Abstract

Ablation of bulk polycrystalline zinc in air is performed with single and multiple picosecond laser pulses at a wavelength of 1030 nm. The relationships between the characteristics of the ablated craters and the processing parameters are analyzed. Morphological changes of the ablated craters are characterized by means of scanning electron microscopy and confocal laser scanning microscopy. Chemical compositions of both the treated and untreated surfaces are quantified with X-ray photoelectron spectroscopy. A comparative analysis on the determination of the ablation threshold using three methods, based on ablated diameter, depth and volume is presented along with associated incubation coefficients. The single pulse ablation threshold value is found to equal 0.21 J/cm2. Using the calculated incubation coefficients, it is found that both the fluence threshold and energy penetration depth show lesser degree of incubation for multiple laser pulses.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Incubation during laser ablation with bursts of femtosecond pulses with picosecond delays

Caterina Gaudiuso, Giuseppe Giannuzzi, Annalisa Volpe, Pietro Mario Lugarà, Isabelle Choquet, and Antonio Ancona
Opt. Express 26(4) 3801-3813 (2018)

Ablation of metals by ultrashort laser pulses

S. Nolte, C. Momma, H. Jacobs, A. Tünnermann, B. N. Chichkov, B. Wellegehausen, and H. Welling
J. Opt. Soc. Am. B 14(10) 2716-2722 (1997)

Surface ablation of corneal stroma with few-cycle laser pulses at 800 nm

L. Hoffart, P. Lassonde, F. Légaré, F. Vidal, N. Sanner, O. Utéza, M. Sentis, J.-C. Kieffer, and I. Brunette
Opt. Express 19(1) 230-240 (2011)

References

  • View by:
  • |
  • |
  • |

  1. D. Zhang and L. Guan, “Laser Ablation,” in Comprehensive Materials Processing, S. Hashmi, G. F. Batalha, C. J. van Tyne, and B. S. Yilbas, eds. (Elsevier, 2014).
    [Crossref]
  2. H. Costa and I. Hutchings, “Some innovative surface texturing techniques for tribological purposes,” Proc. Inst. Mech. Eng. Part J: J. Eng. Tribol. 229, 429–448 (2015).
    [Crossref]
  3. R. Fang, A. Vorobyev, and C. Guo, “Direct visualization of the complete evolution of femtosecond laser-induced surface structural dynamics of metals,” Light. Sci. Appl. 6e16256 (2017).
    [Crossref]
  4. A. Klini, P. Loukakos, D. Gray, A. Manousaki, and C. Fotakis, “Laser induced forward transfer of metals by temporally shaped femtosecond laser pulses,” Opt. express 16, 11300–11309 (2008).
    [Crossref] [PubMed]
  5. J. Liu, “Simple technique for measurements of pulsed Gaussian-beam spot sizes,” Opt. letters 7, 196–198 (1982).
    [Crossref]
  6. S. Preuss, A. Demchuk, and M. Stuke, “Sub-picosecond UV laser ablation of metals,” Appl. Phys. A: Mater. Sci. & Process. 61, 33–37 (1995).
    [Crossref]
  7. G. Račiukaitis, M. Brikas, P. Gecys, and M. Gedvilas, “Accumulation effects in laser ablation of metals with high-repetition-rate lasers,” in High-Power Laser Ablation 2008, (International Society for Optics and Photonics, 2008), pp. 70052L.
  8. L. Cabalin and J. Laserna, “Experimental determination of laser induced breakdown thresholds of metals under nanosecond Q-switched laser operation,” Spectrochimica Acta Part B: At. Spectrosc. 53, 723–730 (1998).
    [Crossref]
  9. A. R. Kumar, G. Padmaja, P. Radhakrishnan, V. Nampoori, and C. Vallabhan, “Evaluation of laser ablation threshold in polymer samples using pulsed photoacoustic technique,” Pramana. 37, 345–351 (1991).
    [Crossref]
  10. N. Hosoya, I. Kajiwara, T. Inoue, and K. Umenai, “Non-contact acoustic tests based on nanosecond laser ablation: generation of a pulse sound source with a small amplitude,” J. Sound Vib. 333, 4254–4264 (2014).
    [Crossref]
  11. E. G. Gamaly, N. Madsen, M. Duering, A. V. Rode, V. Z. Kolev, and B. Luther-Davies, “Ablation of metals with picosecond laser pulses: evidence of long-lived nonequilibrium conditions at the surface,” Phys. Rev. B 71, 174405 (2005).
    [Crossref]
  12. K. H. Leitz, B. Redlingshöfer, Y. Reg, A. Otto, and M. Schmidt, “Metal ablation with short and ultrashort laser pulses,” Phys. Procedia 12, 230–238 (2011).
    [Crossref]
  13. B. Neuenschwander, B. Jaeggi, M. Schmid, and G. Hennig, “Surface structuring with ultra-short laser pulses: basics, limitations and needs for high throughput,” Phys. Procedia 56, 1047–1058 (2014).
    [Crossref]
  14. J. Byskov-Nielsen, J. M. Savolainen, M. S. Christensen, and P. Balling, “Ultra-short pulse laser ablation of metals: threshold fluence, incubation coefficient and ablation rates,” Appl. Phys. A: Mater. Sci. & Process. 101, 97–101 (2010).
    [Crossref]
  15. Y. Jee, M. F. Becker, and R. M. Walser, “Laser-induced damage on single-crystal metal surfaces,” J. Opt. Soc. Am. B 5, 648–659 (1988).
    [Crossref]
  16. M. Hashida, A. F. Semerok, O. Gobert, G. Petite, and J. F. Wagner, “Ablation thresholds of metals with femtosecond laser pulses,” in Nonresonant Laser-Matter Interaction (NLMI-10), (International Society for Optics and Photonics, 2001), pp. 178–185.
  17. P. Mannion, J. Magee, E. Coyne, G. O’Connor, and T. Glynn, “The effect of damage accumulation behaviour on ablation thresholds and damage morphology in ultrafast laser micro-machining of common metals in air,” Appl. Surf. Sci. 233, 275–287 (2004).
    [Crossref]
  18. B. Neuenschwander, G. Bucher, G. Hennig, C. Nussbaum, B. Joss, M. Muralt, S. Zehnder, U. W. Hunziker, and P. Schuetz, “Processing of dielectric materials and metals with ps laser pulses,” in Proceedings of the 29th International Congress on Applications of Lasers & Electro-Optics (ICALEO), Anaheim, California, (2010).
  19. B. Neuenschwander, B. Jaeggi, M. Schmid, V. Rouffiange, and P. E. Martin, “Optimization of the volume ablation rate for metals at different laser pulse-durations from ps to fs,” in SPIE LASE, (International Society for Optics and Photonics, 2012), pp. 824307.
  20. F. Di Niso, C. Gaudiuso, T. Sibillano, F. P. Mezzapesa, A. Ancona, and P. M. Lugarà, “Role of heat accumulation on the incubation effect in multi-shot laser ablation of stainless steel at high repetition rates,” Opt. express 22, 12200–12210 (2014).
    [Crossref] [PubMed]
  21. F. C. Porter, Zinc handbook: Properties, Processing, and Use in design (CRC, 1991).
  22. F. C. Porter, Corrosion resistance of zinc and zinc alloys (CRC, 1994).
  23. S. S. Wellershoff, J. Hohlfeld, J. Güdde, and E. Matthias, “The role of electron–phonon coupling in femtosecond laser damage of metals,” Appl. Phys. A 69, S99–S107 (1999).
  24. M. Hase, K. Ishioka, J. Demsar, K. Ushida, and M. Kitajima, “Ultrafast dynamics of coherent optical phonons and nonequilibrium electrons in transition metals,” Phys. Rev. B 71, 184301 (2005).
    [Crossref]
  25. M. Butt, “Laser ablation characteristics of metallic materials: role of debye-waller thermal parameter,” in IOP Conference Series: Materials Science and Engineering, , vol. 60 (Institute of Physics, 2014), pp. 012068.
  26. B. Qian and Z. Shen, “Fabrication of superhydrophobic surfaces by dislocation-selective chemical etching on aluminum, copper, and zinc substrates,” Langmuir 21, 9007–9009 (2005).
    [Crossref] [PubMed]
  27. T. H. Muster, W. D. Ganther, and I. S. Cole, “The influence of microstructure on surface phenomena: rolled zinc,” Corros. Sci. 49, 2037–2058 (2007).
    [Crossref]
  28. J. Scheers, M. Vermeulen, C. De Mare, and K. Meseure, “Assessment of steel surface roughness and waviness in relation with paint appearance,” Int. J. Mach. Tools Manuf. 38, 647–656 (1998).
    [Crossref]
  29. M. Agranat, S. Ashitkov, V. Fortov, A. Kirillin, A. Kostanovskii, S. Anisimov, and P. Kondratenko, “Use of optical anisotropy for study of ultrafast phase transformations at solid surfaces,” Appl. Phys. A: Mater. Sci. & Process. 69, 637–640 (1999).
    [Crossref]
  30. A. Vorobyev and C. Guo, “Enhanced energy coupling in femtosecond laser-metal interactions at high intensities,” Opt. express 14, 13113–13119 (2006).
    [Crossref] [PubMed]
  31. L. Mosteller and F. Wooten, “Optical properties of Zn,” Phys. Rev. 171, 743 (1968).
    [Crossref]
  32. D. Linde, Handbook of Chemistry and Physics (CRC, 1994).
  33. M. Querry, “Optical constants of minerals and other materials from the millimeter to the ultraviolet,” Tech. rep., Chemical Research Development And Engineering Center Aberdeen Proving Groundmd (1987).
  34. W. Bond, “Measurement of the refractive indices of several crystals,” J. Appl. Phys. 36, 1674–1677 (1965).
    [Crossref]
  35. H. J. Hagemann, W. Gudat, and C. Kunz, “Optical constants from the far infrared to the x-ray region: Mg, Al, Cu, Ag, Au, Bi, C, and Al2O3,” J. Opt. Soc. Am. B 65, 742–744 (1975).
    [Crossref]
  36. J. Hohlfeld, S. S. Wellershoff, J. Güdde, U. Conrad, V. Jähnke, and E. Matthias, “Electron and lattice dynamics following optical excitation of metals,” Chem. Phys. 251, 237–258 (2000).
    [Crossref]
  37. T. Delgado, D. Nieto, and M. T. Flores-Arias, “Soda-lime glass microlens arrays fabricated by laser: Comparison between a nanosecond and a femtosecond IR pulsed laser,” Opt. Lasers Eng. 86, 29–37 (2016).
    [Crossref]
  38. J. V. Oboňa, V. Ocelík, J. Rao, J. Skolski, G. R. B. E. Römer, A. Huisin’t Veld, and J. T. M. De Hosson, “Modification of Cu surface with picosecond laser pulses,” Appl. Surf. Sci. 303, 118–124 (2014).
    [Crossref]
  39. J. V. Oboňa, V. Ocelík, J. Hosson, J. Skolski, V. Mitko, and G. R. B. E. Römer, “Surface melting of copper by ultrashort laser pulses,” in Surface effects and contact mechanics X : computational methods and experiments, (Wessex Institute of Technology, 2011).
  40. A. Miloshevsky, S. S. Harilal, G. Miloshevsky, and A. Hassanein, “Dynamics of plasma expansion and shockwave formation in femtosecond laser-ablated aluminum plumes in argon gas at atmospheric pressures,” Phys. Plasmas 21, 043111 (2014).
    [Crossref]
  41. M. Tanski, M. Kocik, R. Barbucha, K. Garasz, and J. Mizeraczyk, “Time-resolved observation of the ablation plasma plume dynamics during nanosecond laser micromachining,” in Photonics and Optoelectronics (SOPO), 2012 Symposium on, (IEEE, 2012), pp. 1–4.
  42. W. Falke, A. Schwaneke, and R. Nash, “Surface tension of zinc: the positive temperature coefficient,” Metall. Mater. Transactions B 8, 301–303 (1977).
    [Crossref]
  43. J. Bonse, K. W. Brzezinka, and A. Meixner, “Modifying single-crystalline silicon by femtosecond laser pulses: an analysis by micro Raman spectroscopy, scanning laser microscopy and atomic force microscopy,” Appl. Surf. Sci. 221, 215–230 (2004).
    [Crossref]
  44. S. Evans, “Correction for the effects of adventitious carbon overlayers in quantitative XPS analysis,” Surf. Interface Analysis: An Int. J. devoted to development application techniques for analysis surfaces, interfaces thin films 25, 924–930 (1997).
    [Crossref]
  45. S. Feliu and V. Barranco, “XPS study of the surface chemistry of conventional hot-dip galvanised pure Zn, galvanneal and Zn–Al alloy coatings on steel,” Acta materialia 51, 5413–5424 (2003).
    [Crossref]
  46. J. Moulder, W. Stickle, P. Sobol, and K. Bomben, Handbook of X-Ray Photoelectron Spectroscopy (Perkin-Elmer Corporation, 1992).
  47. D. R. Baer, M. H. Engelhard, A. S. Lea, P. Nachimuthu, T. C. Droubay, J. Kim, B. Lee, C. Mathews, R. Opila, L. V. Saraf, W. F. Stickle, R. M. Wallace, and B. S. Wright, “Comparison of the sputter rates of oxide films relative to the sputter rate of SiO2,” J. Vac. Sci. & Technol. A: Vacuum, Surfaces, Films 28, 1060–1072 (2010).
    [Crossref]
  48. G. Račiukaitis, M. Brikas, P. Gečys, B. Voisiat, and M. Gedvilas, “Use of high repetition rate and high power lasers in microfabrication: how to keep the efficiency high?” JLMN J. Laser Micro/Nanoengineering 4, 186–191 (2009).
    [Crossref]
  49. B. Neuenschwander, B. Jaeggi, M. Schmid, A. Dommann, A. Neels, T. Bandi, and G. Hennig, “Factors controlling the incubation in the application of ps laser pulses on copper and iron surfaces,” Proc. SPIE 8607, 86070D (2013).
    [Crossref]
  50. Z. Sun, M. Lenzner, and W. Rudolph, “Generic incubation law for laser damage and ablation thresholds,” J. Appl. Phys. 117, 073102 (2015).
    [Crossref]
  51. B. Jaeggi, B. Neuenschwander, M. Schmid, M. Muralt, J. Zuercher, and U. Hunziker, “Influence of the pulse duration in the ps-regime on the ablation efficiency of metals,” Phys. Procedia 12, 164–171 (2011).
    [Crossref]
  52. C. Cheng, S. Wang, K. Chang, and J. Chen, “Femtosecond laser ablation of copper at high laser fluence: modeling and experimental comparison,” Appl. Surf. Sci. 361, 41–48 (2016).
    [Crossref]
  53. D. Bergström, “The absorption of laser light by rough metal surfaces,” Ph.D. thesis, Luleå Tekniska Universitet, Sweden (2008).
  54. N. W. Ashcroft, N. D. Mermin, and S. Rodriguez, Solid State Physics (American Association of Physics Teachers, 1998).
  55. G. Motulevich and A. Shubin, “Optical constants of zinc,” Sov. Phys. JETP 29, 24–26 (1969).
  56. R. Pohl, C. Visser, G. R. B. E. Römer, C. Sun, and D. Lohse, “Imaging of the ejection process of nanosecond laser-induced forward transfer of gold,” JLMN J. Laser Micro/Nanoengineering 10, 154 (2015).
    [Crossref]

