dong, T. R. Zhan, X. H. Liu, L. P. Jiang, F. Liu, X. H. Hu, and J. Zi, “Optical response of a disordered bicontinuous macroporous structure in the longhorn beetle Sphingnotus mirabilis,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 84(1), 011915 (2011).
[Crossref] [PubMed]

S. Ebbens, R. Hodgkinson, A. J. Parnell, A. Dunbar, S. J. Martin, P. D. Topham, N. Clarke, and J. R. Howse, “In Situ imaging and height reconstruction of phase separation processes in polymer blends during spin coating,” ACS Nano 5(6), 5124–5131 (2011).
[Crossref] [PubMed]

H. K. Raut, V. A. Ganesh, A. S. Nair, and S. Ramakrishna, “Anti-reflective coatings: A critical, in-depth review,” Energy Environ. Sci. 4(10), 3779–3804 (2011).
[Crossref]

2010 (3)

Z. Q. Xiong, F. Y. Zhao, J. Yang, and X. H. Hu, “Comparison of optical absorption in Si nanowire and nanoporous Si structures for photovoltaic applications,” Appl. Phys. Lett. 96(18), 181903 (2010).

L. Fang, M. Wei, C. Barry, and J. Mead, “Effect of spin speed and solution concentration on the directed assembly of polymer blends,” Macromolecules 43(23), 9747–9753 (2010).
[Crossref]

X. Li, J. P. Gao, L. J. Xue, and Y. C. Han, “Porous polymer films with gradient‐refractive‐index structure for broadband and omnidirectional antireflection coatings,” Adv. Funct. Mater. 20(2), 259–265 (2010).
[Crossref]

2009 (4)

Q. Chen, G. Hubbard, P. A. Shields, C. Liu, D. W. E. Allsopp, W. N. Wang, and S. Abbott, “Broadband moth-eye antireflection coatings fabricated by low-cost nanoimprinting,” Appl. Phys. Lett. 94(26), 263118 (2009).
[Crossref]

J. Zhu, Z. Yu, G. F. Burkhard, C.-M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9(1), 279–282 (2009).
[Crossref] [PubMed]

Y. Q. Pan, L. X. Hang, Z. S. Wu, and Y. B. Yin, “Design and fabrication of ultra broadband infrared antireflection hard coatings on ZnSe in the range from 2 to 16 μm,” Infrared Phys. Technol. 52(5), 193–195 (2009).
[Crossref]

A. Szeghalmi, M. Helgert, R. Brunner, F. Heyroth, U. Gösele, and M. Knez, “Atomic layer deposition of Al2O3 and TiO2 multilayers for applications as bandpass filters and antireflection coatings,” Appl. Opt. 48(9), 1727–1732 (2009).
[Crossref] [PubMed]

2008 (2)

W.-L. Min, B. Jiang, and P. Jiang, “Bioinspired self-cleaning antireflection coatings,” Adv. Mater. 20(20), 3914–3918 (2008).
[Crossref]

S. A. Boden and D. M. Bagnall, “Tunable reflection minima of nanostructured antireflective surfaces,” Appl. Phys. Lett. 93(13), 133108 (2008).
[Crossref]

2007 (1)

J. Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. F. Chen, S. Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1(3), 176–179 (2007).
[Crossref]

2006 (2)

W. Joo, M. S. Park, and J. K. Kim, “Block copolymer film with sponge-like nanoporous strucutre for antireflection coating,” Langmuir 22(19), 7960–7963 (2006).
[Crossref] [PubMed]

D. G. Stavenga, S. Foletti, G. Palasantzas, and K. Arikawa, “Light on the moth-eye corneal nipple array of butterflies,” Proc. Biol. Sci. 273(1587), 661–667 (2006).
[Crossref] [PubMed]

2005 (2)

A. Cadby, R. Dean, A. M. Fox, R. A. L. Jones, and D. G. Lidzey, “Mapping the fluorescence decay lifetime of a conjugated polymer in a phase-separated blend using a scanning near-field optical microscope,” Nano Lett. 5(11), 2232–2237 (2005).
[Crossref] [PubMed]

Y. G. Liao, Z. H. Su, X. G. Ye, Y. Q. Li, J. C. You, T. F. Shi, and L. J. An, “Kinetics of surface phase separation for PMMA/SAN thin films studied by in situ atomic force microscopy,” Macromolecules 38(2), 211–215 (2005).
[Crossref]

2001 (2)

M. Ibn-Elhaj and M. Schadt, “Optical polymer thin films with isotropic and anisotropic nano-corrugated surface topologies,” Nature 410(6830), 796–799 (2001).
[Crossref] [PubMed]

J. Erlebacher, M. J. Aziz, A. Karma, N. Dimitrov, and K. Sieradzki, “Evolution of nanoporosity in dealloying,” Nature 410(6827), 450–453 (2001).
[Crossref] [PubMed]

2000 (1)

K. Hadobás, S. Kirsch, A. Carl, M. Acet, and E. F. Wassermann, “Reflection properties of nanostructure-arrayed silicon surfaces,” Nanotechnology 11(3), 161–164 (2000).
[Crossref]

1999 (2)

J. Zhu, L.-Q. Chen, J. Shen, and V. Tikare, “Coarsening kinetics from a variable-mobility Cahn-Hilliard equation: application of a semi-implicit Fourier spectral method,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 60(44 Pt A), 3564–3572 (1999).
[Crossref] [PubMed]

S. Walheim, E. Schäffer, J. Mlynek, and U. Steiner, “Nanophase-separated polymer films as high-performance antireflection coatings,” Science 283(5401), 520–522 (1999).
[Crossref] [PubMed]

1998 (1)

J. Zi, J. Wan, and C. Zhang, “Large frequency range of negligible transmission in one-dimensional photonic quantum well structures,” Appl. Phys. Lett. 73(15), 2084–2086 (1998).

1997 (1)

S. Walheim, M. Böltau, J. Mlynek, G. Krausch, and U. Steiner, “Structure formation via polymer demixing in spin-cast films,” Macromolecules 30(17), 4995–5003 (1997).
[Crossref]

1996 (2)

K. Tanaka, A. Takahara, and T. Kajiyama, “Film thickness dependence of the surface structure of immiscible polystyrene/poly (methyl methacrylate) blends,” Macromolecules 29(9), 3232–3239 (1996).
[Crossref]

Z. M. Zhang, L. M. Hanssen, and R. U. Datla, “Polarization-dependent angular reflectance of silicon and germanium in the infrared,” Infrared Phys. Technol. 37(4), 539–546 (1996).

1993 (1)

1973 (1)

P. B. Clapham and M. C. Hutley, “Reduction of lens reflexion by the “Moth Eye” principle,” Nature 244(5414), 281–282 (1973).
[Crossref]

1967 (1)

C. G. Bernhard, “Structural and functional adaptation in a visual system,” Endeavour 26, 79–84 (1967).

1958 (1)

J. W. Cahn and J. E. Hilliard, “Free energy of a nonuniform system. I. Interfacial free energy,” J. Chem. Phys. 28(2), 258–267 (1958).
[Crossref]

1904 (1)

J. C. Maxwell Garnett, “Colours in Metal Glasses and in Metallic Films,” Philos. Trans. R. Soc. Lond. 203(359-371), 385–420 (1904).
[Crossref]

Abbott, S.

Q. Chen, G. Hubbard, P. A. Shields, C. Liu, D. W. E. Allsopp, W. N. Wang, and S. Abbott, “Broadband moth-eye antireflection coatings fabricated by low-cost nanoimprinting,” Appl. Phys. Lett. 94(26), 263118 (2009).
[Crossref]

Acet, M.

K. Hadobás, S. Kirsch, A. Carl, M. Acet, and E. F. Wassermann, “Reflection properties of nanostructure-arrayed silicon surfaces,” Nanotechnology 11(3), 161–164 (2000).
[Crossref]

Ahmadvand, H.

R. Z. Moghadam, H. Ahmadvand, and M. Jannesari, “Design and fabrication of multi-layers infrared antireflection coating consisting of ZnS and Ge on ZnS substrate,” Infrared Phys. Technol. 75, 18–21 (2016).
[Crossref]

Allsopp, D. W. E.

Q. Chen, G. Hubbard, P. A. Shields, C. Liu, D. W. E. Allsopp, W. N. Wang, and S. Abbott, “Broadband moth-eye antireflection coatings fabricated by low-cost nanoimprinting,” Appl. Phys. Lett. 94(26), 263118 (2009).
[Crossref]

An, L. J.

Y. G. Liao, Z. H. Su, X. G. Ye, Y. Q. Li, J. C. You, T. F. Shi, and L. J. An, “Kinetics of surface phase separation for PMMA/SAN thin films studied by in situ atomic force microscopy,” Macromolecules 38(2), 211–215 (2005).
[Crossref]

Ansah-Antwi, K. K.

H. K. Raut, S. S. Dinachali, Y. C. Loke, R. Ganesan, K. K. Ansah-Antwi, A. Góra, E. H. Khoo, V. A. Ganesh, M. S. M. Saifullah, and S. Ramakrishna, “Multiscale ommatidial arrays with broadband and omnidirectional antireflection and antifogging properties by sacrificial layer mediated nanoimprinting,” ACS Nano 9(2), 1305–1314 (2015).
[Crossref] [PubMed]

Arikawa, K.

D. G. Stavenga, S. Foletti, G. Palasantzas, and K. Arikawa, “Light on the moth-eye corneal nipple array of butterflies,” Proc. Biol. Sci. 273(1587), 661–667 (2006).
[Crossref] [PubMed]

Aziz, M. J.

J. Erlebacher, M. J. Aziz, A. Karma, N. Dimitrov, and K. Sieradzki, “Evolution of nanoporosity in dealloying,” Nature 410(6827), 450–453 (2001).
[Crossref] [PubMed]

Bagnall, D. M.

S. A. Boden and D. M. Bagnall, “Tunable reflection minima of nanostructured antireflective surfaces,” Appl. Phys. Lett. 93(13), 133108 (2008).
[Crossref]

Barry, C.

