Abstract

In this work, a partially etched chirped fiber Bragg grating (pECFBG) is introduced, as a compact sensor for multi-parametric measurement of temperature, thermal gradients over the active length, and refractive index. The sensor is fabricated by wet-etching a portion of a 14-mm linearly chirped FBG with linear chirp profile. The resulting device has two active areas: the unetched part of the grating (2 mm) can be used either as a uniform temperature sensor, or to detect thermal gradients experienced through the grating length by means of a spectral reconstruction technique; the etched part (12 mm), besides having a similar thermal sensitivity, is exposed to refractive index sensing through the introduction of a sensitivity to external refractive index. Overall, the pECFBG structure behaves as a compact sensor with multi-parameter capability, that can both measure temperature and refractive index on the same grating, but also spatially resolve temperature detection through the grating section. The results have been validated through both a model and experimental setup, showing that the mutual correlation algorithm applied to different spectral parts of the grating is able to discriminate between uniform and gradient-shaped temperature profiles, and refractive index changes.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Method of simultaneous measurement of two direction force and temperature using FBG sensor head

Piotr Kisała and Sławomir Cięszczyk
Appl. Opt. 54(10) 2677-2687 (2015)

Characterization of strong fiber Bragg gratings using an applied thermal chirp and iterative algorithm

Gary A. Miller, John R. Peele, Charles G. Askins, and Geoffrey A. Cranch
Appl. Opt. 50(36) 6617-6626 (2011)

Temperature insensitive measurements of static displacements using a fiber Bragg grating

Yinian Zhu, Ping Shum, Chao Lu, M. B. Lacquet, P. L. Swart, A. A. Chtcherbakov, and S. J. Spammer
Opt. Express 11(16) 1918-1924 (2003)

References

  • View by:
  • |
  • |
  • |

  1. A. Othonos and K. Kalli, Fiber Bragg Gratings: Fundamentals and Applications in Telecommunications and Sensing (Artech House, 1999).
  2. D. Tosi, E. Schena, C. Molardi, and S. Korganbayev, “Fiber optic sensors for sub-centimeter spatially resolved measurements: review and biomedical applications,” Opt. Fiber Technol. 43, 6–19 (2018).
    [Crossref]
  3. J. W. Arkwright, I. D. Underhill, S. A. Maunder, N. Blenman, M. M. Szczesniak, L. Wiklendt, I. J. Cook, D. Z. Lubowski, and P. G. Dinning, “Design of a high-sensor count fibre optic manometry catheter for in-vivo colonic diagnostics,” Opt. Express 17(25), 22423–22431 (2009).
    [Crossref] [PubMed]
  4. J. W. Arkwright, N. G. Blenman, I. D. Underhill, S. A. Maunder, M. M. Szczesniak, P. G. Dinning, and I. J. Cook, “In-vivo demonstration of a high resolution optical fiber manometry catheter for diagnosis of gastrointestinal motility disorders,” Opt. Express 17(6), 4500–4508 (2009).
    [Crossref] [PubMed]
  5. S. Korganbayev, Y. Orazayev, S. Sovetov, A. Bazyl, E. Schena, C. Massaroni, R. Gassino, A. Vallan, G. Perrone, P. Saccomandi, M. Arturo Caponero, G. Palumbo, S. Campopiano, A. Iadicicco, and D. Tosi, “Detection of thermal gradients through fiber-optic chirped fiber Bragg grating (CFBG): medical thermal ablation scenario,” Opt. Fiber Technol. 41, 48–55 (2018).
    [Crossref]
  6. G. Palumbo, D. Tosi, A. Iadicicco, and S. Campopiano, “Analysis and design of chirped fiber Bragg grating for temperature sensing for possible biomedical applications,” IEEE Photonics J. 10(3), 1–15 (2018).
    [Crossref]
  7. S. Ambastha, S. Umesh, S. Dabir, and S. Asokan, “Spinal needle force monitoring during lumbar puncture using fiber Bragg grating force device,” J. Biomed. Opt. 21(11), 117002 (2016).
    [Crossref] [PubMed]
  8. B. Carotenuto, A. Micco, A. Ricciardi, E. Amorizzo, M. Mercieri, A. Cutolo, and A. Cusano, “Optical guidance systems for epidural space identification,” IEEE J. Sel. Top. Quantum Electron. 23(2), 371–379 (2017).
    [Crossref]
  9. S. Sridevi, K. Vasu, N. Jayaraman, S. Asokan, and A. Sood, “Optical bio-sensing devices based on etched fiber Bragg gratings coated with carbon nanotubes and graphene oxide along with a specific dendrimer,” Sensor. Actuat. Biol. Chem. 195, 150–155 (2014).
  10. J. Burgmeier, A. Feizpour, W. Schade, and B. M. Reinhard, “Plasmonic nanoshell functionalized etched fiber Bragg gratings for highly sensitive refractive index measurements,” Opt. Lett. 40(4), 546–549 (2015).
    [Crossref] [PubMed]
  11. C. Ribaut, M. Loyez, J.-C. Larrieu, S. Chevineau, P. Lambert, M. Remmelink, R. Wattiez, and C. Caucheteur, “Cancer biomarker sensing using packaged plasmonic optical fiber gratings: towards in vivo diagnosis,” Biosens. Bioelectron. 92, 449–456 (2017).
    [Crossref] [PubMed]
  12. C. Ribaut, V. Voisin, V. Malachovská, V. Dubois, P. Mégret, R. Wattiez, and C. Caucheteur, “Small biomolecule immunosensing with plasmonic optical fiber grating sensor,” Biosens. Bioelectron. 77, 315–322 (2016).
    [Crossref] [PubMed]
  13. S. Oh, W. Han, U. Paek, and Y. Chung, “Discrimination of temperature and strain with a single FBG based on the birefringence effect,” Opt. Express 12(4), 724–729 (2004).
    [Crossref] [PubMed]
  14. C. Marques, P. Antunes, P. Mergo, D. Webb, and P. André, “Chirped Bragg gratings in PMMA step-index polymer optical fiber,” IEEE Photonics Technol. Lett. 29(6), 500–503 (2017).
    [Crossref]
  15. A. Iadicicco, A. Cusano, S. Campopiano, A. Cutolo, and M. Giordano, “Thinned fiber Bragg gratings as refractive index sensors,” IEEE Sens. J. 5(6), 1288–1295 (2005).
    [Crossref]
  16. F. Chiavaioli, F. Baldini, S. Tombelli, C. Trono, and A. Giannetti, “Biosensing with optical fiber gratings,” Nanophotonics 6(4), 663–679 (2017).
    [Crossref]
  17. C. Caucheteur, T. Guo, and J. Albert, “Polarization-assisted fiber Bragg grating sensors: tutorial and review,” J. Lightwave Technol. 35(16), 3311–3322 (2017).
    [Crossref]
  18. D. Tosi, E. G. Macchi, M. Gallati, G. Braschi, A. Cigada, S. Rossi, G. Leen, and E. Lewis, “Fiber-optic chirped FBG for distributed thermal monitoring of ex-vivo radiofrequency ablation of liver,” Biomed. Opt. Express 5(6), 1799–1811 (2014).
    [Crossref] [PubMed]
  19. P. Saccomandi, A. Varalda, R. Gassino, D. Tosi, C. Massaroni, M. A. Caponero, R. Pop, S. Korganbayev, G. Perrone, M. Diana, A. Vallan, G. Costamagna, J. Marescaux, and E. Schena, “Linearly chirped fiber Bragg grating response to thermal gradient: from bench tests to the real-time assessment during in vivo laser ablations of biological tissue,” J. Biomed. Opt. 22(9), 1–9 (2017).
    [Crossref] [PubMed]
  20. C. Viphavakit, S. O'Keeffe, S. Andersson-Engels, and E. Lewis, “Gold-coated Fabry-Pérot based optical fiber sensor for monitoring hypoxic state of the tumor from the change of refractive index in red blood cells,” Proc. IEEE Sens. 1–3 (IEEE 2017)
  21. X. Zou, N. Wu, Y. Tian, J. Ouyang, K. Barringhaus, and X. Wang, “Miniature Fabry–Perot fiber optic sensor for intravascular blood temperature measurements,” IEEE Sens. J. 13(6), 2155–2160 (2013).
    [Crossref]
  22. F. Ouellette, P. Krug, T. Stephens, G. Dhosi, and B. Eggleton, “Broadband and WDM dispersion compensation using chirped sampled fibre Bragg gratings,” Electron. Lett. 31(11), 899–901 (1995).
    [Crossref]
  23. M. Putnam, G. Williams, and E. Friebele, “Fabrication of tapered, strain-gradient chirped fibre Bragg gratings,” Electron. Lett. 31(4), 309–310 (1995).
    [Crossref]
  24. H.-Y. Chang, Y.-C. Chang, H.-J. Sheng, M.-Y. Fu, W.-F. Liu, and R. Kashyap, “An ultra-sensitive liquid-level indicator based on an etched chirped-fiber Bragg grating,” IEEE Photonics Technol. Lett. 28(3), 268–271 (2016).
    [Crossref]
  25. H.-Y. Chang, Y.-C. Chang, and W.-F. Liu, “A highly sensitive two-dimensional inclinometer based on two etched chirped-fiber-grating arrays,” Sensors (Basel) 17(12), 2922 (2017).
    [Crossref] [PubMed]
  26. S.-M. Lee, S. S. Saini, and M.-Y. Jeong, “Simultaneous measurement of refractive index, temperature, and strain using etched-core fiber Bragg grating sensors,” IEEE Photonics Technol. Lett. 22(19), 1431–1433 (2010).
    [Crossref]
  27. T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15(8), 1277–1294 (1997).
    [Crossref]
  28. R. Min, B. Ortega, and C. Marques, “Fabrication of tunable chirped mPOF Bragg gratings using a uniform phase mask,” Opt. Express 26(4), 4411–4420 (2018).
    [Crossref] [PubMed]
  29. J. Albert, L. Y. Shao, and C. Caucheteur, “Tilted fiber Bragg grating sensors,” Laser Photonics Rev. 7(1), 83–108 (2013).
    [Crossref]
  30. C. Chen, C. Caucheteur, P. Megret, and J. Albert, “The sensitivity characteristics of tilted fibre Bragg grating sensors with different cladding thicknesses,” Meas. Sci. Technol. 18(10), 3117–3122 (2007).
    [Crossref]
  31. J. Skaar, L. Wang, and T. Erdogan, “On the synthesis of fiber Bragg gratings by layer peeling,” IEEE J. Quantum Electron. 37(2), 165–173 (2001).
    [Crossref]
  32. X.-F. Huang, Z.-M. Chen, L.-Y. Shao, K.-F. Cen, D.-R. Sheng, J. Chen, and H. Zhou, “Design and characteristics of refractive index sensor based on thinned and microstructure fiber Bragg grating,” Appl. Opt. 47(4), 504–511 (2008).
    [Crossref] [PubMed]
  33. B. Soller, D. Gifford, M. Wolfe, and M. Froggatt, “High resolution optical frequency domain reflectometry for characterization of components and assemblies,” Opt. Express 13(2), 666–674 (2005).
    [Crossref] [PubMed]
  34. K. O. Hill, F. Bilodeau, B. Malo, T. Kitagawa, S. Thériault, D. C. Johnson, J. Albert, and K. Takiguchi, “Chirped in-fiber Bragg gratings for compensation of optical-fiber dispersion,” Opt. Lett. 19(17), 1314–1316 (1994).
    [Crossref] [PubMed]
  35. M. Shaimerdenova, A. Bekmurzayeva, M. Sypabekova, and D. Tosi, “Interrogation of coarsely sampled tilted fiber Bragg grating (TFBG) sensors with KLT,” Opt. Express 25(26), 33487 (2017).
    [Crossref]
  36. C. Caucheteur, K. Chah, F. Lhommé, M. Blondel, and P. Mégret, “Autocorrelation demodulation technique for fiber Bragg grating sensor,” IEEE Photonics Technol. Lett. 16(10), 2320–2322 (2004).
    [Crossref]
  37. D. Tosi, “Review and analysis of peak tracking techniques for fiber Bragg grating sensors,” Sensors (Basel) 17(10), 2368 (2017).
    [Crossref] [PubMed]
  38. C. L. Lee, H. Y. Ho, J. H. Gu, T. Y. Yeh, and C. H. Tseng, “Dual hollow core fiber-based Fabry-Perot interferometer for measuring the thermo-optic coefficients of liquids,” Opt. Lett. 40(4), 459–462 (2015).
    [Crossref] [PubMed]
  39. R. Min, C. Marques, K. Nielsen, O. Bang, and B. Ortega, “Fast inscription of long period gratings in microstructured polymer optical fibers,” IEEE Sens. J. 18(5), 1919–1923 (2018).
    [Crossref]