2017 (1)

R. Fang, A. Vorobyev, and C. Guo, “Direct visualization of the complete evolution of femtosecond laser-induced surface structural dynamics of metals,” Light. Sci. Appl. 6e16256 (2017).
[Crossref]

2016 (2)

T. Delgado, D. Nieto, and M. T. Flores-Arias, “Soda-lime glass microlens arrays fabricated by laser: Comparison between a nanosecond and a femtosecond IR pulsed laser,” Opt. Lasers Eng. 86, 29–37 (2016).
[Crossref]

C. Cheng, S. Wang, K. Chang, and J. Chen, “Femtosecond laser ablation of copper at high laser fluence: modeling and experimental comparison,” Appl. Surf. Sci. 361, 41–48 (2016).
[Crossref]

2015 (3)

Z. Sun, M. Lenzner, and W. Rudolph, “Generic incubation law for laser damage and ablation thresholds,” J. Appl. Phys. 117, 073102 (2015).
[Crossref]

R. Pohl, C. Visser, G. R. B. E. Römer, C. Sun, and D. Lohse, “Imaging of the ejection process of nanosecond laser-induced forward transfer of gold,” JLMN J. Laser Micro/Nanoengineering 10, 154 (2015).
[Crossref]

H. Costa and I. Hutchings, “Some innovative surface texturing techniques for tribological purposes,” Proc. Inst. Mech. Eng. Part J: J. Eng. Tribol. 229, 429–448 (2015).
[Crossref]

2014 (5)

N. Hosoya, I. Kajiwara, T. Inoue, and K. Umenai, “Non-contact acoustic tests based on nanosecond laser ablation: generation of a pulse sound source with a small amplitude,” J. Sound Vib. 333, 4254–4264 (2014).
[Crossref]

B. Neuenschwander, B. Jaeggi, M. Schmid, and G. Hennig, “Surface structuring with ultra-short laser pulses: basics, limitations and needs for high throughput,” Phys. Procedia 56, 1047–1058 (2014).
[Crossref]

F. Di Niso, C. Gaudiuso, T. Sibillano, F. P. Mezzapesa, A. Ancona, and P. M. Lugarà, “Role of heat accumulation on the incubation effect in multi-shot laser ablation of stainless steel at high repetition rates,” Opt. express 22, 12200–12210 (2014).
[Crossref] [PubMed]

J. V. Oboňa, V. Ocelík, J. Rao, J. Skolski, G. R. B. E. Römer, A. Huisin’t Veld, and J. T. M. De Hosson, “Modification of Cu surface with picosecond laser pulses,” Appl. Surf. Sci. 303, 118–124 (2014).
[Crossref]

A. Miloshevsky, S. S. Harilal, G. Miloshevsky, and A. Hassanein, “Dynamics of plasma expansion and shockwave formation in femtosecond laser-ablated aluminum plumes in argon gas at atmospheric pressures,” Phys. Plasmas 21, 043111 (2014).
[Crossref]

2013 (1)

B. Neuenschwander, B. Jaeggi, M. Schmid, A. Dommann, A. Neels, T. Bandi, and G. Hennig, “Factors controlling the incubation in the application of ps laser pulses on copper and iron surfaces,” Proc. SPIE 8607, 86070D (2013).
[Crossref]

2011 (2)

B. Jaeggi, B. Neuenschwander, M. Schmid, M. Muralt, J. Zuercher, and U. Hunziker, “Influence of the pulse duration in the ps-regime on the ablation efficiency of metals,” Phys. Procedia 12, 164–171 (2011).
[Crossref]

K. H. Leitz, B. Redlingshöfer, Y. Reg, A. Otto, and M. Schmidt, “Metal ablation with short and ultrashort laser pulses,” Phys. Procedia 12, 230–238 (2011).
[Crossref]

2010 (2)

J. Byskov-Nielsen, J. M. Savolainen, M. S. Christensen, and P. Balling, “Ultra-short pulse laser ablation of metals: threshold fluence, incubation coefficient and ablation rates,” Appl. Phys. A: Mater. Sci. & Process. 101, 97–101 (2010).
[Crossref]

D. R. Baer, M. H. Engelhard, A. S. Lea, P. Nachimuthu, T. C. Droubay, J. Kim, B. Lee, C. Mathews, R. Opila, L. V. Saraf, W. F. Stickle, R. M. Wallace, and B. S. Wright, “Comparison of the sputter rates of oxide films relative to the sputter rate of SiO2,” J. Vac. Sci. & Technol. A: Vacuum, Surfaces, Films 28, 1060–1072 (2010).
[Crossref]

2009 (1)

G. Račiukaitis, M. Brikas, P. Gečys, B. Voisiat, and M. Gedvilas, “Use of high repetition rate and high power lasers in microfabrication: how to keep the efficiency high?” JLMN J. Laser Micro/Nanoengineering 4, 186–191 (2009).
[Crossref]

2008 (1)

2007 (1)

T. H. Muster, W. D. Ganther, and I. S. Cole, “The influence of microstructure on surface phenomena: rolled zinc,” Corros. Sci. 49, 2037–2058 (2007).
[Crossref]

2006 (1)

2005 (3)

E. G. Gamaly, N. Madsen, M. Duering, A. V. Rode, V. Z. Kolev, and B. Luther-Davies, “Ablation of metals with picosecond laser pulses: evidence of long-lived nonequilibrium conditions at the surface,” Phys. Rev. B 71, 174405 (2005).
[Crossref]

M. Hase, K. Ishioka, J. Demsar, K. Ushida, and M. Kitajima, “Ultrafast dynamics of coherent optical phonons and nonequilibrium electrons in transition metals,” Phys. Rev. B 71, 184301 (2005).
[Crossref]

B. Qian and Z. Shen, “Fabrication of superhydrophobic surfaces by dislocation-selective chemical etching on aluminum, copper, and zinc substrates,” Langmuir 21, 9007–9009 (2005).
[Crossref] [PubMed]

2004 (2)

P. Mannion, J. Magee, E. Coyne, G. O’Connor, and T. Glynn, “The effect of damage accumulation behaviour on ablation thresholds and damage morphology in ultrafast laser micro-machining of common metals in air,” Appl. Surf. Sci. 233, 275–287 (2004).
[Crossref]

J. Bonse, K. W. Brzezinka, and A. Meixner, “Modifying single-crystalline silicon by femtosecond laser pulses: an analysis by micro Raman spectroscopy, scanning laser microscopy and atomic force microscopy,” Appl. Surf. Sci. 221, 215–230 (2004).
[Crossref]

2003 (1)

S. Feliu and V. Barranco, “XPS study of the surface chemistry of conventional hot-dip galvanised pure Zn, galvanneal and Zn–Al alloy coatings on steel,” Acta materialia 51, 5413–5424 (2003).
[Crossref]

2000 (1)

J. Hohlfeld, S. S. Wellershoff, J. Güdde, U. Conrad, V. Jähnke, and E. Matthias, “Electron and lattice dynamics following optical excitation of metals,” Chem. Phys. 251, 237–258 (2000).
[Crossref]

1999 (2)

M. Agranat, S. Ashitkov, V. Fortov, A. Kirillin, A. Kostanovskii, S. Anisimov, and P. Kondratenko, “Use of optical anisotropy for study of ultrafast phase transformations at solid surfaces,” Appl. Phys. A: Mater. Sci. & Process. 69, 637–640 (1999).
[Crossref]

S. S. Wellershoff, J. Hohlfeld, J. Güdde, and E. Matthias, “The role of electron–phonon coupling in femtosecond laser damage of metals,” Appl. Phys. A 69, S99–S107 (1999).

1998 (2)

L. Cabalin and J. Laserna, “Experimental determination of laser induced breakdown thresholds of metals under nanosecond Q-switched laser operation,” Spectrochimica Acta Part B: At. Spectrosc. 53, 723–730 (1998).
[Crossref]

J. Scheers, M. Vermeulen, C. De Mare, and K. Meseure, “Assessment of steel surface roughness and waviness in relation with paint appearance,” Int. J. Mach. Tools Manuf. 38, 647–656 (1998).
[Crossref]

1997 (1)

S. Evans, “Correction for the effects of adventitious carbon overlayers in quantitative XPS analysis,” Surf. Interface Analysis: An Int. J. devoted to development application techniques for analysis surfaces, interfaces thin films 25, 924–930 (1997).
[Crossref]

1995 (1)

S. Preuss, A. Demchuk, and M. Stuke, “Sub-picosecond UV laser ablation of metals,” Appl. Phys. A: Mater. Sci. & Process. 61, 33–37 (1995).
[Crossref]

1991 (1)

A. R. Kumar, G. Padmaja, P. Radhakrishnan, V. Nampoori, and C. Vallabhan, “Evaluation of laser ablation threshold in polymer samples using pulsed photoacoustic technique,” Pramana. 37, 345–351 (1991).
[Crossref]

1988 (1)

1982 (1)

J. Liu, “Simple technique for measurements of pulsed Gaussian-beam spot sizes,” Opt. letters 7, 196–198 (1982).
[Crossref]

1977 (1)

W. Falke, A. Schwaneke, and R. Nash, “Surface tension of zinc: the positive temperature coefficient,” Metall. Mater. Transactions B 8, 301–303 (1977).
[Crossref]

1975 (1)

H. J. Hagemann, W. Gudat, and C. Kunz, “Optical constants from the far infrared to the x-ray region: Mg, Al, Cu, Ag, Au, Bi, C, and Al2O3,” J. Opt. Soc. Am. B 65, 742–744 (1975).
[Crossref]

1969 (1)

G. Motulevich and A. Shubin, “Optical constants of zinc,” Sov. Phys. JETP 29, 24–26 (1969).

1968 (1)

L. Mosteller and F. Wooten, “Optical properties of Zn,” Phys. Rev. 171, 743 (1968).
[Crossref]

1965 (1)

W. Bond, “Measurement of the refractive indices of several crystals,” J. Appl. Phys. 36, 1674–1677 (1965).
[Crossref]

Agranat, M.

M. Agranat, S. Ashitkov, V. Fortov, A. Kirillin, A. Kostanovskii, S. Anisimov, and P. Kondratenko, “Use of optical anisotropy for study of ultrafast phase transformations at solid surfaces,” Appl. Phys. A: Mater. Sci. & Process. 69, 637–640 (1999).
[Crossref]

Ancona, A.

