Abstract

Illumination uniformity in photolithography systems determines the dimensional difference across the entire lithographic substrate. However, traditional lithography system relies on expensive and complex illumination system for achieving uniform illumination. In this paper, we propose a simple and cost-effective method based on the modulation of digital micromirror device to improve illumination uniformity. The modulation according to a digital mask achieved via an iteration program improves the uniformity to be above 95%. We demonstrate the effectiveness of the method by experimentally fabricating a linear grating. By implementing this method, the maximum dimensional difference is decreased from 3.3μm to 0.3μm. Further simulations indicate that higher uniformity is achievable once the field of view on the DMD is divided into smaller subregions.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Digital micromirror device-based laser-illumination Fourier ptychographic microscopy

Cuifang Kuang, Ye Ma, Renjie Zhou, Justin Lee, George Barbastathis, Ramachandra R. Dasari, Zahid Yaqoob, and Peter T. C. So
Opt. Express 23(21) 26999-27010 (2015)

Digital micromirror device camera with per-pixel coded exposure for high dynamic range imaging

Wei Feng, Fumin Zhang, Weijing Wang, Wei Xing, and Xinghua Qu
Appl. Opt. 56(13) 3831-3840 (2017)

Design of illumination and projection optics for projectors with single digital micromirror devices

Chong-Min Chang and Han-Ping D. Shieh
Appl. Opt. 39(19) 3202-3208 (2000)

References

  • View by:
  • |
  • |
  • |

  1. Z. Xiong, H. Liu, X. Q. Tan, Z. W. Lu, C. X. Li, L. W. Song, and Z. Wang, “Diffraction analysis of digital micromirror device in maskless photolithography system”, J. Micro-Nanolitho., MEM 13(4), 353–365 (2014).
  2. W. Mei, “Point Array maskless lithography,” US, 6473237B2 (2002).
  3. K. Wu, T. Rindzevicius, M. S. Schmidt, K. B. Mogensen, S. Xiao, and A. Boisen, “Plasmon resonances of Ag capped Si nanopillars fabricated using mask-less lithography,” Opt. Express 23(10), 12965–12978 (2015).
    [Crossref] [PubMed]
  4. J. B. Kim and K. H. Jeong, “Batch fabrication of functional optical elements on a fiber facet using DMD based maskless lithography,” Opt. Express 25(14), 16854–16859 (2017).
    [Crossref] [PubMed]
  5. X.W. Guo and Q.M. Dong, “Rapid fabrication of micro optical elements using DMD-based maskless lithography technique,” Adv. Mater. Res.,  146, 143–146 (2011).
  6. H. Wu, W. Hu, H. C. Hu, X. W. Lin, G. Zhu, J. W. Choi, V. Chigrinov, and Y. Q. Lu, “Arbitrary photo-patterning in liquid crystal alignments using DMD based lithography system,” Opt. Express 20(15), 16684–16689 (2012).
    [Crossref]
  7. K. F. Chan, Z. Q. Feng, R. Yang, A. Ishikawa, and W. H. Mei, “High-resolution maskless lithography”, J. Micro-Nanolitho., MEM 2(4), 331–339 (2003).
  8. M. P. Lee, G. J. T. Cooper, T. Hinkley, G. M. Gibson, M. J. Padgett, and L. Cronin, “Development of a 3D printer using scanning projection stereolithography,” Sci. Rep. 5(1), 9875 (2015).
    [Crossref] [PubMed]
  9. W. H. Arnold, “Towards 3 nm overlay and critical dimension uniformity: an integrated error budget for double patterning lithography,” SPIE 6924, 692404 (2008).
  10. A. Waldbaur, B. Waterkotte, K. Schmitz, and B. E. Rapp, “Maskless projection lithography for the fast and flexible generation of grayscale protein patterns,” Small 8(10), 1570–1578 (2012).
    [Crossref] [PubMed]
  11. J. Kim, S. Bae, H. Lee, and S. Jang, “Maskless lithographic apparatus and methods of compensation for rotational alignment error using the same,” US, 20100060874 (2010).
  12. R. Voelkel, U. Vogler, A. Bich, P. Pernet, K. J. Weible, M. Hornung, R. Zoberbier, E. Cullmann, L. Stuerzebecher, T. Harzendorf, and U. D. Zeitner, “Advanced mask aligner lithography: new illumination system,” Opt. Express 18(20), 20968–20978 (2010).
    [Crossref] [PubMed]
  13. M. Christophersen and B. F. Philips, “Gray-tone lithography using an optical diffuser and a contact aligner,” Appl. Phys. Lett. 92(19), 194102 (2008).
    [Crossref]
  14. R. Hu, X. Luo, H. Zheng, Z. Qin, Z. Gan, B. Wu, and S. Liu, “Design of a novel freeform lens for LED uniform illumination and conformal phosphor coating,” Opt. Express 20(13), 13727–13737 (2012).
    [Crossref] [PubMed]
  15. K. Zhong, Y. Gao, F. Li, N. Luo, and W. Zhang, “Fabrication of continuous relief micro-optic elements using real-time maskless lithography technique based on DMD,” Opt. Laser Technol. 56, 367–371 (2014).
    [Crossref]
  16. R. Chen, H. Liu, H. Zhang, W. Zhang, J. Xu, W. Xu, and J. Li, “Edge smoothness enhancement in DMD scanning lithography system based on a wobulation technique,” Opt. Express 25(18), 21958–21968 (2017).
    [Crossref] [PubMed]
  17. J. Ma, X. Du, and Y. Liu, “Design of maskless lithography system based on DMD,” Proc. SPIE 6836, 683612 (2008).
  18. M. A. Klosner, “Maskless lithography system and method with doubled throughput”, US, 6238852 (2001).
  19. L. J. Hornbeck, “Deformable mirror spatial light modulators,” Proc. SPIE 1150, 86–104 (1990).
  20. J. M. Younse, “Mirrors on a chip,” IEEE Spectr. 30(11), 27–31 (1993).
    [Crossref]
  21. B. Sampsell, “Digital micromirror device and its application to projection displays,” J. Vac. Sci. Technol. B 12(6), 3242–3246 (1994).
    [Crossref]