2018 (5)

D. Tosi, E. Schena, C. Molardi, and S. Korganbayev, “Fiber optic sensors for sub-centimeter spatially resolved measurements: review and biomedical applications,” Opt. Fiber Technol. 43, 6–19 (2018).
[Crossref]

S. Korganbayev, Y. Orazayev, S. Sovetov, A. Bazyl, E. Schena, C. Massaroni, R. Gassino, A. Vallan, G. Perrone, P. Saccomandi, M. Arturo Caponero, G. Palumbo, S. Campopiano, A. Iadicicco, and D. Tosi, “Detection of thermal gradients through fiber-optic chirped fiber Bragg grating (CFBG): medical thermal ablation scenario,” Opt. Fiber Technol. 41, 48–55 (2018).
[Crossref]

G. Palumbo, D. Tosi, A. Iadicicco, and S. Campopiano, “Analysis and design of chirped fiber Bragg grating for temperature sensing for possible biomedical applications,” IEEE Photonics J. 10(3), 1–15 (2018).
[Crossref]

R. Min, B. Ortega, and C. Marques, “Fabrication of tunable chirped mPOF Bragg gratings using a uniform phase mask,” Opt. Express 26(4), 4411–4420 (2018).
[Crossref] [PubMed]

R. Min, C. Marques, K. Nielsen, O. Bang, and B. Ortega, “Fast inscription of long period gratings in microstructured polymer optical fibers,” IEEE Sens. J. 18(5), 1919–1923 (2018).
[Crossref]

2017 (9)

D. Tosi, “Review and analysis of peak tracking techniques for fiber Bragg grating sensors,” Sensors (Basel) 17(10), 2368 (2017).
[Crossref] [PubMed]

M. Shaimerdenova, A. Bekmurzayeva, M. Sypabekova, and D. Tosi, “Interrogation of coarsely sampled tilted fiber Bragg grating (TFBG) sensors with KLT,” Opt. Express 25(26), 33487 (2017).
[Crossref]

H.-Y. Chang, Y.-C. Chang, and W.-F. Liu, “A highly sensitive two-dimensional inclinometer based on two etched chirped-fiber-grating arrays,” Sensors (Basel) 17(12), 2922 (2017).
[Crossref] [PubMed]

B. Carotenuto, A. Micco, A. Ricciardi, E. Amorizzo, M. Mercieri, A. Cutolo, and A. Cusano, “Optical guidance systems for epidural space identification,” IEEE J. Sel. Top. Quantum Electron. 23(2), 371–379 (2017).
[Crossref]

C. Ribaut, M. Loyez, J.-C. Larrieu, S. Chevineau, P. Lambert, M. Remmelink, R. Wattiez, and C. Caucheteur, “Cancer biomarker sensing using packaged plasmonic optical fiber gratings: towards in vivo diagnosis,” Biosens. Bioelectron. 92, 449–456 (2017).
[Crossref] [PubMed]

C. Marques, P. Antunes, P. Mergo, D. Webb, and P. André, “Chirped Bragg gratings in PMMA step-index polymer optical fiber,” IEEE Photonics Technol. Lett. 29(6), 500–503 (2017).
[Crossref]

F. Chiavaioli, F. Baldini, S. Tombelli, C. Trono, and A. Giannetti, “Biosensing with optical fiber gratings,” Nanophotonics 6(4), 663–679 (2017).
[Crossref]

C. Caucheteur, T. Guo, and J. Albert, “Polarization-assisted fiber Bragg grating sensors: tutorial and review,” J. Lightwave Technol. 35(16), 3311–3322 (2017).
[Crossref]

P. Saccomandi, A. Varalda, R. Gassino, D. Tosi, C. Massaroni, M. A. Caponero, R. Pop, S. Korganbayev, G. Perrone, M. Diana, A. Vallan, G. Costamagna, J. Marescaux, and E. Schena, “Linearly chirped fiber Bragg grating response to thermal gradient: from bench tests to the real-time assessment during in vivo laser ablations of biological tissue,” J. Biomed. Opt. 22(9), 1–9 (2017).
[Crossref] [PubMed]

2016 (3)

C. Ribaut, V. Voisin, V. Malachovská, V. Dubois, P. Mégret, R. Wattiez, and C. Caucheteur, “Small biomolecule immunosensing with plasmonic optical fiber grating sensor,” Biosens. Bioelectron. 77, 315–322 (2016).
[Crossref] [PubMed]

S. Ambastha, S. Umesh, S. Dabir, and S. Asokan, “Spinal needle force monitoring during lumbar puncture using fiber Bragg grating force device,” J. Biomed. Opt. 21(11), 117002 (2016).
[Crossref] [PubMed]

H.-Y. Chang, Y.-C. Chang, H.-J. Sheng, M.-Y. Fu, W.-F. Liu, and R. Kashyap, “An ultra-sensitive liquid-level indicator based on an etched chirped-fiber Bragg grating,” IEEE Photonics Technol. Lett. 28(3), 268–271 (2016).
[Crossref]

2015 (2)

2014 (2)

S. Sridevi, K. Vasu, N. Jayaraman, S. Asokan, and A. Sood, “Optical bio-sensing devices based on etched fiber Bragg gratings coated with carbon nanotubes and graphene oxide along with a specific dendrimer,” Sensor. Actuat. Biol. Chem. 195, 150–155 (2014).

D. Tosi, E. G. Macchi, M. Gallati, G. Braschi, A. Cigada, S. Rossi, G. Leen, and E. Lewis, “Fiber-optic chirped FBG for distributed thermal monitoring of ex-vivo radiofrequency ablation of liver,” Biomed. Opt. Express 5(6), 1799–1811 (2014).
[Crossref] [PubMed]

2013 (2)

X. Zou, N. Wu, Y. Tian, J. Ouyang, K. Barringhaus, and X. Wang, “Miniature Fabry–Perot fiber optic sensor for intravascular blood temperature measurements,” IEEE Sens. J. 13(6), 2155–2160 (2013).
[Crossref]

J. Albert, L. Y. Shao, and C. Caucheteur, “Tilted fiber Bragg grating sensors,” Laser Photonics Rev. 7(1), 83–108 (2013).
[Crossref]

2010 (1)

S.-M. Lee, S. S. Saini, and M.-Y. Jeong, “Simultaneous measurement of refractive index, temperature, and strain using etched-core fiber Bragg grating sensors,” IEEE Photonics Technol. Lett. 22(19), 1431–1433 (2010).
[Crossref]

2009 (2)

2008 (1)

2007 (1)

C. Chen, C. Caucheteur, P. Megret, and J. Albert, “The sensitivity characteristics of tilted fibre Bragg grating sensors with different cladding thicknesses,” Meas. Sci. Technol. 18(10), 3117–3122 (2007).
[Crossref]

2005 (2)

B. Soller, D. Gifford, M. Wolfe, and M. Froggatt, “High resolution optical frequency domain reflectometry for characterization of components and assemblies,” Opt. Express 13(2), 666–674 (2005).
[Crossref] [PubMed]