Anisimov, S.

M. Agranat, S. Ashitkov, V. Fortov, A. Kirillin, A. Kostanovskii, S. Anisimov, and P. Kondratenko, “Use of optical anisotropy for study of ultrafast phase transformations at solid surfaces,” Appl. Phys. A: Mater. Sci. & Process. 69, 637–640 (1999).
[Crossref]

Ashcroft, N. W.

N. W. Ashcroft, N. D. Mermin, and S. Rodriguez, Solid State Physics (American Association of Physics Teachers, 1998).

Ashitkov, S.

M. Agranat, S. Ashitkov, V. Fortov, A. Kirillin, A. Kostanovskii, S. Anisimov, and P. Kondratenko, “Use of optical anisotropy for study of ultrafast phase transformations at solid surfaces,” Appl. Phys. A: Mater. Sci. & Process. 69, 637–640 (1999).
[Crossref]

Baer, D. R.

D. R. Baer, M. H. Engelhard, A. S. Lea, P. Nachimuthu, T. C. Droubay, J. Kim, B. Lee, C. Mathews, R. Opila, L. V. Saraf, W. F. Stickle, R. M. Wallace, and B. S. Wright, “Comparison of the sputter rates of oxide films relative to the sputter rate of SiO2,” J. Vac. Sci. & Technol. A: Vacuum, Surfaces, Films 28, 1060–1072 (2010).
[Crossref]

Balling, P.

J. Byskov-Nielsen, J. M. Savolainen, M. S. Christensen, and P. Balling, “Ultra-short pulse laser ablation of metals: threshold fluence, incubation coefficient and ablation rates,” Appl. Phys. A: Mater. Sci. & Process. 101, 97–101 (2010).
[Crossref]

Bandi, T.

B. Neuenschwander, B. Jaeggi, M. Schmid, A. Dommann, A. Neels, T. Bandi, and G. Hennig, “Factors controlling the incubation in the application of ps laser pulses on copper and iron surfaces,” Proc. SPIE 8607, 86070D (2013).
[Crossref]

Barbucha, R.

M. Tanski, M. Kocik, R. Barbucha, K. Garasz, and J. Mizeraczyk, “Time-resolved observation of the ablation plasma plume dynamics during nanosecond laser micromachining,” in Photonics and Optoelectronics (SOPO), 2012 Symposium on, (IEEE, 2012), pp. 1–4.

Barranco, V.

S. Feliu and V. Barranco, “XPS study of the surface chemistry of conventional hot-dip galvanised pure Zn, galvanneal and Zn–Al alloy coatings on steel,” Acta materialia 51, 5413–5424 (2003).
[Crossref]

Becker, M. F.

Bergström, D.

D. Bergström, “The absorption of laser light by rough metal surfaces,” Ph.D. thesis, Luleå Tekniska Universitet, Sweden (2008).

Bomben, K.

J. Moulder, W. Stickle, P. Sobol, and K. Bomben, Handbook of X-Ray Photoelectron Spectroscopy (Perkin-Elmer Corporation, 1992).

Bond, W.

W. Bond, “Measurement of the refractive indices of several crystals,” J. Appl. Phys. 36, 1674–1677 (1965).
[Crossref]

Bonse, J.

J. Bonse, K. W. Brzezinka, and A. Meixner, “Modifying single-crystalline silicon by femtosecond laser pulses: an analysis by micro Raman spectroscopy, scanning laser microscopy and atomic force microscopy,” Appl. Surf. Sci. 221, 215–230 (2004).
[Crossref]

Brikas, M.

G. Račiukaitis, M. Brikas, P. Gečys, B. Voisiat, and M. Gedvilas, “Use of high repetition rate and high power lasers in microfabrication: how to keep the efficiency high?” JLMN J. Laser Micro/Nanoengineering 4, 186–191 (2009).
[Crossref]

G. Račiukaitis, M. Brikas, P. Gecys, and M. Gedvilas, “Accumulation effects in laser ablation of metals with high-repetition-rate lasers,” in High-Power Laser Ablation 2008, (International Society for Optics and Photonics, 2008), pp. 70052L.

Brzezinka, K. W.

J. Bonse, K. W. Brzezinka, and A. Meixner, “Modifying single-crystalline silicon by femtosecond laser pulses: an analysis by micro Raman spectroscopy, scanning laser microscopy and atomic force microscopy,” Appl. Surf. Sci. 221, 215–230 (2004).
[Crossref]

Bucher, G.

B. Neuenschwander, G. Bucher, G. Hennig, C. Nussbaum, B. Joss, M. Muralt, S. Zehnder, U. W. Hunziker, and P. Schuetz, “Processing of dielectric materials and metals with ps laser pulses,” in Proceedings of the 29th International Congress on Applications of Lasers & Electro-Optics (ICALEO), Anaheim, California, (2010).

Butt, M.

M. Butt, “Laser ablation characteristics of metallic materials: role of debye-waller thermal parameter,” in IOP Conference Series: Materials Science and Engineering, , vol. 60 (Institute of Physics, 2014), pp. 012068.

Byskov-Nielsen, J.

J. Byskov-Nielsen, J. M. Savolainen, M. S. Christensen, and P. Balling, “Ultra-short pulse laser ablation of metals: threshold fluence, incubation coefficient and ablation rates,” Appl. Phys. A: Mater. Sci. & Process. 101, 97–101 (2010).
[Crossref]

Cabalin, L.

L. Cabalin and J. Laserna, “Experimental determination of laser induced breakdown thresholds of metals under nanosecond Q-switched laser operation,” Spectrochimica Acta Part B: At. Spectrosc. 53, 723–730 (1998).
[Crossref]

Chang, K.

C. Cheng, S. Wang, K. Chang, and J. Chen, “Femtosecond laser ablation of copper at high laser fluence: modeling and experimental comparison,” Appl. Surf. Sci. 361, 41–48 (2016).
[Crossref]

Chen, J.

C. Cheng, S. Wang, K. Chang, and J. Chen, “Femtosecond laser ablation of copper at high laser fluence: modeling and experimental comparison,” Appl. Surf. Sci. 361, 41–48 (2016).
[Crossref]

Cheng, C.

C. Cheng, S. Wang, K. Chang, and J. Chen, “Femtosecond laser ablation of copper at high laser fluence: modeling and experimental comparison,” Appl. Surf. Sci. 361, 41–48 (2016).
[Crossref]

Christensen, M. S.

J. Byskov-Nielsen, J. M. Savolainen, M. S. Christensen, and P. Balling, “Ultra-short pulse laser ablation of metals: threshold fluence, incubation coefficient and ablation rates,” Appl. Phys. A: Mater. Sci. & Process. 101, 97–101 (2010).
[Crossref]

Cole, I. S.

T. H. Muster, W. D. Ganther, and I. S. Cole, “The influence of microstructure on surface phenomena: rolled zinc,” Corros. Sci. 49, 2037–2058 (2007).
[Crossref]

Conrad, U.

J. Hohlfeld, S. S. Wellershoff, J. Güdde, U. Conrad, V. Jähnke, and E. Matthias, “Electron and lattice dynamics following optical excitation of metals,” Chem. Phys. 251, 237–258 (2000).
[Crossref]

Costa, H.

H. Costa and I. Hutchings, “Some innovative surface texturing techniques for tribological purposes,” Proc. Inst. Mech. Eng. Part J: J. Eng. Tribol. 229, 429–448 (2015).
[Crossref]

Coyne, E.

P. Mannion, J. Magee, E. Coyne, G. O’Connor, and T. Glynn, “The effect of damage accumulation behaviour on ablation thresholds and damage morphology in ultrafast laser micro-machining of common metals in air,” Appl. Surf. Sci. 233, 275–287 (2004).
[Crossref]

De Hosson, J. T. M.

J. V. Oboňa, V. Ocelík, J. Rao, J. Skolski, G. R. B. E. Römer, A. Huisin’t Veld, and J. T. M. De Hosson, “Modification of Cu surface with picosecond laser pulses,” Appl. Surf. Sci. 303, 118–124 (2014).
[Crossref]

De Mare, C.

J. Scheers, M. Vermeulen, C. De Mare, and K. Meseure, “Assessment of steel surface roughness and waviness in relation with paint appearance,” Int. J. Mach. Tools Manuf. 38, 647–656 (1998).
[Crossref]

Delgado, T.

T. Delgado, D. Nieto, and M. T. Flores-Arias, “Soda-lime glass microlens arrays fabricated by laser: Comparison between a nanosecond and a femtosecond IR pulsed laser,” Opt. Lasers Eng. 86, 29–37 (2016).
[Crossref]

Demchuk, A.

S. Preuss, A. Demchuk, and M. Stuke, “Sub-picosecond UV laser ablation of metals,” Appl. Phys. A: Mater. Sci. & Process. 61, 33–37 (1995).
[Crossref]

Demsar, J.

M. Hase, K. Ishioka, J. Demsar, K. Ushida, and M. Kitajima, “Ultrafast dynamics of coherent optical phonons and nonequilibrium electrons in transition metals,” Phys. Rev. B 71, 184301 (2005).
[Crossref]

Di Niso, F.

Dommann, A.

B. Neuenschwander, B. Jaeggi, M. Schmid, A. Dommann, A. Neels, T. Bandi, and G. Hennig, “Factors controlling the incubation in the application of ps laser pulses on copper and iron surfaces,” Proc. SPIE 8607, 86070D (2013).
[Crossref]

Droubay, T. C.

D. R. Baer, M. H. Engelhard, A. S. Lea, P. Nachimuthu, T. C. Droubay, J. Kim, B. Lee, C. Mathews, R. Opila, L. V. Saraf, W. F. Stickle, R. M. Wallace, and B. S. Wright, “Comparison of the sputter rates of oxide films relative to the sputter rate of SiO2,” J. Vac. Sci. & Technol. A: Vacuum, Surfaces, Films 28, 1060–1072 (2010).
[Crossref]

Duering, M.

E. G. Gamaly, N. Madsen, M. Duering, A. V. Rode, V. Z. Kolev, and B. Luther-Davies, “Ablation of metals with picosecond laser pulses: evidence of long-lived nonequilibrium conditions at the surface,” Phys. Rev. B 71, 174405 (2005).
[Crossref]

Engelhard, M. H.

D. R. Baer, M. H. Engelhard, A. S. Lea, P. Nachimuthu, T. C. Droubay, J. Kim, B. Lee, C. Mathews, R. Opila, L. V. Saraf, W. F. Stickle, R. M. Wallace, and B. S. Wright, “Comparison of the sputter rates of oxide films relative to the sputter rate of SiO2,” J. Vac. Sci. & Technol. A: Vacuum, Surfaces, Films 28, 1060–1072 (2010).
[Crossref]

Evans, S.

S. Evans, “Correction for the effects of adventitious carbon overlayers in quantitative XPS analysis,” Surf. Interface Analysis: An Int. J. devoted to development application techniques for analysis surfaces, interfaces thin films 25, 924–930 (1997).
[Crossref]

Falke, W.

W. Falke, A. Schwaneke, and R. Nash, “Surface tension of zinc: the positive temperature coefficient,” Metall. Mater. Transactions B 8, 301–303 (1977).
[Crossref]

Fang, R.

R. Fang, A. Vorobyev, and C. Guo, “Direct visualization of the complete evolution of femtosecond laser-induced surface structural dynamics of metals,” Light. Sci. Appl. 6e16256 (2017).
[Crossref]

Feliu, S.

S. Feliu and V. Barranco, “XPS study of the surface chemistry of conventional hot-dip galvanised pure Zn, galvanneal and Zn–Al alloy coatings on steel,” Acta materialia 51, 5413–5424 (2003).
[Crossref]

Flores-Arias, M. T.

T. Delgado, D. Nieto, and M. T. Flores-Arias, “Soda-lime glass microlens arrays fabricated by laser: Comparison between a nanosecond and a femtosecond IR pulsed laser,” Opt. Lasers Eng. 86, 29–37 (2016).
[Crossref]

Fortov, V.

M. Agranat, S. Ashitkov, V. Fortov, A. Kirillin, A. Kostanovskii, S. Anisimov, and P. Kondratenko, “Use of optical anisotropy for study of ultrafast phase transformations at solid surfaces,” Appl. Phys. A: Mater. Sci. & Process. 69, 637–640 (1999).
[Crossref]

Fotakis, C.

Gamaly, E. G.

E. G. Gamaly, N. Madsen, M. Duering, A. V. Rode, V. Z. Kolev, and B. Luther-Davies, “Ablation of metals with picosecond laser pulses: evidence of long-lived nonequilibrium conditions at the surface,” Phys. Rev. B 71, 174405 (2005).
[Crossref]

Ganther, W. D.

