Abstract

The development of optical manipulation techniques focused on the confinement and transport of micro/nano-particles has attracted increased interest in the last decades. In particular the combination of all-optical confinement and propelling forces, respectively arising from high intensity and phase gradients of a strongly focused laser beam, is promising for optical transport. The recently developed freestyle laser trap exploits this manipulation mechanism to achieve optical transport along arbitrary 3D curves. In practice, reconfigurable 3D optical transport of numerous particles is a challenging problem because it requires the ability to easily adapt the trajectory in real time. In this work, we introduce and experimentally demonstrate a strategy for on-task adaptive design of freestyle laser traps based on a dynamic morphing technique. This provides programmable smooth transformation of the 3D shape of the curved laser trap with independent control of the propelling forces along it, that can be configured according to the considered application. Dynamic morphing, proven here on the example of colloidal dielectric micro-particles, significantly simplifies the important problem of real-time reconfigurable 3D optical transport and opens up routes for other sophisticated optical manipulation tasks.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Programmable optical transport of particles in knot circuits and networks

José A. Rodrigo, Mercedes Angulo, and Tatiana Alieva
Opt. Lett. 43(17) 4244-4247 (2018)

Freestyle 3D laser traps: tools for studying light-driven particle dynamics and beyond

José A. Rodrigo and Tatiana Alieva
Optica 2(9) 812-815 (2015)

Spectrally reconfigurable integrated multi-spot particle trap

Kaelyn D. Leake, Michael A. B. Olson, Damla Ozcelik, Aaron R. Hawkins, and Holger Schmidt
Opt. Lett. 40(23) 5435-5438 (2015)