A. Iadicicco, A. Cusano, S. Campopiano, A. Cutolo, and M. Giordano, “Thinned fiber Bragg gratings as refractive index sensors,” IEEE Sens. J. 5(6), 1288–1295 (2005).
[Crossref]

2004 (2)

S. Oh, W. Han, U. Paek, and Y. Chung, “Discrimination of temperature and strain with a single FBG based on the birefringence effect,” Opt. Express 12(4), 724–729 (2004).
[Crossref] [PubMed]

C. Caucheteur, K. Chah, F. Lhommé, M. Blondel, and P. Mégret, “Autocorrelation demodulation technique for fiber Bragg grating sensor,” IEEE Photonics Technol. Lett. 16(10), 2320–2322 (2004).
[Crossref]

2001 (1)

J. Skaar, L. Wang, and T. Erdogan, “On the synthesis of fiber Bragg gratings by layer peeling,” IEEE J. Quantum Electron. 37(2), 165–173 (2001).
[Crossref]

1997 (1)

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15(8), 1277–1294 (1997).
[Crossref]

1995 (2)

F. Ouellette, P. Krug, T. Stephens, G. Dhosi, and B. Eggleton, “Broadband and WDM dispersion compensation using chirped sampled fibre Bragg gratings,” Electron. Lett. 31(11), 899–901 (1995).
[Crossref]

M. Putnam, G. Williams, and E. Friebele, “Fabrication of tapered, strain-gradient chirped fibre Bragg gratings,” Electron. Lett. 31(4), 309–310 (1995).
[Crossref]

1994 (1)

Albert, J.

C. Caucheteur, T. Guo, and J. Albert, “Polarization-assisted fiber Bragg grating sensors: tutorial and review,” J. Lightwave Technol. 35(16), 3311–3322 (2017).
[Crossref]

J. Albert, L. Y. Shao, and C. Caucheteur, “Tilted fiber Bragg grating sensors,” Laser Photonics Rev. 7(1), 83–108 (2013).
[Crossref]

C. Chen, C. Caucheteur, P. Megret, and J. Albert, “The sensitivity characteristics of tilted fibre Bragg grating sensors with different cladding thicknesses,” Meas. Sci. Technol. 18(10), 3117–3122 (2007).
[Crossref]

K. O. Hill, F. Bilodeau, B. Malo, T. Kitagawa, S. Thériault, D. C. Johnson, J. Albert, and K. Takiguchi, “Chirped in-fiber Bragg gratings for compensation of optical-fiber dispersion,” Opt. Lett. 19(17), 1314–1316 (1994).
[Crossref] [PubMed]

Ambastha, S.

S. Ambastha, S. Umesh, S. Dabir, and S. Asokan, “Spinal needle force monitoring during lumbar puncture using fiber Bragg grating force device,” J. Biomed. Opt. 21(11), 117002 (2016).
[Crossref] [PubMed]

Amorizzo, E.

B. Carotenuto, A. Micco, A. Ricciardi, E. Amorizzo, M. Mercieri, A. Cutolo, and A. Cusano, “Optical guidance systems for epidural space identification,” IEEE J. Sel. Top. Quantum Electron. 23(2), 371–379 (2017).
[Crossref]

André, P.

C. Marques, P. Antunes, P. Mergo, D. Webb, and P. André, “Chirped Bragg gratings in PMMA step-index polymer optical fiber,” IEEE Photonics Technol. Lett. 29(6), 500–503 (2017).
[Crossref]

Antunes, P.

C. Marques, P. Antunes, P. Mergo, D. Webb, and P. André, “Chirped Bragg gratings in PMMA step-index polymer optical fiber,” IEEE Photonics Technol. Lett. 29(6), 500–503 (2017).
[Crossref]

Arkwright, J. W.

Arturo Caponero, M.

S. Korganbayev, Y. Orazayev, S. Sovetov, A. Bazyl, E. Schena, C. Massaroni, R. Gassino, A. Vallan, G. Perrone, P. Saccomandi, M. Arturo Caponero, G. Palumbo, S. Campopiano, A. Iadicicco, and D. Tosi, “Detection of thermal gradients through fiber-optic chirped fiber Bragg grating (CFBG): medical thermal ablation scenario,” Opt. Fiber Technol. 41, 48–55 (2018).
[Crossref]

Asokan, S.

S. Ambastha, S. Umesh, S. Dabir, and S. Asokan, “Spinal needle force monitoring during lumbar puncture using fiber Bragg grating force device,” J. Biomed. Opt. 21(11), 117002 (2016).
[Crossref] [PubMed]

S. Sridevi, K. Vasu, N. Jayaraman, S. Asokan, and A. Sood, “Optical bio-sensing devices based on etched fiber Bragg gratings coated with carbon nanotubes and graphene oxide along with a specific dendrimer,” Sensor. Actuat. Biol. Chem. 195, 150–155 (2014).

Baldini, F.

F. Chiavaioli, F. Baldini, S. Tombelli, C. Trono, and A. Giannetti, “Biosensing with optical fiber gratings,” Nanophotonics 6(4), 663–679 (2017).
[Crossref]

Bang, O.

R. Min, C. Marques, K. Nielsen, O. Bang, and B. Ortega, “Fast inscription of long period gratings in microstructured polymer optical fibers,” IEEE Sens. J. 18(5), 1919–1923 (2018).
[Crossref]

Barringhaus, K.

X. Zou, N. Wu, Y. Tian, J. Ouyang, K. Barringhaus, and X. Wang, “Miniature Fabry–Perot fiber optic sensor for intravascular blood temperature measurements,” IEEE Sens. J. 13(6), 2155–2160 (2013).
[Crossref]

Bazyl, A.

S. Korganbayev, Y. Orazayev, S. Sovetov, A. Bazyl, E. Schena, C. Massaroni, R. Gassino, A. Vallan, G. Perrone, P. Saccomandi, M. Arturo Caponero, G. Palumbo, S. Campopiano, A. Iadicicco, and D. Tosi, “Detection of thermal gradients through fiber-optic chirped fiber Bragg grating (CFBG): medical thermal ablation scenario,” Opt. Fiber Technol. 41, 48–55 (2018).
[Crossref]

Bekmurzayeva, A.

Bilodeau, F.

Blenman, N.

Blenman, N. G.

Blondel, M.

C. Caucheteur, K. Chah, F. Lhommé, M. Blondel, and P. Mégret, “Autocorrelation demodulation technique for fiber Bragg grating sensor,” IEEE Photonics Technol. Lett. 16(10), 2320–2322 (2004).
[Crossref]

Braschi, G.

Burgmeier, J.

Campopiano, S.

S. Korganbayev, Y. Orazayev, S. Sovetov, A. Bazyl, E. Schena, C. Massaroni, R. Gassino, A. Vallan, G. Perrone, P. Saccomandi, M. Arturo Caponero, G. Palumbo, S. Campopiano, A. Iadicicco, and D. Tosi, “Detection of thermal gradients through fiber-optic chirped fiber Bragg grating (CFBG): medical thermal ablation scenario,” Opt. Fiber Technol. 41, 48–55 (2018).
[Crossref]

G. Palumbo, D. Tosi, A. Iadicicco, and S. Campopiano, “Analysis and design of chirped fiber Bragg grating for temperature sensing for possible biomedical applications,” IEEE Photonics J. 10(3), 1–15 (2018).
[Crossref]

A. Iadicicco, A. Cusano, S. Campopiano, A. Cutolo, and M. Giordano, “Thinned fiber Bragg gratings as refractive index sensors,” IEEE Sens. J. 5(6), 1288–1295 (2005).
[Crossref]

Caponero, M. A.

P. Saccomandi, A. Varalda, R. Gassino, D. Tosi, C. Massaroni, M. A. Caponero, R. Pop, S. Korganbayev, G. Perrone, M. Diana, A. Vallan, G. Costamagna, J. Marescaux, and E. Schena, “Linearly chirped fiber Bragg grating response to thermal gradient: from bench tests to the real-time assessment during in vivo laser ablations of biological tissue,” J. Biomed. Opt. 22(9), 1–9 (2017).
[Crossref] [PubMed]

Carotenuto, B.

B. Carotenuto, A. Micco, A. Ricciardi, E. Amorizzo, M. Mercieri, A. Cutolo, and A. Cusano, “Optical guidance systems for epidural space identification,” IEEE J. Sel. Top. Quantum Electron. 23(2), 371–379 (2017).
[Crossref]

Caucheteur, C.

C. Ribaut, M. Loyez, J.-C. Larrieu, S. Chevineau, P. Lambert, M. Remmelink, R. Wattiez, and C. Caucheteur, “Cancer biomarker sensing using packaged plasmonic optical fiber gratings: towards in vivo diagnosis,” Biosens. Bioelectron. 92, 449–456 (2017).
[Crossref] [PubMed]

C. Caucheteur, T. Guo, and J. Albert, “Polarization-assisted fiber Bragg grating sensors: tutorial and review,” J. Lightwave Technol. 35(16), 3311–3322 (2017).
[Crossref]

C. Ribaut, V. Voisin, V. Malachovská, V. Dubois, P. Mégret, R. Wattiez, and C. Caucheteur, “Small biomolecule immunosensing with plasmonic optical fiber grating sensor,” Biosens. Bioelectron. 77, 315–322 (2016).
[Crossref] [PubMed]

J. Albert, L. Y. Shao, and C. Caucheteur, “Tilted fiber Bragg grating sensors,” Laser Photonics Rev. 7(1), 83–108 (2013).
[Crossref]

C. Chen, C. Caucheteur, P. Megret, and J. Albert, “The sensitivity characteristics of tilted fibre Bragg grating sensors with different cladding thicknesses,” Meas. Sci. Technol. 18(10), 3117–3122 (2007).
[Crossref]

C. Caucheteur, K. Chah, F. Lhommé, M. Blondel, and P. Mégret, “Autocorrelation demodulation technique for fiber Bragg grating sensor,” IEEE Photonics Technol. Lett. 16(10), 2320–2322 (2004).
[Crossref]

Cen, K.-F.