T. H. Muster, W. D. Ganther, and I. S. Cole, “The influence of microstructure on surface phenomena: rolled zinc,” Corros. Sci. 49, 2037–2058 (2007).
[Crossref]

Garasz, K.

M. Tanski, M. Kocik, R. Barbucha, K. Garasz, and J. Mizeraczyk, “Time-resolved observation of the ablation plasma plume dynamics during nanosecond laser micromachining,” in Photonics and Optoelectronics (SOPO), 2012 Symposium on, (IEEE, 2012), pp. 1–4.

Gaudiuso, C.

Gecys, P.

G. Račiukaitis, M. Brikas, P. Gečys, B. Voisiat, and M. Gedvilas, “Use of high repetition rate and high power lasers in microfabrication: how to keep the efficiency high?” JLMN J. Laser Micro/Nanoengineering 4, 186–191 (2009).
[Crossref]

G. Račiukaitis, M. Brikas, P. Gecys, and M. Gedvilas, “Accumulation effects in laser ablation of metals with high-repetition-rate lasers,” in High-Power Laser Ablation 2008, (International Society for Optics and Photonics, 2008), pp. 70052L.

Gedvilas, M.

G. Račiukaitis, M. Brikas, P. Gečys, B. Voisiat, and M. Gedvilas, “Use of high repetition rate and high power lasers in microfabrication: how to keep the efficiency high?” JLMN J. Laser Micro/Nanoengineering 4, 186–191 (2009).
[Crossref]

G. Račiukaitis, M. Brikas, P. Gecys, and M. Gedvilas, “Accumulation effects in laser ablation of metals with high-repetition-rate lasers,” in High-Power Laser Ablation 2008, (International Society for Optics and Photonics, 2008), pp. 70052L.

Glynn, T.

P. Mannion, J. Magee, E. Coyne, G. O’Connor, and T. Glynn, “The effect of damage accumulation behaviour on ablation thresholds and damage morphology in ultrafast laser micro-machining of common metals in air,” Appl. Surf. Sci. 233, 275–287 (2004).
[Crossref]

Gobert, O.

M. Hashida, A. F. Semerok, O. Gobert, G. Petite, and J. F. Wagner, “Ablation thresholds of metals with femtosecond laser pulses,” in Nonresonant Laser-Matter Interaction (NLMI-10), (International Society for Optics and Photonics, 2001), pp. 178–185.

Gray, D.

Guan, L.

D. Zhang and L. Guan, “Laser Ablation,” in Comprehensive Materials Processing, S. Hashmi, G. F. Batalha, C. J. van Tyne, and B. S. Yilbas, eds. (Elsevier, 2014).
[Crossref]

Gudat, W.

H. J. Hagemann, W. Gudat, and C. Kunz, “Optical constants from the far infrared to the x-ray region: Mg, Al, Cu, Ag, Au, Bi, C, and Al2O3,” J. Opt. Soc. Am. B 65, 742–744 (1975).
[Crossref]

Güdde, J.

J. Hohlfeld, S. S. Wellershoff, J. Güdde, U. Conrad, V. Jähnke, and E. Matthias, “Electron and lattice dynamics following optical excitation of metals,” Chem. Phys. 251, 237–258 (2000).
[Crossref]

S. S. Wellershoff, J. Hohlfeld, J. Güdde, and E. Matthias, “The role of electron–phonon coupling in femtosecond laser damage of metals,” Appl. Phys. A 69, S99–S107 (1999).

Guo, C.

R. Fang, A. Vorobyev, and C. Guo, “Direct visualization of the complete evolution of femtosecond laser-induced surface structural dynamics of metals,” Light. Sci. Appl. 6e16256 (2017).
[Crossref]

A. Vorobyev and C. Guo, “Enhanced energy coupling in femtosecond laser-metal interactions at high intensities,” Opt. express 14, 13113–13119 (2006).
[Crossref] [PubMed]

Hagemann, H. J.

H. J. Hagemann, W. Gudat, and C. Kunz, “Optical constants from the far infrared to the x-ray region: Mg, Al, Cu, Ag, Au, Bi, C, and Al2O3,” J. Opt. Soc. Am. B 65, 742–744 (1975).
[Crossref]

Harilal, S. S.

A. Miloshevsky, S. S. Harilal, G. Miloshevsky, and A. Hassanein, “Dynamics of plasma expansion and shockwave formation in femtosecond laser-ablated aluminum plumes in argon gas at atmospheric pressures,” Phys. Plasmas 21, 043111 (2014).
[Crossref]

Hase, M.

M. Hase, K. Ishioka, J. Demsar, K. Ushida, and M. Kitajima, “Ultrafast dynamics of coherent optical phonons and nonequilibrium electrons in transition metals,” Phys. Rev. B 71, 184301 (2005).
[Crossref]

Hashida, M.

M. Hashida, A. F. Semerok, O. Gobert, G. Petite, and J. F. Wagner, “Ablation thresholds of metals with femtosecond laser pulses,” in Nonresonant Laser-Matter Interaction (NLMI-10), (International Society for Optics and Photonics, 2001), pp. 178–185.

Hassanein, A.

A. Miloshevsky, S. S. Harilal, G. Miloshevsky, and A. Hassanein, “Dynamics of plasma expansion and shockwave formation in femtosecond laser-ablated aluminum plumes in argon gas at atmospheric pressures,” Phys. Plasmas 21, 043111 (2014).
[Crossref]

Hennig, G.

B. Neuenschwander, B. Jaeggi, M. Schmid, and G. Hennig, “Surface structuring with ultra-short laser pulses: basics, limitations and needs for high throughput,” Phys. Procedia 56, 1047–1058 (2014).
[Crossref]

B. Neuenschwander, B. Jaeggi, M. Schmid, A. Dommann, A. Neels, T. Bandi, and G. Hennig, “Factors controlling the incubation in the application of ps laser pulses on copper and iron surfaces,” Proc. SPIE 8607, 86070D (2013).
[Crossref]

B. Neuenschwander, G. Bucher, G. Hennig, C. Nussbaum, B. Joss, M. Muralt, S. Zehnder, U. W. Hunziker, and P. Schuetz, “Processing of dielectric materials and metals with ps laser pulses,” in Proceedings of the 29th International Congress on Applications of Lasers & Electro-Optics (ICALEO), Anaheim, California, (2010).

Hohlfeld, J.

J. Hohlfeld, S. S. Wellershoff, J. Güdde, U. Conrad, V. Jähnke, and E. Matthias, “Electron and lattice dynamics following optical excitation of metals,” Chem. Phys. 251, 237–258 (2000).
[Crossref]

S. S. Wellershoff, J. Hohlfeld, J. Güdde, and E. Matthias, “The role of electron–phonon coupling in femtosecond laser damage of metals,” Appl. Phys. A 69, S99–S107 (1999).

Hosoya, N.

N. Hosoya, I. Kajiwara, T. Inoue, and K. Umenai, “Non-contact acoustic tests based on nanosecond laser ablation: generation of a pulse sound source with a small amplitude,” J. Sound Vib. 333, 4254–4264 (2014).
[Crossref]

Hosson, J.

J. V. Oboňa, V. Ocelík, J. Hosson, J. Skolski, V. Mitko, and G. R. B. E. Römer, “Surface melting of copper by ultrashort laser pulses,” in Surface effects and contact mechanics X : computational methods and experiments, (Wessex Institute of Technology, 2011).

Huisin’t Veld, A.

J. V. Oboňa, V. Ocelík, J. Rao, J. Skolski, G. R. B. E. Römer, A. Huisin’t Veld, and J. T. M. De Hosson, “Modification of Cu surface with picosecond laser pulses,” Appl. Surf. Sci. 303, 118–124 (2014).
[Crossref]

Hunziker, U.

B. Jaeggi, B. Neuenschwander, M. Schmid, M. Muralt, J. Zuercher, and U. Hunziker, “Influence of the pulse duration in the ps-regime on the ablation efficiency of metals,” Phys. Procedia 12, 164–171 (2011).
[Crossref]

Hunziker, U. W.

B. Neuenschwander, G. Bucher, G. Hennig, C. Nussbaum, B. Joss, M. Muralt, S. Zehnder, U. W. Hunziker, and P. Schuetz, “Processing of dielectric materials and metals with ps laser pulses,” in Proceedings of the 29th International Congress on Applications of Lasers & Electro-Optics (ICALEO), Anaheim, California, (2010).

Hutchings, I.

H. Costa and I. Hutchings, “Some innovative surface texturing techniques for tribological purposes,” Proc. Inst. Mech. Eng. Part J: J. Eng. Tribol. 229, 429–448 (2015).
[Crossref]

Inoue, T.

N. Hosoya, I. Kajiwara, T. Inoue, and K. Umenai, “Non-contact acoustic tests based on nanosecond laser ablation: generation of a pulse sound source with a small amplitude,” J. Sound Vib. 333, 4254–4264 (2014).
[Crossref]

Ishioka, K.

M. Hase, K. Ishioka, J. Demsar, K. Ushida, and M. Kitajima, “Ultrafast dynamics of coherent optical phonons and nonequilibrium electrons in transition metals,” Phys. Rev. B 71, 184301 (2005).
[Crossref]

Jaeggi, B.

B. Neuenschwander, B. Jaeggi, M. Schmid, and G. Hennig, “Surface structuring with ultra-short laser pulses: basics, limitations and needs for high throughput,” Phys. Procedia 56, 1047–1058 (2014).
[Crossref]

B. Neuenschwander, B. Jaeggi, M. Schmid, A. Dommann, A. Neels, T. Bandi, and G. Hennig, “Factors controlling the incubation in the application of ps laser pulses on copper and iron surfaces,” Proc. SPIE 8607, 86070D (2013).
[Crossref]

B. Jaeggi, B. Neuenschwander, M. Schmid, M. Muralt, J. Zuercher, and U. Hunziker, “Influence of the pulse duration in the ps-regime on the ablation efficiency of metals,” Phys. Procedia 12, 164–171 (2011).
[Crossref]

B. Neuenschwander, B. Jaeggi, M. Schmid, V. Rouffiange, and P. E. Martin, “Optimization of the volume ablation rate for metals at different laser pulse-durations from ps to fs,” in SPIE LASE, (International Society for Optics and Photonics, 2012), pp. 824307.

Jähnke, V.

J. Hohlfeld, S. S. Wellershoff, J. Güdde, U. Conrad, V. Jähnke, and E. Matthias, “Electron and lattice dynamics following optical excitation of metals,” Chem. Phys. 251, 237–258 (2000).
[Crossref]

Jee, Y.

Joss, B.

B. Neuenschwander, G. Bucher, G. Hennig, C. Nussbaum, B. Joss, M. Muralt, S. Zehnder, U. W. Hunziker, and P. Schuetz, “Processing of dielectric materials and metals with ps laser pulses,” in Proceedings of the 29th International Congress on Applications of Lasers & Electro-Optics (ICALEO), Anaheim, California, (2010).

Kajiwara, I.

N. Hosoya, I. Kajiwara, T. Inoue, and K. Umenai, “Non-contact acoustic tests based on nanosecond laser ablation: generation of a pulse sound source with a small amplitude,” J. Sound Vib. 333, 4254–4264 (2014).
[Crossref]

Kim, J.

D. R. Baer, M. H. Engelhard, A. S. Lea, P. Nachimuthu, T. C. Droubay, J. Kim, B. Lee, C. Mathews, R. Opila, L. V. Saraf, W. F. Stickle, R. M. Wallace, and B. S. Wright, “Comparison of the sputter rates of oxide films relative to the sputter rate of SiO2,” J. Vac. Sci. & Technol. A: Vacuum, Surfaces, Films 28, 1060–1072 (2010).
[Crossref]

Kirillin, A.

M. Agranat, S. Ashitkov, V. Fortov, A. Kirillin, A. Kostanovskii, S. Anisimov, and P. Kondratenko, “Use of optical anisotropy for study of ultrafast phase transformations at solid surfaces,” Appl. Phys. A: Mater. Sci. & Process. 69, 637–640 (1999).
[Crossref]

Kitajima, M.

M. Hase, K. Ishioka, J. Demsar, K. Ushida, and M. Kitajima, “Ultrafast dynamics of coherent optical phonons and nonequilibrium electrons in transition metals,” Phys. Rev. B 71, 184301 (2005).
[Crossref]

Klini, A.

Kocik, M.

M. Tanski, M. Kocik, R. Barbucha, K. Garasz, and J. Mizeraczyk, “Time-resolved observation of the ablation plasma plume dynamics during nanosecond laser micromachining,” in Photonics and Optoelectronics (SOPO), 2012 Symposium on, (IEEE, 2012), pp. 1–4.

Kolev, V. Z.

E. G. Gamaly, N. Madsen, M. Duering, A. V. Rode, V. Z. Kolev, and B. Luther-Davies, “Ablation of metals with picosecond laser pulses: evidence of long-lived nonequilibrium conditions at the surface,” Phys. Rev. B 71, 174405 (2005).
[Crossref]

Kondratenko, P.