References

  • View by:
  • |
  • |
  • |

  1. A. Ashkin, Optical Trapping and Manipulation of Neutral Particles Using Lasers: A Reprint Volume With Commentaries (World Scientific Publishing Company, 2006).
    [Crossref]
  2. D. G. Grier, “A revolution in optical manipulation,” Nature 424, 810–816 (2003).
    [Crossref] [PubMed]
  3. C. Bustamante, Z. Bryant, and S. B. Smith, “Ten years of tension: single-molecule DNA mechanics,” Nature 421, 423–427 (2003).
    [Crossref] [PubMed]
  4. Y. Roichman, B. Sun, Y. Roichman, J. Amato-Grill, and D. G. Grier, “Optical Forces Arising from Phase Gradients,” Phys. Rev. Lett. 100, 13602 (2008).
    [Crossref]
  5. S.-h. Lee, Y. Roichman, and D. G. Grier, “Optical solenoid beams,” Opt. Express 18, 1974–1977 (2010).
  6. E. R. Shanblatt and D. G. Grier, “Extended and knotted optical traps in three dimensions,” Opt. Express 19, 5833–5838 (2011).
    [Crossref] [PubMed]
  7. D. Ruffner and D. Grier, “Optical Conveyors: A Class of Active Tractor Beams,” Phys. Rev. Lett. 109, 1–5 (2012).
    [Crossref]
  8. J. A. Rodrigo and T. Alieva, “Freestyle 3D laser traps: tools for studying light-driven particle dynamics and beyond,” Optica 2, 812–815 (2015).
    [Crossref]
  9. J. A. Rodrigo and T. Alieva, “Light-driven transport of plasmonic nanoparticles on demand,” Sci. Rep. 6, 33729 (2016).
    [Crossref] [PubMed]
  10. J. A. Rodrigo and T. Alieva, “Polymorphic beams and Nature inspired circuits for optical current,” Sci. Rep. 6, 35341 (2016).
    [Crossref] [PubMed]
  11. J. A. Rodrigo, J. M. Soto, and T. Alieva, “Fast label-free microscopy technique for 3D dynamic quantitative imaging of living cells,” Biomed. Opt. Express 8, 5507–5517 (2017).
    [Crossref]
  12. J. Baumgartl, M. Mazilu, and K. Dholakia, “Optically mediated particle clearing using Airy wavepackets,” Nat. Photon. 2, 675–678 (2008).
    [Crossref]
  13. A. M. Amaral, E. L. F. ao Filho, and C. B. de Araújo, “Characterization of topological charge and orbital angular momentum of shaped optical vortices,” Opt. Express 22, 30315–30324 (2014).
    [Crossref]
  14. J. D. Hobby, “Smooth, easy to compute interpolating splines,” Discrete Comput. Geom. 1, 123–140 (1986).
    [Crossref]
  15. S. Bianchi and R. D. Leonardo, “Real-time optical micro-manipulation using optimized holograms generated on the GPU,” Comput. Phys. Commun. 181, 1444–1448 (2010).
    [Crossref]
  16. J.-Y. Tinevez, N. Perry, J. Schindelin, G. M. Hoopes, G. D. Reynolds, E. Laplantine, S. Y. Bednarek, S. L. Shorte, and K. W. Eliceiri, “Trackmate: An open and extensible platform for single-particle tracking,” Methods 115, 80–90 (2017).
    [Crossref]
  17. J. Howard, “Mechanics of motor proteins and the cytoskeleton ( SinauerSunderland, MA),” (2001).
  18. K. Sasaki, M. Koshioka, H. Misawa, N. Kitamura, and H. Masuhara, “Pattern formation and flow control of fine particles by laser-scanning micromanipulation,” Opt. Lett. 16, 1463–1465 (1991).
    [Crossref] [PubMed]
  19. R. Nambiar and J.-C. Meiners, “Fast position measurements with scanning line optical tweezers,” Opt. Lett. 27, 836–838 (2002).
    [Crossref]
  20. M. Capitanio, R. Cicchi, and F. S. Pavone, “Continuous and time-shared multiple optical tweezers for the study of single motor proteins,” Opt. Lasers Eng. 45, 450–457 (2007).
    [Crossref]
  21. S. N. S. Reihani and L. B. Oddershede, “Optimizing immersion media refractive index improves optical trapping by compensating spherical aberrations,” Opt. Lett. 32, 1998–2000 (2007).
    [Crossref] [PubMed]
  22. M. Dienerowitz, G. Gibson, R. Bowman, and M. Padgett, “Holographic aberration correction: optimising the stiffness of an optical trap deep in the sample,” Opt. Express 19, 24589–24595 (2011).
    [Crossref] [PubMed]
  23. C. Lutz, M. Reichert, H. Stark, and C. Bechinger, “Surmounting barriers: The benefit of hydrodynamic interactions,” Europhys. Lett.,  74, 719–725 (2006).
    [Crossref]
  24. Y. Sokolov, D. Frydel, D. G. Grier, H. Diamant, and Y. Roichman, “Hydrodynamic pair attractions between driven colloidal particles,” Phys. Rev. Lett.,  107, 158302 (2011).
    [Crossref] [PubMed]
  25. M. Polin, K. Ladavac, S. Lee, Y. Roichman, and D. G. Grier, “Optimized holographic optical traps,” Opt. Express 13, 5831–5845 (2005).
    [Crossref] [PubMed]
  26. V. Blickle, T. Speck, C. Lutz, U. Seifert, and C. Bechinger, “Einstein Relation Generalized to Nonequilibrium,” Phys. Rev. Lett. 98, 210601 (2007).
    [Crossref] [PubMed]
  27. A. Ivinskaya, M. I. Petrov, A. A. Bogdanov, I. Shishkin, P. Ginzburg, and A. S. Shalin, “Plasmon-assisted optical trapping and anti-trapping,” Light Sci. Appl. 6, e16258 (2017).
    [Crossref]

2017 (3)

J. A. Rodrigo, J. M. Soto, and T. Alieva, “Fast label-free microscopy technique for 3D dynamic quantitative imaging of living cells,” Biomed. Opt. Express 8, 5507–5517 (2017).
[Crossref]

J.-Y. Tinevez, N. Perry, J. Schindelin, G. M. Hoopes, G. D. Reynolds, E. Laplantine, S. Y. Bednarek, S. L. Shorte, and K. W. Eliceiri, “Trackmate: An open and extensible platform for single-particle tracking,” Methods 115, 80–90 (2017).
[Crossref]

A. Ivinskaya, M. I. Petrov, A. A. Bogdanov, I. Shishkin, P. Ginzburg, and A. S. Shalin, “Plasmon-assisted optical trapping and anti-trapping,” Light Sci. Appl. 6, e16258 (2017).
[Crossref]

2016 (2)

J. A. Rodrigo and T. Alieva, “Light-driven transport of plasmonic nanoparticles on demand,” Sci. Rep. 6, 33729 (2016).
[Crossref] [PubMed]

J. A. Rodrigo and T. Alieva, “Polymorphic beams and Nature inspired circuits for optical current,” Sci. Rep. 6, 35341 (2016).
[Crossref] [PubMed]

2015 (1)

2014 (1)

2012 (1)

D. Ruffner and D. Grier, “Optical Conveyors: A Class of Active Tractor Beams,” Phys. Rev. Lett. 109, 1–5 (2012).
[Crossref]

2011 (3)

2010 (2)

S.-h. Lee, Y. Roichman, and D. G. Grier, “Optical solenoid beams,” Opt. Express 18, 1974–1977 (2010).

