Abstract

Electro-magnetic (EM) mixers are fundamental building blocks in communication systems. They are used in frequency/wavelength filters, interferometric modulators, amplitude-phase receivers, to name a few. Traditional EM mixers have two or more input ports and work only for co-polarized signal and local-oscillator (LO) incident on its inputs. Here we report on novel designs, in silicon, of inter-polarization EM mixers operating at 1550 nm wavelength. The 180-degree optical mixer comprising a single input port is demonstrated to coherently mix orthogonally polarized signal and LO. Using the proposed 180-degree mixer, we report on a novel design for a 90-degree optical mixer on silicon with small footprint, broadband response, low loss and good fabrication tolerance. It exploits birefringence of a waveguide to achieve broadband and fabrication-tolerant 90° phase difference between the signal/LO relative phase in the in-phase and quadrature components. A monolithic silicon photonics coherent receiver is demonstrated using the reported 90-degree mixer, and its operation at 22 Gbaud and 44 Gbaud is shown. These mixers pave the way for novel coherent receiver architectures in long-haul, metro, passive optical networks and data-center interconnect applications.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Monolithic polarization diversity coherent receiver based on 120-degree optical hybrids on silicon

Po Dong, Chongjin Xie, and Lawrence L. Buhl
Opt. Express 22(2) 2119-2125 (2014)

Compact and low loss 90° optical hybrid on a silicon-on-insulator platform

Hang Guan, Yangjin Ma, Ruizhi Shi, Xiaoliang Zhu, Rick Younce, Yaojia Chen, Jose Roman, Noam Ophir, Yang Liu, Ran Ding, Thomas Baehr-Jones, Keren Bergman, and Michael Hochberg
Opt. Express 25(23) 28957-28968 (2017)

Symmetric signal and local oscillator polarization diverse coherent optical receiver

Neda Nabavi and Trevor J. Hall
Opt. Express 24(3) 2391-2405 (2016)

References

  • View by:
  • |
  • |
  • |

  1. L. Soldano and E. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Light. Technol. 13(4), 615–627 (1995).
    [Crossref]
  2. A. Ihaya, H. Furuta, and H. Noda, “Thin-film optical directional coupler,” Proc. IEEE 60(4), 470–471 (1972).
    [Crossref]
  3. H. Yajima, “Coupled mode analysis of dielectric planar branching waveguides,” IEEE J. Quantum Electron. 14(10), 749–755 (1978).
    [Crossref]
  4. Y. Silberberg, P. Perlmutter, and J. E. Baran, “Digital optical switch,” Appl. Phys. Lett. 51(16), 1230–1232 (1987).
    [Crossref]
  5. H. Guan, Y. Ma, R. Shi, A. Novack, J. Tao, Q. Fang, A. E.-J. Lim, G.-Q. Lo, T. Baehr-Jones, and M. Hochberg, “Ultracompact SOI polarization rotator for polarization-diversified circuits,” Opt. Lett. 39(16), 4703–4706 (2014).
    [Crossref] [PubMed]
  6. A. Sakai, T. Fukazawa, and T. Baba, “Low loss ultra-small branches in a silicon photonic wire waveguide,” IEICE Trans. Electron. 85(4), 1033–1038 (2002).
  7. P. Dong, X. Liu, C. Sethumadhavan, L. L. Buhl, R. Aroca, Y. Baeyens, and Y.-K. Chen, “224-Gb/s PDM-16-QAM Modulator and Receiver based on Silicon Photonic Integrated Circuits,” in Opt. Fiber Commun. Conf. (2013), paper PDP5C.6.
  8. C. M. Lalau-Keraly, S. Bhargava, O. D. Miller, and E. Yablonovitch, “Adjoint shape optimization applied to electromagnetic design,” Opt. Express 21(18), 21,693–21,701 (2013).
    [Crossref]
  9. P. Dong, C. Xie, and L. L. Buhl, “Monolithic coherent receiver based on 120-degree optical hybrids on silicon,” Opt. Express 22(2), 2119–2125 (2014).
    [Crossref] [PubMed]
  10. L. Zimmermann, K. Voigt, G. Winzer, K. Petermann, and C. M. Weinert, “C-Band Optical 90-Hybrids Based on Silicon-on-Insulator 4x4 waveguide couplers,” IEEE Photonics Technol. Lett. 21(3), 143–145 (2009).
    [Crossref]
  11. S.-H. Jeong and K. Morito, “Compact optical 90 degrees hybrid employing a tapered 2×4 MMI coupler serially connected by a 2×2 MMI coupler,” Opt. Express 18(5), 4275–4288 (2010).
    [Crossref] [PubMed]
  12. H. Yagi, N. Inoue, R. Masuyama, T. Kikuchi, T. Katsuyama, Y. Tateiwa, K. Uesaka, Y. Yoneda, M. Takechi, and H. Shoji, “InP-Based p-i-n-Photodiode Array Integrated With 90-Hybrid Using Butt-Joint Regrowth for Compact 100 Gb/s Coherent Receiver,” IEEE J. Sel. Top. Quantium Electron. 20(6), 3900,107 (2014).
  13. R. Kunkel, H. G. Bach, D. Hoffmann, C. M. Weinert, I. M. Fernandez, and R. Halir, “First monolithic InP-based 90-degree hybrid OEIC comprising balanced detectors for 100GE coherent frontends,” in IEEE Int. Conf. Indium Phosphide Relat. Mater. (2009), paper TuB2.2.
  14. K. N. Nguyen, P. J. Skahan, J. M. Garcia, E. Lively, H. N. Poulsen, D. M. Baney, and D. J. Blumenthal, “Monolithically integrated dual-quadrature receiver on InP with 30 nm tunable local oscillator,” Opt. Express 19(26), B716–B721 (2011).
    [Crossref]
  15. F. Gambini, G. Meloni, S. Faralli, G. Contestabile, L. Potì, and J. Klamkin, “Ultra-Compact 56-Gb / s QPSK and 80-Gb / s 16-QAM Silicon Coherent Receiver Free of Waveguide Crossings,” in Conf. Gr. IV Photonics (2014), paper ThP2.
  16. S. Faralli, G. Meloni, F. Gambini, J. Klamkin, L. Potì, and G. Contestabile, “A Compact Silicon Coherent Receiver Without Waveguide Crossing,” IEEE Photonics J. 7(4), 7802,806 (2015).
    [Crossref]
  17. Y. Sakamaki, H. Yamazaki, T. Mizuno, T. Goh, Y. Nasu, T. Hashimoto, S. Kamei, K. Hattori, and H. Takahashi, “One-chip Integrated Dual Polarization Optical Hybrid using Silica-based Planar Lightwave Circuit Technology,” in Eur. Conf. Opt. Commun. (2009), paper 2.2.4.
  18. H. Guan, M. Yangjin, R. Shi, X. Zhu, R. Younce, Y. Chen, J. Roman, N. Ophir, Y. Liu, R. Ding, T. Baehr-Jones, K. Bergman, and M. Hochberg, “Compact and low loss 90-degree optical hybrid on a silicon-on-insulator platform,” Opt. Epxress 25(23), 28,957–28,968 (2017).
    [Crossref]
  19. P. Runge, S. Schubert, A. Seeger, K. Janiak, J. Stephan, D. Trommer, P. Domburg, and L. Nielsen, “Monolithic InP receiver chip with a 90-degree hybrid and 56 GHz balanced photodiodes,” Opt. Express 20(26), B250–B255 (2012).
    [Crossref] [PubMed]
  20. K. Voigt, L. Zimmermann, G. Winzer, H. Tian, B. Tillack, and K. Petermann, “C-Band Optical 90 Hybrids in Silicon Nanowaveguide Technology,” IEEE Photo 23(23), 1769–1771 (2011).
    [Crossref]