M. Agranat, S. Ashitkov, V. Fortov, A. Kirillin, A. Kostanovskii, S. Anisimov, and P. Kondratenko, “Use of optical anisotropy for study of ultrafast phase transformations at solid surfaces,” Appl. Phys. A: Mater. Sci. & Process. 69, 637–640 (1999).
[Crossref]

Kostanovskii, A.

M. Agranat, S. Ashitkov, V. Fortov, A. Kirillin, A. Kostanovskii, S. Anisimov, and P. Kondratenko, “Use of optical anisotropy for study of ultrafast phase transformations at solid surfaces,” Appl. Phys. A: Mater. Sci. & Process. 69, 637–640 (1999).
[Crossref]

Kumar, A. R.

A. R. Kumar, G. Padmaja, P. Radhakrishnan, V. Nampoori, and C. Vallabhan, “Evaluation of laser ablation threshold in polymer samples using pulsed photoacoustic technique,” Pramana. 37, 345–351 (1991).
[Crossref]

Kunz, C.

H. J. Hagemann, W. Gudat, and C. Kunz, “Optical constants from the far infrared to the x-ray region: Mg, Al, Cu, Ag, Au, Bi, C, and Al2O3,” J. Opt. Soc. Am. B 65, 742–744 (1975).
[Crossref]

Laserna, J.

L. Cabalin and J. Laserna, “Experimental determination of laser induced breakdown thresholds of metals under nanosecond Q-switched laser operation,” Spectrochimica Acta Part B: At. Spectrosc. 53, 723–730 (1998).
[Crossref]

Lea, A. S.

D. R. Baer, M. H. Engelhard, A. S. Lea, P. Nachimuthu, T. C. Droubay, J. Kim, B. Lee, C. Mathews, R. Opila, L. V. Saraf, W. F. Stickle, R. M. Wallace, and B. S. Wright, “Comparison of the sputter rates of oxide films relative to the sputter rate of SiO2,” J. Vac. Sci. & Technol. A: Vacuum, Surfaces, Films 28, 1060–1072 (2010).
[Crossref]

Lee, B.

D. R. Baer, M. H. Engelhard, A. S. Lea, P. Nachimuthu, T. C. Droubay, J. Kim, B. Lee, C. Mathews, R. Opila, L. V. Saraf, W. F. Stickle, R. M. Wallace, and B. S. Wright, “Comparison of the sputter rates of oxide films relative to the sputter rate of SiO2,” J. Vac. Sci. & Technol. A: Vacuum, Surfaces, Films 28, 1060–1072 (2010).
[Crossref]

Leitz, K. H.

K. H. Leitz, B. Redlingshöfer, Y. Reg, A. Otto, and M. Schmidt, “Metal ablation with short and ultrashort laser pulses,” Phys. Procedia 12, 230–238 (2011).
[Crossref]

Lenzner, M.

Z. Sun, M. Lenzner, and W. Rudolph, “Generic incubation law for laser damage and ablation thresholds,” J. Appl. Phys. 117, 073102 (2015).
[Crossref]

Linde, D.

D. Linde, Handbook of Chemistry and Physics (CRC, 1994).

Liu, J.

J. Liu, “Simple technique for measurements of pulsed Gaussian-beam spot sizes,” Opt. letters 7, 196–198 (1982).
[Crossref]

Lohse, D.

R. Pohl, C. Visser, G. R. B. E. Römer, C. Sun, and D. Lohse, “Imaging of the ejection process of nanosecond laser-induced forward transfer of gold,” JLMN J. Laser Micro/Nanoengineering 10, 154 (2015).
[Crossref]

Loukakos, P.

Lugarà, P. M.

Luther-Davies, B.

E. G. Gamaly, N. Madsen, M. Duering, A. V. Rode, V. Z. Kolev, and B. Luther-Davies, “Ablation of metals with picosecond laser pulses: evidence of long-lived nonequilibrium conditions at the surface,” Phys. Rev. B 71, 174405 (2005).
[Crossref]

Madsen, N.

E. G. Gamaly, N. Madsen, M. Duering, A. V. Rode, V. Z. Kolev, and B. Luther-Davies, “Ablation of metals with picosecond laser pulses: evidence of long-lived nonequilibrium conditions at the surface,” Phys. Rev. B 71, 174405 (2005).
[Crossref]

Magee, J.

P. Mannion, J. Magee, E. Coyne, G. O’Connor, and T. Glynn, “The effect of damage accumulation behaviour on ablation thresholds and damage morphology in ultrafast laser micro-machining of common metals in air,” Appl. Surf. Sci. 233, 275–287 (2004).
[Crossref]

Mannion, P.

P. Mannion, J. Magee, E. Coyne, G. O’Connor, and T. Glynn, “The effect of damage accumulation behaviour on ablation thresholds and damage morphology in ultrafast laser micro-machining of common metals in air,” Appl. Surf. Sci. 233, 275–287 (2004).
[Crossref]

Manousaki, A.

Martin, P. E.

B. Neuenschwander, B. Jaeggi, M. Schmid, V. Rouffiange, and P. E. Martin, “Optimization of the volume ablation rate for metals at different laser pulse-durations from ps to fs,” in SPIE LASE, (International Society for Optics and Photonics, 2012), pp. 824307.

Mathews, C.

D. R. Baer, M. H. Engelhard, A. S. Lea, P. Nachimuthu, T. C. Droubay, J. Kim, B. Lee, C. Mathews, R. Opila, L. V. Saraf, W. F. Stickle, R. M. Wallace, and B. S. Wright, “Comparison of the sputter rates of oxide films relative to the sputter rate of SiO2,” J. Vac. Sci. & Technol. A: Vacuum, Surfaces, Films 28, 1060–1072 (2010).
[Crossref]

Matthias, E.

J. Hohlfeld, S. S. Wellershoff, J. Güdde, U. Conrad, V. Jähnke, and E. Matthias, “Electron and lattice dynamics following optical excitation of metals,” Chem. Phys. 251, 237–258 (2000).
[Crossref]

S. S. Wellershoff, J. Hohlfeld, J. Güdde, and E. Matthias, “The role of electron–phonon coupling in femtosecond laser damage of metals,” Appl. Phys. A 69, S99–S107 (1999).

Meixner, A.

J. Bonse, K. W. Brzezinka, and A. Meixner, “Modifying single-crystalline silicon by femtosecond laser pulses: an analysis by micro Raman spectroscopy, scanning laser microscopy and atomic force microscopy,” Appl. Surf. Sci. 221, 215–230 (2004).
[Crossref]

Mermin, N. D.

N. W. Ashcroft, N. D. Mermin, and S. Rodriguez, Solid State Physics (American Association of Physics Teachers, 1998).

Meseure, K.

J. Scheers, M. Vermeulen, C. De Mare, and K. Meseure, “Assessment of steel surface roughness and waviness in relation with paint appearance,” Int. J. Mach. Tools Manuf. 38, 647–656 (1998).
[Crossref]

Mezzapesa, F. P.

Miloshevsky, A.

A. Miloshevsky, S. S. Harilal, G. Miloshevsky, and A. Hassanein, “Dynamics of plasma expansion and shockwave formation in femtosecond laser-ablated aluminum plumes in argon gas at atmospheric pressures,” Phys. Plasmas 21, 043111 (2014).
[Crossref]

Miloshevsky, G.

A. Miloshevsky, S. S. Harilal, G. Miloshevsky, and A. Hassanein, “Dynamics of plasma expansion and shockwave formation in femtosecond laser-ablated aluminum plumes in argon gas at atmospheric pressures,” Phys. Plasmas 21, 043111 (2014).
[Crossref]

Mitko, V.

J. V. Oboňa, V. Ocelík, J. Hosson, J. Skolski, V. Mitko, and G. R. B. E. Römer, “Surface melting of copper by ultrashort laser pulses,” in Surface effects and contact mechanics X : computational methods and experiments, (Wessex Institute of Technology, 2011).

Mizeraczyk, J.

M. Tanski, M. Kocik, R. Barbucha, K. Garasz, and J. Mizeraczyk, “Time-resolved observation of the ablation plasma plume dynamics during nanosecond laser micromachining,” in Photonics and Optoelectronics (SOPO), 2012 Symposium on, (IEEE, 2012), pp. 1–4.

Mosteller, L.

L. Mosteller and F. Wooten, “Optical properties of Zn,” Phys. Rev. 171, 743 (1968).
[Crossref]

Motulevich, G.

G. Motulevich and A. Shubin, “Optical constants of zinc,” Sov. Phys. JETP 29, 24–26 (1969).

Moulder, J.

J. Moulder, W. Stickle, P. Sobol, and K. Bomben, Handbook of X-Ray Photoelectron Spectroscopy (Perkin-Elmer Corporation, 1992).

Muralt, M.

B. Jaeggi, B. Neuenschwander, M. Schmid, M. Muralt, J. Zuercher, and U. Hunziker, “Influence of the pulse duration in the ps-regime on the ablation efficiency of metals,” Phys. Procedia 12, 164–171 (2011).
[Crossref]

B. Neuenschwander, G. Bucher, G. Hennig, C. Nussbaum, B. Joss, M. Muralt, S. Zehnder, U. W. Hunziker, and P. Schuetz, “Processing of dielectric materials and metals with ps laser pulses,” in Proceedings of the 29th International Congress on Applications of Lasers & Electro-Optics (ICALEO), Anaheim, California, (2010).

Muster, T. H.

T. H. Muster, W. D. Ganther, and I. S. Cole, “The influence of microstructure on surface phenomena: rolled zinc,” Corros. Sci. 49, 2037–2058 (2007).
[Crossref]

Nachimuthu, P.

D. R. Baer, M. H. Engelhard, A. S. Lea, P. Nachimuthu, T. C. Droubay, J. Kim, B. Lee, C. Mathews, R. Opila, L. V. Saraf, W. F. Stickle, R. M. Wallace, and B. S. Wright, “Comparison of the sputter rates of oxide films relative to the sputter rate of SiO2,” J. Vac. Sci. & Technol. A: Vacuum, Surfaces, Films 28, 1060–1072 (2010).
[Crossref]

Nampoori, V.

A. R. Kumar, G. Padmaja, P. Radhakrishnan, V. Nampoori, and C. Vallabhan, “Evaluation of laser ablation threshold in polymer samples using pulsed photoacoustic technique,” Pramana. 37, 345–351 (1991).
[Crossref]

Nash, R.

W. Falke, A. Schwaneke, and R. Nash, “Surface tension of zinc: the positive temperature coefficient,” Metall. Mater. Transactions B 8, 301–303 (1977).
[Crossref]

Neels, A.

B. Neuenschwander, B. Jaeggi, M. Schmid, A. Dommann, A. Neels, T. Bandi, and G. Hennig, “Factors controlling the incubation in the application of ps laser pulses on copper and iron surfaces,” Proc. SPIE 8607, 86070D (2013).
[Crossref]

Neuenschwander, B.

B. Neuenschwander, B. Jaeggi, M. Schmid, and G. Hennig, “Surface structuring with ultra-short laser pulses: basics, limitations and needs for high throughput,” Phys. Procedia 56, 1047–1058 (2014).
[Crossref]

B. Neuenschwander, B. Jaeggi, M. Schmid, A. Dommann, A. Neels, T. Bandi, and G. Hennig, “Factors controlling the incubation in the application of ps laser pulses on copper and iron surfaces,” Proc. SPIE 8607, 86070D (2013).
[Crossref]

B. Jaeggi, B. Neuenschwander, M. Schmid, M. Muralt, J. Zuercher, and U. Hunziker, “Influence of the pulse duration in the ps-regime on the ablation efficiency of metals,” Phys. Procedia 12, 164–171 (2011).
[Crossref]

B. Neuenschwander, G. Bucher, G. Hennig, C. Nussbaum, B. Joss, M. Muralt, S. Zehnder, U. W. Hunziker, and P. Schuetz, “Processing of dielectric materials and metals with ps laser pulses,” in Proceedings of the 29th International Congress on Applications of Lasers & Electro-Optics (ICALEO), Anaheim, California, (2010).

B. Neuenschwander, B. Jaeggi, M. Schmid, V. Rouffiange, and P. E. Martin, “Optimization of the volume ablation rate for metals at different laser pulse-durations from ps to fs,” in SPIE LASE, (International Society for Optics and Photonics, 2012), pp. 824307.

Nieto, D.

T. Delgado, D. Nieto, and M. T. Flores-Arias, “Soda-lime glass microlens arrays fabricated by laser: Comparison between a nanosecond and a femtosecond IR pulsed laser,” Opt. Lasers Eng. 86, 29–37 (2016).
[Crossref]

Nussbaum, C.

