Abstract

A fiber-distributed ultra-wideband (UWB) radar network based on wavelength-reusing transceivers is proposed and demonstrated. In the proposed system, wavelength-division multiplexing technology is applied to connect a central unit (CU) and several spatially separated transceivers. The optically generated UWB pulses in different transceivers are designed to have different polarities or shapes, so the CU can easily identify which transceiver the echo UWB pulse is emitted from. By applying the wavelength reusing, the wavelength of the uplink UWB pulse can also be used by the CU to identify which transceiver it is received by. Therefore, with very simple cooperative signal processing in the CU, the information of the target in the radar detection area can be extracted. In addition, because the fiber lengths in the network are known, clock synchronization in the transceivers is not required, which simplifies further the entire system. In an experiment, 2-D localization with localization accuracy of about one centimeter is achieved using the proposed radar network with two distributed transceivers.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Fiber-distributed Ultra-wideband noise radar with steerable power spectrum and colorless base station

Jianyu Zheng, Hui Wang, Jianbin Fu, Li Wei, Shilong Pan, Lixian Wang, Jianguo Liu, and Ninghua Zhu
Opt. Express 22(5) 4896-4907 (2014)

Ultra-Wideband and 60-GHz Generation and Transmission Over a Wavelength Division Multiplexing-Passive Optical Network

Weilin Liu, Tong Shao, and Jianping Yao
J. Opt. Commun. Netw. 5(9) 1076-1082 (2013)