2017 (1)

H. Guan, M. Yangjin, R. Shi, X. Zhu, R. Younce, Y. Chen, J. Roman, N. Ophir, Y. Liu, R. Ding, T. Baehr-Jones, K. Bergman, and M. Hochberg, “Compact and low loss 90-degree optical hybrid on a silicon-on-insulator platform,” Opt. Epxress 25(23), 28,957–28,968 (2017).
[Crossref]

2015 (1)

S. Faralli, G. Meloni, F. Gambini, J. Klamkin, L. Potì, and G. Contestabile, “A Compact Silicon Coherent Receiver Without Waveguide Crossing,” IEEE Photonics J. 7(4), 7802,806 (2015).
[Crossref]

2014 (3)

H. Yagi, N. Inoue, R. Masuyama, T. Kikuchi, T. Katsuyama, Y. Tateiwa, K. Uesaka, Y. Yoneda, M. Takechi, and H. Shoji, “InP-Based p-i-n-Photodiode Array Integrated With 90-Hybrid Using Butt-Joint Regrowth for Compact 100 Gb/s Coherent Receiver,” IEEE J. Sel. Top. Quantium Electron. 20(6), 3900,107 (2014).

H. Guan, Y. Ma, R. Shi, A. Novack, J. Tao, Q. Fang, A. E.-J. Lim, G.-Q. Lo, T. Baehr-Jones, and M. Hochberg, “Ultracompact SOI polarization rotator for polarization-diversified circuits,” Opt. Lett. 39(16), 4703–4706 (2014).
[Crossref] [PubMed]

P. Dong, C. Xie, and L. L. Buhl, “Monolithic coherent receiver based on 120-degree optical hybrids on silicon,” Opt. Express 22(2), 2119–2125 (2014).
[Crossref] [PubMed]

2013 (1)

C. M. Lalau-Keraly, S. Bhargava, O. D. Miller, and E. Yablonovitch, “Adjoint shape optimization applied to electromagnetic design,” Opt. Express 21(18), 21,693–21,701 (2013).
[Crossref]

2012 (1)

2011 (2)

K. Voigt, L. Zimmermann, G. Winzer, H. Tian, B. Tillack, and K. Petermann, “C-Band Optical 90 Hybrids in Silicon Nanowaveguide Technology,” IEEE Photo 23(23), 1769–1771 (2011).
[Crossref]

K. N. Nguyen, P. J. Skahan, J. M. Garcia, E. Lively, H. N. Poulsen, D. M. Baney, and D. J. Blumenthal, “Monolithically integrated dual-quadrature receiver on InP with 30 nm tunable local oscillator,” Opt. Express 19(26), B716–B721 (2011).
[Crossref]

2010 (1)

2009 (1)

L. Zimmermann, K. Voigt, G. Winzer, K. Petermann, and C. M. Weinert, “C-Band Optical 90-Hybrids Based on Silicon-on-Insulator 4x4 waveguide couplers,” IEEE Photonics Technol. Lett. 21(3), 143–145 (2009).
[Crossref]

2002 (1)

A. Sakai, T. Fukazawa, and T. Baba, “Low loss ultra-small branches in a silicon photonic wire waveguide,” IEICE Trans. Electron. 85(4), 1033–1038 (2002).

1995 (1)

L. Soldano and E. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Light. Technol. 13(4), 615–627 (1995).
[Crossref]

1987 (1)

Y. Silberberg, P. Perlmutter, and J. E. Baran, “Digital optical switch,” Appl. Phys. Lett. 51(16), 1230–1232 (1987).
[Crossref]

1978 (1)

H. Yajima, “Coupled mode analysis of dielectric planar branching waveguides,” IEEE J. Quantum Electron. 14(10), 749–755 (1978).
[Crossref]

1972 (1)

A. Ihaya, H. Furuta, and H. Noda, “Thin-film optical directional coupler,” Proc. IEEE 60(4), 470–471 (1972).
[Crossref]

Aroca, R.

P. Dong, X. Liu, C. Sethumadhavan, L. L. Buhl, R. Aroca, Y. Baeyens, and Y.-K. Chen, “224-Gb/s PDM-16-QAM Modulator and Receiver based on Silicon Photonic Integrated Circuits,” in Opt. Fiber Commun. Conf. (2013), paper PDP5C.6.

Baba, T.

A. Sakai, T. Fukazawa, and T. Baba, “Low loss ultra-small branches in a silicon photonic wire waveguide,” IEICE Trans. Electron. 85(4), 1033–1038 (2002).

Bach, H. G.

R. Kunkel, H. G. Bach, D. Hoffmann, C. M. Weinert, I. M. Fernandez, and R. Halir, “First monolithic InP-based 90-degree hybrid OEIC comprising balanced detectors for 100GE coherent frontends,” in IEEE Int. Conf. Indium Phosphide Relat. Mater. (2009), paper TuB2.2.