B. Neuenschwander, G. Bucher, G. Hennig, C. Nussbaum, B. Joss, M. Muralt, S. Zehnder, U. W. Hunziker, and P. Schuetz, “Processing of dielectric materials and metals with ps laser pulses,” in Proceedings of the 29th International Congress on Applications of Lasers & Electro-Optics (ICALEO), Anaheim, California, (2010).

O’Connor, G.

P. Mannion, J. Magee, E. Coyne, G. O’Connor, and T. Glynn, “The effect of damage accumulation behaviour on ablation thresholds and damage morphology in ultrafast laser micro-machining of common metals in air,” Appl. Surf. Sci. 233, 275–287 (2004).
[Crossref]

Obona, J. V.

J. V. Oboňa, V. Ocelík, J. Rao, J. Skolski, G. R. B. E. Römer, A. Huisin’t Veld, and J. T. M. De Hosson, “Modification of Cu surface with picosecond laser pulses,” Appl. Surf. Sci. 303, 118–124 (2014).
[Crossref]

J. V. Oboňa, V. Ocelík, J. Hosson, J. Skolski, V. Mitko, and G. R. B. E. Römer, “Surface melting of copper by ultrashort laser pulses,” in Surface effects and contact mechanics X : computational methods and experiments, (Wessex Institute of Technology, 2011).

Ocelík, V.

J. V. Oboňa, V. Ocelík, J. Rao, J. Skolski, G. R. B. E. Römer, A. Huisin’t Veld, and J. T. M. De Hosson, “Modification of Cu surface with picosecond laser pulses,” Appl. Surf. Sci. 303, 118–124 (2014).
[Crossref]

J. V. Oboňa, V. Ocelík, J. Hosson, J. Skolski, V. Mitko, and G. R. B. E. Römer, “Surface melting of copper by ultrashort laser pulses,” in Surface effects and contact mechanics X : computational methods and experiments, (Wessex Institute of Technology, 2011).

Opila, R.

D. R. Baer, M. H. Engelhard, A. S. Lea, P. Nachimuthu, T. C. Droubay, J. Kim, B. Lee, C. Mathews, R. Opila, L. V. Saraf, W. F. Stickle, R. M. Wallace, and B. S. Wright, “Comparison of the sputter rates of oxide films relative to the sputter rate of SiO2,” J. Vac. Sci. & Technol. A: Vacuum, Surfaces, Films 28, 1060–1072 (2010).
[Crossref]

Otto, A.

K. H. Leitz, B. Redlingshöfer, Y. Reg, A. Otto, and M. Schmidt, “Metal ablation with short and ultrashort laser pulses,” Phys. Procedia 12, 230–238 (2011).
[Crossref]

Padmaja, G.

A. R. Kumar, G. Padmaja, P. Radhakrishnan, V. Nampoori, and C. Vallabhan, “Evaluation of laser ablation threshold in polymer samples using pulsed photoacoustic technique,” Pramana. 37, 345–351 (1991).
[Crossref]

Petite, G.

M. Hashida, A. F. Semerok, O. Gobert, G. Petite, and J. F. Wagner, “Ablation thresholds of metals with femtosecond laser pulses,” in Nonresonant Laser-Matter Interaction (NLMI-10), (International Society for Optics and Photonics, 2001), pp. 178–185.

Pohl, R.

R. Pohl, C. Visser, G. R. B. E. Römer, C. Sun, and D. Lohse, “Imaging of the ejection process of nanosecond laser-induced forward transfer of gold,” JLMN J. Laser Micro/Nanoengineering 10, 154 (2015).
[Crossref]

Porter, F. C.

F. C. Porter, Zinc handbook: Properties, Processing, and Use in design (CRC, 1991).

F. C. Porter, Corrosion resistance of zinc and zinc alloys (CRC, 1994).

Preuss, S.

S. Preuss, A. Demchuk, and M. Stuke, “Sub-picosecond UV laser ablation of metals,” Appl. Phys. A: Mater. Sci. & Process. 61, 33–37 (1995).
[Crossref]

Qian, B.

B. Qian and Z. Shen, “Fabrication of superhydrophobic surfaces by dislocation-selective chemical etching on aluminum, copper, and zinc substrates,” Langmuir 21, 9007–9009 (2005).
[Crossref] [PubMed]

Querry, M.

M. Querry, “Optical constants of minerals and other materials from the millimeter to the ultraviolet,” Tech. rep., Chemical Research Development And Engineering Center Aberdeen Proving Groundmd (1987).

Raciukaitis, G.

G. Račiukaitis, M. Brikas, P. Gečys, B. Voisiat, and M. Gedvilas, “Use of high repetition rate and high power lasers in microfabrication: how to keep the efficiency high?” JLMN J. Laser Micro/Nanoengineering 4, 186–191 (2009).
[Crossref]

G. Račiukaitis, M. Brikas, P. Gecys, and M. Gedvilas, “Accumulation effects in laser ablation of metals with high-repetition-rate lasers,” in High-Power Laser Ablation 2008, (International Society for Optics and Photonics, 2008), pp. 70052L.

Radhakrishnan, P.

A. R. Kumar, G. Padmaja, P. Radhakrishnan, V. Nampoori, and C. Vallabhan, “Evaluation of laser ablation threshold in polymer samples using pulsed photoacoustic technique,” Pramana. 37, 345–351 (1991).
[Crossref]

Rao, J.

J. V. Oboňa, V. Ocelík, J. Rao, J. Skolski, G. R. B. E. Römer, A. Huisin’t Veld, and J. T. M. De Hosson, “Modification of Cu surface with picosecond laser pulses,” Appl. Surf. Sci. 303, 118–124 (2014).
[Crossref]

Redlingshöfer, B.

K. H. Leitz, B. Redlingshöfer, Y. Reg, A. Otto, and M. Schmidt, “Metal ablation with short and ultrashort laser pulses,” Phys. Procedia 12, 230–238 (2011).
[Crossref]

Reg, Y.

K. H. Leitz, B. Redlingshöfer, Y. Reg, A. Otto, and M. Schmidt, “Metal ablation with short and ultrashort laser pulses,” Phys. Procedia 12, 230–238 (2011).
[Crossref]

Rode, A. V.

E. G. Gamaly, N. Madsen, M. Duering, A. V. Rode, V. Z. Kolev, and B. Luther-Davies, “Ablation of metals with picosecond laser pulses: evidence of long-lived nonequilibrium conditions at the surface,” Phys. Rev. B 71, 174405 (2005).
[Crossref]

Rodriguez, S.

N. W. Ashcroft, N. D. Mermin, and S. Rodriguez, Solid State Physics (American Association of Physics Teachers, 1998).

Römer, G. R. B. E.

R. Pohl, C. Visser, G. R. B. E. Römer, C. Sun, and D. Lohse, “Imaging of the ejection process of nanosecond laser-induced forward transfer of gold,” JLMN J. Laser Micro/Nanoengineering 10, 154 (2015).
[Crossref]

J. V. Oboňa, V. Ocelík, J. Rao, J. Skolski, G. R. B. E. Römer, A. Huisin’t Veld, and J. T. M. De Hosson, “Modification of Cu surface with picosecond laser pulses,” Appl. Surf. Sci. 303, 118–124 (2014).
[Crossref]

J. V. Oboňa, V. Ocelík, J. Hosson, J. Skolski, V. Mitko, and G. R. B. E. Römer, “Surface melting of copper by ultrashort laser pulses,” in Surface effects and contact mechanics X : computational methods and experiments, (Wessex Institute of Technology, 2011).

Rouffiange, V.

B. Neuenschwander, B. Jaeggi, M. Schmid, V. Rouffiange, and P. E. Martin, “Optimization of the volume ablation rate for metals at different laser pulse-durations from ps to fs,” in SPIE LASE, (International Society for Optics and Photonics, 2012), pp. 824307.

Rudolph, W.

Z. Sun, M. Lenzner, and W. Rudolph, “Generic incubation law for laser damage and ablation thresholds,” J. Appl. Phys. 117, 073102 (2015).
[Crossref]

Saraf, L. V.

D. R. Baer, M. H. Engelhard, A. S. Lea, P. Nachimuthu, T. C. Droubay, J. Kim, B. Lee, C. Mathews, R. Opila, L. V. Saraf, W. F. Stickle, R. M. Wallace, and B. S. Wright, “Comparison of the sputter rates of oxide films relative to the sputter rate of SiO2,” J. Vac. Sci. & Technol. A: Vacuum, Surfaces, Films 28, 1060–1072 (2010).
[Crossref]

Savolainen, J. M.

J. Byskov-Nielsen, J. M. Savolainen, M. S. Christensen, and P. Balling, “Ultra-short pulse laser ablation of metals: threshold fluence, incubation coefficient and ablation rates,” Appl. Phys. A: Mater. Sci. & Process. 101, 97–101 (2010).
[Crossref]

Scheers, J.

J. Scheers, M. Vermeulen, C. De Mare, and K. Meseure, “Assessment of steel surface roughness and waviness in relation with paint appearance,” Int. J. Mach. Tools Manuf. 38, 647–656 (1998).
[Crossref]

Schmid, M.

B. Neuenschwander, B. Jaeggi, M. Schmid, and G. Hennig, “Surface structuring with ultra-short laser pulses: basics, limitations and needs for high throughput,” Phys. Procedia 56, 1047–1058 (2014).
[Crossref]

B. Neuenschwander, B. Jaeggi, M. Schmid, A. Dommann, A. Neels, T. Bandi, and G. Hennig, “Factors controlling the incubation in the application of ps laser pulses on copper and iron surfaces,” Proc. SPIE 8607, 86070D (2013).
[Crossref]

B. Jaeggi, B. Neuenschwander, M. Schmid, M. Muralt, J. Zuercher, and U. Hunziker, “Influence of the pulse duration in the ps-regime on the ablation efficiency of metals,” Phys. Procedia 12, 164–171 (2011).
[Crossref]

B. Neuenschwander, B. Jaeggi, M. Schmid, V. Rouffiange, and P. E. Martin, “Optimization of the volume ablation rate for metals at different laser pulse-durations from ps to fs,” in SPIE LASE, (International Society for Optics and Photonics, 2012), pp. 824307.

Schmidt, M.

K. H. Leitz, B. Redlingshöfer, Y. Reg, A. Otto, and M. Schmidt, “Metal ablation with short and ultrashort laser pulses,” Phys. Procedia 12, 230–238 (2011).
[Crossref]

Schuetz, P.

B. Neuenschwander, G. Bucher, G. Hennig, C. Nussbaum, B. Joss, M. Muralt, S. Zehnder, U. W. Hunziker, and P. Schuetz, “Processing of dielectric materials and metals with ps laser pulses,” in Proceedings of the 29th International Congress on Applications of Lasers & Electro-Optics (ICALEO), Anaheim, California, (2010).

Schwaneke, A.

W. Falke, A. Schwaneke, and R. Nash, “Surface tension of zinc: the positive temperature coefficient,” Metall. Mater. Transactions B 8, 301–303 (1977).
[Crossref]

Semerok, A. F.

M. Hashida, A. F. Semerok, O. Gobert, G. Petite, and J. F. Wagner, “Ablation thresholds of metals with femtosecond laser pulses,” in Nonresonant Laser-Matter Interaction (NLMI-10), (International Society for Optics and Photonics, 2001), pp. 178–185.

Shen, Z.

B. Qian and Z. Shen, “Fabrication of superhydrophobic surfaces by dislocation-selective chemical etching on aluminum, copper, and zinc substrates,” Langmuir 21, 9007–9009 (2005).
[Crossref] [PubMed]

Shubin, A.

G. Motulevich and A. Shubin, “Optical constants of zinc,” Sov. Phys. JETP 29, 24–26 (1969).

Sibillano, T.

Skolski, J.

J. V. Oboňa, V. Ocelík, J. Rao, J. Skolski, G. R. B. E. Römer, A. Huisin’t Veld, and J. T. M. De Hosson, “Modification of Cu surface with picosecond laser pulses,” Appl. Surf. Sci. 303, 118–124 (2014).
[Crossref]

J. V. Oboňa, V. Ocelík, J. Hosson, J. Skolski, V. Mitko, and G. R. B. E. Römer, “Surface melting of copper by ultrashort laser pulses,” in Surface effects and contact mechanics X : computational methods and experiments, (Wessex Institute of Technology, 2011).

Sobol, P.

J. Moulder, W. Stickle, P. Sobol, and K. Bomben, Handbook of X-Ray Photoelectron Spectroscopy (Perkin-Elmer Corporation, 1992).

Stickle, W.

J. Moulder, W. Stickle, P. Sobol, and K. Bomben, Handbook of X-Ray Photoelectron Spectroscopy (Perkin-Elmer Corporation, 1992).

Stickle, W. F.