Chah, K.

C. Caucheteur, K. Chah, F. Lhommé, M. Blondel, and P. Mégret, “Autocorrelation demodulation technique for fiber Bragg grating sensor,” IEEE Photonics Technol. Lett. 16(10), 2320–2322 (2004).
[Crossref]

Chang, H.-Y.

H.-Y. Chang, Y.-C. Chang, and W.-F. Liu, “A highly sensitive two-dimensional inclinometer based on two etched chirped-fiber-grating arrays,” Sensors (Basel) 17(12), 2922 (2017).
[Crossref] [PubMed]

H.-Y. Chang, Y.-C. Chang, H.-J. Sheng, M.-Y. Fu, W.-F. Liu, and R. Kashyap, “An ultra-sensitive liquid-level indicator based on an etched chirped-fiber Bragg grating,” IEEE Photonics Technol. Lett. 28(3), 268–271 (2016).
[Crossref]

Chang, Y.-C.

H.-Y. Chang, Y.-C. Chang, and W.-F. Liu, “A highly sensitive two-dimensional inclinometer based on two etched chirped-fiber-grating arrays,” Sensors (Basel) 17(12), 2922 (2017).
[Crossref] [PubMed]

H.-Y. Chang, Y.-C. Chang, H.-J. Sheng, M.-Y. Fu, W.-F. Liu, and R. Kashyap, “An ultra-sensitive liquid-level indicator based on an etched chirped-fiber Bragg grating,” IEEE Photonics Technol. Lett. 28(3), 268–271 (2016).
[Crossref]

Chen, C.

C. Chen, C. Caucheteur, P. Megret, and J. Albert, “The sensitivity characteristics of tilted fibre Bragg grating sensors with different cladding thicknesses,” Meas. Sci. Technol. 18(10), 3117–3122 (2007).
[Crossref]

Chen, J.

Chen, Z.-M.

Chevineau, S.

C. Ribaut, M. Loyez, J.-C. Larrieu, S. Chevineau, P. Lambert, M. Remmelink, R. Wattiez, and C. Caucheteur, “Cancer biomarker sensing using packaged plasmonic optical fiber gratings: towards in vivo diagnosis,” Biosens. Bioelectron. 92, 449–456 (2017).
[Crossref] [PubMed]

Chiavaioli, F.

F. Chiavaioli, F. Baldini, S. Tombelli, C. Trono, and A. Giannetti, “Biosensing with optical fiber gratings,” Nanophotonics 6(4), 663–679 (2017).
[Crossref]

Chung, Y.

Cigada, A.

Cook, I. J.

Costamagna, G.

P. Saccomandi, A. Varalda, R. Gassino, D. Tosi, C. Massaroni, M. A. Caponero, R. Pop, S. Korganbayev, G. Perrone, M. Diana, A. Vallan, G. Costamagna, J. Marescaux, and E. Schena, “Linearly chirped fiber Bragg grating response to thermal gradient: from bench tests to the real-time assessment during in vivo laser ablations of biological tissue,” J. Biomed. Opt. 22(9), 1–9 (2017).
[Crossref] [PubMed]

Cusano, A.

B. Carotenuto, A. Micco, A. Ricciardi, E. Amorizzo, M. Mercieri, A. Cutolo, and A. Cusano, “Optical guidance systems for epidural space identification,” IEEE J. Sel. Top. Quantum Electron. 23(2), 371–379 (2017).
[Crossref]

A. Iadicicco, A. Cusano, S. Campopiano, A. Cutolo, and M. Giordano, “Thinned fiber Bragg gratings as refractive index sensors,” IEEE Sens. J. 5(6), 1288–1295 (2005).
[Crossref]

Cutolo, A.

B. Carotenuto, A. Micco, A. Ricciardi, E. Amorizzo, M. Mercieri, A. Cutolo, and A. Cusano, “Optical guidance systems for epidural space identification,” IEEE J. Sel. Top. Quantum Electron. 23(2), 371–379 (2017).
[Crossref]

A. Iadicicco, A. Cusano, S. Campopiano, A. Cutolo, and M. Giordano, “Thinned fiber Bragg gratings as refractive index sensors,” IEEE Sens. J. 5(6), 1288–1295 (2005).
[Crossref]

Dabir, S.

S. Ambastha, S. Umesh, S. Dabir, and S. Asokan, “Spinal needle force monitoring during lumbar puncture using fiber Bragg grating force device,” J. Biomed. Opt. 21(11), 117002 (2016).
[Crossref] [PubMed]

Dhosi, G.

F. Ouellette, P. Krug, T. Stephens, G. Dhosi, and B. Eggleton, “Broadband and WDM dispersion compensation using chirped sampled fibre Bragg gratings,” Electron. Lett. 31(11), 899–901 (1995).
[Crossref]

Diana, M.

P. Saccomandi, A. Varalda, R. Gassino, D. Tosi, C. Massaroni, M. A. Caponero, R. Pop, S. Korganbayev, G. Perrone, M. Diana, A. Vallan, G. Costamagna, J. Marescaux, and E. Schena, “Linearly chirped fiber Bragg grating response to thermal gradient: from bench tests to the real-time assessment during in vivo laser ablations of biological tissue,” J. Biomed. Opt. 22(9), 1–9 (2017).
[Crossref] [PubMed]

Dinning, P. G.

Dubois, V.

C. Ribaut, V. Voisin, V. Malachovská, V. Dubois, P. Mégret, R. Wattiez, and C. Caucheteur, “Small biomolecule immunosensing with plasmonic optical fiber grating sensor,” Biosens. Bioelectron. 77, 315–322 (2016).
[Crossref] [PubMed]

Eggleton, B.

F. Ouellette, P. Krug, T. Stephens, G. Dhosi, and B. Eggleton, “Broadband and WDM dispersion compensation using chirped sampled fibre Bragg gratings,” Electron. Lett. 31(11), 899–901 (1995).
[Crossref]

Erdogan, T.

J. Skaar, L. Wang, and T. Erdogan, “On the synthesis of fiber Bragg gratings by layer peeling,” IEEE J. Quantum Electron. 37(2), 165–173 (2001).
[Crossref]

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15(8), 1277–1294 (1997).
[Crossref]

Feizpour, A.

Friebele, E.

M. Putnam, G. Williams, and E. Friebele, “Fabrication of tapered, strain-gradient chirped fibre Bragg gratings,” Electron. Lett. 31(4), 309–310 (1995).
[Crossref]

Froggatt, M.

Fu, M.-Y.

H.-Y. Chang, Y.-C. Chang, H.-J. Sheng, M.-Y. Fu, W.-F. Liu, and R. Kashyap, “An ultra-sensitive liquid-level indicator based on an etched chirped-fiber Bragg grating,” IEEE Photonics Technol. Lett. 28(3), 268–271 (2016).
[Crossref]

Gallati, M.

Gassino, R.

S. Korganbayev, Y. Orazayev, S. Sovetov, A. Bazyl, E. Schena, C. Massaroni, R. Gassino, A. Vallan, G. Perrone, P. Saccomandi, M. Arturo Caponero, G. Palumbo, S. Campopiano, A. Iadicicco, and D. Tosi, “Detection of thermal gradients through fiber-optic chirped fiber Bragg grating (CFBG): medical thermal ablation scenario,” Opt. Fiber Technol. 41, 48–55 (2018).
[Crossref]

P. Saccomandi, A. Varalda, R. Gassino, D. Tosi, C. Massaroni, M. A. Caponero, R. Pop, S. Korganbayev, G. Perrone, M. Diana, A. Vallan, G. Costamagna, J. Marescaux, and E. Schena, “Linearly chirped fiber Bragg grating response to thermal gradient: from bench tests to the real-time assessment during in vivo laser ablations of biological tissue,” J. Biomed. Opt. 22(9), 1–9 (2017).
[Crossref] [PubMed]

Giannetti, A.

F. Chiavaioli, F. Baldini, S. Tombelli, C. Trono, and A. Giannetti, “Biosensing with optical fiber gratings,” Nanophotonics 6(4), 663–679 (2017).
[Crossref]

Gifford, D.

Giordano, M.

A. Iadicicco, A. Cusano, S. Campopiano, A. Cutolo, and M. Giordano, “Thinned fiber Bragg gratings as refractive index sensors,” IEEE Sens. J. 5(6), 1288–1295 (2005).
[Crossref]

Gu, J. H.

Guo, T.

Han, W.

Hill, K. O.

Ho, H. Y.

Huang, X.-F.

Iadicicco, A.

S. Korganbayev, Y. Orazayev, S. Sovetov, A. Bazyl, E. Schena, C. Massaroni, R. Gassino, A. Vallan, G. Perrone, P. Saccomandi, M. Arturo Caponero, G. Palumbo, S. Campopiano, A. Iadicicco, and D. Tosi, “Detection of thermal gradients through fiber-optic chirped fiber Bragg grating (CFBG): medical thermal ablation scenario,” Opt. Fiber Technol. 41, 48–55 (2018).
[Crossref]

G. Palumbo, D. Tosi, A. Iadicicco, and S. Campopiano, “Analysis and design of chirped fiber Bragg grating for temperature sensing for possible biomedical applications,” IEEE Photonics J. 10(3), 1–15 (2018).
[Crossref]

A. Iadicicco, A. Cusano, S. Campopiano, A. Cutolo, and M. Giordano, “Thinned fiber Bragg gratings as refractive index sensors,” IEEE Sens. J. 5(6), 1288–1295 (2005).
[Crossref]

Jayaraman, N.

S. Sridevi, K. Vasu, N. Jayaraman, S. Asokan, and A. Sood, “Optical bio-sensing devices based on etched fiber Bragg gratings coated with carbon nanotubes and graphene oxide along with a specific dendrimer,” Sensor. Actuat. Biol. Chem. 195, 150–155 (2014).

