Abstract

Laser light at 578 nm is frequency-stabilized to two independent 30-cm-long Fabry-Pérot cavities. To achieve a thermal-noise-limited cavity length stability, the geometry and support configuration of the Fabry-Pérot cavities are optimized. The fractional frequency instability of each cavity-stabilized laser system is 2 × 10−16 at 1 s averaging time, approaching to the thermal-noise-induced length instability of the reference cavity. The most probable linewidth of each laser system is about 0.2 Hz, and the laser frequency noise at Fourier frequency of 1 Hz is 0.1 Hz/√Hz.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Frequency stabilization of Nd:YAG lasers with a most probable linewidth of 0.6 Hz

Haiqin Chen, Yanyi Jiang, Su Fang, Zhiyi Bi, and Longsheng Ma
J. Opt. Soc. Am. B 30(6) 1546-1550 (2013)

Common-mode-free frequency comparison of lasers with relative frequency stability at the millihertz level

M. Eichenseer, J. von Zanthier, and H. Walther
Opt. Lett. 30(13) 1662-1664 (2005)

Wideband and high frequency stabilization of an injection-locked Nd:YAG laser to a high-finesse Fabry–Perot cavity

Mitsuru Musha, Ken'ichi Nakagawa, and Ken-ichi Ueda
Opt. Lett. 22(15) 1177-1179 (1997)

References

  • View by:
  • |
  • |
  • |

  1. A. D. Ludlow, M. M. Boyd, J. Ye, E. Peik, and P. O. Schmidt, “Optical atomic clocks,” Rev. Mod. Phys. 87(2), 637–701 (2015).
    [Crossref]
  2. T. L. Nicholson, S. L. Campbell, R. B. Hutson, G. E. Marti, B. J. Bloom, R. L. McNally, W. Zhang, M. D. Barrett, M. S. Safronova, G. F. Strouse, W. L. Tew, and J. Ye, “Systematic evaluation of an atomic clock at 2 × 10-18 total uncertainty,” Nat. Commun. 6(1), 6896 (2015).
    [Crossref] [PubMed]
  3. M. Schioppo, R. C. Brown, W. F. McGrew, N. Hinkley, R. J. Fasano, K. Beloy, T. H. Yoon, G. Milani, D. Nicolodi, J. A. Sherman, N. B. Phillips, C. W. Oates, and A. D. Ludlow, “Ultrastable optical clock with two cold-atom ensembles,” Nat. Photonics 11(1), 48–52 (2017).
    [Crossref]
  4. R. X. Adhikari, “Gravitational radiation detection with laser interferometry,” Rev. Mod. Phys. 86(1), 121–151 (2014).
    [Crossref]
  5. T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nat. Photonics 5(7), 425–429 (2011).
    [Crossref]
  6. Y. Yao, Y. Jiang, L. Wu, H. Yu, Z. Bi, and L. Ma, “A low noise optical frequency synthesizer at 700–990nm,” Appl. Phys. Lett. 109(13), 131102 (2016).
    [Crossref]
  7. S. Herrmann, A. Senger, K. Möhle, M. Nagel, E. V. Kovalchuk, and A. Peters, “Rotating optical cavity experiment testing Lorentz invariance at the 10−17 level,” Phys. Rev. D Part. Fields Gravit. Cosmol. 80(10), 105011 (2009).
    [Crossref]
  8. Y. Y. Jiang, A. D. Ludlow, N. D. Lemke, R. W. Fox, J. A. Sherman, L.-S. Ma, and C. W. Oates, “Making optical atomic clocks more stable with 10−16-level laser stabilization,” Nat. Photonics 5(3), 158–161 (2011).
    [Crossref]
  9. S. Doeleman, T. Mai, A. E. E. Rogers, J. G. Hartnett, M. E. Tobar, and N. Nand, “Adapting a cryogenic sapphire oscillator for very long baseline interferometry,” Publ. Astron. Soc. Pac. 123(903), 582–595 (2011).
    [Crossref]
  10. J. M. Hogan and M. A. Kasevich, “Atom-interferometric gravitational-wave detection using heterodyne laser links,” Phys. Rev. A 94(3), 033632 (2016).
    [Crossref]
  11. S. Grop, P. Y. Bourgeois, N. Bazin, Y. Kersalé, E. Rubiola, C. Langham, M. Oxborrow, D. Clapton, S. Walker, J. De Vicente, and V. Giordano, “ELISA: a cryocooled 10 GHz oscillator with 10-15 frequency stability,” Rev. Sci. Instrum. 81(2), 025102 (2010).
    [Crossref] [PubMed]
  12. R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31(2), 97–105 (1983).
    [Crossref]
  13. B. C. Young, F. C. Cruz, W. M. Itano, and J. C. Bergquist, “Visible lasers with subhertz linewidths,” Phys. Rev. Lett. 82(19), 3799–3802 (1999).
    [Crossref]
  14. M. J. Martin, D. Meiser, J. W. Thomsen, J. Ye, and M. J. Holland, “Extreme nonlinear response of ultranarrow optical transitions in cavity QED for laser stabilization,” Phys. Rev. A 84(6), 063813 (2011).
    [Crossref]
  15. P. G. Westergaard, B. T. R. Christensen, D. Tieri, R. Matin, J. Cooper, M. Holland, J. Ye, and J. W. Thomsen, “Observation of motion-dependent nonlinear dispersion with narrow-linewidth atoms in an optical cavity,” Phys. Rev. Lett. 114(9), 093002 (2015).
    [Crossref] [PubMed]
  16. J. B. Chen, “Active optical clock,” Chin. Sci. Bull. 54(3), 348–352 (2009).
  17. M. A. Norcia, M. N. Winchester, J. R. K. Cline, and J. K. Thompson, “Superradiance on the millihertz linewidth strontium clock transition,” Sci. Adv. 2(10), e1601231 (2016).
    [Crossref] [PubMed]
  18. J. M. Weiner, K. C. Cox, J. G. Bohnet, and J. K. Thompson, “Phase synchronization inside a superradiant laser,” Phys. Rev. A 95(3), 033808 (2017).
    [Crossref]
  19. K. Numata, A. Kemery, and J. Camp, “Thermal-noise limit in the frequency stabilization of lasers with rigid cavities,” Phys. Rev. Lett. 93(25), 250602 (2004).
    [Crossref] [PubMed]
  20. S. Häfner, S. Falke, C. Grebing, S. Vogt, T. Legero, M. Merimaa, C. Lisdat, and U. Sterr, “8 × 10−17 fractional laser frequency instability with a long room-temperature cavity,” Opt. Lett. 40(9), 2112–2115 (2015).
    [Crossref] [PubMed]
  21. T. L. Nicholson, M. J. Martin, J. R. Williams, B. J. Bloom, M. Bishof, M. D. Swallows, S. L. Campbell, and J. Ye, “Comparison of two independent Sr optical clocks with 1×10-17 stability at 103 s,” Phys. Rev. Lett. 109(23), 230801 (2012).
    [Crossref] [PubMed]
  22. G. M. Harry, A. M. Gretarsson, P. R. Saulson, S. E. Kittelberger, S. D. Penn, W. J. Startin, S. Rowan, M. M. Fejer, D. R. M. Crooks, G. Cagnoli, J. Hough, and N. Nakagawa, “Thermal noise in interferometric gravitational wave detectors due to dielectric optical coatings,” Class. Quantum Gravity 19(5), 897–917 (2002).
    [Crossref]
  23. G. D. Cole, W. Zhang, M. J. Martin, J. Ye, and M. Aspelmeyer, “Tenfold reduction of Brownian noise in high-reflectivity optical coatings,” Nat. Photonics 7(8), 644–650 (2013).
    [Crossref]
  24. D. G. Matei, T. Legero, S. Häfner, C. Grebing, R. Weyrich, W. Zhang, L. Sonderhouse, J. M. Robinson, J. Ye, F. Riehle, and U. Sterr, “1.5 μm lasers with sub-10 mHz linewidth,” Phys. Rev. Lett. 118(26), 263202 (2017).
    [Crossref] [PubMed]
  25. W. Zhang, J. M. Robinson, L. Sonderhouse, E. Oelker, C. Benko, J. L. Hall, T. Legero, D. G. Matei, F. Riehle, U. Sterr, and J. Ye, “Ultrastable silicon cavity in a continuously operating closed-cycle cryostat at 4 K,” Phys. Rev. Lett. 119(24), 243601 (2017).
    [Crossref] [PubMed]
  26. A. Noack, C. Bogan, and B. Willke, “Higher-order Laguerre-Gauss modes in (non-) planar four-mirror cavities for future gravitational wave detectors,” Opt. Lett. 42(4), 751–754 (2017).
    [Crossref] [PubMed]
  27. X. Y. Zeng, Y. X. Ye, X. H. Shi, Z. Y. Wang, K. Deng, J. Zhang, and Z. H. Lu, “Thermal-noise-limited higher-order mode locking of a reference cavity,” Opt. Lett. 43(8), 1690–1693 (2018).
    [Crossref] [PubMed]
  28. B. Argence, E. Prevost, T. Lévèque, R. Le Goff, S. Bize, P. Lemonde, and G. Santarelli, “Prototype of an ultra-stable optical cavity for space applications,” Opt. Express 20(23), 25409–25420 (2012).
    [Crossref] [PubMed]
  29. J. Millo, D. V. Magalhães, C. Mandache, Y. Le Coq, E. M. L. English, P. G. Westergaard, J. Lodewyck, S. Bize, P. Lemonde, and G. Santarelli, “Ultrastable lasers based on vibration insensitive cavities,” Phys. Rev. A 79(5), 053829 (2009).
    [Crossref]
  30. Y. Li, Y. G. Lin, Q. Wang, T. Yang, Z. Sun, E. Zang, and Z. J. Fang, “An improved strontium lattice clock with 10−16 level laser frequency stabilization,” Chin. Opt. Lett. 16(5), 051402 (2018).
    [Crossref]
  31. Z. Tai, L. Yan, Y. Zhang, X. Zhang, W. Guo, S. Zhang, and H. Jiang, “Transportable 1555-nm ultra-stable laser with sub-0.185-Hz linewidth,” Chin. Phys. Lett. 34(9), 090602 (2017).
    [Crossref]
  32. T. Legero, T. Kessler, and U. Sterr, “Tuning the thermal expansion properties of optical reference cavities with fused silica mirrors,” J. Opt. Soc. Am. B 27(5), 914–919 (2010).
    [Crossref]
  33. J. Ye and J. L. Hall, “Cavity ringdown heterodyne spectroscopy: High sensitivity with microwatt light power,” Phys. Rev. A 61(6), 061802 (2000).
    [Crossref]
  34. L. S. Ma, P. Jungner, J. Ye, and J. L. Hall, “Delivering the same optical frequency at two places: accurate cancellation of phase noise introduced by an optical fiber or other time-varying path,” Opt. Lett. 19(21), 1777–1779 (1994).
    [Crossref] [PubMed]
  35. L. Chen, J. L. Hall, J. Ye, T. Yang, E. Zang, and T. Li, “Vibration-induced elastic deformation of Fabry-Perot cavities,” Phys. Rev. A 74(5), 053801 (2006).
    [Crossref]
  36. M. Notcutt, L. S. Ma, J. Ye, and J. L. Hall, “Simple and compact 1-Hz laser system via an improved mounting configuration of a reference cavity,” Opt. Lett. 30(14), 1815–1817 (2005).
    [Crossref] [PubMed]
  37. Y. Jiang, S. Fang, Z. Bi, X. Xu, and L. Ma, “Nd:YAG lasers at 1064 nm with 1-Hz linewidth,” Appl. Phys. B 98(1), 61–67 (2010).
    [Crossref]

2018 (2)

2017 (6)

Z. Tai, L. Yan, Y. Zhang, X. Zhang, W. Guo, S. Zhang, and H. Jiang, “Transportable 1555-nm ultra-stable laser with sub-0.185-Hz linewidth,” Chin. Phys. Lett. 34(9), 090602 (2017).
[Crossref]

D. G. Matei, T. Legero, S. Häfner, C. Grebing, R. Weyrich, W. Zhang, L. Sonderhouse, J. M. Robinson, J. Ye, F. Riehle, and U. Sterr, “1.5 μm lasers with sub-10 mHz linewidth,” Phys. Rev. Lett. 118(26), 263202 (2017).
[Crossref] [PubMed]