D. R. Baer, M. H. Engelhard, A. S. Lea, P. Nachimuthu, T. C. Droubay, J. Kim, B. Lee, C. Mathews, R. Opila, L. V. Saraf, W. F. Stickle, R. M. Wallace, and B. S. Wright, “Comparison of the sputter rates of oxide films relative to the sputter rate of SiO2,” J. Vac. Sci. & Technol. A: Vacuum, Surfaces, Films 28, 1060–1072 (2010).
[Crossref]

Stuke, M.

S. Preuss, A. Demchuk, and M. Stuke, “Sub-picosecond UV laser ablation of metals,” Appl. Phys. A: Mater. Sci. & Process. 61, 33–37 (1995).
[Crossref]

Sun, C.

R. Pohl, C. Visser, G. R. B. E. Römer, C. Sun, and D. Lohse, “Imaging of the ejection process of nanosecond laser-induced forward transfer of gold,” JLMN J. Laser Micro/Nanoengineering 10, 154 (2015).
[Crossref]

Sun, Z.

Z. Sun, M. Lenzner, and W. Rudolph, “Generic incubation law for laser damage and ablation thresholds,” J. Appl. Phys. 117, 073102 (2015).
[Crossref]

Tanski, M.

M. Tanski, M. Kocik, R. Barbucha, K. Garasz, and J. Mizeraczyk, “Time-resolved observation of the ablation plasma plume dynamics during nanosecond laser micromachining,” in Photonics and Optoelectronics (SOPO), 2012 Symposium on, (IEEE, 2012), pp. 1–4.

Umenai, K.

N. Hosoya, I. Kajiwara, T. Inoue, and K. Umenai, “Non-contact acoustic tests based on nanosecond laser ablation: generation of a pulse sound source with a small amplitude,” J. Sound Vib. 333, 4254–4264 (2014).
[Crossref]

Ushida, K.

M. Hase, K. Ishioka, J. Demsar, K. Ushida, and M. Kitajima, “Ultrafast dynamics of coherent optical phonons and nonequilibrium electrons in transition metals,” Phys. Rev. B 71, 184301 (2005).
[Crossref]

Vallabhan, C.

A. R. Kumar, G. Padmaja, P. Radhakrishnan, V. Nampoori, and C. Vallabhan, “Evaluation of laser ablation threshold in polymer samples using pulsed photoacoustic technique,” Pramana. 37, 345–351 (1991).
[Crossref]

Vermeulen, M.

J. Scheers, M. Vermeulen, C. De Mare, and K. Meseure, “Assessment of steel surface roughness and waviness in relation with paint appearance,” Int. J. Mach. Tools Manuf. 38, 647–656 (1998).
[Crossref]

Visser, C.

R. Pohl, C. Visser, G. R. B. E. Römer, C. Sun, and D. Lohse, “Imaging of the ejection process of nanosecond laser-induced forward transfer of gold,” JLMN J. Laser Micro/Nanoengineering 10, 154 (2015).
[Crossref]

Voisiat, B.

G. Račiukaitis, M. Brikas, P. Gečys, B. Voisiat, and M. Gedvilas, “Use of high repetition rate and high power lasers in microfabrication: how to keep the efficiency high?” JLMN J. Laser Micro/Nanoengineering 4, 186–191 (2009).
[Crossref]

Vorobyev, A.

R. Fang, A. Vorobyev, and C. Guo, “Direct visualization of the complete evolution of femtosecond laser-induced surface structural dynamics of metals,” Light. Sci. Appl. 6e16256 (2017).
[Crossref]

A. Vorobyev and C. Guo, “Enhanced energy coupling in femtosecond laser-metal interactions at high intensities,” Opt. express 14, 13113–13119 (2006).
[Crossref] [PubMed]

Wagner, J. F.

M. Hashida, A. F. Semerok, O. Gobert, G. Petite, and J. F. Wagner, “Ablation thresholds of metals with femtosecond laser pulses,” in Nonresonant Laser-Matter Interaction (NLMI-10), (International Society for Optics and Photonics, 2001), pp. 178–185.

Wallace, R. M.

D. R. Baer, M. H. Engelhard, A. S. Lea, P. Nachimuthu, T. C. Droubay, J. Kim, B. Lee, C. Mathews, R. Opila, L. V. Saraf, W. F. Stickle, R. M. Wallace, and B. S. Wright, “Comparison of the sputter rates of oxide films relative to the sputter rate of SiO2,” J. Vac. Sci. & Technol. A: Vacuum, Surfaces, Films 28, 1060–1072 (2010).
[Crossref]

Walser, R. M.

Wang, S.

C. Cheng, S. Wang, K. Chang, and J. Chen, “Femtosecond laser ablation of copper at high laser fluence: modeling and experimental comparison,” Appl. Surf. Sci. 361, 41–48 (2016).
[Crossref]

Wellershoff, S. S.

J. Hohlfeld, S. S. Wellershoff, J. Güdde, U. Conrad, V. Jähnke, and E. Matthias, “Electron and lattice dynamics following optical excitation of metals,” Chem. Phys. 251, 237–258 (2000).
[Crossref]

S. S. Wellershoff, J. Hohlfeld, J. Güdde, and E. Matthias, “The role of electron–phonon coupling in femtosecond laser damage of metals,” Appl. Phys. A 69, S99–S107 (1999).

Wooten, F.

L. Mosteller and F. Wooten, “Optical properties of Zn,” Phys. Rev. 171, 743 (1968).
[Crossref]

Wright, B. S.

D. R. Baer, M. H. Engelhard, A. S. Lea, P. Nachimuthu, T. C. Droubay, J. Kim, B. Lee, C. Mathews, R. Opila, L. V. Saraf, W. F. Stickle, R. M. Wallace, and B. S. Wright, “Comparison of the sputter rates of oxide films relative to the sputter rate of SiO2,” J. Vac. Sci. & Technol. A: Vacuum, Surfaces, Films 28, 1060–1072 (2010).
[Crossref]

Zehnder, S.

B. Neuenschwander, G. Bucher, G. Hennig, C. Nussbaum, B. Joss, M. Muralt, S. Zehnder, U. W. Hunziker, and P. Schuetz, “Processing of dielectric materials and metals with ps laser pulses,” in Proceedings of the 29th International Congress on Applications of Lasers & Electro-Optics (ICALEO), Anaheim, California, (2010).

Zhang, D.

D. Zhang and L. Guan, “Laser Ablation,” in Comprehensive Materials Processing, S. Hashmi, G. F. Batalha, C. J. van Tyne, and B. S. Yilbas, eds. (Elsevier, 2014).
[Crossref]

Zuercher, J.

B. Jaeggi, B. Neuenschwander, M. Schmid, M. Muralt, J. Zuercher, and U. Hunziker, “Influence of the pulse duration in the ps-regime on the ablation efficiency of metals,” Phys. Procedia 12, 164–171 (2011).
[Crossref]

Acta materialia (1)

S. Feliu and V. Barranco, “XPS study of the surface chemistry of conventional hot-dip galvanised pure Zn, galvanneal and Zn–Al alloy coatings on steel,” Acta materialia 51, 5413–5424 (2003).
[Crossref]

Appl. Phys. A (1)

S. S. Wellershoff, J. Hohlfeld, J. Güdde, and E. Matthias, “The role of electron–phonon coupling in femtosecond laser damage of metals,” Appl. Phys. A 69, S99–S107 (1999).

Appl. Phys. A: Mater. Sci. & Process. (3)

M. Agranat, S. Ashitkov, V. Fortov, A. Kirillin, A. Kostanovskii, S. Anisimov, and P. Kondratenko, “Use of optical anisotropy for study of ultrafast phase transformations at solid surfaces,” Appl. Phys. A: Mater. Sci. & Process. 69, 637–640 (1999).
[Crossref]

S. Preuss, A. Demchuk, and M. Stuke, “Sub-picosecond UV laser ablation of metals,” Appl. Phys. A: Mater. Sci. & Process. 61, 33–37 (1995).
[Crossref]

J. Byskov-Nielsen, J. M. Savolainen, M. S. Christensen, and P. Balling, “Ultra-short pulse laser ablation of metals: threshold fluence, incubation coefficient and ablation rates,” Appl. Phys. A: Mater. Sci. & Process. 101, 97–101 (2010).
[Crossref]

Appl. Surf. Sci. (4)

P. Mannion, J. Magee, E. Coyne, G. O’Connor, and T. Glynn, “The effect of damage accumulation behaviour on ablation thresholds and damage morphology in ultrafast laser micro-machining of common metals in air,” Appl. Surf. Sci. 233, 275–287 (2004).
[Crossref]

J. V. Oboňa, V. Ocelík, J. Rao, J. Skolski, G. R. B. E. Römer, A. Huisin’t Veld, and J. T. M. De Hosson, “Modification of Cu surface with picosecond laser pulses,” Appl. Surf. Sci. 303, 118–124 (2014).
[Crossref]

J. Bonse, K. W. Brzezinka, and A. Meixner, “Modifying single-crystalline silicon by femtosecond laser pulses: an analysis by micro Raman spectroscopy, scanning laser microscopy and atomic force microscopy,” Appl. Surf. Sci. 221, 215–230 (2004).
[Crossref]

C. Cheng, S. Wang, K. Chang, and J. Chen, “Femtosecond laser ablation of copper at high laser fluence: modeling and experimental comparison,” Appl. Surf. Sci. 361, 41–48 (2016).
[Crossref]

Chem. Phys. (1)

J. Hohlfeld, S. S. Wellershoff, J. Güdde, U. Conrad, V. Jähnke, and E. Matthias, “Electron and lattice dynamics following optical excitation of metals,” Chem. Phys. 251, 237–258 (2000).
[Crossref]

Corros. Sci. (1)

T. H. Muster, W. D. Ganther, and I. S. Cole, “The influence of microstructure on surface phenomena: rolled zinc,” Corros. Sci. 49, 2037–2058 (2007).
[Crossref]

Int. J. Mach. Tools Manuf. (1)

J. Scheers, M. Vermeulen, C. De Mare, and K. Meseure, “Assessment of steel surface roughness and waviness in relation with paint appearance,” Int. J. Mach. Tools Manuf. 38, 647–656 (1998).
[Crossref]

J. Appl. Phys. (2)

W. Bond, “Measurement of the refractive indices of several crystals,” J. Appl. Phys. 36, 1674–1677 (1965).
[Crossref]

Z. Sun, M. Lenzner, and W. Rudolph, “Generic incubation law for laser damage and ablation thresholds,” J. Appl. Phys. 117, 073102 (2015).
[Crossref]

J. Opt. Soc. Am. B (2)

H. J. Hagemann, W. Gudat, and C. Kunz, “Optical constants from the far infrared to the x-ray region: Mg, Al, Cu, Ag, Au, Bi, C, and Al2O3,” J. Opt. Soc. Am. B 65, 742–744 (1975).
[Crossref]

Y. Jee, M. F. Becker, and R. M. Walser, “Laser-induced damage on single-crystal metal surfaces,” J. Opt. Soc. Am. B 5, 648–659 (1988).
[Crossref]

J. Sound Vib. (1)

N. Hosoya, I. Kajiwara, T. Inoue, and K. Umenai, “Non-contact acoustic tests based on nanosecond laser ablation: generation of a pulse sound source with a small amplitude,” J. Sound Vib. 333, 4254–4264 (2014).
[Crossref]

J. Vac. Sci. & Technol. A: Vacuum, Surfaces, Films (1)

D. R. Baer, M. H. Engelhard, A. S. Lea, P. Nachimuthu, T. C. Droubay, J. Kim, B. Lee, C. Mathews, R. Opila, L. V. Saraf, W. F. Stickle, R. M. Wallace, and B. S. Wright, “Comparison of the sputter rates of oxide films relative to the sputter rate of SiO2,” J. Vac. Sci. & Technol. A: Vacuum, Surfaces, Films 28, 1060–1072 (2010).
[Crossref]

JLMN J. Laser Micro/Nanoengineering (2)

G. Račiukaitis, M. Brikas, P. Gečys, B. Voisiat, and M. Gedvilas, “Use of high repetition rate and high power lasers in microfabrication: how to keep the efficiency high?” JLMN J. Laser Micro/Nanoengineering 4, 186–191 (2009).
[Crossref]

R. Pohl, C. Visser, G. R. B. E. Römer, C. Sun, and D. Lohse, “Imaging of the ejection process of nanosecond laser-induced forward transfer of gold,” JLMN J. Laser Micro/Nanoengineering 10, 154 (2015).
[Crossref]

Langmuir (1)

B. Qian and Z. Shen, “Fabrication of superhydrophobic surfaces by dislocation-selective chemical etching on aluminum, copper, and zinc substrates,” Langmuir 21, 9007–9009 (2005).
[Crossref] [PubMed]

Light. Sci. Appl. (1)

R. Fang, A. Vorobyev, and C. Guo, “Direct visualization of the complete evolution of femtosecond laser-induced surface structural dynamics of metals,” Light. Sci. Appl. 6e16256 (2017).
[Crossref]