References

  • View by:
  • |
  • |
  • |

  1. J. D. Taylor, Ultra-Wideband Radar Technology (CRC press, 2000).
  2. I. Immoreev and D. Fedotov, “Ultra wideband radar systems: advantages and disadvantages,” in IEEE Conference on Ultra Wideband Systems and Technologies, (IEEE, 2002), pp. 201–205.
    [Crossref]
  3. M. Hussain, “Ultra-wideband impulse radar - an overview of the principles,” IEEE Aerosp. Electron. Syst. Mag. 13(9), 9–14 (1998).
    [Crossref]
  4. S. Gezici, Z. Tian, G. B. Giannakis, H. Kobayashi, A. F. Molisch, H. V. Poor, and Z. Sahinoglu, “Localization via ultra-wideband radios: a look at positioning aspects for future sensor networks,” IEEE Signal Process. Mag. 22(4), 70–84 (2005).
    [Crossref]
  5. R. Thomä, O. Hirsch, J. Sachs, and R. Zetik, “UWB sensor networks for position location and imaging of objects and environments,” Short-Range Wireless Communications: Emerging Technologies and Applications, 97–112 (2009).
  6. V. Chernyak, “Multi-site ultra-wideband radar systems with information fusion: some principal features,” in Proceeding of the 7th International Conference on Information Fusion, (International Society of Information Fusion, 2004), pp. 463–470.
  7. V. Chernyak, Fundamentals of Multisite Radar Systems: Multistatic Radars and Multistatic Radar Systems (CRC press, 1998).
  8. C. Baker and A. Hume, “Netted radar sensing,” IEEE Aerosp. Electron. Syst. Mag. 18(2), 3–6 (2003).
    [Crossref]
  9. A. M. Haimovich, R. S. Blum, and L. J. Cimini, “MIMO radar with widely separated antennas,” IEEE Signal Process. Mag. 25(1), 116–129 (2008).
    [Crossref]
  10. Y. Xu, S. Wu, J. Shao, J. Chen, and G. Fang, “Life detection and location by MIMO ultra wideband radar,” in the 14th International Conference on Ground Penetrating Radar, (IEEE, 2012), pp. 80–84.
  11. R. Leach, Jr., F. Nekoogar, and P. Haugen, “Ultra-wideband radar sensors and networks,” U.S. Patent 8 502 729 B2, Aug. 6, 2013.
  12. W. Lovelace and J. Townsend, “The effects of timing jitter and tracking on the performance of impulse radio,” IEEE J. Sel. Areas Comm. 20(9), 1646–1651 (2002).
    [Crossref]
  13. T. Derham, K. Woodbridge, H. Griffiths, and C. Baker, “The design and development of an experimental netted radar system,” in Proceedings of the International Radar Conference, (IEEE, 2003), pp. 293–298.
    [Crossref]
  14. J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
    [Crossref]
  15. J. Yao, “Microwave photonics,” J. Lightwave Technol. 27(3), 314–335 (2009).
    [Crossref]
  16. S. Pan and J. Yao, “Photonics-based broadband microwave measurement,” J. Lightwave Technol. 35(16), 3498–3513 (2017).
    [Crossref]
  17. P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
    [Crossref] [PubMed]
  18. S. Pan, D. Zhu, and F. Zhang, “Microwave photonics for modern radar systems,” Trans. Nanjing Univ. Aeronaut. Astronaut. 31(3), 219–240 (2014).
  19. F. Zhang, Q. Guo, Z. Wang, P. Zhou, G. Zhang, J. Sun, and S. Pan, “Photonics-based broadband radar for high-resolution and real-time inverse synthetic aperture imaging,” Opt. Express 25(14), 16274–16281 (2017).
    [Crossref] [PubMed]
  20. R. Li, W. Li, M. Ding, Z. Wen, Y. Li, L. Zhou, S. Yu, T. Xing, B. Gao, Y. Luan, Y. Zhu, P. Guo, Y. Tian, and X. Liang, “Demonstration of a microwave photonic synthetic aperture radar based on photonic-assisted signal generation and stretch processing,” Opt. Express 25(13), 14334–14340 (2017).
    [Crossref] [PubMed]
  21. W. Zou, H. Zhang, X. Long, S. Zhang, Y. Cui, and J. Chen, “All-optical central-frequency-programmable and bandwidth-tailorable radar,” Sci. Rep. 6(1), 19786 (2016).
    [Crossref] [PubMed]
  22. J. Yao, F. Zeng, and Q. Wang, “Photonic generation of ultrawideband signals,” J. Lightwave Technol. 25(11), 3219–3235 (2007).
    [Crossref]
  23. S. Pan and J. Yao, “UWB-over-fiber communications: modulation and transmission,” J. Lightwave Technol. 28(16), 2445–2455 (2010).
    [Crossref]
  24. T. B. Gibbon, X. Yu, R. Gamatham, N. Guerrero Gonzalez, R. Rodes, J. B. Jensen, A. Caballero, and I. T. Monroy, “3.125 Gb/s impulse radio ultra-wideband photonic generation and distribution over a 50 km fiber with wireless transmission,” IEEE Microw. Wirel. Compon. Lett. 20(2), 127–129 (2010).
    [Crossref]
  25. D. Grodensky, D. Kravitz, and A. Zadok, “Ultra-wideband microwave-photonic noise radar based on optical waveform generation,” IEEE Photonics Technol. Lett. 24(10), 839–841 (2012).
  26. M. Zhang, Y. Ji, Y. Zhang, Y. Wu, H. Xu, and W. Xu, “Remote Radar Based on Chaos Generation and Radio Over Fiber,” IEEE Photonics J. 6(5), 1–12 (2014).
    [Crossref]
  27. T. Yao, D. Zhu, D. Ben, and S. Pan, “Distributed MIMO chaotic radar based on wavelength-division multiplexing technology,” Opt. Lett. 40(8), 1631–1634 (2015).
    [Crossref] [PubMed]
  28. T. Shao and J. Yao, “Wavelength reuse in a bidirectional UWB over fiber system,” Opt. Express 21(10), 11921–11927 (2013).
    [Crossref] [PubMed]
  29. Z. Jia, J. Yu, G. Ellinas, and G. Chang, “Key enabling technologies for optical–wireless networks: optical millimeter-wave generation, wavelength reuse, and architecture,” J. Lightwave Technol. 25(11), 3452–3471 (2007).
    [Crossref]
  30. B. Zhu, S. Pan, D. Zhu, and J. Yao, “Wavelength reuse in a bidirectional radio-over-fiber link based on cross-gain and cross-polarization modulation in a semiconductor optical amplifier,” Opt. Lett. 38(18), 3496–3498 (2013).
    [Crossref] [PubMed]
  31. J. Zheng, H. Wang, J. Fu, L. Wei, S. Pan, L. Wang, J. Liu, and N. Zhu, “Fiber-distributed Ultra-wideband noise radar with steerable power spectrum and colorless base station,” Opt. Express 22(5), 4896–4907 (2014).
    [Crossref] [PubMed]
  32. J. Fu, F. Zhang, D. Zhu, J. Zhou, and S. Pan, “A photonic-assisted transceiver with wavelength reuse for distributed UWB radar,” in International Topical Meeting on Microwave Photonics and the 9th Asia-Pacific Microwave Photonics Conference (IEEE, 2014), pp. 232–234.
    [Crossref]
  33. J. Fu and S. Pan, “A Fiber-Distributed Bistatic Ultra-wideband Radar Based on Optical Time Division Multiplexing,” in 2015 IEEE Topical Meeting on Microwave Photonics, (IEEE, 2015), pp. WeD-5.
  34. J. Fu, X. Chen, and S. Pan, “A fiber-distributed multistatic ultra-wideband radar,” in the 14th International Conference on Optical Communications and Networks, (IEEE, 2015), pp. 1–3.
    [Crossref]
  35. J. Fu and S. Pan, “Fiber-connected UWB sensor network for high-resolution localization using optical time-division multiplexing,” Opt. Express 21(18), 21218–21223 (2013).
    [Crossref] [PubMed]
  36. A. Banerjee, Y. Park, F. Clarke, H. Song, S. Yang, G. Kramer, K. Kim, and B. Mukherjee, “Wavelength-division-multiplexed passive optical network (WDM-PON) technologies for broadband access: a review,” J. Opt. Netw. 4(11), 737–758 (2005).
    [Crossref]
  37. H. Kim, “Transmission of 10-Gb/s directly modulated RSOA signals in single-fiber loopback WDM PONs,” IEEE Photonics Technol. Lett. 23(14), 965–967 (2011).
    [Crossref]
  38. W. Foy, “Position-location solutions by Taylor-series estimation,” IEEE Trans. Aerosp. Electron. Syst. 12(2), 187–194 (1976).
    [Crossref]
  39. Y. Chan and K. Ho, “A simple and efficient estimator for hyperbolic location,” IEEE Trans. Signal Process. 42(8), 1905–1915 (1994).
    [Crossref]
  40. H. C. Ji, H. Kim, and Y. C. Chung, “Full-duplex radio-over-fiber system using phase-modulated downlink and intensity-modulated uplink,” IEEE Photonics Technol. Lett. 21(1), 9–11 (2009).
    [Crossref]
  41. B. Widrow, J. R. Glover, J. M. McCool, J. Kaunitz, C. S. Williams, R. H. Hearn, J. R. Zeidler, E. Dong, and R. C. Goodlin, “Adaptive noise cancelling: Principles and applications,” Proc. IEEE 63(12), 1692–1716 (1975).
    [Crossref]
  42. J. Lee and R. Scholtz, “Ranging in a dense multipath environment using an UWB radio link,” IEEE J. Sel. Areas Comm. 20(9), 1677–1683 (2002).
    [Crossref]
  43. B. Sobhani, M. Mazzotti, E. Paolini, A. Giorgetti, and M. Chiani, “Multiple target detection and localization in UWB multistatic radars,” in IEEE International Conference on Ultra-WideBand, (IEEE, 2014), pp. 135–140.
    [Crossref]
  44. D. Kim, D. Lim, L. Shen, H. Kim, S. Woo, and H. Yu, “Localization methods of multi-targets for UWB radar sensor networks,” in the 3rd International Asia-Pacific Conference on Synthetic Aperture Radar, (IEEE, 2011), pp. 1–4.
  45. X. Chen, H. Leung, and M. Tian, “Multitarget detection and tracking for through-the-wall radars,” IEEE Trans. Aerosp. Electron. Syst. 50(2), 1403–1415 (2014).
    [Crossref]
  46. I. Sharp, K. Yu, and Y. J. Guo, “GDOP analysis for positioning system design,” IEEE Trans. Vehicular Technol. 58(7), 3371–3382 (2009).
    [Crossref]
  47. J. Adams, W. Gregorwich, L. Capots, and D. Liccardo, “Ultra-wideband for navigation and communications,” in IEEE Aerospace Conference Proceedings, (IEEE, 2001), pp. 2/785–2/792.