W. Zhang, J. M. Robinson, L. Sonderhouse, E. Oelker, C. Benko, J. L. Hall, T. Legero, D. G. Matei, F. Riehle, U. Sterr, and J. Ye, “Ultrastable silicon cavity in a continuously operating closed-cycle cryostat at 4 K,” Phys. Rev. Lett. 119(24), 243601 (2017).
[Crossref] [PubMed]

A. Noack, C. Bogan, and B. Willke, “Higher-order Laguerre-Gauss modes in (non-) planar four-mirror cavities for future gravitational wave detectors,” Opt. Lett. 42(4), 751–754 (2017).
[Crossref] [PubMed]

M. Schioppo, R. C. Brown, W. F. McGrew, N. Hinkley, R. J. Fasano, K. Beloy, T. H. Yoon, G. Milani, D. Nicolodi, J. A. Sherman, N. B. Phillips, C. W. Oates, and A. D. Ludlow, “Ultrastable optical clock with two cold-atom ensembles,” Nat. Photonics 11(1), 48–52 (2017).
[Crossref]

J. M. Weiner, K. C. Cox, J. G. Bohnet, and J. K. Thompson, “Phase synchronization inside a superradiant laser,” Phys. Rev. A 95(3), 033808 (2017).
[Crossref]

2016 (3)

J. M. Hogan and M. A. Kasevich, “Atom-interferometric gravitational-wave detection using heterodyne laser links,” Phys. Rev. A 94(3), 033632 (2016).
[Crossref]

Y. Yao, Y. Jiang, L. Wu, H. Yu, Z. Bi, and L. Ma, “A low noise optical frequency synthesizer at 700–990nm,” Appl. Phys. Lett. 109(13), 131102 (2016).
[Crossref]

M. A. Norcia, M. N. Winchester, J. R. K. Cline, and J. K. Thompson, “Superradiance on the millihertz linewidth strontium clock transition,” Sci. Adv. 2(10), e1601231 (2016).
[Crossref] [PubMed]

2015 (4)

S. Häfner, S. Falke, C. Grebing, S. Vogt, T. Legero, M. Merimaa, C. Lisdat, and U. Sterr, “8 × 10−17 fractional laser frequency instability with a long room-temperature cavity,” Opt. Lett. 40(9), 2112–2115 (2015).
[Crossref] [PubMed]

A. D. Ludlow, M. M. Boyd, J. Ye, E. Peik, and P. O. Schmidt, “Optical atomic clocks,” Rev. Mod. Phys. 87(2), 637–701 (2015).
[Crossref]

T. L. Nicholson, S. L. Campbell, R. B. Hutson, G. E. Marti, B. J. Bloom, R. L. McNally, W. Zhang, M. D. Barrett, M. S. Safronova, G. F. Strouse, W. L. Tew, and J. Ye, “Systematic evaluation of an atomic clock at 2 × 10-18 total uncertainty,” Nat. Commun. 6(1), 6896 (2015).
[Crossref] [PubMed]

P. G. Westergaard, B. T. R. Christensen, D. Tieri, R. Matin, J. Cooper, M. Holland, J. Ye, and J. W. Thomsen, “Observation of motion-dependent nonlinear dispersion with narrow-linewidth atoms in an optical cavity,” Phys. Rev. Lett. 114(9), 093002 (2015).
[Crossref] [PubMed]

2014 (1)

R. X. Adhikari, “Gravitational radiation detection with laser interferometry,” Rev. Mod. Phys. 86(1), 121–151 (2014).
[Crossref]

2013 (1)

G. D. Cole, W. Zhang, M. J. Martin, J. Ye, and M. Aspelmeyer, “Tenfold reduction of Brownian noise in high-reflectivity optical coatings,” Nat. Photonics 7(8), 644–650 (2013).
[Crossref]

2012 (2)

T. L. Nicholson, M. J. Martin, J. R. Williams, B. J. Bloom, M. Bishof, M. D. Swallows, S. L. Campbell, and J. Ye, “Comparison of two independent Sr optical clocks with 1×10-17 stability at 103 s,” Phys. Rev. Lett. 109(23), 230801 (2012).
[Crossref] [PubMed]

B. Argence, E. Prevost, T. Lévèque, R. Le Goff, S. Bize, P. Lemonde, and G. Santarelli, “Prototype of an ultra-stable optical cavity for space applications,” Opt. Express 20(23), 25409–25420 (2012).
[Crossref] [PubMed]

2011 (4)

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nat. Photonics 5(7), 425–429 (2011).
[Crossref]

Y. Y. Jiang, A. D. Ludlow, N. D. Lemke, R. W. Fox, J. A. Sherman, L.-S. Ma, and C. W. Oates, “Making optical atomic clocks more stable with 10−16-level laser stabilization,” Nat. Photonics 5(3), 158–161 (2011).
[Crossref]

S. Doeleman, T. Mai, A. E. E. Rogers, J. G. Hartnett, M. E. Tobar, and N. Nand, “Adapting a cryogenic sapphire oscillator for very long baseline interferometry,” Publ. Astron. Soc. Pac. 123(903), 582–595 (2011).
[Crossref]

M. J. Martin, D. Meiser, J. W. Thomsen, J. Ye, and M. J. Holland, “Extreme nonlinear response of ultranarrow optical transitions in cavity QED for laser stabilization,” Phys. Rev. A 84(6), 063813 (2011).
[Crossref]

2010 (3)

S. Grop, P. Y. Bourgeois, N. Bazin, Y. Kersalé, E. Rubiola, C. Langham, M. Oxborrow, D. Clapton, S. Walker, J. De Vicente, and V. Giordano, “ELISA: a cryocooled 10 GHz oscillator with 10-15 frequency stability,” Rev. Sci. Instrum. 81(2), 025102 (2010).
[Crossref] [PubMed]

T. Legero, T. Kessler, and U. Sterr, “Tuning the thermal expansion properties of optical reference cavities with fused silica mirrors,” J. Opt. Soc. Am. B 27(5), 914–919 (2010).
[Crossref]

Y. Jiang, S. Fang, Z. Bi, X. Xu, and L. Ma, “Nd:YAG lasers at 1064 nm with 1-Hz linewidth,” Appl. Phys. B 98(1), 61–67 (2010).
[Crossref]

2009 (3)

J. Millo, D. V. Magalhães, C. Mandache, Y. Le Coq, E. M. L. English, P. G. Westergaard, J. Lodewyck, S. Bize, P. Lemonde, and G. Santarelli, “Ultrastable lasers based on vibration insensitive cavities,” Phys. Rev. A 79(5), 053829 (2009).
[Crossref]

J. B. Chen, “Active optical clock,” Chin. Sci. Bull. 54(3), 348–352 (2009).

S. Herrmann, A. Senger, K. Möhle, M. Nagel, E. V. Kovalchuk, and A. Peters, “Rotating optical cavity experiment testing Lorentz invariance at the 10−17 level,” Phys. Rev. D Part. Fields Gravit. Cosmol. 80(10), 105011 (2009).
[Crossref]

2006 (1)

L. Chen, J. L. Hall, J. Ye, T. Yang, E. Zang, and T. Li, “Vibration-induced elastic deformation of Fabry-Perot cavities,” Phys. Rev. A 74(5), 053801 (2006).
[Crossref]

2005 (1)

2004 (1)

K. Numata, A. Kemery, and J. Camp, “Thermal-noise limit in the frequency stabilization of lasers with rigid cavities,” Phys. Rev. Lett. 93(25), 250602 (2004).
[Crossref] [PubMed]

2002 (1)

G. M. Harry, A. M. Gretarsson, P. R. Saulson, S. E. Kittelberger, S. D. Penn, W. J. Startin, S. Rowan, M. M. Fejer, D. R. M. Crooks, G. Cagnoli, J. Hough, and N. Nakagawa, “Thermal noise in interferometric gravitational wave detectors due to dielectric optical coatings,” Class. Quantum Gravity 19(5), 897–917 (2002).
[Crossref]

2000 (1)

J. Ye and J. L. Hall, “Cavity ringdown heterodyne spectroscopy: High sensitivity with microwatt light power,” Phys. Rev. A 61(6), 061802 (2000).
[Crossref]

1999 (1)

B. C. Young, F. C. Cruz, W. M. Itano, and J. C. Bergquist, “Visible lasers with subhertz linewidths,” Phys. Rev. Lett. 82(19), 3799–3802 (1999).
[Crossref]

1994 (1)

1983 (1)

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31(2), 97–105 (1983).
[Crossref]

Adhikari, R. X.

R. X. Adhikari, “Gravitational radiation detection with laser interferometry,” Rev. Mod. Phys. 86(1), 121–151 (2014).
[Crossref]

Argence, B.

Aspelmeyer, M.

G. D. Cole, W. Zhang, M. J. Martin, J. Ye, and M. Aspelmeyer, “Tenfold reduction of Brownian noise in high-reflectivity optical coatings,” Nat. Photonics 7(8), 644–650 (2013).
[Crossref]

Barrett, M. D.

T. L. Nicholson, S. L. Campbell, R. B. Hutson, G. E. Marti, B. J. Bloom, R. L. McNally, W. Zhang, M. D. Barrett, M. S. Safronova, G. F. Strouse, W. L. Tew, and J. Ye, “Systematic evaluation of an atomic clock at 2 × 10-18 total uncertainty,” Nat. Commun. 6(1), 6896 (2015).
[Crossref] [PubMed]

Bazin, N.

S. Grop, P. Y. Bourgeois, N. Bazin, Y. Kersalé, E. Rubiola, C. Langham, M. Oxborrow, D. Clapton, S. Walker, J. De Vicente, and V. Giordano, “ELISA: a cryocooled 10 GHz oscillator with 10-15 frequency stability,” Rev. Sci. Instrum. 81(2), 025102 (2010).
[Crossref] [PubMed]

Beloy, K.

M. Schioppo, R. C. Brown, W. F. McGrew, N. Hinkley, R. J. Fasano, K. Beloy, T. H. Yoon, G. Milani, D. Nicolodi, J. A. Sherman, N. B. Phillips, C. W. Oates, and A. D. Ludlow, “Ultrastable optical clock with two cold-atom ensembles,” Nat. Photonics 11(1), 48–52 (2017).
[Crossref]

Benko, C.

W. Zhang, J. M. Robinson, L. Sonderhouse, E. Oelker, C. Benko, J. L. Hall, T. Legero, D. G. Matei, F. Riehle, U. Sterr, and J. Ye, “Ultrastable silicon cavity in a continuously operating closed-cycle cryostat at 4 K,” Phys. Rev. Lett. 119(24), 243601 (2017).
[Crossref] [PubMed]

Bergquist, J. C.

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nat. Photonics 5(7), 425–429 (2011).
[Crossref]

B. C. Young, F. C. Cruz, W. M. Itano, and J. C. Bergquist, “Visible lasers with subhertz linewidths,” Phys. Rev. Lett. 82(19), 3799–3802 (1999).
[Crossref]

Bi, Z.

Y. Yao, Y. Jiang, L. Wu, H. Yu, Z. Bi, and L. Ma, “A low noise optical frequency synthesizer at 700–990nm,” Appl. Phys. Lett. 109(13), 131102 (2016).
[Crossref]

Y. Jiang, S. Fang, Z. Bi, X. Xu, and L. Ma, “Nd:YAG lasers at 1064 nm with 1-Hz linewidth,” Appl. Phys. B 98(1), 61–67 (2010).
[Crossref]

Bishof, M.

T. L. Nicholson, M. J. Martin, J. R. Williams, B. J. Bloom, M. Bishof, M. D. Swallows, S. L. Campbell, and J. Ye, “Comparison of two independent Sr optical clocks with 1×10-17 stability at 103 s,” Phys. Rev. Lett. 109(23), 230801 (2012).
[Crossref] [PubMed]

Bize, S.