Metall. Mater. Transactions B (1)

W. Falke, A. Schwaneke, and R. Nash, “Surface tension of zinc: the positive temperature coefficient,” Metall. Mater. Transactions B 8, 301–303 (1977).
[Crossref]

Opt. express (3)

Opt. Lasers Eng. (1)

T. Delgado, D. Nieto, and M. T. Flores-Arias, “Soda-lime glass microlens arrays fabricated by laser: Comparison between a nanosecond and a femtosecond IR pulsed laser,” Opt. Lasers Eng. 86, 29–37 (2016).
[Crossref]

Opt. letters (1)

J. Liu, “Simple technique for measurements of pulsed Gaussian-beam spot sizes,” Opt. letters 7, 196–198 (1982).
[Crossref]

Phys. Plasmas (1)

A. Miloshevsky, S. S. Harilal, G. Miloshevsky, and A. Hassanein, “Dynamics of plasma expansion and shockwave formation in femtosecond laser-ablated aluminum plumes in argon gas at atmospheric pressures,” Phys. Plasmas 21, 043111 (2014).
[Crossref]

Phys. Procedia (3)

B. Jaeggi, B. Neuenschwander, M. Schmid, M. Muralt, J. Zuercher, and U. Hunziker, “Influence of the pulse duration in the ps-regime on the ablation efficiency of metals,” Phys. Procedia 12, 164–171 (2011).
[Crossref]

K. H. Leitz, B. Redlingshöfer, Y. Reg, A. Otto, and M. Schmidt, “Metal ablation with short and ultrashort laser pulses,” Phys. Procedia 12, 230–238 (2011).
[Crossref]

B. Neuenschwander, B. Jaeggi, M. Schmid, and G. Hennig, “Surface structuring with ultra-short laser pulses: basics, limitations and needs for high throughput,” Phys. Procedia 56, 1047–1058 (2014).
[Crossref]

Phys. Rev. (1)

L. Mosteller and F. Wooten, “Optical properties of Zn,” Phys. Rev. 171, 743 (1968).
[Crossref]

Phys. Rev. B (2)

M. Hase, K. Ishioka, J. Demsar, K. Ushida, and M. Kitajima, “Ultrafast dynamics of coherent optical phonons and nonequilibrium electrons in transition metals,” Phys. Rev. B 71, 184301 (2005).
[Crossref]

E. G. Gamaly, N. Madsen, M. Duering, A. V. Rode, V. Z. Kolev, and B. Luther-Davies, “Ablation of metals with picosecond laser pulses: evidence of long-lived nonequilibrium conditions at the surface,” Phys. Rev. B 71, 174405 (2005).
[Crossref]

Pramana. (1)

A. R. Kumar, G. Padmaja, P. Radhakrishnan, V. Nampoori, and C. Vallabhan, “Evaluation of laser ablation threshold in polymer samples using pulsed photoacoustic technique,” Pramana. 37, 345–351 (1991).
[Crossref]

Proc. Inst. Mech. Eng. Part J: J. Eng. Tribol. (1)

H. Costa and I. Hutchings, “Some innovative surface texturing techniques for tribological purposes,” Proc. Inst. Mech. Eng. Part J: J. Eng. Tribol. 229, 429–448 (2015).
[Crossref]

Proc. SPIE (1)

B. Neuenschwander, B. Jaeggi, M. Schmid, A. Dommann, A. Neels, T. Bandi, and G. Hennig, “Factors controlling the incubation in the application of ps laser pulses on copper and iron surfaces,” Proc. SPIE 8607, 86070D (2013).
[Crossref]

Sov. Phys. JETP (1)

G. Motulevich and A. Shubin, “Optical constants of zinc,” Sov. Phys. JETP 29, 24–26 (1969).

Spectrochimica Acta Part B: At. Spectrosc. (1)

L. Cabalin and J. Laserna, “Experimental determination of laser induced breakdown thresholds of metals under nanosecond Q-switched laser operation,” Spectrochimica Acta Part B: At. Spectrosc. 53, 723–730 (1998).
[Crossref]

Surf. Interface Analysis: An Int. J. devoted to development application techniques for analysis surfaces, interfaces thin films (1)

S. Evans, “Correction for the effects of adventitious carbon overlayers in quantitative XPS analysis,” Surf. Interface Analysis: An Int. J. devoted to development application techniques for analysis surfaces, interfaces thin films 25, 924–930 (1997).
[Crossref]

Other (15)

J. Moulder, W. Stickle, P. Sobol, and K. Bomben, Handbook of X-Ray Photoelectron Spectroscopy (Perkin-Elmer Corporation, 1992).

M. Tanski, M. Kocik, R. Barbucha, K. Garasz, and J. Mizeraczyk, “Time-resolved observation of the ablation plasma plume dynamics during nanosecond laser micromachining,” in Photonics and Optoelectronics (SOPO), 2012 Symposium on, (IEEE, 2012), pp. 1–4.

D. Bergström, “The absorption of laser light by rough metal surfaces,” Ph.D. thesis, Luleå Tekniska Universitet, Sweden (2008).

N. W. Ashcroft, N. D. Mermin, and S. Rodriguez, Solid State Physics (American Association of Physics Teachers, 1998).

G. Račiukaitis, M. Brikas, P. Gecys, and M. Gedvilas, “Accumulation effects in laser ablation of metals with high-repetition-rate lasers,” in High-Power Laser Ablation 2008, (International Society for Optics and Photonics, 2008), pp. 70052L.

D. Zhang and L. Guan, “Laser Ablation,” in Comprehensive Materials Processing, S. Hashmi, G. F. Batalha, C. J. van Tyne, and B. S. Yilbas, eds. (Elsevier, 2014).
[Crossref]

M. Hashida, A. F. Semerok, O. Gobert, G. Petite, and J. F. Wagner, “Ablation thresholds of metals with femtosecond laser pulses,” in Nonresonant Laser-Matter Interaction (NLMI-10), (International Society for Optics and Photonics, 2001), pp. 178–185.

B. Neuenschwander, G. Bucher, G. Hennig, C. Nussbaum, B. Joss, M. Muralt, S. Zehnder, U. W. Hunziker, and P. Schuetz, “Processing of dielectric materials and metals with ps laser pulses,” in Proceedings of the 29th International Congress on Applications of Lasers & Electro-Optics (ICALEO), Anaheim, California, (2010).

B. Neuenschwander, B. Jaeggi, M. Schmid, V. Rouffiange, and P. E. Martin, “Optimization of the volume ablation rate for metals at different laser pulse-durations from ps to fs,” in SPIE LASE, (International Society for Optics and Photonics, 2012), pp. 824307.

M. Butt, “Laser ablation characteristics of metallic materials: role of debye-waller thermal parameter,” in IOP Conference Series: Materials Science and Engineering, , vol. 60 (Institute of Physics, 2014), pp. 012068.

F. C. Porter, Zinc handbook: Properties, Processing, and Use in design (CRC, 1991).

F. C. Porter, Corrosion resistance of zinc and zinc alloys (CRC, 1994).

D. Linde, Handbook of Chemistry and Physics (CRC, 1994).

M. Querry, “Optical constants of minerals and other materials from the millimeter to the ultraviolet,” Tech. rep., Chemical Research Development And Engineering Center Aberdeen Proving Groundmd (1987).

J. V. Oboňa, V. Ocelík, J. Hosson, J. Skolski, V. Mitko, and G. R. B. E. Römer, “Surface melting of copper by ultrashort laser pulses,” in Surface effects and contact mechanics X : computational methods and experiments, (Wessex Institute of Technology, 2011).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Reflection coefficient R, of zinc for corresponding wavelengths calculated from the n and k values from Ref. [32,33] and from ellipsometry measurement on the sample under investigation using Eq. (1). The inset shows measured n and k values of this work.
Fig. 2
Fig. 2 SEM images (top view) of zinc surface irradiated at different laser pulse energies Ep and corresponding peak fluence F0 levels (rows) and at different number of laser pulses N (columns). Diameter, d and maximum depth, h of the modified surface are derived from CLSM measurements. All images are in same scale. Corresponding crater profile, measured from CLSM measurements, is shown in the top-left image.
Fig. 3
Fig. 3 SEM micrographs of characteristic surface structures on laser processed zinc surface. (a) jets with spherical endings at N = 1, F0 = 0.98 J/cm2 (tilted 70°), (b) thin membranes surrounding a scratch at N = 1, F0 = 6.87 J/cm2 (tilted 60°), (c) periodic surface structures at N = 1, F0 = 2.7 J/cm2 with a microrim marked with dashed rectangle (tilted 60°), (d) nano-roughness near the edge of the crater at N = 7, F0 = 0.98 J/cm2 marked with dashed rectangle (top view), (e) ablated crater at N = 30, F0 = 3.61 J/cm2 with ‘halo’around the crater, part of which is marked with dashed rectangle (tilted 60°).
Fig. 4
Fig. 4 Cross-sections (obtained from CLSM measurements) of ablated craters normalized by corresponding number of pulses N at (a) F0 = 9.73 J/cm2 and (b) F0 = 40.75 J/cm2. The dashed circle in graph (b) represents rim around the crater.
Fig. 5
Fig. 5 Atomic concentration of Zn, Al and O for different number of pulses, N at F0 =12.61, 9.73 and 6.87 J/cm2.
Fig. 6
Fig. 6 Ar ion sputtering on unprocessed zinc surface. (a) Depth profile at low (left) and high (right) Ar ion energies shown by arrows. Inset shows the ratio of O and Al concentration as a function of sputter depth. Dashed horizontal line shows the O/Al ratio of Al2O3. (b) Schematic representation of native oxide layers on bulk zinc, red line indicates laser beam at 1030 nm. (c) Zinc (Zn2p3/2) spectra and (d) Aluminum (Al2p) spectra at different sputter depths during 1 keV Ar+ sputtering. The dashed and solid lines represent the binding energies of the corresponding metal and its oxide.
Fig. 7
Fig. 7 (a) Ablated volume per pulse ΔV as a function of peak fluence F0. The solid curves represent the least squared fit according to Eq. (3) in regime I only and dashed curves are extensions of the solid curves in regime II. Inset shows the extrapolated curves to ΔV = 0. (b) Accumulated threshold fluence, N · Fth(N) as a function of laser pulse number N. The solid curve represents a least squared fit according to Eq. (4). (c) Accumulation in energy penetration depth as a function of laser pulse number, N for ω0 = 14.6 μm. The solid line represents least squared fit according to Eq. (5). Note that the error bars are smaller than the data points.
Fig. 8
Fig. 8 (a) Ablation rates L = h N of Zn in air for different number of pulses N as a function of peak laser fluence F0. The solid curves represent the least squared fit according to Eq. (6) in regime I and dashed curves are extensions of solid curves in regime II. Inset shows the extrapolated curves to h N = 0. (b) Accumulated threshold fluence, N · Fth(N) as a function of laser pulse number N. The solid curve represents least squared fit according to Eq. (4). (c) Accumulation in effective penetration depth N δ e L as a function of laser pulse number, N. The solid line represents least squared fit according to Eq. (5).
Fig. 9
Fig. 9 Average ablation rate L of zinc in air for N = 50 as a function of peak laser fluence. The dashed line represents the least-squares fit according to Eq. (6). The inset shows the dependence of depth h on number of pulses N for F0 = 1.35 J/cm−2. The slope of the fit through the data points corresponds to average ablation rate, L [μm/pulse].
Fig. 10
Fig. 10 (a) Squared diameter D2 of the ablated crater for different number of pulses as a function of the peak laser fluence (log scale). The solid curves represent the least squared fit according to Eq. (7). The horizontal line at ∼ 2500 μm2 represents halo diameter. (b) Accumulated threshold fluence, N · Fth(N) as a function of laser pulse number N. The solid curve represents least squared fit according to Eq. (4).

Tables (2)

Tables Icon

Table 1 Ablation Threshold Values of Zn Reported in Literature.

Tables Icon

Table 2 Results Obtained for Single Pulse Ablation Thresholds and the Incubation Coefficients for Polycrystalline Zinc.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

R = ( 1 n ) 2 + k 2 ( 1 + n ) 2 + k 2 .
F ( r , z , ϕ ) = F 0 exp ( 2 r 2 ω 0 2 ) exp ( z δ e ) ,
Δ V = 1 4 π ω 0 2 δ e V [ ln ( F 0 F th V ) ] 2 ,
N F th ( N ) = F th ( 1 ) N ζ ,
δ e ( N ) = δ e ( 1 ) N ζ δ 1 ,
L = δ e L ln ( F 0 F th L ) .
D 2 = 2 ω 0 2 ln ( F 0 F th D ) .
F th e = δ . ρ . ( ( T m T 0 ) C p + H m + H v ) A ,