L. Fang, M. Wei, C. Barry, and J. Mead, “Effect of spin speed and solution concentration on the directed assembly of polymer blends,” Macromolecules 43(23), 9747–9753 (2010).
[Crossref]

Bayindir, M.

A. Yildirim, T. Khudiyev, B. Daglar, H. Budunoglu, A. K. Okyay, and M. Bayindir, “Superhydrophobic and omnidirectional antireflective surfaces from nanostructured ormosil colloids,” ACS Appl. Mater. Interfaces 5(3), 853–860 (2013).
[Crossref] [PubMed]

Bernhard, C. G.

C. G. Bernhard, “Structural and functional adaptation in a visual system,” Endeavour 26, 79–84 (1967).

Boden, S. A.

S. A. Boden and D. M. Bagnall, “Tunable reflection minima of nanostructured antireflective surfaces,” Appl. Phys. Lett. 93(13), 133108 (2008).
[Crossref]

Böltau, M.

S. Walheim, M. Böltau, J. Mlynek, G. Krausch, and U. Steiner, “Structure formation via polymer demixing in spin-cast films,” Macromolecules 30(17), 4995–5003 (1997).
[Crossref]

Brunner, R.

Budunoglu, H.

A. Yildirim, T. Khudiyev, B. Daglar, H. Budunoglu, A. K. Okyay, and M. Bayindir, “Superhydrophobic and omnidirectional antireflective surfaces from nanostructured ormosil colloids,” ACS Appl. Mater. Interfaces 5(3), 853–860 (2013).
[Crossref] [PubMed]

Burkhard, G. F.

J. Zhu, Z. Yu, G. F. Burkhard, C.-M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9(1), 279–282 (2009).
[Crossref] [PubMed]

Cadby, A.

A. Cadby, R. Dean, A. M. Fox, R. A. L. Jones, and D. G. Lidzey, “Mapping the fluorescence decay lifetime of a conjugated polymer in a phase-separated blend using a scanning near-field optical microscope,” Nano Lett. 5(11), 2232–2237 (2005).
[Crossref] [PubMed]

Cahn, J. W.

J. W. Cahn and J. E. Hilliard, “Free energy of a nonuniform system. I. Interfacial free energy,” J. Chem. Phys. 28(2), 258–267 (1958).
[Crossref]

Cai, S.

X. X. Zhang, S. Cai, D. You, L. H. Yan, H. B. Lv, X. D. Yuan, and B. Jiang, “Template-free sol-gel preparation of superhydrophobic ormosil films for double-wavelength broadband antireflective coatings,” Adv. Funct. Mater. 23(35), 4361–4365 (2013).
[Crossref]

Carl, A.

K. Hadobás, S. Kirsch, A. Carl, M. Acet, and E. F. Wassermann, “Reflection properties of nanostructure-arrayed silicon surfaces,” Nanotechnology 11(3), 161–164 (2000).
[Crossref]

Chae, G.

D. M. Sim, M. J. Choi, Y. H. Hur, B. Nam, G. Chae, J. H. Park, and Y. S. Jung, “Ultra-high optical transparency of robust, graded-index, and anti-fogging silica coating derived from Si-containing block copolymers,” Adv. Opt. Mater. 1(6), 428–433 (2013).
[Crossref]

Chen, L.-Q.

J. Zhu, L.-Q. Chen, J. Shen, and V. Tikare, “Coarsening kinetics from a variable-mobility Cahn-Hilliard equation: application of a semi-implicit Fourier spectral method,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 60(44 Pt A), 3564–3572 (1999).
[Crossref] [PubMed]

Chen, M. F.

J. Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. F. Chen, S. Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1(3), 176–179 (2007).
[Crossref]

Chen, Q.

Q. Chen, G. Hubbard, P. A. Shields, C. Liu, D. W. E. Allsopp, W. N. Wang, and S. Abbott, “Broadband moth-eye antireflection coatings fabricated by low-cost nanoimprinting,” Appl. Phys. Lett. 94(26), 263118 (2009).
[Crossref]

Cheng, I.-C.

Choi, M. J.

D. M. Sim, M. J. Choi, Y. H. Hur, B. Nam, G. Chae, J. H. Park, and Y. S. Jung, “Ultra-high optical transparency of robust, graded-index, and anti-fogging silica coating derived from Si-containing block copolymers,” Adv. Opt. Mater. 1(6), 428–433 (2013).
[Crossref]

Clapham, P. B.

P. B. Clapham and M. C. Hutley, “Reduction of lens reflexion by the “Moth Eye” principle,” Nature 244(5414), 281–282 (1973).
[Crossref]

Clarke, N.

S. Ebbens, R. Hodgkinson, A. J. Parnell, A. Dunbar, S. J. Martin, P. D. Topham, N. Clarke, and J. R. Howse, “In Situ imaging and height reconstruction of phase separation processes in polymer blends during spin coating,” ACS Nano 5(6), 5124–5131 (2011).
[Crossref] [PubMed]

Connor, S. T.

J. Zhu, Z. Yu, G. F. Burkhard, C.-M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9(1), 279–282 (2009).
[Crossref] [PubMed]

Cui, Y.

J. Zhu, Z. Yu, G. F. Burkhard, C.-M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9(1), 279–282 (2009).
[Crossref] [PubMed]

Daglar, B.

A. Yildirim, T. Khudiyev, B. Daglar, H. Budunoglu, A. K. Okyay, and M. Bayindir, “Superhydrophobic and omnidirectional antireflective surfaces from nanostructured ormosil colloids,” ACS Appl. Mater. Interfaces 5(3), 853–860 (2013).
[Crossref] [PubMed]

Datla, R. U.

Z. M. Zhang, L. M. Hanssen, and R. U. Datla, “Polarization-dependent angular reflectance of silicon and germanium in the infrared,” Infrared Phys. Technol. 37(4), 539–546 (1996).

Dean, R.

A. Cadby, R. Dean, A. M. Fox, R. A. L. Jones, and D. G. Lidzey, “Mapping the fluorescence decay lifetime of a conjugated polymer in a phase-separated blend using a scanning near-field optical microscope,” Nano Lett. 5(11), 2232–2237 (2005).
[Crossref] [PubMed]

Dimitrov, N.

J. Erlebacher, M. J. Aziz, A. Karma, N. Dimitrov, and K. Sieradzki, “Evolution of nanoporosity in dealloying,” Nature 410(6827), 450–453 (2001).
[Crossref] [PubMed]

Dinachali, S. S.

H. K. Raut, S. S. Dinachali, Y. C. Loke, R. Ganesan, K. K. Ansah-Antwi, A. Góra, E. H. Khoo, V. A. Ganesh, M. S. M. Saifullah, and S. Ramakrishna, “Multiscale ommatidial arrays with broadband and omnidirectional antireflection and antifogging properties by sacrificial layer mediated nanoimprinting,” ACS Nano 9(2), 1305–1314 (2015).
[Crossref] [PubMed]

Dong, B.

L. Shi, Y. Zhang, B. Dong, T. Zhan, X. Liu, and J. Zi, “Amorphous photonic crystals with only short-range order,” Adv. Mater. 25(37), 5314–5320 (2013).
[Crossref] [PubMed]

Dong, B. Q.

B. Q. Dong, T. R. Zhan, X. H. Liu, L. P. Jiang, F. Liu, X. H. Hu, and J. Zi, “Optical response of a disordered bicontinuous macroporous structure in the longhorn beetle Sphingnotus mirabilis,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 84(1), 011915 (2011).
[Crossref] [PubMed]

Dunbar, A.

S. Ebbens, R. Hodgkinson, A. J. Parnell, A. Dunbar, S. J. Martin, P. D. Topham, N. Clarke, and J. R. Howse, “In Situ imaging and height reconstruction of phase separation processes in polymer blends during spin coating,” ACS Nano 5(6), 5124–5131 (2011).
[Crossref] [PubMed]

Ebbens, S.

S. Ebbens, R. Hodgkinson, A. J. Parnell, A. Dunbar, S. J. Martin, P. D. Topham, N. Clarke, and J. R. Howse, “In Situ imaging and height reconstruction of phase separation processes in polymer blends during spin coating,” ACS Nano 5(6), 5124–5131 (2011).
[Crossref] [PubMed]

Erlebacher, J.

J. Erlebacher, M. J. Aziz, A. Karma, N. Dimitrov, and K. Sieradzki, “Evolution of nanoporosity in dealloying,” Nature 410(6827), 450–453 (2001).
[Crossref] [PubMed]

Fan, S.

J. Zhu, Z. Yu, G. F. Burkhard, C.-M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9(1), 279–282 (2009).
[Crossref] [PubMed]

Fang, L.

L. Fang, M. Wei, C. Barry, and J. Mead, “Effect of spin speed and solution concentration on the directed assembly of polymer blends,” Macromolecules 43(23), 9747–9753 (2010).
[Crossref]

Foletti, S.

D. G. Stavenga, S. Foletti, G. Palasantzas, and K. Arikawa, “Light on the moth-eye corneal nipple array of butterflies,” Proc. Biol. Sci. 273(1587), 661–667 (2006).
[Crossref] [PubMed]

Fox, A. M.

A. Cadby, R. Dean, A. M. Fox, R. A. L. Jones, and D. G. Lidzey, “Mapping the fluorescence decay lifetime of a conjugated polymer in a phase-separated blend using a scanning near-field optical microscope,” Nano Lett. 5(11), 2232–2237 (2005).
[Crossref] [PubMed]

Ganesan, R.

H. K. Raut, S. S. Dinachali, Y. C. Loke, R. Ganesan, K. K. Ansah-Antwi, A. Góra, E. H. Khoo, V. A. Ganesh, M. S. M. Saifullah, and S. Ramakrishna, “Multiscale ommatidial arrays with broadband and omnidirectional antireflection and antifogging properties by sacrificial layer mediated nanoimprinting,” ACS Nano 9(2), 1305–1314 (2015).
[Crossref] [PubMed]

Ganesh, V. A.