S. Bianchi and R. D. Leonardo, “Real-time optical micro-manipulation using optimized holograms generated on the GPU,” Comput. Phys. Commun. 181, 1444–1448 (2010).
[Crossref]

2008 (2)

J. Baumgartl, M. Mazilu, and K. Dholakia, “Optically mediated particle clearing using Airy wavepackets,” Nat. Photon. 2, 675–678 (2008).
[Crossref]

Y. Roichman, B. Sun, Y. Roichman, J. Amato-Grill, and D. G. Grier, “Optical Forces Arising from Phase Gradients,” Phys. Rev. Lett. 100, 13602 (2008).
[Crossref]

2007 (3)

V. Blickle, T. Speck, C. Lutz, U. Seifert, and C. Bechinger, “Einstein Relation Generalized to Nonequilibrium,” Phys. Rev. Lett. 98, 210601 (2007).
[Crossref] [PubMed]

M. Capitanio, R. Cicchi, and F. S. Pavone, “Continuous and time-shared multiple optical tweezers for the study of single motor proteins,” Opt. Lasers Eng. 45, 450–457 (2007).
[Crossref]

S. N. S. Reihani and L. B. Oddershede, “Optimizing immersion media refractive index improves optical trapping by compensating spherical aberrations,” Opt. Lett. 32, 1998–2000 (2007).
[Crossref] [PubMed]

2006 (1)

C. Lutz, M. Reichert, H. Stark, and C. Bechinger, “Surmounting barriers: The benefit of hydrodynamic interactions,” Europhys. Lett.,  74, 719–725 (2006).
[Crossref]

2005 (1)

2003 (2)

D. G. Grier, “A revolution in optical manipulation,” Nature 424, 810–816 (2003).
[Crossref] [PubMed]

C. Bustamante, Z. Bryant, and S. B. Smith, “Ten years of tension: single-molecule DNA mechanics,” Nature 421, 423–427 (2003).
[Crossref] [PubMed]

2002 (1)

1991 (1)

1986 (1)

J. D. Hobby, “Smooth, easy to compute interpolating splines,” Discrete Comput. Geom. 1, 123–140 (1986).
[Crossref]

Alieva, T.

Amaral, A. M.

Amato-Grill, J.

Y. Roichman, B. Sun, Y. Roichman, J. Amato-Grill, and D. G. Grier, “Optical Forces Arising from Phase Gradients,” Phys. Rev. Lett. 100, 13602 (2008).
[Crossref]

ao Filho, E. L. F.

Ashkin, A.

A. Ashkin, Optical Trapping and Manipulation of Neutral Particles Using Lasers: A Reprint Volume With Commentaries (World Scientific Publishing Company, 2006).
[Crossref]

Baumgartl, J.

J. Baumgartl, M. Mazilu, and K. Dholakia, “Optically mediated particle clearing using Airy wavepackets,” Nat. Photon. 2, 675–678 (2008).
[Crossref]

Bechinger, C.

V. Blickle, T. Speck, C. Lutz, U. Seifert, and C. Bechinger, “Einstein Relation Generalized to Nonequilibrium,” Phys. Rev. Lett. 98, 210601 (2007).
[Crossref] [PubMed]

C. Lutz, M. Reichert, H. Stark, and C. Bechinger, “Surmounting barriers: The benefit of hydrodynamic interactions,” Europhys. Lett.,  74, 719–725 (2006).
[Crossref]

Bednarek, S. Y.

J.-Y. Tinevez, N. Perry, J. Schindelin, G. M. Hoopes, G. D. Reynolds, E. Laplantine, S. Y. Bednarek, S. L. Shorte, and K. W. Eliceiri, “Trackmate: An open and extensible platform for single-particle tracking,” Methods 115, 80–90 (2017).
[Crossref]

Bianchi, S.

S. Bianchi and R. D. Leonardo, “Real-time optical micro-manipulation using optimized holograms generated on the GPU,” Comput. Phys. Commun. 181, 1444–1448 (2010).
[Crossref]

Blickle, V.

V. Blickle, T. Speck, C. Lutz, U. Seifert, and C. Bechinger, “Einstein Relation Generalized to Nonequilibrium,” Phys. Rev. Lett. 98, 210601 (2007).
[Crossref] [PubMed]

Bogdanov, A. A.