2017 (2)

2015 (2)

K. Wu, T. Rindzevicius, M. S. Schmidt, K. B. Mogensen, S. Xiao, and A. Boisen, “Plasmon resonances of Ag capped Si nanopillars fabricated using mask-less lithography,” Opt. Express 23(10), 12965–12978 (2015).
[Crossref] [PubMed]

M. P. Lee, G. J. T. Cooper, T. Hinkley, G. M. Gibson, M. J. Padgett, and L. Cronin, “Development of a 3D printer using scanning projection stereolithography,” Sci. Rep. 5(1), 9875 (2015).
[Crossref] [PubMed]

2014 (2)

Z. Xiong, H. Liu, X. Q. Tan, Z. W. Lu, C. X. Li, L. W. Song, and Z. Wang, “Diffraction analysis of digital micromirror device in maskless photolithography system”, J. Micro-Nanolitho., MEM 13(4), 353–365 (2014).

K. Zhong, Y. Gao, F. Li, N. Luo, and W. Zhang, “Fabrication of continuous relief micro-optic elements using real-time maskless lithography technique based on DMD,” Opt. Laser Technol. 56, 367–371 (2014).
[Crossref]

2012 (3)

2011 (1)

X.W. Guo and Q.M. Dong, “Rapid fabrication of micro optical elements using DMD-based maskless lithography technique,” Adv. Mater. Res.,  146, 143–146 (2011).

2010 (1)

2008 (3)

M. Christophersen and B. F. Philips, “Gray-tone lithography using an optical diffuser and a contact aligner,” Appl. Phys. Lett. 92(19), 194102 (2008).
[Crossref]

J. Ma, X. Du, and Y. Liu, “Design of maskless lithography system based on DMD,” Proc. SPIE 6836, 683612 (2008).

W. H. Arnold, “Towards 3 nm overlay and critical dimension uniformity: an integrated error budget for double patterning lithography,” SPIE 6924, 692404 (2008).