Baehr-Jones, T.

H. Guan, M. Yangjin, R. Shi, X. Zhu, R. Younce, Y. Chen, J. Roman, N. Ophir, Y. Liu, R. Ding, T. Baehr-Jones, K. Bergman, and M. Hochberg, “Compact and low loss 90-degree optical hybrid on a silicon-on-insulator platform,” Opt. Epxress 25(23), 28,957–28,968 (2017).
[Crossref]

H. Guan, Y. Ma, R. Shi, A. Novack, J. Tao, Q. Fang, A. E.-J. Lim, G.-Q. Lo, T. Baehr-Jones, and M. Hochberg, “Ultracompact SOI polarization rotator for polarization-diversified circuits,” Opt. Lett. 39(16), 4703–4706 (2014).
[Crossref] [PubMed]

Baeyens, Y.

P. Dong, X. Liu, C. Sethumadhavan, L. L. Buhl, R. Aroca, Y. Baeyens, and Y.-K. Chen, “224-Gb/s PDM-16-QAM Modulator and Receiver based on Silicon Photonic Integrated Circuits,” in Opt. Fiber Commun. Conf. (2013), paper PDP5C.6.

Baney, D. M.

Baran, J. E.

Y. Silberberg, P. Perlmutter, and J. E. Baran, “Digital optical switch,” Appl. Phys. Lett. 51(16), 1230–1232 (1987).
[Crossref]

Bergman, K.

H. Guan, M. Yangjin, R. Shi, X. Zhu, R. Younce, Y. Chen, J. Roman, N. Ophir, Y. Liu, R. Ding, T. Baehr-Jones, K. Bergman, and M. Hochberg, “Compact and low loss 90-degree optical hybrid on a silicon-on-insulator platform,” Opt. Epxress 25(23), 28,957–28,968 (2017).
[Crossref]

Bhargava, S.

C. M. Lalau-Keraly, S. Bhargava, O. D. Miller, and E. Yablonovitch, “Adjoint shape optimization applied to electromagnetic design,” Opt. Express 21(18), 21,693–21,701 (2013).
[Crossref]

Blumenthal, D. J.

Buhl, L. L.

P. Dong, C. Xie, and L. L. Buhl, “Monolithic coherent receiver based on 120-degree optical hybrids on silicon,” Opt. Express 22(2), 2119–2125 (2014).
[Crossref] [PubMed]

P. Dong, X. Liu, C. Sethumadhavan, L. L. Buhl, R. Aroca, Y. Baeyens, and Y.-K. Chen, “224-Gb/s PDM-16-QAM Modulator and Receiver based on Silicon Photonic Integrated Circuits,” in Opt. Fiber Commun. Conf. (2013), paper PDP5C.6.

Chen, Y.

H. Guan, M. Yangjin, R. Shi, X. Zhu, R. Younce, Y. Chen, J. Roman, N. Ophir, Y. Liu, R. Ding, T. Baehr-Jones, K. Bergman, and M. Hochberg, “Compact and low loss 90-degree optical hybrid on a silicon-on-insulator platform,” Opt. Epxress 25(23), 28,957–28,968 (2017).
[Crossref]

Chen, Y.-K.

P. Dong, X. Liu, C. Sethumadhavan, L. L. Buhl, R. Aroca, Y. Baeyens, and Y.-K. Chen, “224-Gb/s PDM-16-QAM Modulator and Receiver based on Silicon Photonic Integrated Circuits,” in Opt. Fiber Commun. Conf. (2013), paper PDP5C.6.

Contestabile, G.

S. Faralli, G. Meloni, F. Gambini, J. Klamkin, L. Potì, and G. Contestabile, “A Compact Silicon Coherent Receiver Without Waveguide Crossing,” IEEE Photonics J. 7(4), 7802,806 (2015).
[Crossref]

F. Gambini, G. Meloni, S. Faralli, G. Contestabile, L. Potì, and J. Klamkin, “Ultra-Compact 56-Gb / s QPSK and 80-Gb / s 16-QAM Silicon Coherent Receiver Free of Waveguide Crossings,” in Conf. Gr. IV Photonics (2014), paper ThP2.

Ding, R.

H. Guan, M. Yangjin, R. Shi, X. Zhu, R. Younce, Y. Chen, J. Roman, N. Ophir, Y. Liu, R. Ding, T. Baehr-Jones, K. Bergman, and M. Hochberg, “Compact and low loss 90-degree optical hybrid on a silicon-on-insulator platform,” Opt. Epxress 25(23), 28,957–28,968 (2017).
[Crossref]

Domburg, P.

Dong, P.

P. Dong, C. Xie, and L. L. Buhl, “Monolithic coherent receiver based on 120-degree optical hybrids on silicon,” Opt. Express 22(2), 2119–2125 (2014).
[Crossref] [PubMed]

P. Dong, X. Liu, C. Sethumadhavan, L. L. Buhl, R. Aroca, Y. Baeyens, and Y.-K. Chen, “224-Gb/s PDM-16-QAM Modulator and Receiver based on Silicon Photonic Integrated Circuits,” in Opt. Fiber Commun. Conf. (2013), paper PDP5C.6.

Fang, Q.

Faralli, S.

S. Faralli, G. Meloni, F. Gambini, J. Klamkin, L. Potì, and G. Contestabile, “A Compact Silicon Coherent Receiver Without Waveguide Crossing,” IEEE Photonics J. 7(4), 7802,806 (2015).
[Crossref]

F. Gambini, G. Meloni, S. Faralli, G. Contestabile, L. Potì, and J. Klamkin, “Ultra-Compact 56-Gb / s QPSK and 80-Gb / s 16-QAM Silicon Coherent Receiver Free of Waveguide Crossings,” in Conf. Gr. IV Photonics (2014), paper ThP2.

Fernandez, I. M.

R. Kunkel, H. G. Bach, D. Hoffmann, C. M. Weinert, I. M. Fernandez, and R. Halir, “First monolithic InP-based 90-degree hybrid OEIC comprising balanced detectors for 100GE coherent frontends,” in IEEE Int. Conf. Indium Phosphide Relat. Mater. (2009), paper TuB2.2.

Fukazawa, T.