H. K. Raut, S. S. Dinachali, Y. C. Loke, R. Ganesan, K. K. Ansah-Antwi, A. Góra, E. H. Khoo, V. A. Ganesh, M. S. M. Saifullah, and S. Ramakrishna, “Multiscale ommatidial arrays with broadband and omnidirectional antireflection and antifogging properties by sacrificial layer mediated nanoimprinting,” ACS Nano 9(2), 1305–1314 (2015).
[Crossref] [PubMed]

H. K. Raut, V. A. Ganesh, A. S. Nair, and S. Ramakrishna, “Anti-reflective coatings: A critical, in-depth review,” Energy Environ. Sci. 4(10), 3779–3804 (2011).
[Crossref]

Gao, J. P.

X. Li, J. P. Gao, L. J. Xue, and Y. C. Han, “Porous polymer films with gradient‐refractive‐index structure for broadband and omnidirectional antireflection coatings,” Adv. Funct. Mater. 20(2), 259–265 (2010).
[Crossref]

Gates, B. D.

S. Harirchian-Saei, M. C. Wang, B. D. Gates, and M. G. Moffitt, “Directed polystyrene/poly(methyl methacrylate) phase separation and nanoparticle ordering on transparent chemically patterned substrates,” Langmuir 28(29), 10838–10848 (2012).
[Crossref] [PubMed]

Giebink, N. C.

Góra, A.

H. K. Raut, S. S. Dinachali, Y. C. Loke, R. Ganesan, K. K. Ansah-Antwi, A. Góra, E. H. Khoo, V. A. Ganesh, M. S. M. Saifullah, and S. Ramakrishna, “Multiscale ommatidial arrays with broadband and omnidirectional antireflection and antifogging properties by sacrificial layer mediated nanoimprinting,” ACS Nano 9(2), 1305–1314 (2015).
[Crossref] [PubMed]

Gösele, U.

Hadobás, K.

K. Hadobás, S. Kirsch, A. Carl, M. Acet, and E. F. Wassermann, “Reflection properties of nanostructure-arrayed silicon surfaces,” Nanotechnology 11(3), 161–164 (2000).
[Crossref]

Han, Y. C.

X. Li, X. H. Yu, and Y. C. Han, “Polymer thin films for antireflection coatings,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(12), 2266–2285 (2013).
[Crossref]

X. Li, J. P. Gao, L. J. Xue, and Y. C. Han, “Porous polymer films with gradient‐refractive‐index structure for broadband and omnidirectional antireflection coatings,” Adv. Funct. Mater. 20(2), 259–265 (2010).
[Crossref]

Hang, L. X.

Y. Q. Pan, L. X. Hang, Z. S. Wu, and Y. B. Yin, “Design and fabrication of ultra broadband infrared antireflection hard coatings on ZnSe in the range from 2 to 16 μm,” Infrared Phys. Technol. 52(5), 193–195 (2009).
[Crossref]

Hanssen, L. M.

Z. M. Zhang, L. M. Hanssen, and R. U. Datla, “Polarization-dependent angular reflectance of silicon and germanium in the infrared,” Infrared Phys. Technol. 37(4), 539–546 (1996).

Harirchian-Saei, S.

S. Harirchian-Saei, M. C. Wang, B. D. Gates, and M. G. Moffitt, “Directed polystyrene/poly(methyl methacrylate) phase separation and nanoparticle ordering on transparent chemically patterned substrates,” Langmuir 28(29), 10838–10848 (2012).
[Crossref] [PubMed]

Helgert, M.

Heyroth, F.

Hilliard, J. E.

J. W. Cahn and J. E. Hilliard, “Free energy of a nonuniform system. I. Interfacial free energy,” J. Chem. Phys. 28(2), 258–267 (1958).
[Crossref]

Hodgkinson, R.

S. Ebbens, R. Hodgkinson, A. J. Parnell, A. Dunbar, S. J. Martin, P. D. Topham, N. Clarke, and J. R. Howse, “In Situ imaging and height reconstruction of phase separation processes in polymer blends during spin coating,” ACS Nano 5(6), 5124–5131 (2011).
[Crossref] [PubMed]

Howse, J. R.

S. Ebbens, R. Hodgkinson, A. J. Parnell, A. Dunbar, S. J. Martin, P. D. Topham, N. Clarke, and J. R. Howse, “In Situ imaging and height reconstruction of phase separation processes in polymer blends during spin coating,” ACS Nano 5(6), 5124–5131 (2011).
[Crossref] [PubMed]

Hsu, C.-M.

J. Zhu, Z. Yu, G. F. Burkhard, C.-M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9(1), 279–282 (2009).
[Crossref] [PubMed]

Hu, X. H.

B. Q. Dong, T. R. Zhan, X. H. Liu, L. P. Jiang, F. Liu, X. H. Hu, and J. Zi, “Optical response of a disordered bicontinuous macroporous structure in the longhorn beetle Sphingnotus mirabilis,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 84(1), 011915 (2011).
[Crossref] [PubMed]

Z. Q. Xiong, F. Y. Zhao, J. Yang, and X. H. Hu, “Comparison of optical absorption in Si nanowire and nanoporous Si structures for photovoltaic applications,” Appl. Phys. Lett. 96(18), 181903 (2010).

Hubbard, G.

Q. Chen, G. Hubbard, P. A. Shields, C. Liu, D. W. E. Allsopp, W. N. Wang, and S. Abbott, “Broadband moth-eye antireflection coatings fabricated by low-cost nanoimprinting,” Appl. Phys. Lett. 94(26), 263118 (2009).
[Crossref]

Hur, Y. H.

D. M. Sim, M. J. Choi, Y. H. Hur, B. Nam, G. Chae, J. H. Park, and Y. S. Jung, “Ultra-high optical transparency of robust, graded-index, and anti-fogging silica coating derived from Si-containing block copolymers,” Adv. Opt. Mater. 1(6), 428–433 (2013).
[Crossref]

Hutley, M. C.

P. B. Clapham and M. C. Hutley, “Reduction of lens reflexion by the “Moth Eye” principle,” Nature 244(5414), 281–282 (1973).
[Crossref]

Ibn-Elhaj, M.

M. Ibn-Elhaj and M. Schadt, “Optical polymer thin films with isotropic and anisotropic nano-corrugated surface topologies,” Nature 410(6830), 796–799 (2001).
[Crossref] [PubMed]

Jannesari, M.

R. Z. Moghadam, H. Ahmadvand, and M. Jannesari, “Design and fabrication of multi-layers infrared antireflection coating consisting of ZnS and Ge on ZnS substrate,” Infrared Phys. Technol. 75, 18–21 (2016).
[Crossref]

Ji, S.

S. Ji, J. Park, and H. Lim, “Improved antireflection properties of moth eye mimicking nanopillars on transparent glass: flat antireflection and color tuning,” Nanoscale 4(15), 4603–4610 (2012).
[Crossref] [PubMed]

Jiang, B.

X. X. Zhang, S. Cai, D. You, L. H. Yan, H. B. Lv, X. D. Yuan, and B. Jiang, “Template-free sol-gel preparation of superhydrophobic ormosil films for double-wavelength broadband antireflective coatings,” Adv. Funct. Mater. 23(35), 4361–4365 (2013).
[Crossref]

W.-L. Min, B. Jiang, and P. Jiang, “Bioinspired self-cleaning antireflection coatings,” Adv. Mater. 20(20), 3914–3918 (2008).
[Crossref]

Jiang, L. P.

B. Q. Dong, T. R. Zhan, X. H. Liu, L. P. Jiang, F. Liu, X. H. Hu, and J. Zi, “Optical response of a disordered bicontinuous macroporous structure in the longhorn beetle Sphingnotus mirabilis,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 84(1), 011915 (2011).
[Crossref] [PubMed]

Jiang, P.

P. Kothary, B. M. Phillips, S.-Y. Leo, and P. Jiang, “Bioinspired broadband midwavelength infrared antireflection coatings on silicon,” J. Vac. Sci. Technol. B 34(4), 041807 (2016).
[Crossref]

W.-L. Min, B. Jiang, and P. Jiang, “Bioinspired self-cleaning antireflection coatings,” Adv. Mater. 20(20), 3914–3918 (2008).
[Crossref]

Jokubavicius, V.

Y. Ou, X. Zhu, V. Jokubavicius, R. Yakimova, N. A. Mortensen, M. Syväjärvi, S. Xiao, and H. Ou, “Broadband antireflection and light extraction enhancement in fluorescent SiC with nanodome structures,” Sci. Rep. 4(1), 4662 (2014).
[Crossref] [PubMed]

Jones, R. A. L.

A. Cadby, R. Dean, A. M. Fox, R. A. L. Jones, and D. G. Lidzey, “Mapping the fluorescence decay lifetime of a conjugated polymer in a phase-separated blend using a scanning near-field optical microscope,” Nano Lett. 5(11), 2232–2237 (2005).
[Crossref] [PubMed]

Joo, W.

W. Joo, M. S. Park, and J. K. Kim, “Block copolymer film with sponge-like nanoporous strucutre for antireflection coating,” Langmuir 22(19), 7960–7963 (2006).
[Crossref] [PubMed]

Jung, Y. S.

D. M. Sim, M. J. Choi, Y. H. Hur, B. Nam, G. Chae, J. H. Park, and Y. S. Jung, “Ultra-high optical transparency of robust, graded-index, and anti-fogging silica coating derived from Si-containing block copolymers,” Adv. Opt. Mater. 1(6), 428–433 (2013).
[Crossref]

Kajiyama, T.

K. Tanaka, A. Takahara, and T. Kajiyama, “Film thickness dependence of the surface structure of immiscible polystyrene/poly (methyl methacrylate) blends,” Macromolecules 29(9), 3232–3239 (1996).
[Crossref]

Karma, A.

J. Erlebacher, M. J. Aziz, A. Karma, N. Dimitrov, and K. Sieradzki, “Evolution of nanoporosity in dealloying,” Nature 410(6827), 450–453 (2001).
[Crossref] [PubMed]

Khoo, E. H.