2003 (1)

K. F. Chan, Z. Q. Feng, R. Yang, A. Ishikawa, and W. H. Mei, “High-resolution maskless lithography”, J. Micro-Nanolitho., MEM 2(4), 331–339 (2003).

1994 (1)

B. Sampsell, “Digital micromirror device and its application to projection displays,” J. Vac. Sci. Technol. B 12(6), 3242–3246 (1994).
[Crossref]

1993 (1)

J. M. Younse, “Mirrors on a chip,” IEEE Spectr. 30(11), 27–31 (1993).
[Crossref]

1990 (1)

L. J. Hornbeck, “Deformable mirror spatial light modulators,” Proc. SPIE 1150, 86–104 (1990).

Arnold, W. H.

W. H. Arnold, “Towards 3 nm overlay and critical dimension uniformity: an integrated error budget for double patterning lithography,” SPIE 6924, 692404 (2008).

Bich, A.

Boisen, A.

Chan, K. F.

K. F. Chan, Z. Q. Feng, R. Yang, A. Ishikawa, and W. H. Mei, “High-resolution maskless lithography”, J. Micro-Nanolitho., MEM 2(4), 331–339 (2003).

Chen, R.

Chigrinov, V.

Choi, J. W.

Christophersen, M.

M. Christophersen and B. F. Philips, “Gray-tone lithography using an optical diffuser and a contact aligner,” Appl. Phys. Lett. 92(19), 194102 (2008).
[Crossref]

Cooper, G. J. T.

M. P. Lee, G. J. T. Cooper, T. Hinkley, G. M. Gibson, M. J. Padgett, and L. Cronin, “Development of a 3D printer using scanning projection stereolithography,” Sci. Rep. 5(1), 9875 (2015).
[Crossref] [PubMed]

Cronin, L.

M. P. Lee, G. J. T. Cooper, T. Hinkley, G. M. Gibson, M. J. Padgett, and L. Cronin, “Development of a 3D printer using scanning projection stereolithography,” Sci. Rep. 5(1), 9875 (2015).
[Crossref] [PubMed]

Cullmann, E.

Dong, Q.M.

X.W. Guo and Q.M. Dong, “Rapid fabrication of micro optical elements using DMD-based maskless lithography technique,” Adv. Mater. Res.,  146, 143–146 (2011).

Du, X.

J. Ma, X. Du, and Y. Liu, “Design of maskless lithography system based on DMD,” Proc. SPIE 6836, 683612 (2008).

Feng, Z. Q.

K. F. Chan, Z. Q. Feng, R. Yang, A. Ishikawa, and W. H. Mei, “High-resolution maskless lithography”, J. Micro-Nanolitho., MEM 2(4), 331–339 (2003).

Gan, Z.

Gao, Y.

K. Zhong, Y. Gao, F. Li, N. Luo, and W. Zhang, “Fabrication of continuous relief micro-optic elements using real-time maskless lithography technique based on DMD,” Opt. Laser Technol. 56, 367–371 (2014).
[Crossref]

Gibson, G. M.

M. P. Lee, G. J. T. Cooper, T. Hinkley, G. M. Gibson, M. J. Padgett, and L. Cronin, “Development of a 3D printer using scanning projection stereolithography,” Sci. Rep. 5(1), 9875 (2015).
[Crossref] [PubMed]

Guo, X.W.

X.W. Guo and Q.M. Dong, “Rapid fabrication of micro optical elements using DMD-based maskless lithography technique,” Adv. Mater. Res.,  146, 143–146 (2011).

Harzendorf, T.

Hinkley, T.

M. P. Lee, G. J. T. Cooper, T. Hinkley, G. M. Gibson, M. J. Padgett, and L. Cronin, “Development of a 3D printer using scanning projection stereolithography,” Sci. Rep. 5(1), 9875 (2015).
[Crossref] [PubMed]

Hornbeck, L. J.

L. J. Hornbeck, “Deformable mirror spatial light modulators,” Proc. SPIE 1150, 86–104 (1990).

Hornung, M.

Hu, H. C.

Hu, R.

Hu, W.

Ishikawa, A.