A. Sakai, T. Fukazawa, and T. Baba, “Low loss ultra-small branches in a silicon photonic wire waveguide,” IEICE Trans. Electron. 85(4), 1033–1038 (2002).

Furuta, H.

A. Ihaya, H. Furuta, and H. Noda, “Thin-film optical directional coupler,” Proc. IEEE 60(4), 470–471 (1972).
[Crossref]

Gambini, F.

S. Faralli, G. Meloni, F. Gambini, J. Klamkin, L. Potì, and G. Contestabile, “A Compact Silicon Coherent Receiver Without Waveguide Crossing,” IEEE Photonics J. 7(4), 7802,806 (2015).
[Crossref]

F. Gambini, G. Meloni, S. Faralli, G. Contestabile, L. Potì, and J. Klamkin, “Ultra-Compact 56-Gb / s QPSK and 80-Gb / s 16-QAM Silicon Coherent Receiver Free of Waveguide Crossings,” in Conf. Gr. IV Photonics (2014), paper ThP2.

Garcia, J. M.

Goh, T.

Y. Sakamaki, H. Yamazaki, T. Mizuno, T. Goh, Y. Nasu, T. Hashimoto, S. Kamei, K. Hattori, and H. Takahashi, “One-chip Integrated Dual Polarization Optical Hybrid using Silica-based Planar Lightwave Circuit Technology,” in Eur. Conf. Opt. Commun. (2009), paper 2.2.4.

Guan, H.

H. Guan, M. Yangjin, R. Shi, X. Zhu, R. Younce, Y. Chen, J. Roman, N. Ophir, Y. Liu, R. Ding, T. Baehr-Jones, K. Bergman, and M. Hochberg, “Compact and low loss 90-degree optical hybrid on a silicon-on-insulator platform,” Opt. Epxress 25(23), 28,957–28,968 (2017).
[Crossref]

H. Guan, Y. Ma, R. Shi, A. Novack, J. Tao, Q. Fang, A. E.-J. Lim, G.-Q. Lo, T. Baehr-Jones, and M. Hochberg, “Ultracompact SOI polarization rotator for polarization-diversified circuits,” Opt. Lett. 39(16), 4703–4706 (2014).
[Crossref] [PubMed]

Halir, R.

R. Kunkel, H. G. Bach, D. Hoffmann, C. M. Weinert, I. M. Fernandez, and R. Halir, “First monolithic InP-based 90-degree hybrid OEIC comprising balanced detectors for 100GE coherent frontends,” in IEEE Int. Conf. Indium Phosphide Relat. Mater. (2009), paper TuB2.2.

Hashimoto, T.

Y. Sakamaki, H. Yamazaki, T. Mizuno, T. Goh, Y. Nasu, T. Hashimoto, S. Kamei, K. Hattori, and H. Takahashi, “One-chip Integrated Dual Polarization Optical Hybrid using Silica-based Planar Lightwave Circuit Technology,” in Eur. Conf. Opt. Commun. (2009), paper 2.2.4.

Hattori, K.

Y. Sakamaki, H. Yamazaki, T. Mizuno, T. Goh, Y. Nasu, T. Hashimoto, S. Kamei, K. Hattori, and H. Takahashi, “One-chip Integrated Dual Polarization Optical Hybrid using Silica-based Planar Lightwave Circuit Technology,” in Eur. Conf. Opt. Commun. (2009), paper 2.2.4.

Hochberg, M.

H. Guan, M. Yangjin, R. Shi, X. Zhu, R. Younce, Y. Chen, J. Roman, N. Ophir, Y. Liu, R. Ding, T. Baehr-Jones, K. Bergman, and M. Hochberg, “Compact and low loss 90-degree optical hybrid on a silicon-on-insulator platform,” Opt. Epxress 25(23), 28,957–28,968 (2017).
[Crossref]

H. Guan, Y. Ma, R. Shi, A. Novack, J. Tao, Q. Fang, A. E.-J. Lim, G.-Q. Lo, T. Baehr-Jones, and M. Hochberg, “Ultracompact SOI polarization rotator for polarization-diversified circuits,” Opt. Lett. 39(16), 4703–4706 (2014).
[Crossref] [PubMed]

Hoffmann, D.

R. Kunkel, H. G. Bach, D. Hoffmann, C. M. Weinert, I. M. Fernandez, and R. Halir, “First monolithic InP-based 90-degree hybrid OEIC comprising balanced detectors for 100GE coherent frontends,” in IEEE Int. Conf. Indium Phosphide Relat. Mater. (2009), paper TuB2.2.

Ihaya, A.

A. Ihaya, H. Furuta, and H. Noda, “Thin-film optical directional coupler,” Proc. IEEE 60(4), 470–471 (1972).
[Crossref]

Inoue, N.

H. Yagi, N. Inoue, R. Masuyama, T. Kikuchi, T. Katsuyama, Y. Tateiwa, K. Uesaka, Y. Yoneda, M. Takechi, and H. Shoji, “InP-Based p-i-n-Photodiode Array Integrated With 90-Hybrid Using Butt-Joint Regrowth for Compact 100 Gb/s Coherent Receiver,” IEEE J. Sel. Top. Quantium Electron. 20(6), 3900,107 (2014).

Janiak, K.

Jeong, S.-H.

Kamei, S.

Y. Sakamaki, H. Yamazaki, T. Mizuno, T. Goh, Y. Nasu, T. Hashimoto, S. Kamei, K. Hattori, and H. Takahashi, “One-chip Integrated Dual Polarization Optical Hybrid using Silica-based Planar Lightwave Circuit Technology,” in Eur. Conf. Opt. Commun. (2009), paper 2.2.4.

Katsuyama, T.

H. Yagi, N. Inoue, R. Masuyama, T. Kikuchi, T. Katsuyama, Y. Tateiwa, K. Uesaka, Y. Yoneda, M. Takechi, and H. Shoji, “InP-Based p-i-n-Photodiode Array Integrated With 90-Hybrid Using Butt-Joint Regrowth for Compact 100 Gb/s Coherent Receiver,” IEEE J. Sel. Top. Quantium Electron. 20(6), 3900,107 (2014).

Kikuchi, T.