Jeong, M.-Y.

S.-M. Lee, S. S. Saini, and M.-Y. Jeong, “Simultaneous measurement of refractive index, temperature, and strain using etched-core fiber Bragg grating sensors,” IEEE Photonics Technol. Lett. 22(19), 1431–1433 (2010).
[Crossref]

Johnson, D. C.

Kashyap, R.

H.-Y. Chang, Y.-C. Chang, H.-J. Sheng, M.-Y. Fu, W.-F. Liu, and R. Kashyap, “An ultra-sensitive liquid-level indicator based on an etched chirped-fiber Bragg grating,” IEEE Photonics Technol. Lett. 28(3), 268–271 (2016).
[Crossref]

Kitagawa, T.

Korganbayev, S.

D. Tosi, E. Schena, C. Molardi, and S. Korganbayev, “Fiber optic sensors for sub-centimeter spatially resolved measurements: review and biomedical applications,” Opt. Fiber Technol. 43, 6–19 (2018).
[Crossref]

S. Korganbayev, Y. Orazayev, S. Sovetov, A. Bazyl, E. Schena, C. Massaroni, R. Gassino, A. Vallan, G. Perrone, P. Saccomandi, M. Arturo Caponero, G. Palumbo, S. Campopiano, A. Iadicicco, and D. Tosi, “Detection of thermal gradients through fiber-optic chirped fiber Bragg grating (CFBG): medical thermal ablation scenario,” Opt. Fiber Technol. 41, 48–55 (2018).
[Crossref]

P. Saccomandi, A. Varalda, R. Gassino, D. Tosi, C. Massaroni, M. A. Caponero, R. Pop, S. Korganbayev, G. Perrone, M. Diana, A. Vallan, G. Costamagna, J. Marescaux, and E. Schena, “Linearly chirped fiber Bragg grating response to thermal gradient: from bench tests to the real-time assessment during in vivo laser ablations of biological tissue,” J. Biomed. Opt. 22(9), 1–9 (2017).
[Crossref] [PubMed]

Krug, P.

F. Ouellette, P. Krug, T. Stephens, G. Dhosi, and B. Eggleton, “Broadband and WDM dispersion compensation using chirped sampled fibre Bragg gratings,” Electron. Lett. 31(11), 899–901 (1995).
[Crossref]

Lambert, P.

C. Ribaut, M. Loyez, J.-C. Larrieu, S. Chevineau, P. Lambert, M. Remmelink, R. Wattiez, and C. Caucheteur, “Cancer biomarker sensing using packaged plasmonic optical fiber gratings: towards in vivo diagnosis,” Biosens. Bioelectron. 92, 449–456 (2017).
[Crossref] [PubMed]

Larrieu, J.-C.

C. Ribaut, M. Loyez, J.-C. Larrieu, S. Chevineau, P. Lambert, M. Remmelink, R. Wattiez, and C. Caucheteur, “Cancer biomarker sensing using packaged plasmonic optical fiber gratings: towards in vivo diagnosis,” Biosens. Bioelectron. 92, 449–456 (2017).
[Crossref] [PubMed]

Lee, C. L.

Lee, S.-M.

S.-M. Lee, S. S. Saini, and M.-Y. Jeong, “Simultaneous measurement of refractive index, temperature, and strain using etched-core fiber Bragg grating sensors,” IEEE Photonics Technol. Lett. 22(19), 1431–1433 (2010).
[Crossref]

Leen, G.

Lewis, E.

Lhommé, F.

C. Caucheteur, K. Chah, F. Lhommé, M. Blondel, and P. Mégret, “Autocorrelation demodulation technique for fiber Bragg grating sensor,” IEEE Photonics Technol. Lett. 16(10), 2320–2322 (2004).
[Crossref]

Liu, W.-F.

H.-Y. Chang, Y.-C. Chang, and W.-F. Liu, “A highly sensitive two-dimensional inclinometer based on two etched chirped-fiber-grating arrays,” Sensors (Basel) 17(12), 2922 (2017).
[Crossref] [PubMed]

H.-Y. Chang, Y.-C. Chang, H.-J. Sheng, M.-Y. Fu, W.-F. Liu, and R. Kashyap, “An ultra-sensitive liquid-level indicator based on an etched chirped-fiber Bragg grating,” IEEE Photonics Technol. Lett. 28(3), 268–271 (2016).
[Crossref]

Loyez, M.

C. Ribaut, M. Loyez, J.-C. Larrieu, S. Chevineau, P. Lambert, M. Remmelink, R. Wattiez, and C. Caucheteur, “Cancer biomarker sensing using packaged plasmonic optical fiber gratings: towards in vivo diagnosis,” Biosens. Bioelectron. 92, 449–456 (2017).
[Crossref] [PubMed]

Lubowski, D. Z.

Macchi, E. G.

Malachovská, V.

C. Ribaut, V. Voisin, V. Malachovská, V. Dubois, P. Mégret, R. Wattiez, and C. Caucheteur, “Small biomolecule immunosensing with plasmonic optical fiber grating sensor,” Biosens. Bioelectron. 77, 315–322 (2016).
[Crossref] [PubMed]

Malo, B.

Marescaux, J.

P. Saccomandi, A. Varalda, R. Gassino, D. Tosi, C. Massaroni, M. A. Caponero, R. Pop, S. Korganbayev, G. Perrone, M. Diana, A. Vallan, G. Costamagna, J. Marescaux, and E. Schena, “Linearly chirped fiber Bragg grating response to thermal gradient: from bench tests to the real-time assessment during in vivo laser ablations of biological tissue,” J. Biomed. Opt. 22(9), 1–9 (2017).
[Crossref] [PubMed]

Marques, C.

R. Min, C. Marques, K. Nielsen, O. Bang, and B. Ortega, “Fast inscription of long period gratings in microstructured polymer optical fibers,” IEEE Sens. J. 18(5), 1919–1923 (2018).
[Crossref]

R. Min, B. Ortega, and C. Marques, “Fabrication of tunable chirped mPOF Bragg gratings using a uniform phase mask,” Opt. Express 26(4), 4411–4420 (2018).
[Crossref] [PubMed]

C. Marques, P. Antunes, P. Mergo, D. Webb, and P. André, “Chirped Bragg gratings in PMMA step-index polymer optical fiber,” IEEE Photonics Technol. Lett. 29(6), 500–503 (2017).
[Crossref]

Massaroni, C.

S. Korganbayev, Y. Orazayev, S. Sovetov, A. Bazyl, E. Schena, C. Massaroni, R. Gassino, A. Vallan, G. Perrone, P. Saccomandi, M. Arturo Caponero, G. Palumbo, S. Campopiano, A. Iadicicco, and D. Tosi, “Detection of thermal gradients through fiber-optic chirped fiber Bragg grating (CFBG): medical thermal ablation scenario,” Opt. Fiber Technol. 41, 48–55 (2018).
[Crossref]

P. Saccomandi, A. Varalda, R. Gassino, D. Tosi, C. Massaroni, M. A. Caponero, R. Pop, S. Korganbayev, G. Perrone, M. Diana, A. Vallan, G. Costamagna, J. Marescaux, and E. Schena, “Linearly chirped fiber Bragg grating response to thermal gradient: from bench tests to the real-time assessment during in vivo laser ablations of biological tissue,” J. Biomed. Opt. 22(9), 1–9 (2017).
[Crossref] [PubMed]

Maunder, S. A.

Megret, P.

C. Chen, C. Caucheteur, P. Megret, and J. Albert, “The sensitivity characteristics of tilted fibre Bragg grating sensors with different cladding thicknesses,” Meas. Sci. Technol. 18(10), 3117–3122 (2007).
[Crossref]

Mégret, P.

C. Ribaut, V. Voisin, V. Malachovská, V. Dubois, P. Mégret, R. Wattiez, and C. Caucheteur, “Small biomolecule immunosensing with plasmonic optical fiber grating sensor,” Biosens. Bioelectron. 77, 315–322 (2016).
[Crossref] [PubMed]

C. Caucheteur, K. Chah, F. Lhommé, M. Blondel, and P. Mégret, “Autocorrelation demodulation technique for fiber Bragg grating sensor,” IEEE Photonics Technol. Lett. 16(10), 2320–2322 (2004).
[Crossref]

Mercieri, M.

B. Carotenuto, A. Micco, A. Ricciardi, E. Amorizzo, M. Mercieri, A. Cutolo, and A. Cusano, “Optical guidance systems for epidural space identification,” IEEE J. Sel. Top. Quantum Electron. 23(2), 371–379 (2017).
[Crossref]

Mergo, P.

C. Marques, P. Antunes, P. Mergo, D. Webb, and P. André, “Chirped Bragg gratings in PMMA step-index polymer optical fiber,” IEEE Photonics Technol. Lett. 29(6), 500–503 (2017).
[Crossref]

Micco, A.

B. Carotenuto, A. Micco, A. Ricciardi, E. Amorizzo, M. Mercieri, A. Cutolo, and A. Cusano, “Optical guidance systems for epidural space identification,” IEEE J. Sel. Top. Quantum Electron. 23(2), 371–379 (2017).
[Crossref]

Min, R.

R. Min, C. Marques, K. Nielsen, O. Bang, and B. Ortega, “Fast inscription of long period gratings in microstructured polymer optical fibers,” IEEE Sens. J. 18(5), 1919–1923 (2018).
[Crossref]

R. Min, B. Ortega, and C. Marques, “Fabrication of tunable chirped mPOF Bragg gratings using a uniform phase mask,” Opt. Express 26(4), 4411–4420 (2018).
[Crossref] [PubMed]

Molardi, C.

D. Tosi, E. Schena, C. Molardi, and S. Korganbayev, “Fiber optic sensors for sub-centimeter spatially resolved measurements: review and biomedical applications,” Opt. Fiber Technol. 43, 6–19 (2018).
[Crossref]

Nielsen, K.