H. K. Raut, S. S. Dinachali, Y. C. Loke, R. Ganesan, K. K. Ansah-Antwi, A. Góra, E. H. Khoo, V. A. Ganesh, M. S. M. Saifullah, and S. Ramakrishna, “Multiscale ommatidial arrays with broadband and omnidirectional antireflection and antifogging properties by sacrificial layer mediated nanoimprinting,” ACS Nano 9(2), 1305–1314 (2015).
[Crossref] [PubMed]

Khudiyev, T.

A. Yildirim, T. Khudiyev, B. Daglar, H. Budunoglu, A. K. Okyay, and M. Bayindir, “Superhydrophobic and omnidirectional antireflective surfaces from nanostructured ormosil colloids,” ACS Appl. Mater. Interfaces 5(3), 853–860 (2013).
[Crossref] [PubMed]

Kim, J. K.

J. Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. F. Chen, S. Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1(3), 176–179 (2007).
[Crossref]

W. Joo, M. S. Park, and J. K. Kim, “Block copolymer film with sponge-like nanoporous strucutre for antireflection coating,” Langmuir 22(19), 7960–7963 (2006).
[Crossref] [PubMed]

Kirsch, S.

K. Hadobás, S. Kirsch, A. Carl, M. Acet, and E. F. Wassermann, “Reflection properties of nanostructure-arrayed silicon surfaces,” Nanotechnology 11(3), 161–164 (2000).
[Crossref]

Knez, M.

Kothary, P.

P. Kothary, B. M. Phillips, S.-Y. Leo, and P. Jiang, “Bioinspired broadband midwavelength infrared antireflection coatings on silicon,” J. Vac. Sci. Technol. B 34(4), 041807 (2016).
[Crossref]

Krausch, G.

S. Walheim, M. Böltau, J. Mlynek, G. Krausch, and U. Steiner, “Structure formation via polymer demixing in spin-cast films,” Macromolecules 30(17), 4995–5003 (1997).
[Crossref]

Lan, Y.-H.

Lee, J.-H.

Leo, S.-Y.

P. Kothary, B. M. Phillips, S.-Y. Leo, and P. Jiang, “Bioinspired broadband midwavelength infrared antireflection coatings on silicon,” J. Vac. Sci. Technol. B 34(4), 041807 (2016).
[Crossref]

Li, X.

X. Li, X. H. Yu, and Y. C. Han, “Polymer thin films for antireflection coatings,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(12), 2266–2285 (2013).
[Crossref]

X. Li, J. P. Gao, L. J. Xue, and Y. C. Han, “Porous polymer films with gradient‐refractive‐index structure for broadband and omnidirectional antireflection coatings,” Adv. Funct. Mater. 20(2), 259–265 (2010).
[Crossref]

Li, Y. Q.

Y. G. Liao, Z. H. Su, X. G. Ye, Y. Q. Li, J. C. You, T. F. Shi, and L. J. An, “Kinetics of surface phase separation for PMMA/SAN thin films studied by in situ atomic force microscopy,” Macromolecules 38(2), 211–215 (2005).
[Crossref]

Liao, Y. G.

Y. G. Liao, Z. H. Su, X. G. Ye, Y. Q. Li, J. C. You, T. F. Shi, and L. J. An, “Kinetics of surface phase separation for PMMA/SAN thin films studied by in situ atomic force microscopy,” Macromolecules 38(2), 211–215 (2005).
[Crossref]

Lidzey, D. G.

A. Cadby, R. Dean, A. M. Fox, R. A. L. Jones, and D. G. Lidzey, “Mapping the fluorescence decay lifetime of a conjugated polymer in a phase-separated blend using a scanning near-field optical microscope,” Nano Lett. 5(11), 2232–2237 (2005).
[Crossref] [PubMed]

Lim, H.

S. Ji, J. Park, and H. Lim, “Improved antireflection properties of moth eye mimicking nanopillars on transparent glass: flat antireflection and color tuning,” Nanoscale 4(15), 4603–4610 (2012).
[Crossref] [PubMed]

Lin, S. Y.

J. Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. F. Chen, S. Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1(3), 176–179 (2007).
[Crossref]

Liu, C.

Q. Chen, G. Hubbard, P. A. Shields, C. Liu, D. W. E. Allsopp, W. N. Wang, and S. Abbott, “Broadband moth-eye antireflection coatings fabricated by low-cost nanoimprinting,” Appl. Phys. Lett. 94(26), 263118 (2009).
[Crossref]

Liu, F.

B. Q. Dong, T. R. Zhan, X. H. Liu, L. P. Jiang, F. Liu, X. H. Hu, and J. Zi, “Optical response of a disordered bicontinuous macroporous structure in the longhorn beetle Sphingnotus mirabilis,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 84(1), 011915 (2011).
[Crossref] [PubMed]

Liu, W.

J. Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. F. Chen, S. Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1(3), 176–179 (2007).
[Crossref]

Liu, X.

L. Shi, Y. Zhang, B. Dong, T. Zhan, X. Liu, and J. Zi, “Amorphous photonic crystals with only short-range order,” Adv. Mater. 25(37), 5314–5320 (2013).
[Crossref] [PubMed]

Liu, X. H.

B. Q. Dong, T. R. Zhan, X. H. Liu, L. P. Jiang, F. Liu, X. H. Hu, and J. Zi, “Optical response of a disordered bicontinuous macroporous structure in the longhorn beetle Sphingnotus mirabilis,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 84(1), 011915 (2011).
[Crossref] [PubMed]

Loke, Y. C.

H. K. Raut, S. S. Dinachali, Y. C. Loke, R. Ganesan, K. K. Ansah-Antwi, A. Góra, E. H. Khoo, V. A. Ganesh, M. S. M. Saifullah, and S. Ramakrishna, “Multiscale ommatidial arrays with broadband and omnidirectional antireflection and antifogging properties by sacrificial layer mediated nanoimprinting,” ACS Nano 9(2), 1305–1314 (2015).
[Crossref] [PubMed]

Lv, H. B.

X. X. Zhang, S. Cai, D. You, L. H. Yan, H. B. Lv, X. D. Yuan, and B. Jiang, “Template-free sol-gel preparation of superhydrophobic ormosil films for double-wavelength broadband antireflective coatings,” Adv. Funct. Mater. 23(35), 4361–4365 (2013).
[Crossref]

Martin, S. J.

S. Ebbens, R. Hodgkinson, A. J. Parnell, A. Dunbar, S. J. Martin, P. D. Topham, N. Clarke, and J. R. Howse, “In Situ imaging and height reconstruction of phase separation processes in polymer blends during spin coating,” ACS Nano 5(6), 5124–5131 (2011).
[Crossref] [PubMed]

Maxwell Garnett, J. C.

J. C. Maxwell Garnett, “Colours in Metal Glasses and in Metallic Films,” Philos. Trans. R. Soc. Lond. 203(359-371), 385–420 (1904).
[Crossref]

McGehee, M.

J. Zhu, Z. Yu, G. F. Burkhard, C.-M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9(1), 279–282 (2009).
[Crossref] [PubMed]

Mead, J.

L. Fang, M. Wei, C. Barry, and J. Mead, “Effect of spin speed and solution concentration on the directed assembly of polymer blends,” Macromolecules 43(23), 9747–9753 (2010).
[Crossref]

Min, W.-L.

W.-L. Min, B. Jiang, and P. Jiang, “Bioinspired self-cleaning antireflection coatings,” Adv. Mater. 20(20), 3914–3918 (2008).
[Crossref]

Mlynek, J.

S. Walheim, E. Schäffer, J. Mlynek, and U. Steiner, “Nanophase-separated polymer films as high-performance antireflection coatings,” Science 283(5401), 520–522 (1999).
[Crossref] [PubMed]

S. Walheim, M. Böltau, J. Mlynek, G. Krausch, and U. Steiner, “Structure formation via polymer demixing in spin-cast films,” Macromolecules 30(17), 4995–5003 (1997).
[Crossref]

Moffitt, M. G.

S. Harirchian-Saei, M. C. Wang, B. D. Gates, and M. G. Moffitt, “Directed polystyrene/poly(methyl methacrylate) phase separation and nanoparticle ordering on transparent chemically patterned substrates,” Langmuir 28(29), 10838–10848 (2012).
[Crossref] [PubMed]

Moghadam, R. Z.

R. Z. Moghadam, H. Ahmadvand, and M. Jannesari, “Design and fabrication of multi-layers infrared antireflection coating consisting of ZnS and Ge on ZnS substrate,” Infrared Phys. Technol. 75, 18–21 (2016).
[Crossref]

Morris, G. M.

Mortensen, N. A.

Y. Ou, X. Zhu, V. Jokubavicius, R. Yakimova, N. A. Mortensen, M. Syväjärvi, S. Xiao, and H. Ou, “Broadband antireflection and light extraction enhancement in fluorescent SiC with nanodome structures,” Sci. Rep. 4(1), 4662 (2014).
[Crossref] [PubMed]

Nair, A. S.

H. K. Raut, V. A. Ganesh, A. S. Nair, and S. Ramakrishna, “Anti-reflective coatings: A critical, in-depth review,” Energy Environ. Sci. 4(10), 3779–3804 (2011).
[Crossref]

Nam, B.

D. M. Sim, M. J. Choi, Y. H. Hur, B. Nam, G. Chae, J. H. Park, and Y. S. Jung, “Ultra-high optical transparency of robust, graded-index, and anti-fogging silica coating derived from Si-containing block copolymers,” Adv. Opt. Mater. 1(6), 428–433 (2013).
[Crossref]

Okyay, A. K.

A. Yildirim, T. Khudiyev, B. Daglar, H. Budunoglu, A. K. Okyay, and M. Bayindir, “Superhydrophobic and omnidirectional antireflective surfaces from nanostructured ormosil colloids,” ACS Appl. Mater. Interfaces 5(3), 853–860 (2013).
[Crossref] [PubMed]

Ou, H.