2017 (3)

2016 (1)

W. Zou, H. Zhang, X. Long, S. Zhang, Y. Cui, and J. Chen, “All-optical central-frequency-programmable and bandwidth-tailorable radar,” Sci. Rep. 6(1), 19786 (2016).
[Crossref] [PubMed]

2015 (1)

2014 (5)

M. Zhang, Y. Ji, Y. Zhang, Y. Wu, H. Xu, and W. Xu, “Remote Radar Based on Chaos Generation and Radio Over Fiber,” IEEE Photonics J. 6(5), 1–12 (2014).
[Crossref]

J. Zheng, H. Wang, J. Fu, L. Wei, S. Pan, L. Wang, J. Liu, and N. Zhu, “Fiber-distributed Ultra-wideband noise radar with steerable power spectrum and colorless base station,” Opt. Express 22(5), 4896–4907 (2014).
[Crossref] [PubMed]

X. Chen, H. Leung, and M. Tian, “Multitarget detection and tracking for through-the-wall radars,” IEEE Trans. Aerosp. Electron. Syst. 50(2), 1403–1415 (2014).
[Crossref]

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

S. Pan, D. Zhu, and F. Zhang, “Microwave photonics for modern radar systems,” Trans. Nanjing Univ. Aeronaut. Astronaut. 31(3), 219–240 (2014).