B. Argence, E. Prevost, T. Lévèque, R. Le Goff, S. Bize, P. Lemonde, and G. Santarelli, “Prototype of an ultra-stable optical cavity for space applications,” Opt. Express 20(23), 25409–25420 (2012).
[Crossref] [PubMed]

J. Millo, D. V. Magalhães, C. Mandache, Y. Le Coq, E. M. L. English, P. G. Westergaard, J. Lodewyck, S. Bize, P. Lemonde, and G. Santarelli, “Ultrastable lasers based on vibration insensitive cavities,” Phys. Rev. A 79(5), 053829 (2009).
[Crossref]

Bloom, B. J.

T. L. Nicholson, S. L. Campbell, R. B. Hutson, G. E. Marti, B. J. Bloom, R. L. McNally, W. Zhang, M. D. Barrett, M. S. Safronova, G. F. Strouse, W. L. Tew, and J. Ye, “Systematic evaluation of an atomic clock at 2 × 10-18 total uncertainty,” Nat. Commun. 6(1), 6896 (2015).
[Crossref] [PubMed]

T. L. Nicholson, M. J. Martin, J. R. Williams, B. J. Bloom, M. Bishof, M. D. Swallows, S. L. Campbell, and J. Ye, “Comparison of two independent Sr optical clocks with 1×10-17 stability at 103 s,” Phys. Rev. Lett. 109(23), 230801 (2012).
[Crossref] [PubMed]

Bogan, C.

Bohnet, J. G.

J. M. Weiner, K. C. Cox, J. G. Bohnet, and J. K. Thompson, “Phase synchronization inside a superradiant laser,” Phys. Rev. A 95(3), 033808 (2017).
[Crossref]

Bourgeois, P. Y.

S. Grop, P. Y. Bourgeois, N. Bazin, Y. Kersalé, E. Rubiola, C. Langham, M. Oxborrow, D. Clapton, S. Walker, J. De Vicente, and V. Giordano, “ELISA: a cryocooled 10 GHz oscillator with 10-15 frequency stability,” Rev. Sci. Instrum. 81(2), 025102 (2010).
[Crossref] [PubMed]

Boyd, M. M.

A. D. Ludlow, M. M. Boyd, J. Ye, E. Peik, and P. O. Schmidt, “Optical atomic clocks,” Rev. Mod. Phys. 87(2), 637–701 (2015).
[Crossref]

Brown, R. C.

M. Schioppo, R. C. Brown, W. F. McGrew, N. Hinkley, R. J. Fasano, K. Beloy, T. H. Yoon, G. Milani, D. Nicolodi, J. A. Sherman, N. B. Phillips, C. W. Oates, and A. D. Ludlow, “Ultrastable optical clock with two cold-atom ensembles,” Nat. Photonics 11(1), 48–52 (2017).
[Crossref]

Cagnoli, G.

G. M. Harry, A. M. Gretarsson, P. R. Saulson, S. E. Kittelberger, S. D. Penn, W. J. Startin, S. Rowan, M. M. Fejer, D. R. M. Crooks, G. Cagnoli, J. Hough, and N. Nakagawa, “Thermal noise in interferometric gravitational wave detectors due to dielectric optical coatings,” Class. Quantum Gravity 19(5), 897–917 (2002).
[Crossref]

Camp, J.

K. Numata, A. Kemery, and J. Camp, “Thermal-noise limit in the frequency stabilization of lasers with rigid cavities,” Phys. Rev. Lett. 93(25), 250602 (2004).
[Crossref] [PubMed]

Campbell, S. L.

T. L. Nicholson, S. L. Campbell, R. B. Hutson, G. E. Marti, B. J. Bloom, R. L. McNally, W. Zhang, M. D. Barrett, M. S. Safronova, G. F. Strouse, W. L. Tew, and J. Ye, “Systematic evaluation of an atomic clock at 2 × 10-18 total uncertainty,” Nat. Commun. 6(1), 6896 (2015).
[Crossref] [PubMed]

T. L. Nicholson, M. J. Martin, J. R. Williams, B. J. Bloom, M. Bishof, M. D. Swallows, S. L. Campbell, and J. Ye, “Comparison of two independent Sr optical clocks with 1×10-17 stability at 103 s,” Phys. Rev. Lett. 109(23), 230801 (2012).
[Crossref] [PubMed]

Chen, J. B.

J. B. Chen, “Active optical clock,” Chin. Sci. Bull. 54(3), 348–352 (2009).

Chen, L.

L. Chen, J. L. Hall, J. Ye, T. Yang, E. Zang, and T. Li, “Vibration-induced elastic deformation of Fabry-Perot cavities,” Phys. Rev. A 74(5), 053801 (2006).
[Crossref]

Christensen, B. T. R.

P. G. Westergaard, B. T. R. Christensen, D. Tieri, R. Matin, J. Cooper, M. Holland, J. Ye, and J. W. Thomsen, “Observation of motion-dependent nonlinear dispersion with narrow-linewidth atoms in an optical cavity,” Phys. Rev. Lett. 114(9), 093002 (2015).
[Crossref] [PubMed]

Clapton, D.

S. Grop, P. Y. Bourgeois, N. Bazin, Y. Kersalé, E. Rubiola, C. Langham, M. Oxborrow, D. Clapton, S. Walker, J. De Vicente, and V. Giordano, “ELISA: a cryocooled 10 GHz oscillator with 10-15 frequency stability,” Rev. Sci. Instrum. 81(2), 025102 (2010).
[Crossref] [PubMed]

Cline, J. R. K.

M. A. Norcia, M. N. Winchester, J. R. K. Cline, and J. K. Thompson, “Superradiance on the millihertz linewidth strontium clock transition,” Sci. Adv. 2(10), e1601231 (2016).
[Crossref] [PubMed]

Cole, G. D.

G. D. Cole, W. Zhang, M. J. Martin, J. Ye, and M. Aspelmeyer, “Tenfold reduction of Brownian noise in high-reflectivity optical coatings,” Nat. Photonics 7(8), 644–650 (2013).
[Crossref]

Cooper, J.

P. G. Westergaard, B. T. R. Christensen, D. Tieri, R. Matin, J. Cooper, M. Holland, J. Ye, and J. W. Thomsen, “Observation of motion-dependent nonlinear dispersion with narrow-linewidth atoms in an optical cavity,” Phys. Rev. Lett. 114(9), 093002 (2015).
[Crossref] [PubMed]

Cox, K. C.

J. M. Weiner, K. C. Cox, J. G. Bohnet, and J. K. Thompson, “Phase synchronization inside a superradiant laser,” Phys. Rev. A 95(3), 033808 (2017).
[Crossref]

Crooks, D. R. M.

G. M. Harry, A. M. Gretarsson, P. R. Saulson, S. E. Kittelberger, S. D. Penn, W. J. Startin, S. Rowan, M. M. Fejer, D. R. M. Crooks, G. Cagnoli, J. Hough, and N. Nakagawa, “Thermal noise in interferometric gravitational wave detectors due to dielectric optical coatings,” Class. Quantum Gravity 19(5), 897–917 (2002).
[Crossref]

Cruz, F. C.

B. C. Young, F. C. Cruz, W. M. Itano, and J. C. Bergquist, “Visible lasers with subhertz linewidths,” Phys. Rev. Lett. 82(19), 3799–3802 (1999).
[Crossref]

De Vicente, J.

S. Grop, P. Y. Bourgeois, N. Bazin, Y. Kersalé, E. Rubiola, C. Langham, M. Oxborrow, D. Clapton, S. Walker, J. De Vicente, and V. Giordano, “ELISA: a cryocooled 10 GHz oscillator with 10-15 frequency stability,” Rev. Sci. Instrum. 81(2), 025102 (2010).
[Crossref] [PubMed]

Deng, K.

Diddams, S. A.

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nat. Photonics 5(7), 425–429 (2011).
[Crossref]

Doeleman, S.

S. Doeleman, T. Mai, A. E. E. Rogers, J. G. Hartnett, M. E. Tobar, and N. Nand, “Adapting a cryogenic sapphire oscillator for very long baseline interferometry,” Publ. Astron. Soc. Pac. 123(903), 582–595 (2011).
[Crossref]

Drever, R. W. P.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31(2), 97–105 (1983).
[Crossref]

English, E. M. L.

J. Millo, D. V. Magalhães, C. Mandache, Y. Le Coq, E. M. L. English, P. G. Westergaard, J. Lodewyck, S. Bize, P. Lemonde, and G. Santarelli, “Ultrastable lasers based on vibration insensitive cavities,” Phys. Rev. A 79(5), 053829 (2009).
[Crossref]

Falke, S.

Fang, S.

Y. Jiang, S. Fang, Z. Bi, X. Xu, and L. Ma, “Nd:YAG lasers at 1064 nm with 1-Hz linewidth,” Appl. Phys. B 98(1), 61–67 (2010).
[Crossref]

Fang, Z. J.

Fasano, R. J.

M. Schioppo, R. C. Brown, W. F. McGrew, N. Hinkley, R. J. Fasano, K. Beloy, T. H. Yoon, G. Milani, D. Nicolodi, J. A. Sherman, N. B. Phillips, C. W. Oates, and A. D. Ludlow, “Ultrastable optical clock with two cold-atom ensembles,” Nat. Photonics 11(1), 48–52 (2017).
[Crossref]

Fejer, M. M.

G. M. Harry, A. M. Gretarsson, P. R. Saulson, S. E. Kittelberger, S. D. Penn, W. J. Startin, S. Rowan, M. M. Fejer, D. R. M. Crooks, G. Cagnoli, J. Hough, and N. Nakagawa, “Thermal noise in interferometric gravitational wave detectors due to dielectric optical coatings,” Class. Quantum Gravity 19(5), 897–917 (2002).
[Crossref]

Ford, G. M.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31(2), 97–105 (1983).
[Crossref]

Fortier, T. M.

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nat. Photonics 5(7), 425–429 (2011).
[Crossref]

Fox, R. W.

Y. Y. Jiang, A. D. Ludlow, N. D. Lemke, R. W. Fox, J. A. Sherman, L.-S. Ma, and C. W. Oates, “Making optical atomic clocks more stable with 10−16-level laser stabilization,” Nat. Photonics 5(3), 158–161 (2011).
[Crossref]

Giordano, V.

S. Grop, P. Y. Bourgeois, N. Bazin, Y. Kersalé, E. Rubiola, C. Langham, M. Oxborrow, D. Clapton, S. Walker, J. De Vicente, and V. Giordano, “ELISA: a cryocooled 10 GHz oscillator with 10-15 frequency stability,” Rev. Sci. Instrum. 81(2), 025102 (2010).
[Crossref] [PubMed]

Grebing, C.

D. G. Matei, T. Legero, S. Häfner, C. Grebing, R. Weyrich, W. Zhang, L. Sonderhouse, J. M. Robinson, J. Ye, F. Riehle, and U. Sterr, “1.5 μm lasers with sub-10 mHz linewidth,” Phys. Rev. Lett. 118(26), 263202 (2017).
[Crossref] [PubMed]

S. Häfner, S. Falke, C. Grebing, S. Vogt, T. Legero, M. Merimaa, C. Lisdat, and U. Sterr, “8 × 10−17 fractional laser frequency instability with a long room-temperature cavity,” Opt. Lett. 40(9), 2112–2115 (2015).
[Crossref] [PubMed]

Gretarsson, A. M.

G. M. Harry, A. M. Gretarsson, P. R. Saulson, S. E. Kittelberger, S. D. Penn, W. J. Startin, S. Rowan, M. M. Fejer, D. R. M. Crooks, G. Cagnoli, J. Hough, and N. Nakagawa, “Thermal noise in interferometric gravitational wave detectors due to dielectric optical coatings,” Class. Quantum Gravity 19(5), 897–917 (2002).
[Crossref]

Grop, S.

S. Grop, P. Y. Bourgeois, N. Bazin, Y. Kersalé, E. Rubiola, C. Langham, M. Oxborrow, D. Clapton, S. Walker, J. De Vicente, and V. Giordano, “ELISA: a cryocooled 10 GHz oscillator with 10-15 frequency stability,” Rev. Sci. Instrum. 81(2), 025102 (2010).
[Crossref] [PubMed]

Guo, W.

Z. Tai, L. Yan, Y. Zhang, X. Zhang, W. Guo, S. Zhang, and H. Jiang, “Transportable 1555-nm ultra-stable laser with sub-0.185-Hz linewidth,” Chin. Phys. Lett. 34(9), 090602 (2017).
[Crossref]

Häfner, S.