A. Ivinskaya, M. I. Petrov, A. A. Bogdanov, I. Shishkin, P. Ginzburg, and A. S. Shalin, “Plasmon-assisted optical trapping and anti-trapping,” Light Sci. Appl. 6, e16258 (2017).
[Crossref]

Bowman, R.

Bryant, Z.

C. Bustamante, Z. Bryant, and S. B. Smith, “Ten years of tension: single-molecule DNA mechanics,” Nature 421, 423–427 (2003).
[Crossref] [PubMed]

Bustamante, C.

C. Bustamante, Z. Bryant, and S. B. Smith, “Ten years of tension: single-molecule DNA mechanics,” Nature 421, 423–427 (2003).
[Crossref] [PubMed]

Capitanio, M.

M. Capitanio, R. Cicchi, and F. S. Pavone, “Continuous and time-shared multiple optical tweezers for the study of single motor proteins,” Opt. Lasers Eng. 45, 450–457 (2007).
[Crossref]

Cicchi, R.

M. Capitanio, R. Cicchi, and F. S. Pavone, “Continuous and time-shared multiple optical tweezers for the study of single motor proteins,” Opt. Lasers Eng. 45, 450–457 (2007).
[Crossref]

de Araújo, C. B.

Dholakia, K.

J. Baumgartl, M. Mazilu, and K. Dholakia, “Optically mediated particle clearing using Airy wavepackets,” Nat. Photon. 2, 675–678 (2008).
[Crossref]

Diamant, H.

Y. Sokolov, D. Frydel, D. G. Grier, H. Diamant, and Y. Roichman, “Hydrodynamic pair attractions between driven colloidal particles,” Phys. Rev. Lett.,  107, 158302 (2011).
[Crossref] [PubMed]

Dienerowitz, M.

Eliceiri, K. W.

J.-Y. Tinevez, N. Perry, J. Schindelin, G. M. Hoopes, G. D. Reynolds, E. Laplantine, S. Y. Bednarek, S. L. Shorte, and K. W. Eliceiri, “Trackmate: An open and extensible platform for single-particle tracking,” Methods 115, 80–90 (2017).
[Crossref]

Frydel, D.

Y. Sokolov, D. Frydel, D. G. Grier, H. Diamant, and Y. Roichman, “Hydrodynamic pair attractions between driven colloidal particles,” Phys. Rev. Lett.,  107, 158302 (2011).
[Crossref] [PubMed]

Gibson, G.

Ginzburg, P.

A. Ivinskaya, M. I. Petrov, A. A. Bogdanov, I. Shishkin, P. Ginzburg, and A. S. Shalin, “Plasmon-assisted optical trapping and anti-trapping,” Light Sci. Appl. 6, e16258 (2017).
[Crossref]

Grier, D.

D. Ruffner and D. Grier, “Optical Conveyors: A Class of Active Tractor Beams,” Phys. Rev. Lett. 109, 1–5 (2012).
[Crossref]

Grier, D. G.

Y. Sokolov, D. Frydel, D. G. Grier, H. Diamant, and Y. Roichman, “Hydrodynamic pair attractions between driven colloidal particles,” Phys. Rev. Lett.,  107, 158302 (2011).
[Crossref] [PubMed]

E. R. Shanblatt and D. G. Grier, “Extended and knotted optical traps in three dimensions,” Opt. Express 19, 5833–5838 (2011).
[Crossref] [PubMed]

S.-h. Lee, Y. Roichman, and D. G. Grier, “Optical solenoid beams,” Opt. Express 18, 1974–1977 (2010).

Y. Roichman, B. Sun, Y. Roichman, J. Amato-Grill, and D. G. Grier, “Optical Forces Arising from Phase Gradients,” Phys. Rev. Lett. 100, 13602 (2008).
[Crossref]

M. Polin, K. Ladavac, S. Lee, Y. Roichman, and D. G. Grier, “Optimized holographic optical traps,” Opt. Express 13, 5831–5845 (2005).
[Crossref] [PubMed]

D. G. Grier, “A revolution in optical manipulation,” Nature 424, 810–816 (2003).
[Crossref] [PubMed]

Hobby, J. D.

J. D. Hobby, “Smooth, easy to compute interpolating splines,” Discrete Comput. Geom. 1, 123–140 (1986).
[Crossref]

Hoopes, G. M.

J.-Y. Tinevez, N. Perry, J. Schindelin, G. M. Hoopes, G. D. Reynolds, E. Laplantine, S. Y. Bednarek, S. L. Shorte, and K. W. Eliceiri, “Trackmate: An open and extensible platform for single-particle tracking,” Methods 115, 80–90 (2017).
[Crossref]

Howard, J.