2013 (3)

2012 (1)

D. Grodensky, D. Kravitz, and A. Zadok, “Ultra-wideband microwave-photonic noise radar based on optical waveform generation,” IEEE Photonics Technol. Lett. 24(10), 839–841 (2012).

2011 (1)

H. Kim, “Transmission of 10-Gb/s directly modulated RSOA signals in single-fiber loopback WDM PONs,” IEEE Photonics Technol. Lett. 23(14), 965–967 (2011).
[Crossref]

2010 (2)

S. Pan and J. Yao, “UWB-over-fiber communications: modulation and transmission,” J. Lightwave Technol. 28(16), 2445–2455 (2010).
[Crossref]

T. B. Gibbon, X. Yu, R. Gamatham, N. Guerrero Gonzalez, R. Rodes, J. B. Jensen, A. Caballero, and I. T. Monroy, “3.125 Gb/s impulse radio ultra-wideband photonic generation and distribution over a 50 km fiber with wireless transmission,” IEEE Microw. Wirel. Compon. Lett. 20(2), 127–129 (2010).
[Crossref]

2009 (3)

J. Yao, “Microwave photonics,” J. Lightwave Technol. 27(3), 314–335 (2009).
[Crossref]

I. Sharp, K. Yu, and Y. J. Guo, “GDOP analysis for positioning system design,” IEEE Trans. Vehicular Technol. 58(7), 3371–3382 (2009).
[Crossref]

H. C. Ji, H. Kim, and Y. C. Chung, “Full-duplex radio-over-fiber system using phase-modulated downlink and intensity-modulated uplink,” IEEE Photonics Technol. Lett. 21(1), 9–11 (2009).
[Crossref]

2008 (1)

A. M. Haimovich, R. S. Blum, and L. J. Cimini, “MIMO radar with widely separated antennas,” IEEE Signal Process. Mag. 25(1), 116–129 (2008).
[Crossref]

2007 (3)

2005 (2)

A. Banerjee, Y. Park, F. Clarke, H. Song, S. Yang, G. Kramer, K. Kim, and B. Mukherjee, “Wavelength-division-multiplexed passive optical network (WDM-PON) technologies for broadband access: a review,” J. Opt. Netw. 4(11), 737–758 (2005).
[Crossref]

S. Gezici, Z. Tian, G. B. Giannakis, H. Kobayashi, A. F. Molisch, H. V. Poor, and Z. Sahinoglu, “Localization via ultra-wideband radios: a look at positioning aspects for future sensor networks,” IEEE Signal Process. Mag. 22(4), 70–84 (2005).
[Crossref]

2003 (1)

C. Baker and A. Hume, “Netted radar sensing,” IEEE Aerosp. Electron. Syst. Mag. 18(2), 3–6 (2003).
[Crossref]

2002 (2)

W. Lovelace and J. Townsend, “The effects of timing jitter and tracking on the performance of impulse radio,” IEEE J. Sel. Areas Comm. 20(9), 1646–1651 (2002).
[Crossref]

J. Lee and R. Scholtz, “Ranging in a dense multipath environment using an UWB radio link,” IEEE J. Sel. Areas Comm. 20(9), 1677–1683 (2002).
[Crossref]

1998 (1)

M. Hussain, “Ultra-wideband impulse radar - an overview of the principles,” IEEE Aerosp. Electron. Syst. Mag. 13(9), 9–14 (1998).
[Crossref]

1994 (1)

Y. Chan and K. Ho, “A simple and efficient estimator for hyperbolic location,” IEEE Trans. Signal Process. 42(8), 1905–1915 (1994).
[Crossref]

1976 (1)

W. Foy, “Position-location solutions by Taylor-series estimation,” IEEE Trans. Aerosp. Electron. Syst. 12(2), 187–194 (1976).
[Crossref]

1975 (1)

B. Widrow, J. R. Glover, J. M. McCool, J. Kaunitz, C. S. Williams, R. H. Hearn, J. R. Zeidler, E. Dong, and R. C. Goodlin, “Adaptive noise cancelling: Principles and applications,” Proc. IEEE 63(12), 1692–1716 (1975).
[Crossref]

Adams, J.

J. Adams, W. Gregorwich, L. Capots, and D. Liccardo, “Ultra-wideband for navigation and communications,” in IEEE Aerospace Conference Proceedings, (IEEE, 2001), pp. 2/785–2/792.

Baker, C.