Y. Ou, X. Zhu, V. Jokubavicius, R. Yakimova, N. A. Mortensen, M. Syväjärvi, S. Xiao, and H. Ou, “Broadband antireflection and light extraction enhancement in fluorescent SiC with nanodome structures,” Sci. Rep. 4(1), 4662 (2014).
[Crossref] [PubMed]

Ou, Y.

Y. Ou, X. Zhu, V. Jokubavicius, R. Yakimova, N. A. Mortensen, M. Syväjärvi, S. Xiao, and H. Ou, “Broadband antireflection and light extraction enhancement in fluorescent SiC with nanodome structures,” Sci. Rep. 4(1), 4662 (2014).
[Crossref] [PubMed]

Palasantzas, G.

D. G. Stavenga, S. Foletti, G. Palasantzas, and K. Arikawa, “Light on the moth-eye corneal nipple array of butterflies,” Proc. Biol. Sci. 273(1587), 661–667 (2006).
[Crossref] [PubMed]

Pan, Y. Q.

Y. Q. Pan, L. X. Hang, Z. S. Wu, and Y. B. Yin, “Design and fabrication of ultra broadband infrared antireflection hard coatings on ZnSe in the range from 2 to 16 μm,” Infrared Phys. Technol. 52(5), 193–195 (2009).
[Crossref]

Park, J.

S. Ji, J. Park, and H. Lim, “Improved antireflection properties of moth eye mimicking nanopillars on transparent glass: flat antireflection and color tuning,” Nanoscale 4(15), 4603–4610 (2012).
[Crossref] [PubMed]

Park, J. H.

D. M. Sim, M. J. Choi, Y. H. Hur, B. Nam, G. Chae, J. H. Park, and Y. S. Jung, “Ultra-high optical transparency of robust, graded-index, and anti-fogging silica coating derived from Si-containing block copolymers,” Adv. Opt. Mater. 1(6), 428–433 (2013).
[Crossref]

Park, M. S.

W. Joo, M. S. Park, and J. K. Kim, “Block copolymer film with sponge-like nanoporous strucutre for antireflection coating,” Langmuir 22(19), 7960–7963 (2006).
[Crossref] [PubMed]

Parnell, A. J.

S. Ebbens, R. Hodgkinson, A. J. Parnell, A. Dunbar, S. J. Martin, P. D. Topham, N. Clarke, and J. R. Howse, “In Situ imaging and height reconstruction of phase separation processes in polymer blends during spin coating,” ACS Nano 5(6), 5124–5131 (2011).
[Crossref] [PubMed]

Peng, L.-H.

Phillips, B. M.

P. Kothary, B. M. Phillips, S.-Y. Leo, and P. Jiang, “Bioinspired broadband midwavelength infrared antireflection coatings on silicon,” J. Vac. Sci. Technol. B 34(4), 041807 (2016).
[Crossref]

Price, J. S.

Raguin, D. H.

Ramakrishna, S.

H. K. Raut, S. S. Dinachali, Y. C. Loke, R. Ganesan, K. K. Ansah-Antwi, A. Góra, E. H. Khoo, V. A. Ganesh, M. S. M. Saifullah, and S. Ramakrishna, “Multiscale ommatidial arrays with broadband and omnidirectional antireflection and antifogging properties by sacrificial layer mediated nanoimprinting,” ACS Nano 9(2), 1305–1314 (2015).
[Crossref] [PubMed]

H. K. Raut, V. A. Ganesh, A. S. Nair, and S. Ramakrishna, “Anti-reflective coatings: A critical, in-depth review,” Energy Environ. Sci. 4(10), 3779–3804 (2011).
[Crossref]

Raut, H. K.

H. K. Raut, S. S. Dinachali, Y. C. Loke, R. Ganesan, K. K. Ansah-Antwi, A. Góra, E. H. Khoo, V. A. Ganesh, M. S. M. Saifullah, and S. Ramakrishna, “Multiscale ommatidial arrays with broadband and omnidirectional antireflection and antifogging properties by sacrificial layer mediated nanoimprinting,” ACS Nano 9(2), 1305–1314 (2015).
[Crossref] [PubMed]

H. K. Raut, V. A. Ganesh, A. S. Nair, and S. Ramakrishna, “Anti-reflective coatings: A critical, in-depth review,” Energy Environ. Sci. 4(10), 3779–3804 (2011).
[Crossref]

Robeson, L.

L. Robeson, “Historical perspective of advances in the science and technology of polymer blends,” Polymers (Basel) 6(5), 1251–1265 (2014).
[Crossref]

Saifullah, M. S. M.

H. K. Raut, S. S. Dinachali, Y. C. Loke, R. Ganesan, K. K. Ansah-Antwi, A. Góra, E. H. Khoo, V. A. Ganesh, M. S. M. Saifullah, and S. Ramakrishna, “Multiscale ommatidial arrays with broadband and omnidirectional antireflection and antifogging properties by sacrificial layer mediated nanoimprinting,” ACS Nano 9(2), 1305–1314 (2015).
[Crossref] [PubMed]

Schadt, M.

M. Ibn-Elhaj and M. Schadt, “Optical polymer thin films with isotropic and anisotropic nano-corrugated surface topologies,” Nature 410(6830), 796–799 (2001).
[Crossref] [PubMed]

Schäffer, E.

S. Walheim, E. Schäffer, J. Mlynek, and U. Steiner, “Nanophase-separated polymer films as high-performance antireflection coatings,” Science 283(5401), 520–522 (1999).
[Crossref] [PubMed]

Schubert, E. F.

J. Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. F. Chen, S. Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1(3), 176–179 (2007).
[Crossref]

Schubert, M. F.

J. Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. F. Chen, S. Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1(3), 176–179 (2007).
[Crossref]

Shen, J.

J. Zhu, L.-Q. Chen, J. Shen, and V. Tikare, “Coarsening kinetics from a variable-mobility Cahn-Hilliard equation: application of a semi-implicit Fourier spectral method,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 60(44 Pt A), 3564–3572 (1999).
[Crossref] [PubMed]

Shi, L.

L. Shi, Y. Zhang, B. Dong, T. Zhan, X. Liu, and J. Zi, “Amorphous photonic crystals with only short-range order,” Adv. Mater. 25(37), 5314–5320 (2013).
[Crossref] [PubMed]

Shi, T. F.

Y. G. Liao, Z. H. Su, X. G. Ye, Y. Q. Li, J. C. You, T. F. Shi, and L. J. An, “Kinetics of surface phase separation for PMMA/SAN thin films studied by in situ atomic force microscopy,” Macromolecules 38(2), 211–215 (2005).
[Crossref]

Shields, P. A.

Q. Chen, G. Hubbard, P. A. Shields, C. Liu, D. W. E. Allsopp, W. N. Wang, and S. Abbott, “Broadband moth-eye antireflection coatings fabricated by low-cost nanoimprinting,” Appl. Phys. Lett. 94(26), 263118 (2009).
[Crossref]

Sieradzki, K.

J. Erlebacher, M. J. Aziz, A. Karma, N. Dimitrov, and K. Sieradzki, “Evolution of nanoporosity in dealloying,” Nature 410(6827), 450–453 (2001).
[Crossref] [PubMed]

Sim, D. M.

D. M. Sim, M. J. Choi, Y. H. Hur, B. Nam, G. Chae, J. H. Park, and Y. S. Jung, “Ultra-high optical transparency of robust, graded-index, and anti-fogging silica coating derived from Si-containing block copolymers,” Adv. Opt. Mater. 1(6), 428–433 (2013).
[Crossref]

Smart, J. A.

J. Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. F. Chen, S. Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1(3), 176–179 (2007).
[Crossref]

Stavenga, D. G.

D. G. Stavenga, S. Foletti, G. Palasantzas, and K. Arikawa, “Light on the moth-eye corneal nipple array of butterflies,” Proc. Biol. Sci. 273(1587), 661–667 (2006).
[Crossref] [PubMed]

Steiner, U.

S. Walheim, E. Schäffer, J. Mlynek, and U. Steiner, “Nanophase-separated polymer films as high-performance antireflection coatings,” Science 283(5401), 520–522 (1999).
[Crossref] [PubMed]

S. Walheim, M. Böltau, J. Mlynek, G. Krausch, and U. Steiner, “Structure formation via polymer demixing in spin-cast films,” Macromolecules 30(17), 4995–5003 (1997).
[Crossref]

Su, Z. H.

Y. G. Liao, Z. H. Su, X. G. Ye, Y. Q. Li, J. C. You, T. F. Shi, and L. J. An, “Kinetics of surface phase separation for PMMA/SAN thin films studied by in situ atomic force microscopy,” Macromolecules 38(2), 211–215 (2005).
[Crossref]

Syväjärvi, M.

Y. Ou, X. Zhu, V. Jokubavicius, R. Yakimova, N. A. Mortensen, M. Syväjärvi, S. Xiao, and H. Ou, “Broadband antireflection and light extraction enhancement in fluorescent SiC with nanodome structures,” Sci. Rep. 4(1), 4662 (2014).
[Crossref] [PubMed]

Szeghalmi, A.

Takahara, A.

K. Tanaka, A. Takahara, and T. Kajiyama, “Film thickness dependence of the surface structure of immiscible polystyrene/poly (methyl methacrylate) blends,” Macromolecules 29(9), 3232–3239 (1996).
[Crossref]

Takeoka, S.

H. Zhang and S. Takeoka, “Morphological evolution within spin-cast ultrathin polymer blend films clarified by a freestanding method,” Macromolecules 45(10), 4315–4321 (2012).
[Crossref]

Tan, G. J.

Tanaka, K.

K. Tanaka, A. Takahara, and T. Kajiyama, “Film thickness dependence of the surface structure of immiscible polystyrene/poly (methyl methacrylate) blends,” Macromolecules 29(9), 3232–3239 (1996).
[Crossref]

Tikare, V.