J. Howard, “Mechanics of motor proteins and the cytoskeleton ( SinauerSunderland, MA),” (2001).

Ivinskaya, A.

A. Ivinskaya, M. I. Petrov, A. A. Bogdanov, I. Shishkin, P. Ginzburg, and A. S. Shalin, “Plasmon-assisted optical trapping and anti-trapping,” Light Sci. Appl. 6, e16258 (2017).
[Crossref]

Kitamura, N.

Koshioka, M.

Ladavac, K.

Laplantine, E.

J.-Y. Tinevez, N. Perry, J. Schindelin, G. M. Hoopes, G. D. Reynolds, E. Laplantine, S. Y. Bednarek, S. L. Shorte, and K. W. Eliceiri, “Trackmate: An open and extensible platform for single-particle tracking,” Methods 115, 80–90 (2017).
[Crossref]

Lee, S.

Lee, S.-h.

Leonardo, R. D.

S. Bianchi and R. D. Leonardo, “Real-time optical micro-manipulation using optimized holograms generated on the GPU,” Comput. Phys. Commun. 181, 1444–1448 (2010).
[Crossref]

Lutz, C.

V. Blickle, T. Speck, C. Lutz, U. Seifert, and C. Bechinger, “Einstein Relation Generalized to Nonequilibrium,” Phys. Rev. Lett. 98, 210601 (2007).
[Crossref] [PubMed]

C. Lutz, M. Reichert, H. Stark, and C. Bechinger, “Surmounting barriers: The benefit of hydrodynamic interactions,” Europhys. Lett.,  74, 719–725 (2006).
[Crossref]

Masuhara, H.

Mazilu, M.

J. Baumgartl, M. Mazilu, and K. Dholakia, “Optically mediated particle clearing using Airy wavepackets,” Nat. Photon. 2, 675–678 (2008).
[Crossref]

Meiners, J.-C.

Misawa, H.

Nambiar, R.

Oddershede, L. B.

Padgett, M.

Pavone, F. S.

M. Capitanio, R. Cicchi, and F. S. Pavone, “Continuous and time-shared multiple optical tweezers for the study of single motor proteins,” Opt. Lasers Eng. 45, 450–457 (2007).
[Crossref]

Perry, N.

J.-Y. Tinevez, N. Perry, J. Schindelin, G. M. Hoopes, G. D. Reynolds, E. Laplantine, S. Y. Bednarek, S. L. Shorte, and K. W. Eliceiri, “Trackmate: An open and extensible platform for single-particle tracking,” Methods 115, 80–90 (2017).
[Crossref]

Petrov, M. I.

A. Ivinskaya, M. I. Petrov, A. A. Bogdanov, I. Shishkin, P. Ginzburg, and A. S. Shalin, “Plasmon-assisted optical trapping and anti-trapping,” Light Sci. Appl. 6, e16258 (2017).
[Crossref]

Polin, M.

Reichert, M.

C. Lutz, M. Reichert, H. Stark, and C. Bechinger, “Surmounting barriers: The benefit of hydrodynamic interactions,” Europhys. Lett.,  74, 719–725 (2006).
[Crossref]

Reihani, S. N. S.

Reynolds, G. D.

J.-Y. Tinevez, N. Perry, J. Schindelin, G. M. Hoopes, G. D. Reynolds, E. Laplantine, S. Y. Bednarek, S. L. Shorte, and K. W. Eliceiri, “Trackmate: An open and extensible platform for single-particle tracking,” Methods 115, 80–90 (2017).
[Crossref]

Rodrigo, J. A.

Roichman, Y.

Y. Sokolov, D. Frydel, D. G. Grier, H. Diamant, and Y. Roichman, “Hydrodynamic pair attractions between driven colloidal particles,” Phys. Rev. Lett.,  107, 158302 (2011).
[Crossref] [PubMed]

S.-h. Lee, Y. Roichman, and D. G. Grier, “Optical solenoid beams,” Opt. Express 18, 1974–1977 (2010).

Y. Roichman, B. Sun, Y. Roichman, J. Amato-Grill, and D. G. Grier, “Optical Forces Arising from Phase Gradients,” Phys. Rev. Lett. 100, 13602 (2008).
[Crossref]

Y. Roichman, B. Sun, Y. Roichman, J. Amato-Grill, and D. G. Grier, “Optical Forces Arising from Phase Gradients,” Phys. Rev. Lett. 100, 13602 (2008).
[Crossref]

M. Polin, K. Ladavac, S. Lee, Y. Roichman, and D. G. Grier, “Optimized holographic optical traps,” Opt. Express 13, 5831–5845 (2005).
[Crossref] [PubMed]

Ruffner, D.