C. Baker and A. Hume, “Netted radar sensing,” IEEE Aerosp. Electron. Syst. Mag. 18(2), 3–6 (2003).
[Crossref]

T. Derham, K. Woodbridge, H. Griffiths, and C. Baker, “The design and development of an experimental netted radar system,” in Proceedings of the International Radar Conference, (IEEE, 2003), pp. 293–298.
[Crossref]

Banerjee, A.

Ben, D.

Berizzi, F.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Blum, R. S.

A. M. Haimovich, R. S. Blum, and L. J. Cimini, “MIMO radar with widely separated antennas,” IEEE Signal Process. Mag. 25(1), 116–129 (2008).
[Crossref]

Bogoni, A.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Caballero, A.

T. B. Gibbon, X. Yu, R. Gamatham, N. Guerrero Gonzalez, R. Rodes, J. B. Jensen, A. Caballero, and I. T. Monroy, “3.125 Gb/s impulse radio ultra-wideband photonic generation and distribution over a 50 km fiber with wireless transmission,” IEEE Microw. Wirel. Compon. Lett. 20(2), 127–129 (2010).
[Crossref]

Capmany, J.

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

Capots, L.

J. Adams, W. Gregorwich, L. Capots, and D. Liccardo, “Ultra-wideband for navigation and communications,” in IEEE Aerospace Conference Proceedings, (IEEE, 2001), pp. 2/785–2/792.

Capria, A.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Chan, Y.

Y. Chan and K. Ho, “A simple and efficient estimator for hyperbolic location,” IEEE Trans. Signal Process. 42(8), 1905–1915 (1994).
[Crossref]

Chang, G.

Chen, J.

W. Zou, H. Zhang, X. Long, S. Zhang, Y. Cui, and J. Chen, “All-optical central-frequency-programmable and bandwidth-tailorable radar,” Sci. Rep. 6(1), 19786 (2016).
[Crossref] [PubMed]

Chen, X.

X. Chen, H. Leung, and M. Tian, “Multitarget detection and tracking for through-the-wall radars,” IEEE Trans. Aerosp. Electron. Syst. 50(2), 1403–1415 (2014).
[Crossref]

Chernyak, V.

V. Chernyak, “Multi-site ultra-wideband radar systems with information fusion: some principal features,” in Proceeding of the 7th International Conference on Information Fusion, (International Society of Information Fusion, 2004), pp. 463–470.

Chiani, M.

B. Sobhani, M. Mazzotti, E. Paolini, A. Giorgetti, and M. Chiani, “Multiple target detection and localization in UWB multistatic radars,” in IEEE International Conference on Ultra-WideBand, (IEEE, 2014), pp. 135–140.
[Crossref]

Chung, Y. C.

H. C. Ji, H. Kim, and Y. C. Chung, “Full-duplex radio-over-fiber system using phase-modulated downlink and intensity-modulated uplink,” IEEE Photonics Technol. Lett. 21(1), 9–11 (2009).
[Crossref]

Cimini, L. J.

A. M. Haimovich, R. S. Blum, and L. J. Cimini, “MIMO radar with widely separated antennas,” IEEE Signal Process. Mag. 25(1), 116–129 (2008).
[Crossref]

Clarke, F.

Cui, Y.

W. Zou, H. Zhang, X. Long, S. Zhang, Y. Cui, and J. Chen, “All-optical central-frequency-programmable and bandwidth-tailorable radar,” Sci. Rep. 6(1), 19786 (2016).
[Crossref] [PubMed]

Derham, T.

T. Derham, K. Woodbridge, H. Griffiths, and C. Baker, “The design and development of an experimental netted radar system,” in Proceedings of the International Radar Conference, (IEEE, 2003), pp. 293–298.
[Crossref]

Ding, M.

Dong, E.

B. Widrow, J. R. Glover, J. M. McCool, J. Kaunitz, C. S. Williams, R. H. Hearn, J. R. Zeidler, E. Dong, and R. C. Goodlin, “Adaptive noise cancelling: Principles and applications,” Proc. IEEE 63(12), 1692–1716 (1975).
[Crossref]

Ellinas, G.

Fedotov, D.

I. Immoreev and D. Fedotov, “Ultra wideband radar systems: advantages and disadvantages,” in IEEE Conference on Ultra Wideband Systems and Technologies, (IEEE, 2002), pp. 201–205.
[Crossref]

Foy, W.

W. Foy, “Position-location solutions by Taylor-series estimation,” IEEE Trans. Aerosp. Electron. Syst. 12(2), 187–194 (1976).
[Crossref]

Fu, J.

Gamatham, R.