D. G. Matei, T. Legero, S. Häfner, C. Grebing, R. Weyrich, W. Zhang, L. Sonderhouse, J. M. Robinson, J. Ye, F. Riehle, and U. Sterr, “1.5 μm lasers with sub-10 mHz linewidth,” Phys. Rev. Lett. 118(26), 263202 (2017).
[Crossref] [PubMed]

S. Häfner, S. Falke, C. Grebing, S. Vogt, T. Legero, M. Merimaa, C. Lisdat, and U. Sterr, “8 × 10−17 fractional laser frequency instability with a long room-temperature cavity,” Opt. Lett. 40(9), 2112–2115 (2015).
[Crossref] [PubMed]

Hall, J. L.

W. Zhang, J. M. Robinson, L. Sonderhouse, E. Oelker, C. Benko, J. L. Hall, T. Legero, D. G. Matei, F. Riehle, U. Sterr, and J. Ye, “Ultrastable silicon cavity in a continuously operating closed-cycle cryostat at 4 K,” Phys. Rev. Lett. 119(24), 243601 (2017).
[Crossref] [PubMed]

L. Chen, J. L. Hall, J. Ye, T. Yang, E. Zang, and T. Li, “Vibration-induced elastic deformation of Fabry-Perot cavities,” Phys. Rev. A 74(5), 053801 (2006).
[Crossref]

M. Notcutt, L. S. Ma, J. Ye, and J. L. Hall, “Simple and compact 1-Hz laser system via an improved mounting configuration of a reference cavity,” Opt. Lett. 30(14), 1815–1817 (2005).
[Crossref] [PubMed]

J. Ye and J. L. Hall, “Cavity ringdown heterodyne spectroscopy: High sensitivity with microwatt light power,” Phys. Rev. A 61(6), 061802 (2000).
[Crossref]

L. S. Ma, P. Jungner, J. Ye, and J. L. Hall, “Delivering the same optical frequency at two places: accurate cancellation of phase noise introduced by an optical fiber or other time-varying path,” Opt. Lett. 19(21), 1777–1779 (1994).
[Crossref] [PubMed]

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31(2), 97–105 (1983).
[Crossref]

Harry, G. M.

G. M. Harry, A. M. Gretarsson, P. R. Saulson, S. E. Kittelberger, S. D. Penn, W. J. Startin, S. Rowan, M. M. Fejer, D. R. M. Crooks, G. Cagnoli, J. Hough, and N. Nakagawa, “Thermal noise in interferometric gravitational wave detectors due to dielectric optical coatings,” Class. Quantum Gravity 19(5), 897–917 (2002).
[Crossref]

Hartnett, J. G.

S. Doeleman, T. Mai, A. E. E. Rogers, J. G. Hartnett, M. E. Tobar, and N. Nand, “Adapting a cryogenic sapphire oscillator for very long baseline interferometry,” Publ. Astron. Soc. Pac. 123(903), 582–595 (2011).
[Crossref]

Herrmann, S.

S. Herrmann, A. Senger, K. Möhle, M. Nagel, E. V. Kovalchuk, and A. Peters, “Rotating optical cavity experiment testing Lorentz invariance at the 10−17 level,” Phys. Rev. D Part. Fields Gravit. Cosmol. 80(10), 105011 (2009).
[Crossref]

Hinkley, N.

M. Schioppo, R. C. Brown, W. F. McGrew, N. Hinkley, R. J. Fasano, K. Beloy, T. H. Yoon, G. Milani, D. Nicolodi, J. A. Sherman, N. B. Phillips, C. W. Oates, and A. D. Ludlow, “Ultrastable optical clock with two cold-atom ensembles,” Nat. Photonics 11(1), 48–52 (2017).
[Crossref]

Hogan, J. M.

J. M. Hogan and M. A. Kasevich, “Atom-interferometric gravitational-wave detection using heterodyne laser links,” Phys. Rev. A 94(3), 033632 (2016).
[Crossref]

Holland, M.

P. G. Westergaard, B. T. R. Christensen, D. Tieri, R. Matin, J. Cooper, M. Holland, J. Ye, and J. W. Thomsen, “Observation of motion-dependent nonlinear dispersion with narrow-linewidth atoms in an optical cavity,” Phys. Rev. Lett. 114(9), 093002 (2015).
[Crossref] [PubMed]

Holland, M. J.

M. J. Martin, D. Meiser, J. W. Thomsen, J. Ye, and M. J. Holland, “Extreme nonlinear response of ultranarrow optical transitions in cavity QED for laser stabilization,” Phys. Rev. A 84(6), 063813 (2011).
[Crossref]

Hough, J.

G. M. Harry, A. M. Gretarsson, P. R. Saulson, S. E. Kittelberger, S. D. Penn, W. J. Startin, S. Rowan, M. M. Fejer, D. R. M. Crooks, G. Cagnoli, J. Hough, and N. Nakagawa, “Thermal noise in interferometric gravitational wave detectors due to dielectric optical coatings,” Class. Quantum Gravity 19(5), 897–917 (2002).
[Crossref]

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31(2), 97–105 (1983).
[Crossref]

Hutson, R. B.

T. L. Nicholson, S. L. Campbell, R. B. Hutson, G. E. Marti, B. J. Bloom, R. L. McNally, W. Zhang, M. D. Barrett, M. S. Safronova, G. F. Strouse, W. L. Tew, and J. Ye, “Systematic evaluation of an atomic clock at 2 × 10-18 total uncertainty,” Nat. Commun. 6(1), 6896 (2015).
[Crossref] [PubMed]

Itano, W. M.

B. C. Young, F. C. Cruz, W. M. Itano, and J. C. Bergquist, “Visible lasers with subhertz linewidths,” Phys. Rev. Lett. 82(19), 3799–3802 (1999).
[Crossref]

Jiang, H.

Z. Tai, L. Yan, Y. Zhang, X. Zhang, W. Guo, S. Zhang, and H. Jiang, “Transportable 1555-nm ultra-stable laser with sub-0.185-Hz linewidth,” Chin. Phys. Lett. 34(9), 090602 (2017).
[Crossref]

Jiang, Y.

Y. Yao, Y. Jiang, L. Wu, H. Yu, Z. Bi, and L. Ma, “A low noise optical frequency synthesizer at 700–990nm,” Appl. Phys. Lett. 109(13), 131102 (2016).
[Crossref]

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nat. Photonics 5(7), 425–429 (2011).
[Crossref]

Y. Jiang, S. Fang, Z. Bi, X. Xu, and L. Ma, “Nd:YAG lasers at 1064 nm with 1-Hz linewidth,” Appl. Phys. B 98(1), 61–67 (2010).
[Crossref]

Jiang, Y. Y.

Y. Y. Jiang, A. D. Ludlow, N. D. Lemke, R. W. Fox, J. A. Sherman, L.-S. Ma, and C. W. Oates, “Making optical atomic clocks more stable with 10−16-level laser stabilization,” Nat. Photonics 5(3), 158–161 (2011).
[Crossref]

Jungner, P.

Kasevich, M. A.

J. M. Hogan and M. A. Kasevich, “Atom-interferometric gravitational-wave detection using heterodyne laser links,” Phys. Rev. A 94(3), 033632 (2016).
[Crossref]

Kemery, A.

K. Numata, A. Kemery, and J. Camp, “Thermal-noise limit in the frequency stabilization of lasers with rigid cavities,” Phys. Rev. Lett. 93(25), 250602 (2004).
[Crossref] [PubMed]

Kersalé, Y.

S. Grop, P. Y. Bourgeois, N. Bazin, Y. Kersalé, E. Rubiola, C. Langham, M. Oxborrow, D. Clapton, S. Walker, J. De Vicente, and V. Giordano, “ELISA: a cryocooled 10 GHz oscillator with 10-15 frequency stability,” Rev. Sci. Instrum. 81(2), 025102 (2010).
[Crossref] [PubMed]

Kessler, T.

Kirchner, M. S.

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nat. Photonics 5(7), 425–429 (2011).
[Crossref]

Kittelberger, S. E.

G. M. Harry, A. M. Gretarsson, P. R. Saulson, S. E. Kittelberger, S. D. Penn, W. J. Startin, S. Rowan, M. M. Fejer, D. R. M. Crooks, G. Cagnoli, J. Hough, and N. Nakagawa, “Thermal noise in interferometric gravitational wave detectors due to dielectric optical coatings,” Class. Quantum Gravity 19(5), 897–917 (2002).
[Crossref]

Kovalchuk, E. V.

S. Herrmann, A. Senger, K. Möhle, M. Nagel, E. V. Kovalchuk, and A. Peters, “Rotating optical cavity experiment testing Lorentz invariance at the 10−17 level,” Phys. Rev. D Part. Fields Gravit. Cosmol. 80(10), 105011 (2009).
[Crossref]

Kowalski, F. V.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31(2), 97–105 (1983).
[Crossref]

Langham, C.

S. Grop, P. Y. Bourgeois, N. Bazin, Y. Kersalé, E. Rubiola, C. Langham, M. Oxborrow, D. Clapton, S. Walker, J. De Vicente, and V. Giordano, “ELISA: a cryocooled 10 GHz oscillator with 10-15 frequency stability,” Rev. Sci. Instrum. 81(2), 025102 (2010).
[Crossref] [PubMed]

Le Coq, Y.

J. Millo, D. V. Magalhães, C. Mandache, Y. Le Coq, E. M. L. English, P. G. Westergaard, J. Lodewyck, S. Bize, P. Lemonde, and G. Santarelli, “Ultrastable lasers based on vibration insensitive cavities,” Phys. Rev. A 79(5), 053829 (2009).
[Crossref]

Le Goff, R.

Legero, T.

W. Zhang, J. M. Robinson, L. Sonderhouse, E. Oelker, C. Benko, J. L. Hall, T. Legero, D. G. Matei, F. Riehle, U. Sterr, and J. Ye, “Ultrastable silicon cavity in a continuously operating closed-cycle cryostat at 4 K,” Phys. Rev. Lett. 119(24), 243601 (2017).
[Crossref] [PubMed]

D. G. Matei, T. Legero, S. Häfner, C. Grebing, R. Weyrich, W. Zhang, L. Sonderhouse, J. M. Robinson, J. Ye, F. Riehle, and U. Sterr, “1.5 μm lasers with sub-10 mHz linewidth,” Phys. Rev. Lett. 118(26), 263202 (2017).
[Crossref] [PubMed]

S. Häfner, S. Falke, C. Grebing, S. Vogt, T. Legero, M. Merimaa, C. Lisdat, and U. Sterr, “8 × 10−17 fractional laser frequency instability with a long room-temperature cavity,” Opt. Lett. 40(9), 2112–2115 (2015).
[Crossref] [PubMed]

T. Legero, T. Kessler, and U. Sterr, “Tuning the thermal expansion properties of optical reference cavities with fused silica mirrors,” J. Opt. Soc. Am. B 27(5), 914–919 (2010).
[Crossref]

Lemke, N.

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nat. Photonics 5(7), 425–429 (2011).
[Crossref]

Lemke, N. D.

Y. Y. Jiang, A. D. Ludlow, N. D. Lemke, R. W. Fox, J. A. Sherman, L.-S. Ma, and C. W. Oates, “Making optical atomic clocks more stable with 10−16-level laser stabilization,” Nat. Photonics 5(3), 158–161 (2011).
[Crossref]

Lemonde, P.

B. Argence, E. Prevost, T. Lévèque, R. Le Goff, S. Bize, P. Lemonde, and G. Santarelli, “Prototype of an ultra-stable optical cavity for space applications,” Opt. Express 20(23), 25409–25420 (2012).
[Crossref] [PubMed]

J. Millo, D. V. Magalhães, C. Mandache, Y. Le Coq, E. M. L. English, P. G. Westergaard, J. Lodewyck, S. Bize, P. Lemonde, and G. Santarelli, “Ultrastable lasers based on vibration insensitive cavities,” Phys. Rev. A 79(5), 053829 (2009).
[Crossref]

Lévèque, T.

Li, T.

L. Chen, J. L. Hall, J. Ye, T. Yang, E. Zang, and T. Li, “Vibration-induced elastic deformation of Fabry-Perot cavities,” Phys. Rev. A 74(5), 053801 (2006).
[Crossref]

Li, Y.