H. Yagi, N. Inoue, R. Masuyama, T. Kikuchi, T. Katsuyama, Y. Tateiwa, K. Uesaka, Y. Yoneda, M. Takechi, and H. Shoji, “InP-Based p-i-n-Photodiode Array Integrated With 90-Hybrid Using Butt-Joint Regrowth for Compact 100 Gb/s Coherent Receiver,” IEEE J. Sel. Top. Quantium Electron. 20(6), 3900,107 (2014).

Klamkin, J.

S. Faralli, G. Meloni, F. Gambini, J. Klamkin, L. Potì, and G. Contestabile, “A Compact Silicon Coherent Receiver Without Waveguide Crossing,” IEEE Photonics J. 7(4), 7802,806 (2015).
[Crossref]

F. Gambini, G. Meloni, S. Faralli, G. Contestabile, L. Potì, and J. Klamkin, “Ultra-Compact 56-Gb / s QPSK and 80-Gb / s 16-QAM Silicon Coherent Receiver Free of Waveguide Crossings,” in Conf. Gr. IV Photonics (2014), paper ThP2.

Kunkel, R.

R. Kunkel, H. G. Bach, D. Hoffmann, C. M. Weinert, I. M. Fernandez, and R. Halir, “First monolithic InP-based 90-degree hybrid OEIC comprising balanced detectors for 100GE coherent frontends,” in IEEE Int. Conf. Indium Phosphide Relat. Mater. (2009), paper TuB2.2.

Lalau-Keraly, C. M.

C. M. Lalau-Keraly, S. Bhargava, O. D. Miller, and E. Yablonovitch, “Adjoint shape optimization applied to electromagnetic design,” Opt. Express 21(18), 21,693–21,701 (2013).
[Crossref]

Lim, A. E.-J.

Liu, X.

P. Dong, X. Liu, C. Sethumadhavan, L. L. Buhl, R. Aroca, Y. Baeyens, and Y.-K. Chen, “224-Gb/s PDM-16-QAM Modulator and Receiver based on Silicon Photonic Integrated Circuits,” in Opt. Fiber Commun. Conf. (2013), paper PDP5C.6.

Liu, Y.

H. Guan, M. Yangjin, R. Shi, X. Zhu, R. Younce, Y. Chen, J. Roman, N. Ophir, Y. Liu, R. Ding, T. Baehr-Jones, K. Bergman, and M. Hochberg, “Compact and low loss 90-degree optical hybrid on a silicon-on-insulator platform,” Opt. Epxress 25(23), 28,957–28,968 (2017).
[Crossref]

Lively, E.

Lo, G.-Q.

Ma, Y.

Masuyama, R.

H. Yagi, N. Inoue, R. Masuyama, T. Kikuchi, T. Katsuyama, Y. Tateiwa, K. Uesaka, Y. Yoneda, M. Takechi, and H. Shoji, “InP-Based p-i-n-Photodiode Array Integrated With 90-Hybrid Using Butt-Joint Regrowth for Compact 100 Gb/s Coherent Receiver,” IEEE J. Sel. Top. Quantium Electron. 20(6), 3900,107 (2014).

Meloni, G.

S. Faralli, G. Meloni, F. Gambini, J. Klamkin, L. Potì, and G. Contestabile, “A Compact Silicon Coherent Receiver Without Waveguide Crossing,” IEEE Photonics J. 7(4), 7802,806 (2015).
[Crossref]

F. Gambini, G. Meloni, S. Faralli, G. Contestabile, L. Potì, and J. Klamkin, “Ultra-Compact 56-Gb / s QPSK and 80-Gb / s 16-QAM Silicon Coherent Receiver Free of Waveguide Crossings,” in Conf. Gr. IV Photonics (2014), paper ThP2.

Miller, O. D.

C. M. Lalau-Keraly, S. Bhargava, O. D. Miller, and E. Yablonovitch, “Adjoint shape optimization applied to electromagnetic design,” Opt. Express 21(18), 21,693–21,701 (2013).
[Crossref]

Mizuno, T.

Y. Sakamaki, H. Yamazaki, T. Mizuno, T. Goh, Y. Nasu, T. Hashimoto, S. Kamei, K. Hattori, and H. Takahashi, “One-chip Integrated Dual Polarization Optical Hybrid using Silica-based Planar Lightwave Circuit Technology,” in Eur. Conf. Opt. Commun. (2009), paper 2.2.4.

Morito, K.

Nasu, Y.

Y. Sakamaki, H. Yamazaki, T. Mizuno, T. Goh, Y. Nasu, T. Hashimoto, S. Kamei, K. Hattori, and H. Takahashi, “One-chip Integrated Dual Polarization Optical Hybrid using Silica-based Planar Lightwave Circuit Technology,” in Eur. Conf. Opt. Commun. (2009), paper 2.2.4.

Nguyen, K. N.

Nielsen, L.

Noda, H.

A. Ihaya, H. Furuta, and H. Noda, “Thin-film optical directional coupler,” Proc. IEEE 60(4), 470–471 (1972).
[Crossref]

Novack, A.

Ophir, N.

H. Guan, M. Yangjin, R. Shi, X. Zhu, R. Younce, Y. Chen, J. Roman, N. Ophir, Y. Liu, R. Ding, T. Baehr-Jones, K. Bergman, and M. Hochberg, “Compact and low loss 90-degree optical hybrid on a silicon-on-insulator platform,” Opt. Epxress 25(23), 28,957–28,968 (2017).
[Crossref]

Pennings, E.

L. Soldano and E. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Light. Technol. 13(4), 615–627 (1995).
[Crossref]

Perlmutter, P.

Y. Silberberg, P. Perlmutter, and J. E. Baran, “Digital optical switch,” Appl. Phys. Lett. 51(16), 1230–1232 (1987).
[Crossref]

Petermann, K.

K. Voigt, L. Zimmermann, G. Winzer, H. Tian, B. Tillack, and K. Petermann, “C-Band Optical 90 Hybrids in Silicon Nanowaveguide Technology,” IEEE Photo 23(23), 1769–1771 (2011).
[Crossref]

L. Zimmermann, K. Voigt, G. Winzer, K. Petermann, and C. M. Weinert, “C-Band Optical 90-Hybrids Based on Silicon-on-Insulator 4x4 waveguide couplers,” IEEE Photonics Technol. Lett. 21(3), 143–145 (2009).
[Crossref]

Potì, L.