T. B. Gibbon, X. Yu, R. Gamatham, N. Guerrero Gonzalez, R. Rodes, J. B. Jensen, A. Caballero, and I. T. Monroy, “3.125 Gb/s impulse radio ultra-wideband photonic generation and distribution over a 50 km fiber with wireless transmission,” IEEE Microw. Wirel. Compon. Lett. 20(2), 127–129 (2010).
[Crossref]

Gao, B.

Gezici, S.

S. Gezici, Z. Tian, G. B. Giannakis, H. Kobayashi, A. F. Molisch, H. V. Poor, and Z. Sahinoglu, “Localization via ultra-wideband radios: a look at positioning aspects for future sensor networks,” IEEE Signal Process. Mag. 22(4), 70–84 (2005).
[Crossref]

Ghelfi, P.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Giannakis, G. B.

S. Gezici, Z. Tian, G. B. Giannakis, H. Kobayashi, A. F. Molisch, H. V. Poor, and Z. Sahinoglu, “Localization via ultra-wideband radios: a look at positioning aspects for future sensor networks,” IEEE Signal Process. Mag. 22(4), 70–84 (2005).
[Crossref]

Gibbon, T. B.

T. B. Gibbon, X. Yu, R. Gamatham, N. Guerrero Gonzalez, R. Rodes, J. B. Jensen, A. Caballero, and I. T. Monroy, “3.125 Gb/s impulse radio ultra-wideband photonic generation and distribution over a 50 km fiber with wireless transmission,” IEEE Microw. Wirel. Compon. Lett. 20(2), 127–129 (2010).
[Crossref]

Giorgetti, A.

B. Sobhani, M. Mazzotti, E. Paolini, A. Giorgetti, and M. Chiani, “Multiple target detection and localization in UWB multistatic radars,” in IEEE International Conference on Ultra-WideBand, (IEEE, 2014), pp. 135–140.
[Crossref]

Glover, J. R.

B. Widrow, J. R. Glover, J. M. McCool, J. Kaunitz, C. S. Williams, R. H. Hearn, J. R. Zeidler, E. Dong, and R. C. Goodlin, “Adaptive noise cancelling: Principles and applications,” Proc. IEEE 63(12), 1692–1716 (1975).
[Crossref]

Goodlin, R. C.

B. Widrow, J. R. Glover, J. M. McCool, J. Kaunitz, C. S. Williams, R. H. Hearn, J. R. Zeidler, E. Dong, and R. C. Goodlin, “Adaptive noise cancelling: Principles and applications,” Proc. IEEE 63(12), 1692–1716 (1975).
[Crossref]

Gregorwich, W.

J. Adams, W. Gregorwich, L. Capots, and D. Liccardo, “Ultra-wideband for navigation and communications,” in IEEE Aerospace Conference Proceedings, (IEEE, 2001), pp. 2/785–2/792.

Griffiths, H.

T. Derham, K. Woodbridge, H. Griffiths, and C. Baker, “The design and development of an experimental netted radar system,” in Proceedings of the International Radar Conference, (IEEE, 2003), pp. 293–298.
[Crossref]

Grodensky, D.

D. Grodensky, D. Kravitz, and A. Zadok, “Ultra-wideband microwave-photonic noise radar based on optical waveform generation,” IEEE Photonics Technol. Lett. 24(10), 839–841 (2012).

Guerrero Gonzalez, N.

T. B. Gibbon, X. Yu, R. Gamatham, N. Guerrero Gonzalez, R. Rodes, J. B. Jensen, A. Caballero, and I. T. Monroy, “3.125 Gb/s impulse radio ultra-wideband photonic generation and distribution over a 50 km fiber with wireless transmission,” IEEE Microw. Wirel. Compon. Lett. 20(2), 127–129 (2010).
[Crossref]

Guo, P.

Guo, Q.

Guo, Y. J.

I. Sharp, K. Yu, and Y. J. Guo, “GDOP analysis for positioning system design,” IEEE Trans. Vehicular Technol. 58(7), 3371–3382 (2009).
[Crossref]

Haimovich, A. M.

A. M. Haimovich, R. S. Blum, and L. J. Cimini, “MIMO radar with widely separated antennas,” IEEE Signal Process. Mag. 25(1), 116–129 (2008).
[Crossref]

Hearn, R. H.

B. Widrow, J. R. Glover, J. M. McCool, J. Kaunitz, C. S. Williams, R. H. Hearn, J. R. Zeidler, E. Dong, and R. C. Goodlin, “Adaptive noise cancelling: Principles and applications,” Proc. IEEE 63(12), 1692–1716 (1975).
[Crossref]

Ho, K.

Y. Chan and K. Ho, “A simple and efficient estimator for hyperbolic location,” IEEE Trans. Signal Process. 42(8), 1905–1915 (1994).
[Crossref]

Hume, A.