D. Ruffner and D. Grier, “Optical Conveyors: A Class of Active Tractor Beams,” Phys. Rev. Lett. 109, 1–5 (2012).
[Crossref]

Sasaki, K.

Schindelin, J.

J.-Y. Tinevez, N. Perry, J. Schindelin, G. M. Hoopes, G. D. Reynolds, E. Laplantine, S. Y. Bednarek, S. L. Shorte, and K. W. Eliceiri, “Trackmate: An open and extensible platform for single-particle tracking,” Methods 115, 80–90 (2017).
[Crossref]

Seifert, U.

V. Blickle, T. Speck, C. Lutz, U. Seifert, and C. Bechinger, “Einstein Relation Generalized to Nonequilibrium,” Phys. Rev. Lett. 98, 210601 (2007).
[Crossref] [PubMed]

Shalin, A. S.

A. Ivinskaya, M. I. Petrov, A. A. Bogdanov, I. Shishkin, P. Ginzburg, and A. S. Shalin, “Plasmon-assisted optical trapping and anti-trapping,” Light Sci. Appl. 6, e16258 (2017).
[Crossref]

Shanblatt, E. R.

Shishkin, I.

A. Ivinskaya, M. I. Petrov, A. A. Bogdanov, I. Shishkin, P. Ginzburg, and A. S. Shalin, “Plasmon-assisted optical trapping and anti-trapping,” Light Sci. Appl. 6, e16258 (2017).
[Crossref]

Shorte, S. L.

J.-Y. Tinevez, N. Perry, J. Schindelin, G. M. Hoopes, G. D. Reynolds, E. Laplantine, S. Y. Bednarek, S. L. Shorte, and K. W. Eliceiri, “Trackmate: An open and extensible platform for single-particle tracking,” Methods 115, 80–90 (2017).
[Crossref]

Smith, S. B.

C. Bustamante, Z. Bryant, and S. B. Smith, “Ten years of tension: single-molecule DNA mechanics,” Nature 421, 423–427 (2003).
[Crossref] [PubMed]

Sokolov, Y.

Y. Sokolov, D. Frydel, D. G. Grier, H. Diamant, and Y. Roichman, “Hydrodynamic pair attractions between driven colloidal particles,” Phys. Rev. Lett.,  107, 158302 (2011).
[Crossref] [PubMed]

Soto, J. M.

Speck, T.

V. Blickle, T. Speck, C. Lutz, U. Seifert, and C. Bechinger, “Einstein Relation Generalized to Nonequilibrium,” Phys. Rev. Lett. 98, 210601 (2007).
[Crossref] [PubMed]

Stark, H.

C. Lutz, M. Reichert, H. Stark, and C. Bechinger, “Surmounting barriers: The benefit of hydrodynamic interactions,” Europhys. Lett.,  74, 719–725 (2006).
[Crossref]

Sun, B.

Y. Roichman, B. Sun, Y. Roichman, J. Amato-Grill, and D. G. Grier, “Optical Forces Arising from Phase Gradients,” Phys. Rev. Lett. 100, 13602 (2008).
[Crossref]

Tinevez, J.-Y.

J.-Y. Tinevez, N. Perry, J. Schindelin, G. M. Hoopes, G. D. Reynolds, E. Laplantine, S. Y. Bednarek, S. L. Shorte, and K. W. Eliceiri, “Trackmate: An open and extensible platform for single-particle tracking,” Methods 115, 80–90 (2017).
[Crossref]

Biomed. Opt. Express (1)

Comput. Phys. Commun. (1)

S. Bianchi and R. D. Leonardo, “Real-time optical micro-manipulation using optimized holograms generated on the GPU,” Comput. Phys. Commun. 181, 1444–1448 (2010).
[Crossref]

Discrete Comput. Geom. (1)

J. D. Hobby, “Smooth, easy to compute interpolating splines,” Discrete Comput. Geom. 1, 123–140 (1986).
[Crossref]

Europhys. Lett. (1)

C. Lutz, M. Reichert, H. Stark, and C. Bechinger, “Surmounting barriers: The benefit of hydrodynamic interactions,” Europhys. Lett.,  74, 719–725 (2006).
[Crossref]

Light Sci. Appl. (1)