R. Min, C. Marques, K. Nielsen, O. Bang, and B. Ortega, “Fast inscription of long period gratings in microstructured polymer optical fibers,” IEEE Sens. J. 18(5), 1919–1923 (2018).
[Crossref]

Oh, S.

Orazayev, Y.

S. Korganbayev, Y. Orazayev, S. Sovetov, A. Bazyl, E. Schena, C. Massaroni, R. Gassino, A. Vallan, G. Perrone, P. Saccomandi, M. Arturo Caponero, G. Palumbo, S. Campopiano, A. Iadicicco, and D. Tosi, “Detection of thermal gradients through fiber-optic chirped fiber Bragg grating (CFBG): medical thermal ablation scenario,” Opt. Fiber Technol. 41, 48–55 (2018).
[Crossref]

Ortega, B.

R. Min, C. Marques, K. Nielsen, O. Bang, and B. Ortega, “Fast inscription of long period gratings in microstructured polymer optical fibers,” IEEE Sens. J. 18(5), 1919–1923 (2018).
[Crossref]

R. Min, B. Ortega, and C. Marques, “Fabrication of tunable chirped mPOF Bragg gratings using a uniform phase mask,” Opt. Express 26(4), 4411–4420 (2018).
[Crossref] [PubMed]

Ouellette, F.

F. Ouellette, P. Krug, T. Stephens, G. Dhosi, and B. Eggleton, “Broadband and WDM dispersion compensation using chirped sampled fibre Bragg gratings,” Electron. Lett. 31(11), 899–901 (1995).
[Crossref]

Ouyang, J.

X. Zou, N. Wu, Y. Tian, J. Ouyang, K. Barringhaus, and X. Wang, “Miniature Fabry–Perot fiber optic sensor for intravascular blood temperature measurements,” IEEE Sens. J. 13(6), 2155–2160 (2013).
[Crossref]

Paek, U.

Palumbo, G.

G. Palumbo, D. Tosi, A. Iadicicco, and S. Campopiano, “Analysis and design of chirped fiber Bragg grating for temperature sensing for possible biomedical applications,” IEEE Photonics J. 10(3), 1–15 (2018).
[Crossref]

S. Korganbayev, Y. Orazayev, S. Sovetov, A. Bazyl, E. Schena, C. Massaroni, R. Gassino, A. Vallan, G. Perrone, P. Saccomandi, M. Arturo Caponero, G. Palumbo, S. Campopiano, A. Iadicicco, and D. Tosi, “Detection of thermal gradients through fiber-optic chirped fiber Bragg grating (CFBG): medical thermal ablation scenario,” Opt. Fiber Technol. 41, 48–55 (2018).
[Crossref]

Perrone, G.

S. Korganbayev, Y. Orazayev, S. Sovetov, A. Bazyl, E. Schena, C. Massaroni, R. Gassino, A. Vallan, G. Perrone, P. Saccomandi, M. Arturo Caponero, G. Palumbo, S. Campopiano, A. Iadicicco, and D. Tosi, “Detection of thermal gradients through fiber-optic chirped fiber Bragg grating (CFBG): medical thermal ablation scenario,” Opt. Fiber Technol. 41, 48–55 (2018).
[Crossref]

P. Saccomandi, A. Varalda, R. Gassino, D. Tosi, C. Massaroni, M. A. Caponero, R. Pop, S. Korganbayev, G. Perrone, M. Diana, A. Vallan, G. Costamagna, J. Marescaux, and E. Schena, “Linearly chirped fiber Bragg grating response to thermal gradient: from bench tests to the real-time assessment during in vivo laser ablations of biological tissue,” J. Biomed. Opt. 22(9), 1–9 (2017).
[Crossref] [PubMed]

Pop, R.

P. Saccomandi, A. Varalda, R. Gassino, D. Tosi, C. Massaroni, M. A. Caponero, R. Pop, S. Korganbayev, G. Perrone, M. Diana, A. Vallan, G. Costamagna, J. Marescaux, and E. Schena, “Linearly chirped fiber Bragg grating response to thermal gradient: from bench tests to the real-time assessment during in vivo laser ablations of biological tissue,” J. Biomed. Opt. 22(9), 1–9 (2017).
[Crossref] [PubMed]

Putnam, M.

M. Putnam, G. Williams, and E. Friebele, “Fabrication of tapered, strain-gradient chirped fibre Bragg gratings,” Electron. Lett. 31(4), 309–310 (1995).
[Crossref]

Reinhard, B. M.

Remmelink, M.

C. Ribaut, M. Loyez, J.-C. Larrieu, S. Chevineau, P. Lambert, M. Remmelink, R. Wattiez, and C. Caucheteur, “Cancer biomarker sensing using packaged plasmonic optical fiber gratings: towards in vivo diagnosis,” Biosens. Bioelectron. 92, 449–456 (2017).
[Crossref] [PubMed]

Ribaut, C.

C. Ribaut, M. Loyez, J.-C. Larrieu, S. Chevineau, P. Lambert, M. Remmelink, R. Wattiez, and C. Caucheteur, “Cancer biomarker sensing using packaged plasmonic optical fiber gratings: towards in vivo diagnosis,” Biosens. Bioelectron. 92, 449–456 (2017).
[Crossref] [PubMed]

C. Ribaut, V. Voisin, V. Malachovská, V. Dubois, P. Mégret, R. Wattiez, and C. Caucheteur, “Small biomolecule immunosensing with plasmonic optical fiber grating sensor,” Biosens. Bioelectron. 77, 315–322 (2016).
[Crossref] [PubMed]

Ricciardi, A.

B. Carotenuto, A. Micco, A. Ricciardi, E. Amorizzo, M. Mercieri, A. Cutolo, and A. Cusano, “Optical guidance systems for epidural space identification,” IEEE J. Sel. Top. Quantum Electron. 23(2), 371–379 (2017).
[Crossref]

Rossi, S.

Saccomandi, P.

S. Korganbayev, Y. Orazayev, S. Sovetov, A. Bazyl, E. Schena, C. Massaroni, R. Gassino, A. Vallan, G. Perrone, P. Saccomandi, M. Arturo Caponero, G. Palumbo, S. Campopiano, A. Iadicicco, and D. Tosi, “Detection of thermal gradients through fiber-optic chirped fiber Bragg grating (CFBG): medical thermal ablation scenario,” Opt. Fiber Technol. 41, 48–55 (2018).
[Crossref]

P. Saccomandi, A. Varalda, R. Gassino, D. Tosi, C. Massaroni, M. A. Caponero, R. Pop, S. Korganbayev, G. Perrone, M. Diana, A. Vallan, G. Costamagna, J. Marescaux, and E. Schena, “Linearly chirped fiber Bragg grating response to thermal gradient: from bench tests to the real-time assessment during in vivo laser ablations of biological tissue,” J. Biomed. Opt. 22(9), 1–9 (2017).
[Crossref] [PubMed]

Saini, S. S.

S.-M. Lee, S. S. Saini, and M.-Y. Jeong, “Simultaneous measurement of refractive index, temperature, and strain using etched-core fiber Bragg grating sensors,” IEEE Photonics Technol. Lett. 22(19), 1431–1433 (2010).
[Crossref]

Schade, W.

Schena, E.

D. Tosi, E. Schena, C. Molardi, and S. Korganbayev, “Fiber optic sensors for sub-centimeter spatially resolved measurements: review and biomedical applications,” Opt. Fiber Technol. 43, 6–19 (2018).
[Crossref]

S. Korganbayev, Y. Orazayev, S. Sovetov, A. Bazyl, E. Schena, C. Massaroni, R. Gassino, A. Vallan, G. Perrone, P. Saccomandi, M. Arturo Caponero, G. Palumbo, S. Campopiano, A. Iadicicco, and D. Tosi, “Detection of thermal gradients through fiber-optic chirped fiber Bragg grating (CFBG): medical thermal ablation scenario,” Opt. Fiber Technol. 41, 48–55 (2018).
[Crossref]

P. Saccomandi, A. Varalda, R. Gassino, D. Tosi, C. Massaroni, M. A. Caponero, R. Pop, S. Korganbayev, G. Perrone, M. Diana, A. Vallan, G. Costamagna, J. Marescaux, and E. Schena, “Linearly chirped fiber Bragg grating response to thermal gradient: from bench tests to the real-time assessment during in vivo laser ablations of biological tissue,” J. Biomed. Opt. 22(9), 1–9 (2017).
[Crossref] [PubMed]

Shaimerdenova, M.

Shao, L. Y.

J. Albert, L. Y. Shao, and C. Caucheteur, “Tilted fiber Bragg grating sensors,” Laser Photonics Rev. 7(1), 83–108 (2013).
[Crossref]

Shao, L.-Y.

Sheng, D.-R.

Sheng, H.-J.

H.-Y. Chang, Y.-C. Chang, H.-J. Sheng, M.-Y. Fu, W.-F. Liu, and R. Kashyap, “An ultra-sensitive liquid-level indicator based on an etched chirped-fiber Bragg grating,” IEEE Photonics Technol. Lett. 28(3), 268–271 (2016).
[Crossref]

Skaar, J.

J. Skaar, L. Wang, and T. Erdogan, “On the synthesis of fiber Bragg gratings by layer peeling,” IEEE J. Quantum Electron. 37(2), 165–173 (2001).
[Crossref]

Soller, B.

Sood, A.

S. Sridevi, K. Vasu, N. Jayaraman, S. Asokan, and A. Sood, “Optical bio-sensing devices based on etched fiber Bragg gratings coated with carbon nanotubes and graphene oxide along with a specific dendrimer,” Sensor. Actuat. Biol. Chem. 195, 150–155 (2014).

Sovetov, S.