S. Faralli, G. Meloni, F. Gambini, J. Klamkin, L. Potì, and G. Contestabile, “A Compact Silicon Coherent Receiver Without Waveguide Crossing,” IEEE Photonics J. 7(4), 7802,806 (2015).
[Crossref]

F. Gambini, G. Meloni, S. Faralli, G. Contestabile, L. Potì, and J. Klamkin, “Ultra-Compact 56-Gb / s QPSK and 80-Gb / s 16-QAM Silicon Coherent Receiver Free of Waveguide Crossings,” in Conf. Gr. IV Photonics (2014), paper ThP2.

Poulsen, H. N.

Roman, J.

H. Guan, M. Yangjin, R. Shi, X. Zhu, R. Younce, Y. Chen, J. Roman, N. Ophir, Y. Liu, R. Ding, T. Baehr-Jones, K. Bergman, and M. Hochberg, “Compact and low loss 90-degree optical hybrid on a silicon-on-insulator platform,” Opt. Epxress 25(23), 28,957–28,968 (2017).
[Crossref]

Runge, P.

Sakai, A.

A. Sakai, T. Fukazawa, and T. Baba, “Low loss ultra-small branches in a silicon photonic wire waveguide,” IEICE Trans. Electron. 85(4), 1033–1038 (2002).

Sakamaki, Y.

Y. Sakamaki, H. Yamazaki, T. Mizuno, T. Goh, Y. Nasu, T. Hashimoto, S. Kamei, K. Hattori, and H. Takahashi, “One-chip Integrated Dual Polarization Optical Hybrid using Silica-based Planar Lightwave Circuit Technology,” in Eur. Conf. Opt. Commun. (2009), paper 2.2.4.

Schubert, S.

Seeger, A.

Sethumadhavan, C.

P. Dong, X. Liu, C. Sethumadhavan, L. L. Buhl, R. Aroca, Y. Baeyens, and Y.-K. Chen, “224-Gb/s PDM-16-QAM Modulator and Receiver based on Silicon Photonic Integrated Circuits,” in Opt. Fiber Commun. Conf. (2013), paper PDP5C.6.

Shi, R.

H. Guan, M. Yangjin, R. Shi, X. Zhu, R. Younce, Y. Chen, J. Roman, N. Ophir, Y. Liu, R. Ding, T. Baehr-Jones, K. Bergman, and M. Hochberg, “Compact and low loss 90-degree optical hybrid on a silicon-on-insulator platform,” Opt. Epxress 25(23), 28,957–28,968 (2017).
[Crossref]

H. Guan, Y. Ma, R. Shi, A. Novack, J. Tao, Q. Fang, A. E.-J. Lim, G.-Q. Lo, T. Baehr-Jones, and M. Hochberg, “Ultracompact SOI polarization rotator for polarization-diversified circuits,” Opt. Lett. 39(16), 4703–4706 (2014).
[Crossref] [PubMed]

Shoji, H.

H. Yagi, N. Inoue, R. Masuyama, T. Kikuchi, T. Katsuyama, Y. Tateiwa, K. Uesaka, Y. Yoneda, M. Takechi, and H. Shoji, “InP-Based p-i-n-Photodiode Array Integrated With 90-Hybrid Using Butt-Joint Regrowth for Compact 100 Gb/s Coherent Receiver,” IEEE J. Sel. Top. Quantium Electron. 20(6), 3900,107 (2014).

Silberberg, Y.

Y. Silberberg, P. Perlmutter, and J. E. Baran, “Digital optical switch,” Appl. Phys. Lett. 51(16), 1230–1232 (1987).
[Crossref]

Skahan, P. J.

Soldano, L.

L. Soldano and E. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Light. Technol. 13(4), 615–627 (1995).
[Crossref]

Stephan, J.

Takahashi, H.

Y. Sakamaki, H. Yamazaki, T. Mizuno, T. Goh, Y. Nasu, T. Hashimoto, S. Kamei, K. Hattori, and H. Takahashi, “One-chip Integrated Dual Polarization Optical Hybrid using Silica-based Planar Lightwave Circuit Technology,” in Eur. Conf. Opt. Commun. (2009), paper 2.2.4.

Takechi, M.

H. Yagi, N. Inoue, R. Masuyama, T. Kikuchi, T. Katsuyama, Y. Tateiwa, K. Uesaka, Y. Yoneda, M. Takechi, and H. Shoji, “InP-Based p-i-n-Photodiode Array Integrated With 90-Hybrid Using Butt-Joint Regrowth for Compact 100 Gb/s Coherent Receiver,” IEEE J. Sel. Top. Quantium Electron. 20(6), 3900,107 (2014).

Tao, J.

Tateiwa, Y.

H. Yagi, N. Inoue, R. Masuyama, T. Kikuchi, T. Katsuyama, Y. Tateiwa, K. Uesaka, Y. Yoneda, M. Takechi, and H. Shoji, “InP-Based p-i-n-Photodiode Array Integrated With 90-Hybrid Using Butt-Joint Regrowth for Compact 100 Gb/s Coherent Receiver,” IEEE J. Sel. Top. Quantium Electron. 20(6), 3900,107 (2014).

Tian, H.

K. Voigt, L. Zimmermann, G. Winzer, H. Tian, B. Tillack, and K. Petermann, “C-Band Optical 90 Hybrids in Silicon Nanowaveguide Technology,” IEEE Photo 23(23), 1769–1771 (2011).
[Crossref]

Tillack, B.

K. Voigt, L. Zimmermann, G. Winzer, H. Tian, B. Tillack, and K. Petermann, “C-Band Optical 90 Hybrids in Silicon Nanowaveguide Technology,” IEEE Photo 23(23), 1769–1771 (2011).
[Crossref]

Trommer, D.

Uesaka, K.

H. Yagi, N. Inoue, R. Masuyama, T. Kikuchi, T. Katsuyama, Y. Tateiwa, K. Uesaka, Y. Yoneda, M. Takechi, and H. Shoji, “InP-Based p-i-n-Photodiode Array Integrated With 90-Hybrid Using Butt-Joint Regrowth for Compact 100 Gb/s Coherent Receiver,” IEEE J. Sel. Top. Quantium Electron. 20(6), 3900,107 (2014).

Voigt, K.