J. Zhu, L.-Q. Chen, J. Shen, and V. Tikare, “Coarsening kinetics from a variable-mobility Cahn-Hilliard equation: application of a semi-implicit Fourier spectral method,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 60(44 Pt A), 3564–3572 (1999).
[Crossref] [PubMed]

Topham, P. D.

S. Ebbens, R. Hodgkinson, A. J. Parnell, A. Dunbar, S. J. Martin, P. D. Topham, N. Clarke, and J. R. Howse, “In Situ imaging and height reconstruction of phase separation processes in polymer blends during spin coating,” ACS Nano 5(6), 5124–5131 (2011).
[Crossref] [PubMed]

Walheim, S.

S. Walheim, E. Schäffer, J. Mlynek, and U. Steiner, “Nanophase-separated polymer films as high-performance antireflection coatings,” Science 283(5401), 520–522 (1999).
[Crossref] [PubMed]

S. Walheim, M. Böltau, J. Mlynek, G. Krausch, and U. Steiner, “Structure formation via polymer demixing in spin-cast films,” Macromolecules 30(17), 4995–5003 (1997).
[Crossref]

Wan, J.

J. Zi, J. Wan, and C. Zhang, “Large frequency range of negligible transmission in one-dimensional photonic quantum well structures,” Appl. Phys. Lett. 73(15), 2084–2086 (1998).

Wang, B. M.

Wang, M. C.

S. Harirchian-Saei, M. C. Wang, B. D. Gates, and M. G. Moffitt, “Directed polystyrene/poly(methyl methacrylate) phase separation and nanoparticle ordering on transparent chemically patterned substrates,” Langmuir 28(29), 10838–10848 (2012).
[Crossref] [PubMed]

Wang, Q.

J. Zhu, Z. Yu, G. F. Burkhard, C.-M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9(1), 279–282 (2009).
[Crossref] [PubMed]

Wang, W. N.

Q. Chen, G. Hubbard, P. A. Shields, C. Liu, D. W. E. Allsopp, W. N. Wang, and S. Abbott, “Broadband moth-eye antireflection coatings fabricated by low-cost nanoimprinting,” Appl. Phys. Lett. 94(26), 263118 (2009).
[Crossref]

Wassermann, E. F.

K. Hadobás, S. Kirsch, A. Carl, M. Acet, and E. F. Wassermann, “Reflection properties of nanostructure-arrayed silicon surfaces,” Nanotechnology 11(3), 161–164 (2000).
[Crossref]

Wei, M.

L. Fang, M. Wei, C. Barry, and J. Mead, “Effect of spin speed and solution concentration on the directed assembly of polymer blends,” Macromolecules 43(23), 9747–9753 (2010).
[Crossref]

Wei, M.-K.

Wu, S.-T.

Wu, Z. S.

Y. Q. Pan, L. X. Hang, Z. S. Wu, and Y. B. Yin, “Design and fabrication of ultra broadband infrared antireflection hard coatings on ZnSe in the range from 2 to 16 μm,” Infrared Phys. Technol. 52(5), 193–195 (2009).
[Crossref]

Xi, J. Q.

J. Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. F. Chen, S. Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1(3), 176–179 (2007).
[Crossref]

Xiao, S.

Y. Ou, X. Zhu, V. Jokubavicius, R. Yakimova, N. A. Mortensen, M. Syväjärvi, S. Xiao, and H. Ou, “Broadband antireflection and light extraction enhancement in fluorescent SiC with nanodome structures,” Sci. Rep. 4(1), 4662 (2014).
[Crossref] [PubMed]

Xiong, Z. Q.

Z. Q. Xiong, F. Y. Zhao, J. Yang, and X. H. Hu, “Comparison of optical absorption in Si nanowire and nanoporous Si structures for photovoltaic applications,” Appl. Phys. Lett. 96(18), 181903 (2010).

Xu, Y.

J. Zhu, Z. Yu, G. F. Burkhard, C.-M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9(1), 279–282 (2009).
[Crossref] [PubMed]

Xue, L. J.

X. Li, J. P. Gao, L. J. Xue, and Y. C. Han, “Porous polymer films with gradient‐refractive‐index structure for broadband and omnidirectional antireflection coatings,” Adv. Funct. Mater. 20(2), 259–265 (2010).
[Crossref]

Yakimova, R.

Y. Ou, X. Zhu, V. Jokubavicius, R. Yakimova, N. A. Mortensen, M. Syväjärvi, S. Xiao, and H. Ou, “Broadband antireflection and light extraction enhancement in fluorescent SiC with nanodome structures,” Sci. Rep. 4(1), 4662 (2014).
[Crossref] [PubMed]

Yan, L. H.

X. X. Zhang, S. Cai, D. You, L. H. Yan, H. B. Lv, X. D. Yuan, and B. Jiang, “Template-free sol-gel preparation of superhydrophobic ormosil films for double-wavelength broadband antireflective coatings,” Adv. Funct. Mater. 23(35), 4361–4365 (2013).
[Crossref]

Yang, J.

Z. Q. Xiong, F. Y. Zhao, J. Yang, and X. H. Hu, “Comparison of optical absorption in Si nanowire and nanoporous Si structures for photovoltaic applications,” Appl. Phys. Lett. 96(18), 181903 (2010).

Ye, X. G.

Y. G. Liao, Z. H. Su, X. G. Ye, Y. Q. Li, J. C. You, T. F. Shi, and L. J. An, “Kinetics of surface phase separation for PMMA/SAN thin films studied by in situ atomic force microscopy,” Macromolecules 38(2), 211–215 (2005).
[Crossref]

Yildirim, A.

A. Yildirim, T. Khudiyev, B. Daglar, H. Budunoglu, A. K. Okyay, and M. Bayindir, “Superhydrophobic and omnidirectional antireflective surfaces from nanostructured ormosil colloids,” ACS Appl. Mater. Interfaces 5(3), 853–860 (2013).
[Crossref] [PubMed]

Yin, Y. B.

Y. Q. Pan, L. X. Hang, Z. S. Wu, and Y. B. Yin, “Design and fabrication of ultra broadband infrared antireflection hard coatings on ZnSe in the range from 2 to 16 μm,” Infrared Phys. Technol. 52(5), 193–195 (2009).
[Crossref]

You, D.

X. X. Zhang, S. Cai, D. You, L. H. Yan, H. B. Lv, X. D. Yuan, and B. Jiang, “Template-free sol-gel preparation of superhydrophobic ormosil films for double-wavelength broadband antireflective coatings,” Adv. Funct. Mater. 23(35), 4361–4365 (2013).
[Crossref]

You, J. C.

Y. G. Liao, Z. H. Su, X. G. Ye, Y. Q. Li, J. C. You, T. F. Shi, and L. J. An, “Kinetics of surface phase separation for PMMA/SAN thin films studied by in situ atomic force microscopy,” Macromolecules 38(2), 211–215 (2005).
[Crossref]

Yu, X. H.

X. Li, X. H. Yu, and Y. C. Han, “Polymer thin films for antireflection coatings,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(12), 2266–2285 (2013).
[Crossref]

Yu, Z.

J. Zhu, Z. Yu, G. F. Burkhard, C.-M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9(1), 279–282 (2009).
[Crossref] [PubMed]

Yuan, X. D.

X. X. Zhang, S. Cai, D. You, L. H. Yan, H. B. Lv, X. D. Yuan, and B. Jiang, “Template-free sol-gel preparation of superhydrophobic ormosil films for double-wavelength broadband antireflective coatings,” Adv. Funct. Mater. 23(35), 4361–4365 (2013).
[Crossref]

Zhan, T.

L. Shi, Y. Zhang, B. Dong, T. Zhan, X. Liu, and J. Zi, “Amorphous photonic crystals with only short-range order,” Adv. Mater. 25(37), 5314–5320 (2013).
[Crossref] [PubMed]

Zhan, T. R.

B. Q. Dong, T. R. Zhan, X. H. Liu, L. P. Jiang, F. Liu, X. H. Hu, and J. Zi, “Optical response of a disordered bicontinuous macroporous structure in the longhorn beetle Sphingnotus mirabilis,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 84(1), 011915 (2011).
[Crossref] [PubMed]

Zhang, C.

J. Zi, J. Wan, and C. Zhang, “Large frequency range of negligible transmission in one-dimensional photonic quantum well structures,” Appl. Phys. Lett. 73(15), 2084–2086 (1998).

Zhang, H.

H. Zhang and S. Takeoka, “Morphological evolution within spin-cast ultrathin polymer blend films clarified by a freestanding method,” Macromolecules 45(10), 4315–4321 (2012).
[Crossref]

Zhang, X. X.

X. X. Zhang, S. Cai, D. You, L. H. Yan, H. B. Lv, X. D. Yuan, and B. Jiang, “Template-free sol-gel preparation of superhydrophobic ormosil films for double-wavelength broadband antireflective coatings,” Adv. Funct. Mater. 23(35), 4361–4365 (2013).
[Crossref]

Zhang, Y.

L. Shi, Y. Zhang, B. Dong, T. Zhan, X. Liu, and J. Zi, “Amorphous photonic crystals with only short-range order,” Adv. Mater. 25(37), 5314–5320 (2013).
[Crossref] [PubMed]

Zhang, Z. M.

Z. M. Zhang, L. M. Hanssen, and R. U. Datla, “Polarization-dependent angular reflectance of silicon and germanium in the infrared,” Infrared Phys. Technol. 37(4), 539–546 (1996).

Zhao, F. Y.

Z. Q. Xiong, F. Y. Zhao, J. Yang, and X. H. Hu, “Comparison of optical absorption in Si nanowire and nanoporous Si structures for photovoltaic applications,” Appl. Phys. Lett. 96(18), 181903 (2010).

Zhu, J.

J. Zhu, Z. Yu, G. F. Burkhard, C.-M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9(1), 279–282 (2009).
[Crossref] [PubMed]

J. Zhu, L.-Q. Chen, J. Shen, and V. Tikare, “Coarsening kinetics from a variable-mobility Cahn-Hilliard equation: application of a semi-implicit Fourier spectral method,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 60(44 Pt A), 3564–3572 (1999).
[Crossref] [PubMed]

Zhu, X.