S. Korganbayev, Y. Orazayev, S. Sovetov, A. Bazyl, E. Schena, C. Massaroni, R. Gassino, A. Vallan, G. Perrone, P. Saccomandi, M. Arturo Caponero, G. Palumbo, S. Campopiano, A. Iadicicco, and D. Tosi, “Detection of thermal gradients through fiber-optic chirped fiber Bragg grating (CFBG): medical thermal ablation scenario,” Opt. Fiber Technol. 41, 48–55 (2018).
[Crossref]

Sridevi, S.

S. Sridevi, K. Vasu, N. Jayaraman, S. Asokan, and A. Sood, “Optical bio-sensing devices based on etched fiber Bragg gratings coated with carbon nanotubes and graphene oxide along with a specific dendrimer,” Sensor. Actuat. Biol. Chem. 195, 150–155 (2014).

Stephens, T.

F. Ouellette, P. Krug, T. Stephens, G. Dhosi, and B. Eggleton, “Broadband and WDM dispersion compensation using chirped sampled fibre Bragg gratings,” Electron. Lett. 31(11), 899–901 (1995).
[Crossref]

Sypabekova, M.

Szczesniak, M. M.

Takiguchi, K.

Thériault, S.

Tian, Y.

X. Zou, N. Wu, Y. Tian, J. Ouyang, K. Barringhaus, and X. Wang, “Miniature Fabry–Perot fiber optic sensor for intravascular blood temperature measurements,” IEEE Sens. J. 13(6), 2155–2160 (2013).
[Crossref]

Tombelli, S.

F. Chiavaioli, F. Baldini, S. Tombelli, C. Trono, and A. Giannetti, “Biosensing with optical fiber gratings,” Nanophotonics 6(4), 663–679 (2017).
[Crossref]

Tosi, D.

S. Korganbayev, Y. Orazayev, S. Sovetov, A. Bazyl, E. Schena, C. Massaroni, R. Gassino, A. Vallan, G. Perrone, P. Saccomandi, M. Arturo Caponero, G. Palumbo, S. Campopiano, A. Iadicicco, and D. Tosi, “Detection of thermal gradients through fiber-optic chirped fiber Bragg grating (CFBG): medical thermal ablation scenario,” Opt. Fiber Technol. 41, 48–55 (2018).
[Crossref]

G. Palumbo, D. Tosi, A. Iadicicco, and S. Campopiano, “Analysis and design of chirped fiber Bragg grating for temperature sensing for possible biomedical applications,” IEEE Photonics J. 10(3), 1–15 (2018).
[Crossref]

D. Tosi, E. Schena, C. Molardi, and S. Korganbayev, “Fiber optic sensors for sub-centimeter spatially resolved measurements: review and biomedical applications,” Opt. Fiber Technol. 43, 6–19 (2018).
[Crossref]

D. Tosi, “Review and analysis of peak tracking techniques for fiber Bragg grating sensors,” Sensors (Basel) 17(10), 2368 (2017).
[Crossref] [PubMed]

P. Saccomandi, A. Varalda, R. Gassino, D. Tosi, C. Massaroni, M. A. Caponero, R. Pop, S. Korganbayev, G. Perrone, M. Diana, A. Vallan, G. Costamagna, J. Marescaux, and E. Schena, “Linearly chirped fiber Bragg grating response to thermal gradient: from bench tests to the real-time assessment during in vivo laser ablations of biological tissue,” J. Biomed. Opt. 22(9), 1–9 (2017).
[Crossref] [PubMed]

M. Shaimerdenova, A. Bekmurzayeva, M. Sypabekova, and D. Tosi, “Interrogation of coarsely sampled tilted fiber Bragg grating (TFBG) sensors with KLT,” Opt. Express 25(26), 33487 (2017).
[Crossref]

D. Tosi, E. G. Macchi, M. Gallati, G. Braschi, A. Cigada, S. Rossi, G. Leen, and E. Lewis, “Fiber-optic chirped FBG for distributed thermal monitoring of ex-vivo radiofrequency ablation of liver,” Biomed. Opt. Express 5(6), 1799–1811 (2014).
[Crossref] [PubMed]

Trono, C.

F. Chiavaioli, F. Baldini, S. Tombelli, C. Trono, and A. Giannetti, “Biosensing with optical fiber gratings,” Nanophotonics 6(4), 663–679 (2017).
[Crossref]

Tseng, C. H.

Umesh, S.

S. Ambastha, S. Umesh, S. Dabir, and S. Asokan, “Spinal needle force monitoring during lumbar puncture using fiber Bragg grating force device,” J. Biomed. Opt. 21(11), 117002 (2016).
[Crossref] [PubMed]

Underhill, I. D.

Vallan, A.

S. Korganbayev, Y. Orazayev, S. Sovetov, A. Bazyl, E. Schena, C. Massaroni, R. Gassino, A. Vallan, G. Perrone, P. Saccomandi, M. Arturo Caponero, G. Palumbo, S. Campopiano, A. Iadicicco, and D. Tosi, “Detection of thermal gradients through fiber-optic chirped fiber Bragg grating (CFBG): medical thermal ablation scenario,” Opt. Fiber Technol. 41, 48–55 (2018).
[Crossref]

P. Saccomandi, A. Varalda, R. Gassino, D. Tosi, C. Massaroni, M. A. Caponero, R. Pop, S. Korganbayev, G. Perrone, M. Diana, A. Vallan, G. Costamagna, J. Marescaux, and E. Schena, “Linearly chirped fiber Bragg grating response to thermal gradient: from bench tests to the real-time assessment during in vivo laser ablations of biological tissue,” J. Biomed. Opt. 22(9), 1–9 (2017).
[Crossref] [PubMed]

Varalda, A.

P. Saccomandi, A. Varalda, R. Gassino, D. Tosi, C. Massaroni, M. A. Caponero, R. Pop, S. Korganbayev, G. Perrone, M. Diana, A. Vallan, G. Costamagna, J. Marescaux, and E. Schena, “Linearly chirped fiber Bragg grating response to thermal gradient: from bench tests to the real-time assessment during in vivo laser ablations of biological tissue,” J. Biomed. Opt. 22(9), 1–9 (2017).
[Crossref] [PubMed]

Vasu, K.

S. Sridevi, K. Vasu, N. Jayaraman, S. Asokan, and A. Sood, “Optical bio-sensing devices based on etched fiber Bragg gratings coated with carbon nanotubes and graphene oxide along with a specific dendrimer,” Sensor. Actuat. Biol. Chem. 195, 150–155 (2014).

Voisin, V.

C. Ribaut, V. Voisin, V. Malachovská, V. Dubois, P. Mégret, R. Wattiez, and C. Caucheteur, “Small biomolecule immunosensing with plasmonic optical fiber grating sensor,” Biosens. Bioelectron. 77, 315–322 (2016).
[Crossref] [PubMed]

Wang, L.

J. Skaar, L. Wang, and T. Erdogan, “On the synthesis of fiber Bragg gratings by layer peeling,” IEEE J. Quantum Electron. 37(2), 165–173 (2001).
[Crossref]

Wang, X.

X. Zou, N. Wu, Y. Tian, J. Ouyang, K. Barringhaus, and X. Wang, “Miniature Fabry–Perot fiber optic sensor for intravascular blood temperature measurements,” IEEE Sens. J. 13(6), 2155–2160 (2013).
[Crossref]

Wattiez, R.

C. Ribaut, M. Loyez, J.-C. Larrieu, S. Chevineau, P. Lambert, M. Remmelink, R. Wattiez, and C. Caucheteur, “Cancer biomarker sensing using packaged plasmonic optical fiber gratings: towards in vivo diagnosis,” Biosens. Bioelectron. 92, 449–456 (2017).
[Crossref] [PubMed]

C. Ribaut, V. Voisin, V. Malachovská, V. Dubois, P. Mégret, R. Wattiez, and C. Caucheteur, “Small biomolecule immunosensing with plasmonic optical fiber grating sensor,” Biosens. Bioelectron. 77, 315–322 (2016).
[Crossref] [PubMed]

Webb, D.

C. Marques, P. Antunes, P. Mergo, D. Webb, and P. André, “Chirped Bragg gratings in PMMA step-index polymer optical fiber,” IEEE Photonics Technol. Lett. 29(6), 500–503 (2017).
[Crossref]

Wiklendt, L.

Williams, G.

M. Putnam, G. Williams, and E. Friebele, “Fabrication of tapered, strain-gradient chirped fibre Bragg gratings,” Electron. Lett. 31(4), 309–310 (1995).
[Crossref]

Wolfe, M.

Wu, N.

X. Zou, N. Wu, Y. Tian, J. Ouyang, K. Barringhaus, and X. Wang, “Miniature Fabry–Perot fiber optic sensor for intravascular blood temperature measurements,” IEEE Sens. J. 13(6), 2155–2160 (2013).
[Crossref]

Yeh, T. Y.

Zhou, H.

Zou, X.