K. F. Chan, Z. Q. Feng, R. Yang, A. Ishikawa, and W. H. Mei, “High-resolution maskless lithography”, J. Micro-Nanolitho., MEM 2(4), 331–339 (2003).

Jeong, K. H.

Kim, J. B.

Lee, M. P.

M. P. Lee, G. J. T. Cooper, T. Hinkley, G. M. Gibson, M. J. Padgett, and L. Cronin, “Development of a 3D printer using scanning projection stereolithography,” Sci. Rep. 5(1), 9875 (2015).
[Crossref] [PubMed]

Li, C. X.

Z. Xiong, H. Liu, X. Q. Tan, Z. W. Lu, C. X. Li, L. W. Song, and Z. Wang, “Diffraction analysis of digital micromirror device in maskless photolithography system”, J. Micro-Nanolitho., MEM 13(4), 353–365 (2014).

Li, F.

K. Zhong, Y. Gao, F. Li, N. Luo, and W. Zhang, “Fabrication of continuous relief micro-optic elements using real-time maskless lithography technique based on DMD,” Opt. Laser Technol. 56, 367–371 (2014).
[Crossref]

Li, J.

Lin, X. W.

Liu, H.

R. Chen, H. Liu, H. Zhang, W. Zhang, J. Xu, W. Xu, and J. Li, “Edge smoothness enhancement in DMD scanning lithography system based on a wobulation technique,” Opt. Express 25(18), 21958–21968 (2017).
[Crossref] [PubMed]

Z. Xiong, H. Liu, X. Q. Tan, Z. W. Lu, C. X. Li, L. W. Song, and Z. Wang, “Diffraction analysis of digital micromirror device in maskless photolithography system”, J. Micro-Nanolitho., MEM 13(4), 353–365 (2014).

Liu, S.

Liu, Y.

J. Ma, X. Du, and Y. Liu, “Design of maskless lithography system based on DMD,” Proc. SPIE 6836, 683612 (2008).

Lu, Y. Q.

Lu, Z. W.

Z. Xiong, H. Liu, X. Q. Tan, Z. W. Lu, C. X. Li, L. W. Song, and Z. Wang, “Diffraction analysis of digital micromirror device in maskless photolithography system”, J. Micro-Nanolitho., MEM 13(4), 353–365 (2014).

Luo, N.

K. Zhong, Y. Gao, F. Li, N. Luo, and W. Zhang, “Fabrication of continuous relief micro-optic elements using real-time maskless lithography technique based on DMD,” Opt. Laser Technol. 56, 367–371 (2014).
[Crossref]

Luo, X.

Ma, J.

J. Ma, X. Du, and Y. Liu, “Design of maskless lithography system based on DMD,” Proc. SPIE 6836, 683612 (2008).

Mei, W. H.

K. F. Chan, Z. Q. Feng, R. Yang, A. Ishikawa, and W. H. Mei, “High-resolution maskless lithography”, J. Micro-Nanolitho., MEM 2(4), 331–339 (2003).

Mogensen, K. B.

Padgett, M. J.

M. P. Lee, G. J. T. Cooper, T. Hinkley, G. M. Gibson, M. J. Padgett, and L. Cronin, “Development of a 3D printer using scanning projection stereolithography,” Sci. Rep. 5(1), 9875 (2015).
[Crossref] [PubMed]

Pernet, P.

Philips, B. F.

M. Christophersen and B. F. Philips, “Gray-tone lithography using an optical diffuser and a contact aligner,” Appl. Phys. Lett. 92(19), 194102 (2008).
[Crossref]

Qin, Z.

Rapp, B. E.

A. Waldbaur, B. Waterkotte, K. Schmitz, and B. E. Rapp, “Maskless projection lithography for the fast and flexible generation of grayscale protein patterns,” Small 8(10), 1570–1578 (2012).
[Crossref] [PubMed]

Rindzevicius, T.

Sampsell, B.

B. Sampsell, “Digital micromirror device and its application to projection displays,” J. Vac. Sci. Technol. B 12(6), 3242–3246 (1994).
[Crossref]

Schmidt, M. S.

Schmitz, K.