Y. Ou, X. Zhu, V. Jokubavicius, R. Yakimova, N. A. Mortensen, M. Syväjärvi, S. Xiao, and H. Ou, “Broadband antireflection and light extraction enhancement in fluorescent SiC with nanodome structures,” Sci. Rep. 4(1), 4662 (2014).
[Crossref] [PubMed]

Zi, J.

L. Shi, Y. Zhang, B. Dong, T. Zhan, X. Liu, and J. Zi, “Amorphous photonic crystals with only short-range order,” Adv. Mater. 25(37), 5314–5320 (2013).
[Crossref] [PubMed]

B. Q. Dong, T. R. Zhan, X. H. Liu, L. P. Jiang, F. Liu, X. H. Hu, and J. Zi, “Optical response of a disordered bicontinuous macroporous structure in the longhorn beetle Sphingnotus mirabilis,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 84(1), 011915 (2011).
[Crossref] [PubMed]

J. Zi, J. Wan, and C. Zhang, “Large frequency range of negligible transmission in one-dimensional photonic quantum well structures,” Appl. Phys. Lett. 73(15), 2084–2086 (1998).

ACS Appl. Mater. Interfaces (1)

A. Yildirim, T. Khudiyev, B. Daglar, H. Budunoglu, A. K. Okyay, and M. Bayindir, “Superhydrophobic and omnidirectional antireflective surfaces from nanostructured ormosil colloids,” ACS Appl. Mater. Interfaces 5(3), 853–860 (2013).
[Crossref] [PubMed]

ACS Nano (2)

H. K. Raut, S. S. Dinachali, Y. C. Loke, R. Ganesan, K. K. Ansah-Antwi, A. Góra, E. H. Khoo, V. A. Ganesh, M. S. M. Saifullah, and S. Ramakrishna, “Multiscale ommatidial arrays with broadband and omnidirectional antireflection and antifogging properties by sacrificial layer mediated nanoimprinting,” ACS Nano 9(2), 1305–1314 (2015).
[Crossref] [PubMed]

S. Ebbens, R. Hodgkinson, A. J. Parnell, A. Dunbar, S. J. Martin, P. D. Topham, N. Clarke, and J. R. Howse, “In Situ imaging and height reconstruction of phase separation processes in polymer blends during spin coating,” ACS Nano 5(6), 5124–5131 (2011).
[Crossref] [PubMed]

Adv. Funct. Mater. (2)

X. Li, J. P. Gao, L. J. Xue, and Y. C. Han, “Porous polymer films with gradient‐refractive‐index structure for broadband and omnidirectional antireflection coatings,” Adv. Funct. Mater. 20(2), 259–265 (2010).
[Crossref]

X. X. Zhang, S. Cai, D. You, L. H. Yan, H. B. Lv, X. D. Yuan, and B. Jiang, “Template-free sol-gel preparation of superhydrophobic ormosil films for double-wavelength broadband antireflective coatings,” Adv. Funct. Mater. 23(35), 4361–4365 (2013).
[Crossref]

Adv. Mater. (2)

L. Shi, Y. Zhang, B. Dong, T. Zhan, X. Liu, and J. Zi, “Amorphous photonic crystals with only short-range order,” Adv. Mater. 25(37), 5314–5320 (2013).
[Crossref] [PubMed]

W.-L. Min, B. Jiang, and P. Jiang, “Bioinspired self-cleaning antireflection coatings,” Adv. Mater. 20(20), 3914–3918 (2008).
[Crossref]

Adv. Opt. Mater. (1)

D. M. Sim, M. J. Choi, Y. H. Hur, B. Nam, G. Chae, J. H. Park, and Y. S. Jung, “Ultra-high optical transparency of robust, graded-index, and anti-fogging silica coating derived from Si-containing block copolymers,” Adv. Opt. Mater. 1(6), 428–433 (2013).
[Crossref]

Appl. Opt. (2)

Appl. Phys. Lett. (4)

S. A. Boden and D. M. Bagnall, “Tunable reflection minima of nanostructured antireflective surfaces,” Appl. Phys. Lett. 93(13), 133108 (2008).
[Crossref]

Q. Chen, G. Hubbard, P. A. Shields, C. Liu, D. W. E. Allsopp, W. N. Wang, and S. Abbott, “Broadband moth-eye antireflection coatings fabricated by low-cost nanoimprinting,” Appl. Phys. Lett. 94(26), 263118 (2009).
[Crossref]

Z. Q. Xiong, F. Y. Zhao, J. Yang, and X. H. Hu, “Comparison of optical absorption in Si nanowire and nanoporous Si structures for photovoltaic applications,” Appl. Phys. Lett. 96(18), 181903 (2010).

J. Zi, J. Wan, and C. Zhang, “Large frequency range of negligible transmission in one-dimensional photonic quantum well structures,” Appl. Phys. Lett. 73(15), 2084–2086 (1998).

Endeavour (1)

C. G. Bernhard, “Structural and functional adaptation in a visual system,” Endeavour 26, 79–84 (1967).

Energy Environ. Sci. (1)

H. K. Raut, V. A. Ganesh, A. S. Nair, and S. Ramakrishna, “Anti-reflective coatings: A critical, in-depth review,” Energy Environ. Sci. 4(10), 3779–3804 (2011).
[Crossref]

Infrared Phys. Technol. (3)

Y. Q. Pan, L. X. Hang, Z. S. Wu, and Y. B. Yin, “Design and fabrication of ultra broadband infrared antireflection hard coatings on ZnSe in the range from 2 to 16 μm,” Infrared Phys. Technol. 52(5), 193–195 (2009).
[Crossref]

R. Z. Moghadam, H. Ahmadvand, and M. Jannesari, “Design and fabrication of multi-layers infrared antireflection coating consisting of ZnS and Ge on ZnS substrate,” Infrared Phys. Technol. 75, 18–21 (2016).
[Crossref]

Z. M. Zhang, L. M. Hanssen, and R. U. Datla, “Polarization-dependent angular reflectance of silicon and germanium in the infrared,” Infrared Phys. Technol. 37(4), 539–546 (1996).

J. Chem. Phys. (1)

J. W. Cahn and J. E. Hilliard, “Free energy of a nonuniform system. I. Interfacial free energy,” J. Chem. Phys. 28(2), 258–267 (1958).
[Crossref]

J. Mater. Chem. C Mater. Opt. Electron. Devices (1)

X. Li, X. H. Yu, and Y. C. Han, “Polymer thin films for antireflection coatings,” J. Mater. Chem. C Mater. Opt. Electron. Devices 1(12), 2266–2285 (2013).
[Crossref]

J. Vac. Sci. Technol. B (1)

P. Kothary, B. M. Phillips, S.-Y. Leo, and P. Jiang, “Bioinspired broadband midwavelength infrared antireflection coatings on silicon,” J. Vac. Sci. Technol. B 34(4), 041807 (2016).
[Crossref]

Langmuir (2)

W. Joo, M. S. Park, and J. K. Kim, “Block copolymer film with sponge-like nanoporous strucutre for antireflection coating,” Langmuir 22(19), 7960–7963 (2006).
[Crossref] [PubMed]

S. Harirchian-Saei, M. C. Wang, B. D. Gates, and M. G. Moffitt, “Directed polystyrene/poly(methyl methacrylate) phase separation and nanoparticle ordering on transparent chemically patterned substrates,” Langmuir 28(29), 10838–10848 (2012).
[Crossref] [PubMed]

Macromolecules (5)

H. Zhang and S. Takeoka, “Morphological evolution within spin-cast ultrathin polymer blend films clarified by a freestanding method,” Macromolecules 45(10), 4315–4321 (2012).
[Crossref]

K. Tanaka, A. Takahara, and T. Kajiyama, “Film thickness dependence of the surface structure of immiscible polystyrene/poly (methyl methacrylate) blends,” Macromolecules 29(9), 3232–3239 (1996).
[Crossref]

S. Walheim, M. Böltau, J. Mlynek, G. Krausch, and U. Steiner, “Structure formation via polymer demixing in spin-cast films,” Macromolecules 30(17), 4995–5003 (1997).
[Crossref]

Y. G. Liao, Z. H. Su, X. G. Ye, Y. Q. Li, J. C. You, T. F. Shi, and L. J. An, “Kinetics of surface phase separation for PMMA/SAN thin films studied by in situ atomic force microscopy,” Macromolecules 38(2), 211–215 (2005).
[Crossref]

L. Fang, M. Wei, C. Barry, and J. Mead, “Effect of spin speed and solution concentration on the directed assembly of polymer blends,” Macromolecules 43(23), 9747–9753 (2010).
[Crossref]

Nano Lett. (2)

A. Cadby, R. Dean, A. M. Fox, R. A. L. Jones, and D. G. Lidzey, “Mapping the fluorescence decay lifetime of a conjugated polymer in a phase-separated blend using a scanning near-field optical microscope,” Nano Lett. 5(11), 2232–2237 (2005).
[Crossref] [PubMed]

J. Zhu, Z. Yu, G. F. Burkhard, C.-M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical absorption enhancement in amorphous silicon nanowire and nanocone arrays,” Nano Lett. 9(1), 279–282 (2009).
[Crossref] [PubMed]

Nanoscale (1)

S. Ji, J. Park, and H. Lim, “Improved antireflection properties of moth eye mimicking nanopillars on transparent glass: flat antireflection and color tuning,” Nanoscale 4(15), 4603–4610 (2012).
[Crossref] [PubMed]

Nanotechnology (1)

K. Hadobás, S. Kirsch, A. Carl, M. Acet, and E. F. Wassermann, “Reflection properties of nanostructure-arrayed silicon surfaces,” Nanotechnology 11(3), 161–164 (2000).
[Crossref]

Nat. Photonics (1)

J. Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. F. Chen, S. Y. Lin, W. Liu, and J. A. Smart, “Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection,” Nat. Photonics 1(3), 176–179 (2007).
[Crossref]