X. Zou, N. Wu, Y. Tian, J. Ouyang, K. Barringhaus, and X. Wang, “Miniature Fabry–Perot fiber optic sensor for intravascular blood temperature measurements,” IEEE Sens. J. 13(6), 2155–2160 (2013).
[Crossref]

Appl. Opt. (1)

Biomed. Opt. Express (1)

Biosens. Bioelectron. (2)

C. Ribaut, M. Loyez, J.-C. Larrieu, S. Chevineau, P. Lambert, M. Remmelink, R. Wattiez, and C. Caucheteur, “Cancer biomarker sensing using packaged plasmonic optical fiber gratings: towards in vivo diagnosis,” Biosens. Bioelectron. 92, 449–456 (2017).
[Crossref] [PubMed]

C. Ribaut, V. Voisin, V. Malachovská, V. Dubois, P. Mégret, R. Wattiez, and C. Caucheteur, “Small biomolecule immunosensing with plasmonic optical fiber grating sensor,” Biosens. Bioelectron. 77, 315–322 (2016).
[Crossref] [PubMed]

Electron. Lett. (2)

F. Ouellette, P. Krug, T. Stephens, G. Dhosi, and B. Eggleton, “Broadband and WDM dispersion compensation using chirped sampled fibre Bragg gratings,” Electron. Lett. 31(11), 899–901 (1995).
[Crossref]

M. Putnam, G. Williams, and E. Friebele, “Fabrication of tapered, strain-gradient chirped fibre Bragg gratings,” Electron. Lett. 31(4), 309–310 (1995).
[Crossref]

IEEE J. Quantum Electron. (1)

J. Skaar, L. Wang, and T. Erdogan, “On the synthesis of fiber Bragg gratings by layer peeling,” IEEE J. Quantum Electron. 37(2), 165–173 (2001).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

B. Carotenuto, A. Micco, A. Ricciardi, E. Amorizzo, M. Mercieri, A. Cutolo, and A. Cusano, “Optical guidance systems for epidural space identification,” IEEE J. Sel. Top. Quantum Electron. 23(2), 371–379 (2017).
[Crossref]

IEEE Photonics J. (1)

G. Palumbo, D. Tosi, A. Iadicicco, and S. Campopiano, “Analysis and design of chirped fiber Bragg grating for temperature sensing for possible biomedical applications,” IEEE Photonics J. 10(3), 1–15 (2018).
[Crossref]

IEEE Photonics Technol. Lett. (4)

C. Marques, P. Antunes, P. Mergo, D. Webb, and P. André, “Chirped Bragg gratings in PMMA step-index polymer optical fiber,” IEEE Photonics Technol. Lett. 29(6), 500–503 (2017).
[Crossref]

C. Caucheteur, K. Chah, F. Lhommé, M. Blondel, and P. Mégret, “Autocorrelation demodulation technique for fiber Bragg grating sensor,” IEEE Photonics Technol. Lett. 16(10), 2320–2322 (2004).
[Crossref]

H.-Y. Chang, Y.-C. Chang, H.-J. Sheng, M.-Y. Fu, W.-F. Liu, and R. Kashyap, “An ultra-sensitive liquid-level indicator based on an etched chirped-fiber Bragg grating,” IEEE Photonics Technol. Lett. 28(3), 268–271 (2016).
[Crossref]

S.-M. Lee, S. S. Saini, and M.-Y. Jeong, “Simultaneous measurement of refractive index, temperature, and strain using etched-core fiber Bragg grating sensors,” IEEE Photonics Technol. Lett. 22(19), 1431–1433 (2010).
[Crossref]

IEEE Sens. J. (3)

X. Zou, N. Wu, Y. Tian, J. Ouyang, K. Barringhaus, and X. Wang, “Miniature Fabry–Perot fiber optic sensor for intravascular blood temperature measurements,” IEEE Sens. J. 13(6), 2155–2160 (2013).
[Crossref]

A. Iadicicco, A. Cusano, S. Campopiano, A. Cutolo, and M. Giordano, “Thinned fiber Bragg gratings as refractive index sensors,” IEEE Sens. J. 5(6), 1288–1295 (2005).
[Crossref]

R. Min, C. Marques, K. Nielsen, O. Bang, and B. Ortega, “Fast inscription of long period gratings in microstructured polymer optical fibers,” IEEE Sens. J. 18(5), 1919–1923 (2018).
[Crossref]

J. Biomed. Opt. (2)

P. Saccomandi, A. Varalda, R. Gassino, D. Tosi, C. Massaroni, M. A. Caponero, R. Pop, S. Korganbayev, G. Perrone, M. Diana, A. Vallan, G. Costamagna, J. Marescaux, and E. Schena, “Linearly chirped fiber Bragg grating response to thermal gradient: from bench tests to the real-time assessment during in vivo laser ablations of biological tissue,” J. Biomed. Opt. 22(9), 1–9 (2017).
[Crossref] [PubMed]

S. Ambastha, S. Umesh, S. Dabir, and S. Asokan, “Spinal needle force monitoring during lumbar puncture using fiber Bragg grating force device,” J. Biomed. Opt. 21(11), 117002 (2016).
[Crossref] [PubMed]

J. Lightwave Technol. (2)

Laser Photonics Rev. (1)

J. Albert, L. Y. Shao, and C. Caucheteur, “Tilted fiber Bragg grating sensors,” Laser Photonics Rev. 7(1), 83–108 (2013).
[Crossref]

Meas. Sci. Technol. (1)

C. Chen, C. Caucheteur, P. Megret, and J. Albert, “The sensitivity characteristics of tilted fibre Bragg grating sensors with different cladding thicknesses,” Meas. Sci. Technol. 18(10), 3117–3122 (2007).
[Crossref]

Nanophotonics (1)

F. Chiavaioli, F. Baldini, S. Tombelli, C. Trono, and A. Giannetti, “Biosensing with optical fiber gratings,” Nanophotonics 6(4), 663–679 (2017).
[Crossref]

Opt. Express (6)

Opt. Fiber Technol. (2)

S. Korganbayev, Y. Orazayev, S. Sovetov, A. Bazyl, E. Schena, C. Massaroni, R. Gassino, A. Vallan, G. Perrone, P. Saccomandi, M. Arturo Caponero, G. Palumbo, S. Campopiano, A. Iadicicco, and D. Tosi, “Detection of thermal gradients through fiber-optic chirped fiber Bragg grating (CFBG): medical thermal ablation scenario,” Opt. Fiber Technol. 41, 48–55 (2018).
[Crossref]

D. Tosi, E. Schena, C. Molardi, and S. Korganbayev, “Fiber optic sensors for sub-centimeter spatially resolved measurements: review and biomedical applications,” Opt. Fiber Technol. 43, 6–19 (2018).
[Crossref]

Opt. Lett. (3)

Sensor. Actuat. Biol. Chem. (1)

S. Sridevi, K. Vasu, N. Jayaraman, S. Asokan, and A. Sood, “Optical bio-sensing devices based on etched fiber Bragg gratings coated with carbon nanotubes and graphene oxide along with a specific dendrimer,” Sensor. Actuat. Biol. Chem. 195, 150–155 (2014).

Sensors (Basel) (2)

D. Tosi, “Review and analysis of peak tracking techniques for fiber Bragg grating sensors,” Sensors (Basel) 17(10), 2368 (2017).
[Crossref] [PubMed]

H.-Y. Chang, Y.-C. Chang, and W.-F. Liu, “A highly sensitive two-dimensional inclinometer based on two etched chirped-fiber-grating arrays,” Sensors (Basel) 17(12), 2922 (2017).
[Crossref] [PubMed]

Other (2)

A. Othonos and K. Kalli, Fiber Bragg Gratings: Fundamentals and Applications in Telecommunications and Sensing (Artech House, 1999).

C. Viphavakit, S. O'Keeffe, S. Andersson-Engels, and E. Lewis, “Gold-coated Fabry-Pérot based optical fiber sensor for monitoring hypoxic state of the tumor from the change of refractive index in red blood cells,” Proc. IEEE Sens. 1–3 (IEEE 2017)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Sketch of the pECFBG device. (a) Working principle of the pECFBG, based on two distinct etched and unetched regions, and having the shortest wavelength on the etched tip; (b) CMT equivalent of the pECFBG, whereas the grating is discretized in short gratings each with length Lg.
Fig. 2
Fig. 2 Simulated spectrum of the pECFBG using parameters listed in Table 1.
Fig. 3
Fig. 3 Response of the pECFBG spectrum to the variations of different parameters. (a) Constant temperature variations of 20°C and 100°C; (b) temperature gradient 0°C → 100°C and 100°C → 0°C recorded from the left (longest wavelengths) to the right (shortest wavelengths) sides of the grating; (c) variation of refractive index of + 0.1 RIU and −0.33 RIU.
Fig. 4
Fig. 4 Schematic (a) and photographic view (b) of the pECFBG sensing setup, based on OBR system. The system is shown during thermal calibrations, using a temperature bath in water that allows controlling the thermal gradient with a reference thermometer.
Fig. 5
Fig. 5 Spectrum of the pECFBG fabricated by wet-etching, measured by OBR4600 in air at room temperature; left: reflectivity; right: group delay.
Fig. 6
Fig. 6 Refractive calibration of the pECFBG. (a) The chart reports the cross-correlation Pm for different values of refractive index changes, reported as a percentage of sucrose in water solution. (b) Calibration curve, reporting the wavelength shift measured by the centroid algorithm as a function of the refractive index change on the left window of the grating (1534.9 – 1547.6 nm).
Fig. 7
Fig. 7 Response of the pECFBG to a uniform temperature pattern in a water bath. (a) Spectrum of the pECFBG for different values of the bath temperature; (b) Estimated pECFBG temperature using the correlation method applied to the left, central, and right part of the grating.
Fig. 8
Fig. 8 Temperature detected in each portion of the pECFBG during a heating experiment, inducing a thermal gradient.

Tables (1)

Tables Icon

Table 1 Parameters of the pECFBG used in CMT simulations, reproducing experimental values.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

λ ref,i =2 n eff,i Λ i
R i ( λ )= sin h 2 ( L g k 2 σ i 2 ) cos h 2 ( L g k 2 σ i 2 ) σ i 2 k 2
σ i = π λ δ n eff +2π n eff,i ( 1 λ 1 λ i )
λ i = λ 1 +iψ L g
n eff,i ={ n eff 1i( MP ) n eff Δ n eff ( MP )<iM
α i ={ 0 1i( MP ) α ( MP )<iM
R pECFBG ( λ )=1 i=1 M [ 1 R i ( λ ) e α i L g ]
λ i = λ ref,i + s T Δ T i + s n,i Δ n i .
s n,i ={ 0 1i( MP ) s n ( MP )<iM
P m ( δλ )= m= N 1 N 2 R ref ( λ m ) R meas ( λ m mδλ )
Δλ= m P m ( δλ )( mδλ ) m P m ( δλ )

Metrics