A. Ivinskaya, M. I. Petrov, A. A. Bogdanov, I. Shishkin, P. Ginzburg, and A. S. Shalin, “Plasmon-assisted optical trapping and anti-trapping,” Light Sci. Appl. 6, e16258 (2017).
[Crossref]

Methods (1)

J.-Y. Tinevez, N. Perry, J. Schindelin, G. M. Hoopes, G. D. Reynolds, E. Laplantine, S. Y. Bednarek, S. L. Shorte, and K. W. Eliceiri, “Trackmate: An open and extensible platform for single-particle tracking,” Methods 115, 80–90 (2017).
[Crossref]

Nat. Photon. (1)

J. Baumgartl, M. Mazilu, and K. Dholakia, “Optically mediated particle clearing using Airy wavepackets,” Nat. Photon. 2, 675–678 (2008).
[Crossref]

Nature (2)

D. G. Grier, “A revolution in optical manipulation,” Nature 424, 810–816 (2003).
[Crossref] [PubMed]

C. Bustamante, Z. Bryant, and S. B. Smith, “Ten years of tension: single-molecule DNA mechanics,” Nature 421, 423–427 (2003).
[Crossref] [PubMed]

Opt. Express (5)

Opt. Lasers Eng. (1)

M. Capitanio, R. Cicchi, and F. S. Pavone, “Continuous and time-shared multiple optical tweezers for the study of single motor proteins,” Opt. Lasers Eng. 45, 450–457 (2007).
[Crossref]

Opt. Lett. (3)

Optica (1)

Phys. Rev. Lett. (4)

D. Ruffner and D. Grier, “Optical Conveyors: A Class of Active Tractor Beams,” Phys. Rev. Lett. 109, 1–5 (2012).
[Crossref]

Y. Roichman, B. Sun, Y. Roichman, J. Amato-Grill, and D. G. Grier, “Optical Forces Arising from Phase Gradients,” Phys. Rev. Lett. 100, 13602 (2008).
[Crossref]

V. Blickle, T. Speck, C. Lutz, U. Seifert, and C. Bechinger, “Einstein Relation Generalized to Nonequilibrium,” Phys. Rev. Lett. 98, 210601 (2007).
[Crossref] [PubMed]

Y. Sokolov, D. Frydel, D. G. Grier, H. Diamant, and Y. Roichman, “Hydrodynamic pair attractions between driven colloidal particles,” Phys. Rev. Lett.,  107, 158302 (2011).
[Crossref] [PubMed]

Sci. Rep. (2)

J. A. Rodrigo and T. Alieva, “Light-driven transport of plasmonic nanoparticles on demand,” Sci. Rep. 6, 33729 (2016).
[Crossref] [PubMed]

J. A. Rodrigo and T. Alieva, “Polymorphic beams and Nature inspired circuits for optical current,” Sci. Rep. 6, 35341 (2016).
[Crossref] [PubMed]

Other (2)

J. Howard, “Mechanics of motor proteins and the cytoskeleton ( SinauerSunderland, MA),” (2001).

A. Ashkin, Optical Trapping and Manipulation of Neutral Particles Using Lasers: A Reprint Volume With Commentaries (World Scientific Publishing Company, 2006).
[Crossref]

Supplementary Material (2)

NameDescription
» Visualization 1       Experimental results demonstrating dynamic morphing of a 2D curved laser trap. In this example, dynamic morphing resulted in 22 different curved laser traps (states). Here we have considered two different values of the switching time (100 ms and 500 
» Visualization 2       Experimental results demonstrating dynamic morphing of a 3D curved laser trap. In this example, dynamic morphing resulted in 5 different curved laser traps (states). Here we have considered two different values of the switching time (250 ms and 2500 