Nature (3)

P. B. Clapham and M. C. Hutley, “Reduction of lens reflexion by the “Moth Eye” principle,” Nature 244(5414), 281–282 (1973).
[Crossref]

J. Erlebacher, M. J. Aziz, A. Karma, N. Dimitrov, and K. Sieradzki, “Evolution of nanoporosity in dealloying,” Nature 410(6827), 450–453 (2001).
[Crossref] [PubMed]

M. Ibn-Elhaj and M. Schadt, “Optical polymer thin films with isotropic and anisotropic nano-corrugated surface topologies,” Nature 410(6830), 796–799 (2001).
[Crossref] [PubMed]

Optica (2)

Philos. Trans. R. Soc. Lond. (1)

J. C. Maxwell Garnett, “Colours in Metal Glasses and in Metallic Films,” Philos. Trans. R. Soc. Lond. 203(359-371), 385–420 (1904).
[Crossref]

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. (1)

B. Q. Dong, T. R. Zhan, X. H. Liu, L. P. Jiang, F. Liu, X. H. Hu, and J. Zi, “Optical response of a disordered bicontinuous macroporous structure in the longhorn beetle Sphingnotus mirabilis,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 84(1), 011915 (2011).
[Crossref] [PubMed]

Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics (1)

J. Zhu, L.-Q. Chen, J. Shen, and V. Tikare, “Coarsening kinetics from a variable-mobility Cahn-Hilliard equation: application of a semi-implicit Fourier spectral method,” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 60(44 Pt A), 3564–3572 (1999).
[Crossref] [PubMed]

Polymers (Basel) (1)

L. Robeson, “Historical perspective of advances in the science and technology of polymer blends,” Polymers (Basel) 6(5), 1251–1265 (2014).
[Crossref]

Proc. Biol. Sci. (1)

D. G. Stavenga, S. Foletti, G. Palasantzas, and K. Arikawa, “Light on the moth-eye corneal nipple array of butterflies,” Proc. Biol. Sci. 273(1587), 661–667 (2006).
[Crossref] [PubMed]

Sci. Rep. (1)

Y. Ou, X. Zhu, V. Jokubavicius, R. Yakimova, N. A. Mortensen, M. Syväjärvi, S. Xiao, and H. Ou, “Broadband antireflection and light extraction enhancement in fluorescent SiC with nanodome structures,” Sci. Rep. 4(1), 4662 (2014).
[Crossref] [PubMed]

Science (1)

S. Walheim, E. Schäffer, J. Mlynek, and U. Steiner, “Nanophase-separated polymer films as high-performance antireflection coatings,” Science 283(5401), 520–522 (1999).
[Crossref] [PubMed]

Other (6)

P. Klocek, Handbook of Infrared Optical Materials (Marcel Dekker, 1991).

M. Born and E. Wolf, Principles of Optics (Cambridge University, 1999).

H. A. Macleod, Thin-film optical filters (CRC, 2001).

W. Vogel, Glass Chemistry (Springer, 1994).

T. C. Choy, Effective Medium Theory: Principles and Applications (Oxford University, 1999).

E. D. Palik, ed., Handbook of Optical Constants of Solids (Academic, 1985).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1
Fig. 1 (a) Schematic illustration of the process of fabricating Si subwavelength structures, in which phase-separated PS/PMMA blends are used as masks. (b) Optical microscopic image of phase-separated PS pattern after the developing process in (a). Inset is the optical image of a 2-inch Si wafer covered with the phase-separated PS film. (c) SEM image of chromium-coated phase-separated PS pattern after the metal-film-deposition process in (a). (d) SEM image of phase-separated chromium pattern after the redeveloping process in (a), which will be used as the masks for the following ICP-etch process. The PS/PMMA blend in (b)-(d) was prepared by using a molar ratio 1:1 of PS to PMMA and a spin-coating speed of 5000 rpm.
Fig. 2
Fig. 2 (a) SEM image of the fabricated large-area Si subwavelength structure and (b) its enlarged view. Inset in (a) is the optical image of the sample. (c) Oblique and (d) cross-sectional SEM images of the structure in (b). (e) Rationally averaged Fourier transform spectrum for the structure in (a). Inset in (e) is the corresponding two-dimensional Fourier transform spectrum. (f) Transmission spectra of the fabricated single-side structured Si samples with different etching duration time. The transmission spectrum of a double-side polished Si wafer was shown for comparison (black line). The sample in (a-d) was fabricated under the condition of a molar ratio 1:1 of PS to PMMA, a spin-coating speed of 5000 rpm and etching duration time for 2 min.
Fig. 3
Fig. 3 (a)-(d) SEM images of Si subwavelength structures fabricated by using masks prepared at four different spin-coating speeds: (a) 1000 rpm, (b) 3000 rpm, (c) 6000 rpm and (d) 8000 rpm. (e) Rationally averaged Fourier transform spectra for the structures in (a)-(d). (f) Transmission spectra of the fabricated single-side structured Si samples by using masks prepared at different spin-coating speeds (from 1000 to 8000 rpm). The molar ratio of PS to PMMA 1:1 was used for these samples and the etching duration time was fixed at 1 min.
Fig. 4
Fig. 4 (a) The schematic phase diagram for binary polymer blend. (b) Numerically generated phase-separated patterns for binary polymer blends with three different ratios, where C is the ratio of one polymer in the blend. (c) SEM images of fabricated phase-separated chromium patterns by using three different molar ratios of PS to PMMA.
Fig. 5
Fig. 5 (a)-(h) SEM images of Si subwavelength structures fabricated by using masks prepared with eight different molar ratios of PS to PMMA. The molar ratios are shown at the upper-right corners of the images. (i) Transmission spectra for the single-side structured samples in (a)-(h). The ideal maximum transmittance of 70% is also shown for comparison (the gray dot line). (j) Effective refractive indices retrieved for twelve samples. Sample markers 1-12 represent the samples fabricated with molar ratios of PS to PMMA of 1:6, 1:5, 1:4, 1:3, 1:2, 1:1.7, 1:1.4, 1:1, 1.4:1, 1.7:1, 2:1, 3:1, respectively.
Fig. 6
Fig. 6 (a) Transmission spectrum of the double-side structured Si wafer. Each side structure was fabricated by using the same condition as the one in Fig. 5(a). (b) Cross-sectional SEM images for the two sides of the structured Si wafer. (c) Mid-IR thermal image of a working radiator. Inset is its optical image. (d) Mid-IR thermal image for a double-sided polished (left, rectangular) and the double-sided structured (right, sectorial) Si wafer in Fig. (a) on the working radiator. Inset is the optical image. The gray area in (a) is the spectral range of the used IR thermal camera.
Fig. 7
Fig. 7 (a) Angle resolved IR transmission spectra for the double-side structured Si sample in Fig. 6. (b) The IR transmission spectra for the same sample processed at different high temperatures. (c)-(e) Optical images of the fabricated subwavelength structured Si samples (left in each image) processed at different temperatures: (c) Original, (d) 400 °C and (e) 600 °C. The commercial 3-5 μm coated Si (right in each image) IR window (Edmund Optics, 68-524) processed at the same temperatures are also shown for comparision.
Fig. 8
Fig. 8 (a) SEM images of the phase-separated PS pattern after scratching off a part for observing the film thickness. (b) Thickness curves of the phase-separated PS film measured by a profilometer.
Fig. 9
Fig. 9 (a)-(f) Optical microscopic images of the phase-separated PS patterns prepared with different spin-coating speeds: 1000 rpm, 2000 rpm, 3000 rpm, 6000 rpm, 7000 rpm and 8000 rpm.
Fig. 10
Fig. 10 (a)-(f) SEM images of Si subwavelength structures fabricated by using masks prepared at six different spin-coating speeds: (a) 1000 rpm, (b) 2000 rpm, (c) 3000 rpm, (d) 6000 rpm, (e) 7000 rpm and (f) 8000 rpm. (g) Rationally averaged Fourier transform spectra for the structures in (a)-(f). The molar ratio of PS to PMMA 1:1 was used for these samples and the etching duration time was fixed at 1 min.
Fig. 11
Fig. 11 Oblique SEM images of the samples fabricated by using masks prepared at two different spin-coating speeds (left: 3000 rpm, right: 7000 rpm).
Fig. 12
Fig. 12 (a)-(c) SEM images of the fabricated Si subwavelength structures by using masks prepared at molar ratios of PS to PMMA 1:6, 1:5 and 1:4. These samples have the same fabrication condition (spin-coating speed and etching duration time) with the samples in Figs. 5(a)-(h).
Fig. 13
Fig. 13 (a) Measured transmission spectra and (b) transmission enhancement spectra for the fabricated subwavelength structured samples in Fig. 5.
Fig. 14
Fig. 14 (a) The thicknesses retrieved for twelve samples. Sample markers 1-12 represent the samples fabricated with molar ratios of PS to PMMA of 1:6, 1:5, 1:4, 1:3, 1:2, 1:1.7, 1:1.4, 1:1, 1.4:1, 1.7:1, 2:1, 3:1, respectively. (b)-(d) Cross-sectional SEM images of the samples fabricated with molar ratios of PS to PMMA 1:3, 1:1 and 2:1, respectively.
Fig. 15
Fig. 15 (a) Enhanced transmission spectrum for Fig. 2(f) replotted with the wavenumber renormalized by the wavenumbers of transmission peaks. v is the wavenumber and v0 is the wavenumber of transmission peak. (b) and (c) are the same as (a), but for Fig. 3(f) and Fig. 5(i), respectively.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

R= R 1 + T 1 2 R 2 1 R 1 R 2 , T= T 1 T 2 1 R 1 R 2 .
R 1 = T 1 4 n Si | (1 n Si )C+i( n e n Si n e )S | 2 , T 1 =4 n Si | (1+ n Si )Ci( n e + n Si n e )S | 2 .
R 2 = ( 1 n Si 1+ n Si ) 2 , T 2 = 4 n Si (1+ n Si ) 2 .

Metrics