Lin, Y. G.

Lisdat, C.

Lodewyck, J.

J. Millo, D. V. Magalhães, C. Mandache, Y. Le Coq, E. M. L. English, P. G. Westergaard, J. Lodewyck, S. Bize, P. Lemonde, and G. Santarelli, “Ultrastable lasers based on vibration insensitive cavities,” Phys. Rev. A 79(5), 053829 (2009).
[Crossref]

Lu, Z. H.

Ludlow, A.

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nat. Photonics 5(7), 425–429 (2011).
[Crossref]

Ludlow, A. D.

M. Schioppo, R. C. Brown, W. F. McGrew, N. Hinkley, R. J. Fasano, K. Beloy, T. H. Yoon, G. Milani, D. Nicolodi, J. A. Sherman, N. B. Phillips, C. W. Oates, and A. D. Ludlow, “Ultrastable optical clock with two cold-atom ensembles,” Nat. Photonics 11(1), 48–52 (2017).
[Crossref]

A. D. Ludlow, M. M. Boyd, J. Ye, E. Peik, and P. O. Schmidt, “Optical atomic clocks,” Rev. Mod. Phys. 87(2), 637–701 (2015).
[Crossref]

Y. Y. Jiang, A. D. Ludlow, N. D. Lemke, R. W. Fox, J. A. Sherman, L.-S. Ma, and C. W. Oates, “Making optical atomic clocks more stable with 10−16-level laser stabilization,” Nat. Photonics 5(3), 158–161 (2011).
[Crossref]

Ma, L.

Y. Yao, Y. Jiang, L. Wu, H. Yu, Z. Bi, and L. Ma, “A low noise optical frequency synthesizer at 700–990nm,” Appl. Phys. Lett. 109(13), 131102 (2016).
[Crossref]

Y. Jiang, S. Fang, Z. Bi, X. Xu, and L. Ma, “Nd:YAG lasers at 1064 nm with 1-Hz linewidth,” Appl. Phys. B 98(1), 61–67 (2010).
[Crossref]

Ma, L. S.

Ma, L.-S.

Y. Y. Jiang, A. D. Ludlow, N. D. Lemke, R. W. Fox, J. A. Sherman, L.-S. Ma, and C. W. Oates, “Making optical atomic clocks more stable with 10−16-level laser stabilization,” Nat. Photonics 5(3), 158–161 (2011).
[Crossref]

Magalhães, D. V.

J. Millo, D. V. Magalhães, C. Mandache, Y. Le Coq, E. M. L. English, P. G. Westergaard, J. Lodewyck, S. Bize, P. Lemonde, and G. Santarelli, “Ultrastable lasers based on vibration insensitive cavities,” Phys. Rev. A 79(5), 053829 (2009).
[Crossref]

Mai, T.

S. Doeleman, T. Mai, A. E. E. Rogers, J. G. Hartnett, M. E. Tobar, and N. Nand, “Adapting a cryogenic sapphire oscillator for very long baseline interferometry,” Publ. Astron. Soc. Pac. 123(903), 582–595 (2011).
[Crossref]

Mandache, C.

J. Millo, D. V. Magalhães, C. Mandache, Y. Le Coq, E. M. L. English, P. G. Westergaard, J. Lodewyck, S. Bize, P. Lemonde, and G. Santarelli, “Ultrastable lasers based on vibration insensitive cavities,” Phys. Rev. A 79(5), 053829 (2009).
[Crossref]

Marti, G. E.

T. L. Nicholson, S. L. Campbell, R. B. Hutson, G. E. Marti, B. J. Bloom, R. L. McNally, W. Zhang, M. D. Barrett, M. S. Safronova, G. F. Strouse, W. L. Tew, and J. Ye, “Systematic evaluation of an atomic clock at 2 × 10-18 total uncertainty,” Nat. Commun. 6(1), 6896 (2015).
[Crossref] [PubMed]

Martin, M. J.

G. D. Cole, W. Zhang, M. J. Martin, J. Ye, and M. Aspelmeyer, “Tenfold reduction of Brownian noise in high-reflectivity optical coatings,” Nat. Photonics 7(8), 644–650 (2013).
[Crossref]

T. L. Nicholson, M. J. Martin, J. R. Williams, B. J. Bloom, M. Bishof, M. D. Swallows, S. L. Campbell, and J. Ye, “Comparison of two independent Sr optical clocks with 1×10-17 stability at 103 s,” Phys. Rev. Lett. 109(23), 230801 (2012).
[Crossref] [PubMed]

M. J. Martin, D. Meiser, J. W. Thomsen, J. Ye, and M. J. Holland, “Extreme nonlinear response of ultranarrow optical transitions in cavity QED for laser stabilization,” Phys. Rev. A 84(6), 063813 (2011).
[Crossref]

Matei, D. G.

D. G. Matei, T. Legero, S. Häfner, C. Grebing, R. Weyrich, W. Zhang, L. Sonderhouse, J. M. Robinson, J. Ye, F. Riehle, and U. Sterr, “1.5 μm lasers with sub-10 mHz linewidth,” Phys. Rev. Lett. 118(26), 263202 (2017).
[Crossref] [PubMed]

W. Zhang, J. M. Robinson, L. Sonderhouse, E. Oelker, C. Benko, J. L. Hall, T. Legero, D. G. Matei, F. Riehle, U. Sterr, and J. Ye, “Ultrastable silicon cavity in a continuously operating closed-cycle cryostat at 4 K,” Phys. Rev. Lett. 119(24), 243601 (2017).
[Crossref] [PubMed]

Matin, R.

P. G. Westergaard, B. T. R. Christensen, D. Tieri, R. Matin, J. Cooper, M. Holland, J. Ye, and J. W. Thomsen, “Observation of motion-dependent nonlinear dispersion with narrow-linewidth atoms in an optical cavity,” Phys. Rev. Lett. 114(9), 093002 (2015).
[Crossref] [PubMed]

McGrew, W. F.

M. Schioppo, R. C. Brown, W. F. McGrew, N. Hinkley, R. J. Fasano, K. Beloy, T. H. Yoon, G. Milani, D. Nicolodi, J. A. Sherman, N. B. Phillips, C. W. Oates, and A. D. Ludlow, “Ultrastable optical clock with two cold-atom ensembles,” Nat. Photonics 11(1), 48–52 (2017).
[Crossref]

McNally, R. L.

T. L. Nicholson, S. L. Campbell, R. B. Hutson, G. E. Marti, B. J. Bloom, R. L. McNally, W. Zhang, M. D. Barrett, M. S. Safronova, G. F. Strouse, W. L. Tew, and J. Ye, “Systematic evaluation of an atomic clock at 2 × 10-18 total uncertainty,” Nat. Commun. 6(1), 6896 (2015).
[Crossref] [PubMed]

Meiser, D.

M. J. Martin, D. Meiser, J. W. Thomsen, J. Ye, and M. J. Holland, “Extreme nonlinear response of ultranarrow optical transitions in cavity QED for laser stabilization,” Phys. Rev. A 84(6), 063813 (2011).
[Crossref]

Merimaa, M.

Milani, G.

M. Schioppo, R. C. Brown, W. F. McGrew, N. Hinkley, R. J. Fasano, K. Beloy, T. H. Yoon, G. Milani, D. Nicolodi, J. A. Sherman, N. B. Phillips, C. W. Oates, and A. D. Ludlow, “Ultrastable optical clock with two cold-atom ensembles,” Nat. Photonics 11(1), 48–52 (2017).
[Crossref]

Millo, J.

J. Millo, D. V. Magalhães, C. Mandache, Y. Le Coq, E. M. L. English, P. G. Westergaard, J. Lodewyck, S. Bize, P. Lemonde, and G. Santarelli, “Ultrastable lasers based on vibration insensitive cavities,” Phys. Rev. A 79(5), 053829 (2009).
[Crossref]

Möhle, K.

S. Herrmann, A. Senger, K. Möhle, M. Nagel, E. V. Kovalchuk, and A. Peters, “Rotating optical cavity experiment testing Lorentz invariance at the 10−17 level,” Phys. Rev. D Part. Fields Gravit. Cosmol. 80(10), 105011 (2009).
[Crossref]

Munley, A. J.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31(2), 97–105 (1983).
[Crossref]

Nagel, M.

S. Herrmann, A. Senger, K. Möhle, M. Nagel, E. V. Kovalchuk, and A. Peters, “Rotating optical cavity experiment testing Lorentz invariance at the 10−17 level,” Phys. Rev. D Part. Fields Gravit. Cosmol. 80(10), 105011 (2009).
[Crossref]

Nakagawa, N.

G. M. Harry, A. M. Gretarsson, P. R. Saulson, S. E. Kittelberger, S. D. Penn, W. J. Startin, S. Rowan, M. M. Fejer, D. R. M. Crooks, G. Cagnoli, J. Hough, and N. Nakagawa, “Thermal noise in interferometric gravitational wave detectors due to dielectric optical coatings,” Class. Quantum Gravity 19(5), 897–917 (2002).
[Crossref]

Nand, N.

S. Doeleman, T. Mai, A. E. E. Rogers, J. G. Hartnett, M. E. Tobar, and N. Nand, “Adapting a cryogenic sapphire oscillator for very long baseline interferometry,” Publ. Astron. Soc. Pac. 123(903), 582–595 (2011).
[Crossref]

Nicholson, T. L.

T. L. Nicholson, S. L. Campbell, R. B. Hutson, G. E. Marti, B. J. Bloom, R. L. McNally, W. Zhang, M. D. Barrett, M. S. Safronova, G. F. Strouse, W. L. Tew, and J. Ye, “Systematic evaluation of an atomic clock at 2 × 10-18 total uncertainty,” Nat. Commun. 6(1), 6896 (2015).
[Crossref] [PubMed]

T. L. Nicholson, M. J. Martin, J. R. Williams, B. J. Bloom, M. Bishof, M. D. Swallows, S. L. Campbell, and J. Ye, “Comparison of two independent Sr optical clocks with 1×10-17 stability at 103 s,” Phys. Rev. Lett. 109(23), 230801 (2012).
[Crossref] [PubMed]

Nicolodi, D.

M. Schioppo, R. C. Brown, W. F. McGrew, N. Hinkley, R. J. Fasano, K. Beloy, T. H. Yoon, G. Milani, D. Nicolodi, J. A. Sherman, N. B. Phillips, C. W. Oates, and A. D. Ludlow, “Ultrastable optical clock with two cold-atom ensembles,” Nat. Photonics 11(1), 48–52 (2017).
[Crossref]

Noack, A.

Norcia, M. A.

M. A. Norcia, M. N. Winchester, J. R. K. Cline, and J. K. Thompson, “Superradiance on the millihertz linewidth strontium clock transition,” Sci. Adv. 2(10), e1601231 (2016).
[Crossref] [PubMed]

Notcutt, M.

Numata, K.

K. Numata, A. Kemery, and J. Camp, “Thermal-noise limit in the frequency stabilization of lasers with rigid cavities,” Phys. Rev. Lett. 93(25), 250602 (2004).
[Crossref] [PubMed]

Oates, C. W.

M. Schioppo, R. C. Brown, W. F. McGrew, N. Hinkley, R. J. Fasano, K. Beloy, T. H. Yoon, G. Milani, D. Nicolodi, J. A. Sherman, N. B. Phillips, C. W. Oates, and A. D. Ludlow, “Ultrastable optical clock with two cold-atom ensembles,” Nat. Photonics 11(1), 48–52 (2017).
[Crossref]

Y. Y. Jiang, A. D. Ludlow, N. D. Lemke, R. W. Fox, J. A. Sherman, L.-S. Ma, and C. W. Oates, “Making optical atomic clocks more stable with 10−16-level laser stabilization,” Nat. Photonics 5(3), 158–161 (2011).
[Crossref]

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nat. Photonics 5(7), 425–429 (2011).
[Crossref]

Oelker, E.

W. Zhang, J. M. Robinson, L. Sonderhouse, E. Oelker, C. Benko, J. L. Hall, T. Legero, D. G. Matei, F. Riehle, U. Sterr, and J. Ye, “Ultrastable silicon cavity in a continuously operating closed-cycle cryostat at 4 K,” Phys. Rev. Lett. 119(24), 243601 (2017).
[Crossref] [PubMed]

Oxborrow, M.