A. Waldbaur, B. Waterkotte, K. Schmitz, and B. E. Rapp, “Maskless projection lithography for the fast and flexible generation of grayscale protein patterns,” Small 8(10), 1570–1578 (2012).
[Crossref] [PubMed]

Song, L. W.

Z. Xiong, H. Liu, X. Q. Tan, Z. W. Lu, C. X. Li, L. W. Song, and Z. Wang, “Diffraction analysis of digital micromirror device in maskless photolithography system”, J. Micro-Nanolitho., MEM 13(4), 353–365 (2014).

Stuerzebecher, L.

Tan, X. Q.

Z. Xiong, H. Liu, X. Q. Tan, Z. W. Lu, C. X. Li, L. W. Song, and Z. Wang, “Diffraction analysis of digital micromirror device in maskless photolithography system”, J. Micro-Nanolitho., MEM 13(4), 353–365 (2014).

Voelkel, R.

Vogler, U.

Waldbaur, A.

A. Waldbaur, B. Waterkotte, K. Schmitz, and B. E. Rapp, “Maskless projection lithography for the fast and flexible generation of grayscale protein patterns,” Small 8(10), 1570–1578 (2012).
[Crossref] [PubMed]

Wang, Z.

Z. Xiong, H. Liu, X. Q. Tan, Z. W. Lu, C. X. Li, L. W. Song, and Z. Wang, “Diffraction analysis of digital micromirror device in maskless photolithography system”, J. Micro-Nanolitho., MEM 13(4), 353–365 (2014).

Waterkotte, B.

A. Waldbaur, B. Waterkotte, K. Schmitz, and B. E. Rapp, “Maskless projection lithography for the fast and flexible generation of grayscale protein patterns,” Small 8(10), 1570–1578 (2012).
[Crossref] [PubMed]

Weible, K. J.

Wu, B.

Wu, H.

Wu, K.

Xiao, S.

Xiong, Z.

Z. Xiong, H. Liu, X. Q. Tan, Z. W. Lu, C. X. Li, L. W. Song, and Z. Wang, “Diffraction analysis of digital micromirror device in maskless photolithography system”, J. Micro-Nanolitho., MEM 13(4), 353–365 (2014).

Xu, J.

Xu, W.

Yang, R.

K. F. Chan, Z. Q. Feng, R. Yang, A. Ishikawa, and W. H. Mei, “High-resolution maskless lithography”, J. Micro-Nanolitho., MEM 2(4), 331–339 (2003).

Younse, J. M.

J. M. Younse, “Mirrors on a chip,” IEEE Spectr. 30(11), 27–31 (1993).
[Crossref]

Zeitner, U. D.

Zhang, H.

Zhang, W.

R. Chen, H. Liu, H. Zhang, W. Zhang, J. Xu, W. Xu, and J. Li, “Edge smoothness enhancement in DMD scanning lithography system based on a wobulation technique,” Opt. Express 25(18), 21958–21968 (2017).
[Crossref] [PubMed]

K. Zhong, Y. Gao, F. Li, N. Luo, and W. Zhang, “Fabrication of continuous relief micro-optic elements using real-time maskless lithography technique based on DMD,” Opt. Laser Technol. 56, 367–371 (2014).
[Crossref]

Zheng, H.

Zhong, K.

K. Zhong, Y. Gao, F. Li, N. Luo, and W. Zhang, “Fabrication of continuous relief micro-optic elements using real-time maskless lithography technique based on DMD,” Opt. Laser Technol. 56, 367–371 (2014).
[Crossref]

Zhu, G.

Zoberbier, R.

Adv. Mater. Res. (1)

X.W. Guo and Q.M. Dong, “Rapid fabrication of micro optical elements using DMD-based maskless lithography technique,” Adv. Mater. Res.,  146, 143–146 (2011).

Appl. Phys. Lett. (1)

M. Christophersen and B. F. Philips, “Gray-tone lithography using an optical diffuser and a contact aligner,” Appl. Phys. Lett. 92(19), 194102 (2008).
[Crossref]

IEEE Spectr. (1)

J. M. Younse, “Mirrors on a chip,” IEEE Spectr. 30(11), 27–31 (1993).
[Crossref]

J. Micro-Nanolitho., MEM (2)

K. F. Chan, Z. Q. Feng, R. Yang, A. Ishikawa, and W. H. Mei, “High-resolution maskless lithography”, J. Micro-Nanolitho., MEM 2(4), 331–339 (2003).