C. Baker and A. Hume, “Netted radar sensing,” IEEE Aerosp. Electron. Syst. Mag. 18(2), 3–6 (2003).
[Crossref]

Hussain, M.

M. Hussain, “Ultra-wideband impulse radar - an overview of the principles,” IEEE Aerosp. Electron. Syst. Mag. 13(9), 9–14 (1998).
[Crossref]

Immoreev, I.

I. Immoreev and D. Fedotov, “Ultra wideband radar systems: advantages and disadvantages,” in IEEE Conference on Ultra Wideband Systems and Technologies, (IEEE, 2002), pp. 201–205.
[Crossref]

Jensen, J. B.

T. B. Gibbon, X. Yu, R. Gamatham, N. Guerrero Gonzalez, R. Rodes, J. B. Jensen, A. Caballero, and I. T. Monroy, “3.125 Gb/s impulse radio ultra-wideband photonic generation and distribution over a 50 km fiber with wireless transmission,” IEEE Microw. Wirel. Compon. Lett. 20(2), 127–129 (2010).
[Crossref]

Ji, H. C.

H. C. Ji, H. Kim, and Y. C. Chung, “Full-duplex radio-over-fiber system using phase-modulated downlink and intensity-modulated uplink,” IEEE Photonics Technol. Lett. 21(1), 9–11 (2009).
[Crossref]

Ji, Y.

M. Zhang, Y. Ji, Y. Zhang, Y. Wu, H. Xu, and W. Xu, “Remote Radar Based on Chaos Generation and Radio Over Fiber,” IEEE Photonics J. 6(5), 1–12 (2014).
[Crossref]

Jia, Z.

Kaunitz, J.

B. Widrow, J. R. Glover, J. M. McCool, J. Kaunitz, C. S. Williams, R. H. Hearn, J. R. Zeidler, E. Dong, and R. C. Goodlin, “Adaptive noise cancelling: Principles and applications,” Proc. IEEE 63(12), 1692–1716 (1975).
[Crossref]

Kim, H.

H. Kim, “Transmission of 10-Gb/s directly modulated RSOA signals in single-fiber loopback WDM PONs,” IEEE Photonics Technol. Lett. 23(14), 965–967 (2011).
[Crossref]

H. C. Ji, H. Kim, and Y. C. Chung, “Full-duplex radio-over-fiber system using phase-modulated downlink and intensity-modulated uplink,” IEEE Photonics Technol. Lett. 21(1), 9–11 (2009).
[Crossref]

Kim, K.

Kobayashi, H.

S. Gezici, Z. Tian, G. B. Giannakis, H. Kobayashi, A. F. Molisch, H. V. Poor, and Z. Sahinoglu, “Localization via ultra-wideband radios: a look at positioning aspects for future sensor networks,” IEEE Signal Process. Mag. 22(4), 70–84 (2005).
[Crossref]

Kramer, G.

Kravitz, D.

D. Grodensky, D. Kravitz, and A. Zadok, “Ultra-wideband microwave-photonic noise radar based on optical waveform generation,” IEEE Photonics Technol. Lett. 24(10), 839–841 (2012).

Laghezza, F.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Lazzeri, E.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Lee, J.

J. Lee and R. Scholtz, “Ranging in a dense multipath environment using an UWB radio link,” IEEE J. Sel. Areas Comm. 20(9), 1677–1683 (2002).
[Crossref]

Leung, H.

X. Chen, H. Leung, and M. Tian, “Multitarget detection and tracking for through-the-wall radars,” IEEE Trans. Aerosp. Electron. Syst. 50(2), 1403–1415 (2014).
[Crossref]

Li, R.

Li, W.

Li, Y.

Liang, X.

Liccardo, D.

J. Adams, W. Gregorwich, L. Capots, and D. Liccardo, “Ultra-wideband for navigation and communications,” in IEEE Aerospace Conference Proceedings, (IEEE, 2001), pp. 2/785–2/792.

Liu, J.

Long, X.

W. Zou, H. Zhang, X. Long, S. Zhang, Y. Cui, and J. Chen, “All-optical central-frequency-programmable and bandwidth-tailorable radar,” Sci. Rep. 6(1), 19786 (2016).
[Crossref] [PubMed]

Lovelace, W.

W. Lovelace and J. Townsend, “The effects of timing jitter and tracking on the performance of impulse radio,” IEEE J. Sel. Areas Comm. 20(9), 1646–1651 (2002).
[Crossref]

Luan, Y.

Malacarne, A.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Mazzotti, M.