S. Grop, P. Y. Bourgeois, N. Bazin, Y. Kersalé, E. Rubiola, C. Langham, M. Oxborrow, D. Clapton, S. Walker, J. De Vicente, and V. Giordano, “ELISA: a cryocooled 10 GHz oscillator with 10-15 frequency stability,” Rev. Sci. Instrum. 81(2), 025102 (2010).
[Crossref] [PubMed]

Peik, E.

A. D. Ludlow, M. M. Boyd, J. Ye, E. Peik, and P. O. Schmidt, “Optical atomic clocks,” Rev. Mod. Phys. 87(2), 637–701 (2015).
[Crossref]

Penn, S. D.

G. M. Harry, A. M. Gretarsson, P. R. Saulson, S. E. Kittelberger, S. D. Penn, W. J. Startin, S. Rowan, M. M. Fejer, D. R. M. Crooks, G. Cagnoli, J. Hough, and N. Nakagawa, “Thermal noise in interferometric gravitational wave detectors due to dielectric optical coatings,” Class. Quantum Gravity 19(5), 897–917 (2002).
[Crossref]

Peters, A.

S. Herrmann, A. Senger, K. Möhle, M. Nagel, E. V. Kovalchuk, and A. Peters, “Rotating optical cavity experiment testing Lorentz invariance at the 10−17 level,” Phys. Rev. D Part. Fields Gravit. Cosmol. 80(10), 105011 (2009).
[Crossref]

Phillips, N. B.

M. Schioppo, R. C. Brown, W. F. McGrew, N. Hinkley, R. J. Fasano, K. Beloy, T. H. Yoon, G. Milani, D. Nicolodi, J. A. Sherman, N. B. Phillips, C. W. Oates, and A. D. Ludlow, “Ultrastable optical clock with two cold-atom ensembles,” Nat. Photonics 11(1), 48–52 (2017).
[Crossref]

Prevost, E.

Quinlan, F.

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nat. Photonics 5(7), 425–429 (2011).
[Crossref]

Riehle, F.

W. Zhang, J. M. Robinson, L. Sonderhouse, E. Oelker, C. Benko, J. L. Hall, T. Legero, D. G. Matei, F. Riehle, U. Sterr, and J. Ye, “Ultrastable silicon cavity in a continuously operating closed-cycle cryostat at 4 K,” Phys. Rev. Lett. 119(24), 243601 (2017).
[Crossref] [PubMed]

D. G. Matei, T. Legero, S. Häfner, C. Grebing, R. Weyrich, W. Zhang, L. Sonderhouse, J. M. Robinson, J. Ye, F. Riehle, and U. Sterr, “1.5 μm lasers with sub-10 mHz linewidth,” Phys. Rev. Lett. 118(26), 263202 (2017).
[Crossref] [PubMed]

Robinson, J. M.

D. G. Matei, T. Legero, S. Häfner, C. Grebing, R. Weyrich, W. Zhang, L. Sonderhouse, J. M. Robinson, J. Ye, F. Riehle, and U. Sterr, “1.5 μm lasers with sub-10 mHz linewidth,” Phys. Rev. Lett. 118(26), 263202 (2017).
[Crossref] [PubMed]

W. Zhang, J. M. Robinson, L. Sonderhouse, E. Oelker, C. Benko, J. L. Hall, T. Legero, D. G. Matei, F. Riehle, U. Sterr, and J. Ye, “Ultrastable silicon cavity in a continuously operating closed-cycle cryostat at 4 K,” Phys. Rev. Lett. 119(24), 243601 (2017).
[Crossref] [PubMed]

Rogers, A. E. E.

S. Doeleman, T. Mai, A. E. E. Rogers, J. G. Hartnett, M. E. Tobar, and N. Nand, “Adapting a cryogenic sapphire oscillator for very long baseline interferometry,” Publ. Astron. Soc. Pac. 123(903), 582–595 (2011).
[Crossref]

Rosenband, T.

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nat. Photonics 5(7), 425–429 (2011).
[Crossref]

Rowan, S.

G. M. Harry, A. M. Gretarsson, P. R. Saulson, S. E. Kittelberger, S. D. Penn, W. J. Startin, S. Rowan, M. M. Fejer, D. R. M. Crooks, G. Cagnoli, J. Hough, and N. Nakagawa, “Thermal noise in interferometric gravitational wave detectors due to dielectric optical coatings,” Class. Quantum Gravity 19(5), 897–917 (2002).
[Crossref]

Rubiola, E.

S. Grop, P. Y. Bourgeois, N. Bazin, Y. Kersalé, E. Rubiola, C. Langham, M. Oxborrow, D. Clapton, S. Walker, J. De Vicente, and V. Giordano, “ELISA: a cryocooled 10 GHz oscillator with 10-15 frequency stability,” Rev. Sci. Instrum. 81(2), 025102 (2010).
[Crossref] [PubMed]

Safronova, M. S.

T. L. Nicholson, S. L. Campbell, R. B. Hutson, G. E. Marti, B. J. Bloom, R. L. McNally, W. Zhang, M. D. Barrett, M. S. Safronova, G. F. Strouse, W. L. Tew, and J. Ye, “Systematic evaluation of an atomic clock at 2 × 10-18 total uncertainty,” Nat. Commun. 6(1), 6896 (2015).
[Crossref] [PubMed]

Santarelli, G.

B. Argence, E. Prevost, T. Lévèque, R. Le Goff, S. Bize, P. Lemonde, and G. Santarelli, “Prototype of an ultra-stable optical cavity for space applications,” Opt. Express 20(23), 25409–25420 (2012).
[Crossref] [PubMed]

J. Millo, D. V. Magalhães, C. Mandache, Y. Le Coq, E. M. L. English, P. G. Westergaard, J. Lodewyck, S. Bize, P. Lemonde, and G. Santarelli, “Ultrastable lasers based on vibration insensitive cavities,” Phys. Rev. A 79(5), 053829 (2009).
[Crossref]

Saulson, P. R.

G. M. Harry, A. M. Gretarsson, P. R. Saulson, S. E. Kittelberger, S. D. Penn, W. J. Startin, S. Rowan, M. M. Fejer, D. R. M. Crooks, G. Cagnoli, J. Hough, and N. Nakagawa, “Thermal noise in interferometric gravitational wave detectors due to dielectric optical coatings,” Class. Quantum Gravity 19(5), 897–917 (2002).
[Crossref]

Schioppo, M.

M. Schioppo, R. C. Brown, W. F. McGrew, N. Hinkley, R. J. Fasano, K. Beloy, T. H. Yoon, G. Milani, D. Nicolodi, J. A. Sherman, N. B. Phillips, C. W. Oates, and A. D. Ludlow, “Ultrastable optical clock with two cold-atom ensembles,” Nat. Photonics 11(1), 48–52 (2017).
[Crossref]

Schmidt, P. O.

A. D. Ludlow, M. M. Boyd, J. Ye, E. Peik, and P. O. Schmidt, “Optical atomic clocks,” Rev. Mod. Phys. 87(2), 637–701 (2015).
[Crossref]

Senger, A.

S. Herrmann, A. Senger, K. Möhle, M. Nagel, E. V. Kovalchuk, and A. Peters, “Rotating optical cavity experiment testing Lorentz invariance at the 10−17 level,” Phys. Rev. D Part. Fields Gravit. Cosmol. 80(10), 105011 (2009).
[Crossref]

Sherman, J. A.

M. Schioppo, R. C. Brown, W. F. McGrew, N. Hinkley, R. J. Fasano, K. Beloy, T. H. Yoon, G. Milani, D. Nicolodi, J. A. Sherman, N. B. Phillips, C. W. Oates, and A. D. Ludlow, “Ultrastable optical clock with two cold-atom ensembles,” Nat. Photonics 11(1), 48–52 (2017).
[Crossref]

Y. Y. Jiang, A. D. Ludlow, N. D. Lemke, R. W. Fox, J. A. Sherman, L.-S. Ma, and C. W. Oates, “Making optical atomic clocks more stable with 10−16-level laser stabilization,” Nat. Photonics 5(3), 158–161 (2011).
[Crossref]

Shi, X. H.

Sonderhouse, L.

W. Zhang, J. M. Robinson, L. Sonderhouse, E. Oelker, C. Benko, J. L. Hall, T. Legero, D. G. Matei, F. Riehle, U. Sterr, and J. Ye, “Ultrastable silicon cavity in a continuously operating closed-cycle cryostat at 4 K,” Phys. Rev. Lett. 119(24), 243601 (2017).
[Crossref] [PubMed]

D. G. Matei, T. Legero, S. Häfner, C. Grebing, R. Weyrich, W. Zhang, L. Sonderhouse, J. M. Robinson, J. Ye, F. Riehle, and U. Sterr, “1.5 μm lasers with sub-10 mHz linewidth,” Phys. Rev. Lett. 118(26), 263202 (2017).
[Crossref] [PubMed]

Startin, W. J.

G. M. Harry, A. M. Gretarsson, P. R. Saulson, S. E. Kittelberger, S. D. Penn, W. J. Startin, S. Rowan, M. M. Fejer, D. R. M. Crooks, G. Cagnoli, J. Hough, and N. Nakagawa, “Thermal noise in interferometric gravitational wave detectors due to dielectric optical coatings,” Class. Quantum Gravity 19(5), 897–917 (2002).
[Crossref]

Sterr, U.

D. G. Matei, T. Legero, S. Häfner, C. Grebing, R. Weyrich, W. Zhang, L. Sonderhouse, J. M. Robinson, J. Ye, F. Riehle, and U. Sterr, “1.5 μm lasers with sub-10 mHz linewidth,” Phys. Rev. Lett. 118(26), 263202 (2017).
[Crossref] [PubMed]

W. Zhang, J. M. Robinson, L. Sonderhouse, E. Oelker, C. Benko, J. L. Hall, T. Legero, D. G. Matei, F. Riehle, U. Sterr, and J. Ye, “Ultrastable silicon cavity in a continuously operating closed-cycle cryostat at 4 K,” Phys. Rev. Lett. 119(24), 243601 (2017).
[Crossref] [PubMed]

S. Häfner, S. Falke, C. Grebing, S. Vogt, T. Legero, M. Merimaa, C. Lisdat, and U. Sterr, “8 × 10−17 fractional laser frequency instability with a long room-temperature cavity,” Opt. Lett. 40(9), 2112–2115 (2015).
[Crossref] [PubMed]

T. Legero, T. Kessler, and U. Sterr, “Tuning the thermal expansion properties of optical reference cavities with fused silica mirrors,” J. Opt. Soc. Am. B 27(5), 914–919 (2010).
[Crossref]

Strouse, G. F.

T. L. Nicholson, S. L. Campbell, R. B. Hutson, G. E. Marti, B. J. Bloom, R. L. McNally, W. Zhang, M. D. Barrett, M. S. Safronova, G. F. Strouse, W. L. Tew, and J. Ye, “Systematic evaluation of an atomic clock at 2 × 10-18 total uncertainty,” Nat. Commun. 6(1), 6896 (2015).
[Crossref] [PubMed]

Sun, Z.

Swallows, M. D.

T. L. Nicholson, M. J. Martin, J. R. Williams, B. J. Bloom, M. Bishof, M. D. Swallows, S. L. Campbell, and J. Ye, “Comparison of two independent Sr optical clocks with 1×10-17 stability at 103 s,” Phys. Rev. Lett. 109(23), 230801 (2012).
[Crossref] [PubMed]

Tai, Z.

Z. Tai, L. Yan, Y. Zhang, X. Zhang, W. Guo, S. Zhang, and H. Jiang, “Transportable 1555-nm ultra-stable laser with sub-0.185-Hz linewidth,” Chin. Phys. Lett. 34(9), 090602 (2017).
[Crossref]

Taylor, J.

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nat. Photonics 5(7), 425–429 (2011).
[Crossref]

Tew, W. L.

T. L. Nicholson, S. L. Campbell, R. B. Hutson, G. E. Marti, B. J. Bloom, R. L. McNally, W. Zhang, M. D. Barrett, M. S. Safronova, G. F. Strouse, W. L. Tew, and J. Ye, “Systematic evaluation of an atomic clock at 2 × 10-18 total uncertainty,” Nat. Commun. 6(1), 6896 (2015).
[Crossref] [PubMed]

Thompson, J. K.