K. Voigt, L. Zimmermann, G. Winzer, H. Tian, B. Tillack, and K. Petermann, “C-Band Optical 90 Hybrids in Silicon Nanowaveguide Technology,” IEEE Photo 23(23), 1769–1771 (2011).
[Crossref]

L. Zimmermann, K. Voigt, G. Winzer, K. Petermann, and C. M. Weinert, “C-Band Optical 90-Hybrids Based on Silicon-on-Insulator 4x4 waveguide couplers,” IEEE Photonics Technol. Lett. 21(3), 143–145 (2009).
[Crossref]

Weinert, C. M.

L. Zimmermann, K. Voigt, G. Winzer, K. Petermann, and C. M. Weinert, “C-Band Optical 90-Hybrids Based on Silicon-on-Insulator 4x4 waveguide couplers,” IEEE Photonics Technol. Lett. 21(3), 143–145 (2009).
[Crossref]

R. Kunkel, H. G. Bach, D. Hoffmann, C. M. Weinert, I. M. Fernandez, and R. Halir, “First monolithic InP-based 90-degree hybrid OEIC comprising balanced detectors for 100GE coherent frontends,” in IEEE Int. Conf. Indium Phosphide Relat. Mater. (2009), paper TuB2.2.

Winzer, G.

K. Voigt, L. Zimmermann, G. Winzer, H. Tian, B. Tillack, and K. Petermann, “C-Band Optical 90 Hybrids in Silicon Nanowaveguide Technology,” IEEE Photo 23(23), 1769–1771 (2011).
[Crossref]

L. Zimmermann, K. Voigt, G. Winzer, K. Petermann, and C. M. Weinert, “C-Band Optical 90-Hybrids Based on Silicon-on-Insulator 4x4 waveguide couplers,” IEEE Photonics Technol. Lett. 21(3), 143–145 (2009).
[Crossref]

Xie, C.

Yablonovitch, E.

C. M. Lalau-Keraly, S. Bhargava, O. D. Miller, and E. Yablonovitch, “Adjoint shape optimization applied to electromagnetic design,” Opt. Express 21(18), 21,693–21,701 (2013).
[Crossref]

Yagi, H.

H. Yagi, N. Inoue, R. Masuyama, T. Kikuchi, T. Katsuyama, Y. Tateiwa, K. Uesaka, Y. Yoneda, M. Takechi, and H. Shoji, “InP-Based p-i-n-Photodiode Array Integrated With 90-Hybrid Using Butt-Joint Regrowth for Compact 100 Gb/s Coherent Receiver,” IEEE J. Sel. Top. Quantium Electron. 20(6), 3900,107 (2014).

Yajima, H.

H. Yajima, “Coupled mode analysis of dielectric planar branching waveguides,” IEEE J. Quantum Electron. 14(10), 749–755 (1978).
[Crossref]

Yamazaki, H.

Y. Sakamaki, H. Yamazaki, T. Mizuno, T. Goh, Y. Nasu, T. Hashimoto, S. Kamei, K. Hattori, and H. Takahashi, “One-chip Integrated Dual Polarization Optical Hybrid using Silica-based Planar Lightwave Circuit Technology,” in Eur. Conf. Opt. Commun. (2009), paper 2.2.4.

Yangjin, M.

H. Guan, M. Yangjin, R. Shi, X. Zhu, R. Younce, Y. Chen, J. Roman, N. Ophir, Y. Liu, R. Ding, T. Baehr-Jones, K. Bergman, and M. Hochberg, “Compact and low loss 90-degree optical hybrid on a silicon-on-insulator platform,” Opt. Epxress 25(23), 28,957–28,968 (2017).
[Crossref]

Yoneda, Y.

H. Yagi, N. Inoue, R. Masuyama, T. Kikuchi, T. Katsuyama, Y. Tateiwa, K. Uesaka, Y. Yoneda, M. Takechi, and H. Shoji, “InP-Based p-i-n-Photodiode Array Integrated With 90-Hybrid Using Butt-Joint Regrowth for Compact 100 Gb/s Coherent Receiver,” IEEE J. Sel. Top. Quantium Electron. 20(6), 3900,107 (2014).

Younce, R.

H. Guan, M. Yangjin, R. Shi, X. Zhu, R. Younce, Y. Chen, J. Roman, N. Ophir, Y. Liu, R. Ding, T. Baehr-Jones, K. Bergman, and M. Hochberg, “Compact and low loss 90-degree optical hybrid on a silicon-on-insulator platform,” Opt. Epxress 25(23), 28,957–28,968 (2017).
[Crossref]

Zhu, X.

H. Guan, M. Yangjin, R. Shi, X. Zhu, R. Younce, Y. Chen, J. Roman, N. Ophir, Y. Liu, R. Ding, T. Baehr-Jones, K. Bergman, and M. Hochberg, “Compact and low loss 90-degree optical hybrid on a silicon-on-insulator platform,” Opt. Epxress 25(23), 28,957–28,968 (2017).
[Crossref]

Zimmermann, L.

K. Voigt, L. Zimmermann, G. Winzer, H. Tian, B. Tillack, and K. Petermann, “C-Band Optical 90 Hybrids in Silicon Nanowaveguide Technology,” IEEE Photo 23(23), 1769–1771 (2011).
[Crossref]

L. Zimmermann, K. Voigt, G. Winzer, K. Petermann, and C. M. Weinert, “C-Band Optical 90-Hybrids Based on Silicon-on-Insulator 4x4 waveguide couplers,” IEEE Photonics Technol. Lett. 21(3), 143–145 (2009).
[Crossref]

Appl. Phys. Lett. (1)

Y. Silberberg, P. Perlmutter, and J. E. Baran, “Digital optical switch,” Appl. Phys. Lett. 51(16), 1230–1232 (1987).
[Crossref]

IEEE J. Quantum Electron. (1)

H. Yajima, “Coupled mode analysis of dielectric planar branching waveguides,” IEEE J. Quantum Electron. 14(10), 749–755 (1978).
[Crossref]

IEEE J. Sel. Top. Quantium Electron. (1)

H. Yagi, N. Inoue, R. Masuyama, T. Kikuchi, T. Katsuyama, Y. Tateiwa, K. Uesaka, Y. Yoneda, M. Takechi, and H. Shoji, “InP-Based p-i-n-Photodiode Array Integrated With 90-Hybrid Using Butt-Joint Regrowth for Compact 100 Gb/s Coherent Receiver,” IEEE J. Sel. Top. Quantium Electron. 20(6), 3900,107 (2014).