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Sketch of the inverted optical trapping microscope. The particles (silica spheres of 1 μm) are optically confined and transported by the laser curve trap created up to 25 μm deep within the sample. (b) This scheme illustrates different composite Bézier curves created for dynamic morphing of the laser trap. The morphing from an initial state c1 to cN can be progressively done in N steps, for example in 5 and 22 steps as indicated. (c) Intensity and phase distributions of the curved laser beams corresponding to the curves c1(t) and cN(t).
Fig. 2
Fig. 2 (a) Experimental results demonstrating dynamic morphing of a 2D curved laser trap, corresponding to Fig. 1(b). In this example, we have considered N = 22 states c1,...,N (t) and two different values of the switching time (100 ms and 500 ms) between consecutive trap states, see also Visualization 1. (b) The time lapse image shows a flow of particles that spreads on a surface according with the programmed morphing shape. (c) The first knot point of the laser curve travels from cN(t) to c1(t) with a speed of 2.4 μm/s and 0.48 μm/s (d) for a switching time of 100 ms and 500 ms, respectively. A particle in point A is transported towards B by following a trajectory resulting from the combination of the propelling optical force and motion of the laser curve itself. The particles C and D are optically propelled following a fixed path, their mean speed is ∼ 5 μm/s.
Fig. 3
Fig. 3 (a) 3D composite Bézier trajectory created with four knot points, c(t) ← {b1(τ), ..., b4(τ)}, where the arrows tangent to the curve correspond to the phase gradient prescribed along the curved laser beam. (b) Values of the curve slope for each point. (c) Uniform phase (with l = −20) prescribed along the 3D curve. (d) The intensity and phase distributions (numerical simulation) confirm the correct shaping of the trapping beam. (e) Experimental results: multiple particles are optically transported due to the phase gradient prescribed along the 3D curve, see Visualization 2.
Fig. 4
Fig. 4 (a) and (b) Dynamic morphing (with N = 5 states) of a 3D composite Bézier curve obtained by parametric shifting of the knot points 2 and 4. Note that the state c1(t) coincides with the trap considered in Fig. 3. The experimental results displayed in (b) demonstrate optical transport of multiple particles with independent control of both the trap shape and the propelling optical force. Specifically, in this experiment not only the curve shape but also the topological charge l has been progressively changed from l1 = −20 to l5 = −30 corresponding with the initial state c1(t) and final state cN=5(t), respectively. We have also considered two different values of the switching time (250 ms and 2.5 s) between consecutive trap states, see also Visualization 2.
Fig. 5
Fig. 5 (a) This scheme illustrates the positions of the knot and control points of a Bézier spline b1(τ) comprising the curve c1(t) considered in Figs. 1 and 2. (b) This curve c1(t) has been created with a tension ν = 1 that can be varied if needed. The curve with ν = 0.75 and 0.5 the curve c1(t) exhibits different turns and straight segments connecting its six knot points. This type of transformation can be combined with parametric shifting of the knot points to easily create complex dynamic morphing configurations.
Fig. 6
Fig. 6 Experimental results for trap characterization. (a) Scatter plot of the particle positions (blue points) for the case of 15 silica particles (1 μm in diameter) confined and transported by the intermediate 2D trap state c16(t) [corresponding to Fig. 1(b) and 2(a)] whose shape is a ring of radius R = 3.8 μm and topological charge l = 30. The positions have been measured by using a particle tracking algorithm and for a time of 6 seconds. (b) Histogram of radial positions Δr (relative to the ring radius) for the case of 15 trapped particles, where the red curve is the normal distribution with standard deviation of δ = 32 nm that fits the histogram. (c) Scatter plot of the positions for the case of only one particle alone (confined and transported in the same ring trap) measured for 100 seconds, while its corresponding histogram of radial positions (d) fits well to a normal distribution with δ = 35 nm. The arrows shown in (c) indicate the presence of soft potential barriers along the ring curve.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

E ( r 0 ) = 0 T g ( t ) exp [ i k 2 f 2 u z ( t ) r 0 2 ] exp [ i k f r 0 R ( t ) ] d t ,
E ˜ ( r , z ) = exp [ i k z ] i λ f E ( r 0 ) exp [ ik 2 f 2 z r 0 2 ] exp [ i k f r 0 r ] d r 0 ,
E ˜ ( r , z = u z ( t ) ) = i λ exp [ i k u z ( t ) ] f 0 T g ( t ) δ ( 1 f ( R ( t ) r ) ) d t ,
Ψ ( t ) = 2 π l S ( T ) S ( t ) ,
S ( t ) = 0 t | c ( τ ) | d τ ,
b n ( τ ) = ( 1 τ ) 3 P s ( n ) + 3 τ ( 1 τ ) 2 T s ( n ) + 3 τ 2 ( 1 τ ) T e ( n ) + τ 3 P e ( n ) ,
T s ( n ) = P s ( n ) + ρ ( θ , φ ) 3 ν s P e ( n ) P s ( n ) w s , T e ( n ) = P e ( n ) + σ ( θ , φ ) 3 ν e P e ( n ) P s ( n ) w e ,
ρ ( θ , φ ) = 2 + α 1 + ( 1 c ) cos θ + c cos φ ,
σ ( θ , φ ) = 2 α 1 + ( 1 c ) cos φ + c cos θ ,

Metrics