J. M. Weiner, K. C. Cox, J. G. Bohnet, and J. K. Thompson, “Phase synchronization inside a superradiant laser,” Phys. Rev. A 95(3), 033808 (2017).
[Crossref]

M. A. Norcia, M. N. Winchester, J. R. K. Cline, and J. K. Thompson, “Superradiance on the millihertz linewidth strontium clock transition,” Sci. Adv. 2(10), e1601231 (2016).
[Crossref] [PubMed]

Thomsen, J. W.

P. G. Westergaard, B. T. R. Christensen, D. Tieri, R. Matin, J. Cooper, M. Holland, J. Ye, and J. W. Thomsen, “Observation of motion-dependent nonlinear dispersion with narrow-linewidth atoms in an optical cavity,” Phys. Rev. Lett. 114(9), 093002 (2015).
[Crossref] [PubMed]

M. J. Martin, D. Meiser, J. W. Thomsen, J. Ye, and M. J. Holland, “Extreme nonlinear response of ultranarrow optical transitions in cavity QED for laser stabilization,” Phys. Rev. A 84(6), 063813 (2011).
[Crossref]

Tieri, D.

P. G. Westergaard, B. T. R. Christensen, D. Tieri, R. Matin, J. Cooper, M. Holland, J. Ye, and J. W. Thomsen, “Observation of motion-dependent nonlinear dispersion with narrow-linewidth atoms in an optical cavity,” Phys. Rev. Lett. 114(9), 093002 (2015).
[Crossref] [PubMed]

Tobar, M. E.

S. Doeleman, T. Mai, A. E. E. Rogers, J. G. Hartnett, M. E. Tobar, and N. Nand, “Adapting a cryogenic sapphire oscillator for very long baseline interferometry,” Publ. Astron. Soc. Pac. 123(903), 582–595 (2011).
[Crossref]

Vogt, S.

Walker, S.

S. Grop, P. Y. Bourgeois, N. Bazin, Y. Kersalé, E. Rubiola, C. Langham, M. Oxborrow, D. Clapton, S. Walker, J. De Vicente, and V. Giordano, “ELISA: a cryocooled 10 GHz oscillator with 10-15 frequency stability,” Rev. Sci. Instrum. 81(2), 025102 (2010).
[Crossref] [PubMed]

Wang, Q.

Wang, Z. Y.

Ward, H.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31(2), 97–105 (1983).
[Crossref]

Weiner, J. M.

J. M. Weiner, K. C. Cox, J. G. Bohnet, and J. K. Thompson, “Phase synchronization inside a superradiant laser,” Phys. Rev. A 95(3), 033808 (2017).
[Crossref]

Westergaard, P. G.

P. G. Westergaard, B. T. R. Christensen, D. Tieri, R. Matin, J. Cooper, M. Holland, J. Ye, and J. W. Thomsen, “Observation of motion-dependent nonlinear dispersion with narrow-linewidth atoms in an optical cavity,” Phys. Rev. Lett. 114(9), 093002 (2015).
[Crossref] [PubMed]

J. Millo, D. V. Magalhães, C. Mandache, Y. Le Coq, E. M. L. English, P. G. Westergaard, J. Lodewyck, S. Bize, P. Lemonde, and G. Santarelli, “Ultrastable lasers based on vibration insensitive cavities,” Phys. Rev. A 79(5), 053829 (2009).
[Crossref]

Weyrich, R.

D. G. Matei, T. Legero, S. Häfner, C. Grebing, R. Weyrich, W. Zhang, L. Sonderhouse, J. M. Robinson, J. Ye, F. Riehle, and U. Sterr, “1.5 μm lasers with sub-10 mHz linewidth,” Phys. Rev. Lett. 118(26), 263202 (2017).
[Crossref] [PubMed]

Williams, J. R.

T. L. Nicholson, M. J. Martin, J. R. Williams, B. J. Bloom, M. Bishof, M. D. Swallows, S. L. Campbell, and J. Ye, “Comparison of two independent Sr optical clocks with 1×10-17 stability at 103 s,” Phys. Rev. Lett. 109(23), 230801 (2012).
[Crossref] [PubMed]

Willke, B.

Winchester, M. N.

M. A. Norcia, M. N. Winchester, J. R. K. Cline, and J. K. Thompson, “Superradiance on the millihertz linewidth strontium clock transition,” Sci. Adv. 2(10), e1601231 (2016).
[Crossref] [PubMed]

Wu, L.

Y. Yao, Y. Jiang, L. Wu, H. Yu, Z. Bi, and L. Ma, “A low noise optical frequency synthesizer at 700–990nm,” Appl. Phys. Lett. 109(13), 131102 (2016).
[Crossref]

Xu, X.

Y. Jiang, S. Fang, Z. Bi, X. Xu, and L. Ma, “Nd:YAG lasers at 1064 nm with 1-Hz linewidth,” Appl. Phys. B 98(1), 61–67 (2010).
[Crossref]

Yan, L.

Z. Tai, L. Yan, Y. Zhang, X. Zhang, W. Guo, S. Zhang, and H. Jiang, “Transportable 1555-nm ultra-stable laser with sub-0.185-Hz linewidth,” Chin. Phys. Lett. 34(9), 090602 (2017).
[Crossref]

Yang, T.

Y. Li, Y. G. Lin, Q. Wang, T. Yang, Z. Sun, E. Zang, and Z. J. Fang, “An improved strontium lattice clock with 10−16 level laser frequency stabilization,” Chin. Opt. Lett. 16(5), 051402 (2018).
[Crossref]

L. Chen, J. L. Hall, J. Ye, T. Yang, E. Zang, and T. Li, “Vibration-induced elastic deformation of Fabry-Perot cavities,” Phys. Rev. A 74(5), 053801 (2006).
[Crossref]

Yao, Y.

Y. Yao, Y. Jiang, L. Wu, H. Yu, Z. Bi, and L. Ma, “A low noise optical frequency synthesizer at 700–990nm,” Appl. Phys. Lett. 109(13), 131102 (2016).
[Crossref]

Ye, J.

D. G. Matei, T. Legero, S. Häfner, C. Grebing, R. Weyrich, W. Zhang, L. Sonderhouse, J. M. Robinson, J. Ye, F. Riehle, and U. Sterr, “1.5 μm lasers with sub-10 mHz linewidth,” Phys. Rev. Lett. 118(26), 263202 (2017).
[Crossref] [PubMed]

W. Zhang, J. M. Robinson, L. Sonderhouse, E. Oelker, C. Benko, J. L. Hall, T. Legero, D. G. Matei, F. Riehle, U. Sterr, and J. Ye, “Ultrastable silicon cavity in a continuously operating closed-cycle cryostat at 4 K,” Phys. Rev. Lett. 119(24), 243601 (2017).
[Crossref] [PubMed]

T. L. Nicholson, S. L. Campbell, R. B. Hutson, G. E. Marti, B. J. Bloom, R. L. McNally, W. Zhang, M. D. Barrett, M. S. Safronova, G. F. Strouse, W. L. Tew, and J. Ye, “Systematic evaluation of an atomic clock at 2 × 10-18 total uncertainty,” Nat. Commun. 6(1), 6896 (2015).
[Crossref] [PubMed]

A. D. Ludlow, M. M. Boyd, J. Ye, E. Peik, and P. O. Schmidt, “Optical atomic clocks,” Rev. Mod. Phys. 87(2), 637–701 (2015).
[Crossref]

P. G. Westergaard, B. T. R. Christensen, D. Tieri, R. Matin, J. Cooper, M. Holland, J. Ye, and J. W. Thomsen, “Observation of motion-dependent nonlinear dispersion with narrow-linewidth atoms in an optical cavity,” Phys. Rev. Lett. 114(9), 093002 (2015).
[Crossref] [PubMed]

G. D. Cole, W. Zhang, M. J. Martin, J. Ye, and M. Aspelmeyer, “Tenfold reduction of Brownian noise in high-reflectivity optical coatings,” Nat. Photonics 7(8), 644–650 (2013).
[Crossref]

T. L. Nicholson, M. J. Martin, J. R. Williams, B. J. Bloom, M. Bishof, M. D. Swallows, S. L. Campbell, and J. Ye, “Comparison of two independent Sr optical clocks with 1×10-17 stability at 103 s,” Phys. Rev. Lett. 109(23), 230801 (2012).
[Crossref] [PubMed]

M. J. Martin, D. Meiser, J. W. Thomsen, J. Ye, and M. J. Holland, “Extreme nonlinear response of ultranarrow optical transitions in cavity QED for laser stabilization,” Phys. Rev. A 84(6), 063813 (2011).
[Crossref]

L. Chen, J. L. Hall, J. Ye, T. Yang, E. Zang, and T. Li, “Vibration-induced elastic deformation of Fabry-Perot cavities,” Phys. Rev. A 74(5), 053801 (2006).
[Crossref]

M. Notcutt, L. S. Ma, J. Ye, and J. L. Hall, “Simple and compact 1-Hz laser system via an improved mounting configuration of a reference cavity,” Opt. Lett. 30(14), 1815–1817 (2005).
[Crossref] [PubMed]

J. Ye and J. L. Hall, “Cavity ringdown heterodyne spectroscopy: High sensitivity with microwatt light power,” Phys. Rev. A 61(6), 061802 (2000).
[Crossref]

L. S. Ma, P. Jungner, J. Ye, and J. L. Hall, “Delivering the same optical frequency at two places: accurate cancellation of phase noise introduced by an optical fiber or other time-varying path,” Opt. Lett. 19(21), 1777–1779 (1994).
[Crossref] [PubMed]

Ye, Y. X.

Yoon, T. H.

M. Schioppo, R. C. Brown, W. F. McGrew, N. Hinkley, R. J. Fasano, K. Beloy, T. H. Yoon, G. Milani, D. Nicolodi, J. A. Sherman, N. B. Phillips, C. W. Oates, and A. D. Ludlow, “Ultrastable optical clock with two cold-atom ensembles,” Nat. Photonics 11(1), 48–52 (2017).
[Crossref]

Young, B. C.

B. C. Young, F. C. Cruz, W. M. Itano, and J. C. Bergquist, “Visible lasers with subhertz linewidths,” Phys. Rev. Lett. 82(19), 3799–3802 (1999).
[Crossref]

Yu, H.

Y. Yao, Y. Jiang, L. Wu, H. Yu, Z. Bi, and L. Ma, “A low noise optical frequency synthesizer at 700–990nm,” Appl. Phys. Lett. 109(13), 131102 (2016).
[Crossref]

Zang, E.

Y. Li, Y. G. Lin, Q. Wang, T. Yang, Z. Sun, E. Zang, and Z. J. Fang, “An improved strontium lattice clock with 10−16 level laser frequency stabilization,” Chin. Opt. Lett. 16(5), 051402 (2018).
[Crossref]

L. Chen, J. L. Hall, J. Ye, T. Yang, E. Zang, and T. Li, “Vibration-induced elastic deformation of Fabry-Perot cavities,” Phys. Rev. A 74(5), 053801 (2006).
[Crossref]

Zeng, X. Y.

Zhang, J.

Zhang, S.

Z. Tai, L. Yan, Y. Zhang, X. Zhang, W. Guo, S. Zhang, and H. Jiang, “Transportable 1555-nm ultra-stable laser with sub-0.185-Hz linewidth,” Chin. Phys. Lett. 34(9), 090602 (2017).
[Crossref]

Zhang, W.