IEEE Photo (1)

K. Voigt, L. Zimmermann, G. Winzer, H. Tian, B. Tillack, and K. Petermann, “C-Band Optical 90 Hybrids in Silicon Nanowaveguide Technology,” IEEE Photo 23(23), 1769–1771 (2011).
[Crossref]

IEEE Photonics J. (1)

S. Faralli, G. Meloni, F. Gambini, J. Klamkin, L. Potì, and G. Contestabile, “A Compact Silicon Coherent Receiver Without Waveguide Crossing,” IEEE Photonics J. 7(4), 7802,806 (2015).
[Crossref]

IEEE Photonics Technol. Lett. (1)

L. Zimmermann, K. Voigt, G. Winzer, K. Petermann, and C. M. Weinert, “C-Band Optical 90-Hybrids Based on Silicon-on-Insulator 4x4 waveguide couplers,” IEEE Photonics Technol. Lett. 21(3), 143–145 (2009).
[Crossref]

IEICE Trans. Electron. (1)

A. Sakai, T. Fukazawa, and T. Baba, “Low loss ultra-small branches in a silicon photonic wire waveguide,” IEICE Trans. Electron. 85(4), 1033–1038 (2002).

J. Light. Technol. (1)

L. Soldano and E. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Light. Technol. 13(4), 615–627 (1995).
[Crossref]

Opt. Epxress (1)

H. Guan, M. Yangjin, R. Shi, X. Zhu, R. Younce, Y. Chen, J. Roman, N. Ophir, Y. Liu, R. Ding, T. Baehr-Jones, K. Bergman, and M. Hochberg, “Compact and low loss 90-degree optical hybrid on a silicon-on-insulator platform,” Opt. Epxress 25(23), 28,957–28,968 (2017).
[Crossref]

Opt. Express (5)

Opt. Lett. (1)

Proc. IEEE (1)

A. Ihaya, H. Furuta, and H. Noda, “Thin-film optical directional coupler,” Proc. IEEE 60(4), 470–471 (1972).
[Crossref]

Other (4)

P. Dong, X. Liu, C. Sethumadhavan, L. L. Buhl, R. Aroca, Y. Baeyens, and Y.-K. Chen, “224-Gb/s PDM-16-QAM Modulator and Receiver based on Silicon Photonic Integrated Circuits,” in Opt. Fiber Commun. Conf. (2013), paper PDP5C.6.

F. Gambini, G. Meloni, S. Faralli, G. Contestabile, L. Potì, and J. Klamkin, “Ultra-Compact 56-Gb / s QPSK and 80-Gb / s 16-QAM Silicon Coherent Receiver Free of Waveguide Crossings,” in Conf. Gr. IV Photonics (2014), paper ThP2.

Y. Sakamaki, H. Yamazaki, T. Mizuno, T. Goh, Y. Nasu, T. Hashimoto, S. Kamei, K. Hattori, and H. Takahashi, “One-chip Integrated Dual Polarization Optical Hybrid using Silica-based Planar Lightwave Circuit Technology,” in Eur. Conf. Opt. Commun. (2009), paper 2.2.4.

R. Kunkel, H. G. Bach, D. Hoffmann, C. M. Weinert, I. M. Fernandez, and R. Halir, “First monolithic InP-based 90-degree hybrid OEIC comprising balanced detectors for 100GE coherent frontends,” in IEEE Int. Conf. Indium Phosphide Relat. Mater. (2009), paper TuB2.2.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Design and working principle of 180- and 90-degree inter-polarization mixers. (a) Top view of the inter-polarization 180-degree mixer. (b) Design of inter-polarization 90-degree mixer using 180-degree IPMs and birefringence of a waveguide. (c) Design of polarization diversity coherent receiver incorporating two 90-degree IPMs, two polarization beam combiner (PBC), one polarization rotator splitter (PRS) and a 3 dB power divider.
Fig. 2
Fig. 2 Optical microscope image of the photonic part of the (a) 180-degree and 90-degree inter-polarization mixers (IPM).
Fig. 3
Fig. 3 Characteristics of the photonic part of the inter-polarization mixers and birefringence of silicon channel waveguide. (a) Transmission spectra at the outputs of the 180-degree IPM with a 1 mm long access waveguide. The inset gives the experimental setup used to measure the performance of the device. The wavelength response of 1D grating coupler (GC) is given as light-gray solid line. Extra 6...7 dB coupling loss is estimated at the lensed fiber (LF)-PIC interface. (b) Phase retardation of the quasi-TE0 relative to the quasi-TM0 in access waveguides with widths of 500 nm and lengths of 1 mm, 1.5 mm and 1.8 mm. (c) Wavelength sensitivity of the TE0-TM0 relative phase in a mixer with Lπ/2=571 nm.
Fig. 4
Fig. 4 Test structures used for characterization of the optical losses in the polarization rotator section — Section I and II — of the180-degree IPM with a length of 84 μm.
Fig. 5
Fig. 5 Single-polarization QPSK signal reception experiments.
Fig. 6
Fig. 6 Effective refractive indices neff of quasi-TE and quasi-TM modes of channel waveguide as a function of the waveguide width for Λ = 1550nm (a) and the operating wavelength for w = 500nm (b).
Fig. 7
Fig. 7 Designs of traditional and proposed 90-degree mixers. (a) Traditional design of a 90-degree optical mixer comprising four 2 × 2 identical couplers, and utilizing only quasi-TE0. (b) Operating bandwidth of a traditional mixer using silicon channel waveguides with a width w of 500 nm and a physical length asymmetry of Lπ/2 = 161 nm. The operating bandwidth is limited within a wavelength range of ∼50 nm. (c) The design of the proposed novel silicon photonic 90-degree mixer comprising a polarization insensitive coupler and two inter-polarization mixers. The birefringence of silicon channel waveguide with a width of 500 nm and the length of Lπ/2 = 571 nm is used to introduce a 90° phase shift between the in-phase and quadrature components of the detection. (d) The wavelength response of the proposed mixer amounts to 150 nm even after taking into account the silicon-photonics foundry worst process-corners.

Metrics