Z. Xiong, H. Liu, X. Q. Tan, Z. W. Lu, C. X. Li, L. W. Song, and Z. Wang, “Diffraction analysis of digital micromirror device in maskless photolithography system”, J. Micro-Nanolitho., MEM 13(4), 353–365 (2014).

J. Vac. Sci. Technol. B (1)

B. Sampsell, “Digital micromirror device and its application to projection displays,” J. Vac. Sci. Technol. B 12(6), 3242–3246 (1994).
[Crossref]

Opt. Express (6)

Opt. Laser Technol. (1)

K. Zhong, Y. Gao, F. Li, N. Luo, and W. Zhang, “Fabrication of continuous relief micro-optic elements using real-time maskless lithography technique based on DMD,” Opt. Laser Technol. 56, 367–371 (2014).
[Crossref]

Proc. SPIE (2)

L. J. Hornbeck, “Deformable mirror spatial light modulators,” Proc. SPIE 1150, 86–104 (1990).

J. Ma, X. Du, and Y. Liu, “Design of maskless lithography system based on DMD,” Proc. SPIE 6836, 683612 (2008).

Sci. Rep. (1)

M. P. Lee, G. J. T. Cooper, T. Hinkley, G. M. Gibson, M. J. Padgett, and L. Cronin, “Development of a 3D printer using scanning projection stereolithography,” Sci. Rep. 5(1), 9875 (2015).
[Crossref] [PubMed]

Small (1)

A. Waldbaur, B. Waterkotte, K. Schmitz, and B. E. Rapp, “Maskless projection lithography for the fast and flexible generation of grayscale protein patterns,” Small 8(10), 1570–1578 (2012).
[Crossref] [PubMed]

SPIE (1)

W. H. Arnold, “Towards 3 nm overlay and critical dimension uniformity: an integrated error budget for double patterning lithography,” SPIE 6924, 692404 (2008).

Other (3)

W. Mei, “Point Array maskless lithography,” US, 6473237B2 (2002).

J. Kim, S. Bae, H. Lee, and S. Jang, “Maskless lithographic apparatus and methods of compensation for rotational alignment error using the same,” US, 20100060874 (2010).

M. A. Klosner, “Maskless lithography system and method with doubled throughput”, US, 6238852 (2001).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1 Schematic of DMD based scanning photolithography system.
Fig. 2
Fig. 2 Schematic of the mode of scanning photolithography.
Fig. 3
Fig. 3 Exposure dose of every pixel.
Fig. 4
Fig. 4 Cross-section of hm,n(x,y) along y axis.
Fig. 5
Fig. 5 (a) Grayscale image of non-uniform illumination, (b) Distribution of Hn.
Fig. 6
Fig. 6 Simulation under the uniformity with 100%.
Fig. 7
Fig. 7 Simulation under the uniformity with 78.62%.
Fig. 8
Fig. 8 Patterned lines in actual exposure experiments. Scale bar, 20μm.
Fig. 9
Fig. 9 Distribution of H*n before correction.
Fig. 10
Fig. 10 Flow chart for obtaining digital mask.
Fig. 11
Fig. 11 Distribution of H**n after correction by digital mask.
Fig. 12
Fig. 12 Patterned lines after improvement by 10 × 10 digital mask. Scale bar, 20 μm.
Fig. 13
Fig. 13 Relationship between uniformity and model of division.

Tables (1)

Tables Icon

Table 1 Patterned line width (μm)

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

L=V×f,
H n = m=j k h m,n ,
I m,n (x,y)= P m,n e [ ( x a ) 2 + ( y b ) 2 ] ,
h m ,n (x,y)= 0 L I m,n (x,y+t) dt,
H n (x,y)= m=j k P m,n 0 L e [ ( x a ) 2 + ( y+t b ) 2 ] dt .
Uniformity= Minimum Maximum %,
Step(p,q): except for e p,q ,