W. Zhang, J. M. Robinson, L. Sonderhouse, E. Oelker, C. Benko, J. L. Hall, T. Legero, D. G. Matei, F. Riehle, U. Sterr, and J. Ye, “Ultrastable silicon cavity in a continuously operating closed-cycle cryostat at 4 K,” Phys. Rev. Lett. 119(24), 243601 (2017).
[Crossref] [PubMed]

D. G. Matei, T. Legero, S. Häfner, C. Grebing, R. Weyrich, W. Zhang, L. Sonderhouse, J. M. Robinson, J. Ye, F. Riehle, and U. Sterr, “1.5 μm lasers with sub-10 mHz linewidth,” Phys. Rev. Lett. 118(26), 263202 (2017).
[Crossref] [PubMed]

T. L. Nicholson, S. L. Campbell, R. B. Hutson, G. E. Marti, B. J. Bloom, R. L. McNally, W. Zhang, M. D. Barrett, M. S. Safronova, G. F. Strouse, W. L. Tew, and J. Ye, “Systematic evaluation of an atomic clock at 2 × 10-18 total uncertainty,” Nat. Commun. 6(1), 6896 (2015).
[Crossref] [PubMed]

G. D. Cole, W. Zhang, M. J. Martin, J. Ye, and M. Aspelmeyer, “Tenfold reduction of Brownian noise in high-reflectivity optical coatings,” Nat. Photonics 7(8), 644–650 (2013).
[Crossref]

Zhang, X.

Z. Tai, L. Yan, Y. Zhang, X. Zhang, W. Guo, S. Zhang, and H. Jiang, “Transportable 1555-nm ultra-stable laser with sub-0.185-Hz linewidth,” Chin. Phys. Lett. 34(9), 090602 (2017).
[Crossref]

Zhang, Y.

Z. Tai, L. Yan, Y. Zhang, X. Zhang, W. Guo, S. Zhang, and H. Jiang, “Transportable 1555-nm ultra-stable laser with sub-0.185-Hz linewidth,” Chin. Phys. Lett. 34(9), 090602 (2017).
[Crossref]

Appl. Phys. B (2)

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31(2), 97–105 (1983).
[Crossref]

Y. Jiang, S. Fang, Z. Bi, X. Xu, and L. Ma, “Nd:YAG lasers at 1064 nm with 1-Hz linewidth,” Appl. Phys. B 98(1), 61–67 (2010).
[Crossref]

Appl. Phys. Lett. (1)

Y. Yao, Y. Jiang, L. Wu, H. Yu, Z. Bi, and L. Ma, “A low noise optical frequency synthesizer at 700–990nm,” Appl. Phys. Lett. 109(13), 131102 (2016).
[Crossref]

Chin. Opt. Lett. (1)

Chin. Phys. Lett. (1)

Z. Tai, L. Yan, Y. Zhang, X. Zhang, W. Guo, S. Zhang, and H. Jiang, “Transportable 1555-nm ultra-stable laser with sub-0.185-Hz linewidth,” Chin. Phys. Lett. 34(9), 090602 (2017).
[Crossref]

Chin. Sci. Bull. (1)

J. B. Chen, “Active optical clock,” Chin. Sci. Bull. 54(3), 348–352 (2009).

Class. Quantum Gravity (1)

G. M. Harry, A. M. Gretarsson, P. R. Saulson, S. E. Kittelberger, S. D. Penn, W. J. Startin, S. Rowan, M. M. Fejer, D. R. M. Crooks, G. Cagnoli, J. Hough, and N. Nakagawa, “Thermal noise in interferometric gravitational wave detectors due to dielectric optical coatings,” Class. Quantum Gravity 19(5), 897–917 (2002).
[Crossref]

J. Opt. Soc. Am. B (1)

Nat. Commun. (1)

T. L. Nicholson, S. L. Campbell, R. B. Hutson, G. E. Marti, B. J. Bloom, R. L. McNally, W. Zhang, M. D. Barrett, M. S. Safronova, G. F. Strouse, W. L. Tew, and J. Ye, “Systematic evaluation of an atomic clock at 2 × 10-18 total uncertainty,” Nat. Commun. 6(1), 6896 (2015).
[Crossref] [PubMed]

Nat. Photonics (4)

M. Schioppo, R. C. Brown, W. F. McGrew, N. Hinkley, R. J. Fasano, K. Beloy, T. H. Yoon, G. Milani, D. Nicolodi, J. A. Sherman, N. B. Phillips, C. W. Oates, and A. D. Ludlow, “Ultrastable optical clock with two cold-atom ensembles,” Nat. Photonics 11(1), 48–52 (2017).
[Crossref]

T. M. Fortier, M. S. Kirchner, F. Quinlan, J. Taylor, J. C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C. W. Oates, and S. A. Diddams, “Generation of ultrastable microwaves via optical frequency division,” Nat. Photonics 5(7), 425–429 (2011).
[Crossref]

Y. Y. Jiang, A. D. Ludlow, N. D. Lemke, R. W. Fox, J. A. Sherman, L.-S. Ma, and C. W. Oates, “Making optical atomic clocks more stable with 10−16-level laser stabilization,” Nat. Photonics 5(3), 158–161 (2011).
[Crossref]

G. D. Cole, W. Zhang, M. J. Martin, J. Ye, and M. Aspelmeyer, “Tenfold reduction of Brownian noise in high-reflectivity optical coatings,” Nat. Photonics 7(8), 644–650 (2013).
[Crossref]

Opt. Express (1)

Opt. Lett. (5)

Phys. Rev. A (6)

L. Chen, J. L. Hall, J. Ye, T. Yang, E. Zang, and T. Li, “Vibration-induced elastic deformation of Fabry-Perot cavities,” Phys. Rev. A 74(5), 053801 (2006).
[Crossref]

J. M. Weiner, K. C. Cox, J. G. Bohnet, and J. K. Thompson, “Phase synchronization inside a superradiant laser,” Phys. Rev. A 95(3), 033808 (2017).
[Crossref]

J. Millo, D. V. Magalhães, C. Mandache, Y. Le Coq, E. M. L. English, P. G. Westergaard, J. Lodewyck, S. Bize, P. Lemonde, and G. Santarelli, “Ultrastable lasers based on vibration insensitive cavities,” Phys. Rev. A 79(5), 053829 (2009).
[Crossref]

J. Ye and J. L. Hall, “Cavity ringdown heterodyne spectroscopy: High sensitivity with microwatt light power,” Phys. Rev. A 61(6), 061802 (2000).
[Crossref]

M. J. Martin, D. Meiser, J. W. Thomsen, J. Ye, and M. J. Holland, “Extreme nonlinear response of ultranarrow optical transitions in cavity QED for laser stabilization,” Phys. Rev. A 84(6), 063813 (2011).
[Crossref]

J. M. Hogan and M. A. Kasevich, “Atom-interferometric gravitational-wave detection using heterodyne laser links,” Phys. Rev. A 94(3), 033632 (2016).
[Crossref]

Phys. Rev. D Part. Fields Gravit. Cosmol. (1)

S. Herrmann, A. Senger, K. Möhle, M. Nagel, E. V. Kovalchuk, and A. Peters, “Rotating optical cavity experiment testing Lorentz invariance at the 10−17 level,” Phys. Rev. D Part. Fields Gravit. Cosmol. 80(10), 105011 (2009).
[Crossref]

Phys. Rev. Lett. (6)

B. C. Young, F. C. Cruz, W. M. Itano, and J. C. Bergquist, “Visible lasers with subhertz linewidths,” Phys. Rev. Lett. 82(19), 3799–3802 (1999).
[Crossref]

P. G. Westergaard, B. T. R. Christensen, D. Tieri, R. Matin, J. Cooper, M. Holland, J. Ye, and J. W. Thomsen, “Observation of motion-dependent nonlinear dispersion with narrow-linewidth atoms in an optical cavity,” Phys. Rev. Lett. 114(9), 093002 (2015).
[Crossref] [PubMed]

K. Numata, A. Kemery, and J. Camp, “Thermal-noise limit in the frequency stabilization of lasers with rigid cavities,” Phys. Rev. Lett. 93(25), 250602 (2004).
[Crossref] [PubMed]

T. L. Nicholson, M. J. Martin, J. R. Williams, B. J. Bloom, M. Bishof, M. D. Swallows, S. L. Campbell, and J. Ye, “Comparison of two independent Sr optical clocks with 1×10-17 stability at 103 s,” Phys. Rev. Lett. 109(23), 230801 (2012).
[Crossref] [PubMed]

D. G. Matei, T. Legero, S. Häfner, C. Grebing, R. Weyrich, W. Zhang, L. Sonderhouse, J. M. Robinson, J. Ye, F. Riehle, and U. Sterr, “1.5 μm lasers with sub-10 mHz linewidth,” Phys. Rev. Lett. 118(26), 263202 (2017).
[Crossref] [PubMed]

W. Zhang, J. M. Robinson, L. Sonderhouse, E. Oelker, C. Benko, J. L. Hall, T. Legero, D. G. Matei, F. Riehle, U. Sterr, and J. Ye, “Ultrastable silicon cavity in a continuously operating closed-cycle cryostat at 4 K,” Phys. Rev. Lett. 119(24), 243601 (2017).
[Crossref] [PubMed]

Publ. Astron. Soc. Pac. (1)

S. Doeleman, T. Mai, A. E. E. Rogers, J. G. Hartnett, M. E. Tobar, and N. Nand, “Adapting a cryogenic sapphire oscillator for very long baseline interferometry,” Publ. Astron. Soc. Pac. 123(903), 582–595 (2011).
[Crossref]

Rev. Mod. Phys. (2)

A. D. Ludlow, M. M. Boyd, J. Ye, E. Peik, and P. O. Schmidt, “Optical atomic clocks,” Rev. Mod. Phys. 87(2), 637–701 (2015).
[Crossref]

R. X. Adhikari, “Gravitational radiation detection with laser interferometry,” Rev. Mod. Phys. 86(1), 121–151 (2014).
[Crossref]

Rev. Sci. Instrum. (1)

S. Grop, P. Y. Bourgeois, N. Bazin, Y. Kersalé, E. Rubiola, C. Langham, M. Oxborrow, D. Clapton, S. Walker, J. De Vicente, and V. Giordano, “ELISA: a cryocooled 10 GHz oscillator with 10-15 frequency stability,” Rev. Sci. Instrum. 81(2), 025102 (2010).
[Crossref] [PubMed]

Sci. Adv. (1)

M. A. Norcia, M. N. Winchester, J. R. K. Cline, and J. K. Thompson, “Superradiance on the millihertz linewidth strontium clock transition,” Sci. Adv. 2(10), e1601231 (2016).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1 Schematic diagram of the experimental setup for laser frequency stabilization and laser performance measurement. The PDH1 (PDH2) signal is fed back to ν1 slow servo and ν1 fast servo (ν2 servo). λ/2, half-wave plate. PBS, polarization beam splitter. AOM, acousto-optic modulator. FNC, fiber noise cancellation. EOM, electro-optic modulator. Iso, optical isolator. λ/4, quarter-wave plate. PD, photo-detector.
Fig. 2
Fig. 2 Vibration sensitivity measurement. (a) Schematic diagram. The laser light is frequency-stabilized to the resonance of the reference cavity. The test cavity is placed on a platform shaking at the testing frequency along one direction. An accelerometer (g-meter) measures the shaking-induced vibration noise on the platform. (b) The vertical vibration sensitivity of the reference cavity at different d and l when h = 20.9 mm. The dot lines are the simulation results of the light spots offset from the center of cavity mirrors by + 0.2 mm and −0.2 mm, while the open squares and circles are the simulation results of the light spots in the center of cavity mirrors. The simulation results are taken the absolute value.
Fig. 3
Fig. 3 Performance measurement of the cavity-stabilized laser systems. (a) The frequency noise of two cavity-stabilized laser systems (black solid line). The contribution from the vibration of CAV1 (CAV2) is estimated from the measured vibration sensitivity and vibration acceleration, shown with a blue (red) dash line. The green solid line is the combined thermal-noise-limited laser frequency noise from two cavities. (b) Frequency instability measurement of the beat note between two cavity-stabilized laser systems. The combined thermal-noise-limited laser frequency instability from two cavities is shown with blue solid line. (c) The frequency instability of the beat note between two cavity-stabilized laser systems at 1 s averaging time over the time of a day. The data were taken on different days. The error bars are the standard deviation of several measurements. Each measurement is based on 3600 s data. (d) Linewidth distribution of 896 groups of the beat note spectra (squares) and its Gaussian fitting (red solid curve). The inset shows an example spectrum of the beat note and its Lorentzian fitting. (e) An averaging spectrum of the beat note with center-overlapped (squares) and the Lorentzian fitting (red solid curve).

Tables (1)

Tables Icon

Table 1 Vibration sensitivity of optical reference cavities