B. Sobhani, M. Mazzotti, E. Paolini, A. Giorgetti, and M. Chiani, “Multiple target detection and localization in UWB multistatic radars,” in IEEE International Conference on Ultra-WideBand, (IEEE, 2014), pp. 135–140.
[Crossref]

McCool, J. M.

B. Widrow, J. R. Glover, J. M. McCool, J. Kaunitz, C. S. Williams, R. H. Hearn, J. R. Zeidler, E. Dong, and R. C. Goodlin, “Adaptive noise cancelling: Principles and applications,” Proc. IEEE 63(12), 1692–1716 (1975).
[Crossref]

Molisch, A. F.

S. Gezici, Z. Tian, G. B. Giannakis, H. Kobayashi, A. F. Molisch, H. V. Poor, and Z. Sahinoglu, “Localization via ultra-wideband radios: a look at positioning aspects for future sensor networks,” IEEE Signal Process. Mag. 22(4), 70–84 (2005).
[Crossref]

Monroy, I. T.

T. B. Gibbon, X. Yu, R. Gamatham, N. Guerrero Gonzalez, R. Rodes, J. B. Jensen, A. Caballero, and I. T. Monroy, “3.125 Gb/s impulse radio ultra-wideband photonic generation and distribution over a 50 km fiber with wireless transmission,” IEEE Microw. Wirel. Compon. Lett. 20(2), 127–129 (2010).
[Crossref]

Mukherjee, B.

Novak, D.

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

Onori, D.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Pan, S.

F. Zhang, Q. Guo, Z. Wang, P. Zhou, G. Zhang, J. Sun, and S. Pan, “Photonics-based broadband radar for high-resolution and real-time inverse synthetic aperture imaging,” Opt. Express 25(14), 16274–16281 (2017).
[Crossref] [PubMed]

S. Pan and J. Yao, “Photonics-based broadband microwave measurement,” J. Lightwave Technol. 35(16), 3498–3513 (2017).
[Crossref]

T. Yao, D. Zhu, D. Ben, and S. Pan, “Distributed MIMO chaotic radar based on wavelength-division multiplexing technology,” Opt. Lett. 40(8), 1631–1634 (2015).
[Crossref] [PubMed]

J. Zheng, H. Wang, J. Fu, L. Wei, S. Pan, L. Wang, J. Liu, and N. Zhu, “Fiber-distributed Ultra-wideband noise radar with steerable power spectrum and colorless base station,” Opt. Express 22(5), 4896–4907 (2014).
[Crossref] [PubMed]

S. Pan, D. Zhu, and F. Zhang, “Microwave photonics for modern radar systems,” Trans. Nanjing Univ. Aeronaut. Astronaut. 31(3), 219–240 (2014).

B. Zhu, S. Pan, D. Zhu, and J. Yao, “Wavelength reuse in a bidirectional radio-over-fiber link based on cross-gain and cross-polarization modulation in a semiconductor optical amplifier,” Opt. Lett. 38(18), 3496–3498 (2013).
[Crossref] [PubMed]

J. Fu and S. Pan, “Fiber-connected UWB sensor network for high-resolution localization using optical time-division multiplexing,” Opt. Express 21(18), 21218–21223 (2013).
[Crossref] [PubMed]

S. Pan and J. Yao, “UWB-over-fiber communications: modulation and transmission,” J. Lightwave Technol. 28(16), 2445–2455 (2010).
[Crossref]

J. Fu, F. Zhang, D. Zhu, J. Zhou, and S. Pan, “A photonic-assisted transceiver with wavelength reuse for distributed UWB radar,” in International Topical Meeting on Microwave Photonics and the 9th Asia-Pacific Microwave Photonics Conference (IEEE, 2014), pp. 232–234.
[Crossref]

Paolini, E.

B. Sobhani, M. Mazzotti, E. Paolini, A. Giorgetti, and M. Chiani, “Multiple target detection and localization in UWB multistatic radars,” in IEEE International Conference on Ultra-WideBand, (IEEE, 2014), pp. 135–140.
[Crossref]

Park, Y.

Pinna, S.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Poor, H. V.

S. Gezici, Z. Tian, G. B. Giannakis, H. Kobayashi, A. F. Molisch, H. V. Poor, and Z. Sahinoglu, “Localization via ultra-wideband radios: a look at positioning aspects for future sensor networks,” IEEE Signal Process. Mag. 22(4), 70–84 (2005).
[Crossref]

Porzi, C.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Rodes, R.

T. B. Gibbon, X. Yu, R. Gamatham, N. Guerrero Gonzalez, R. Rodes, J. B. Jensen, A. Caballero, and I. T. Monroy, “3.125 Gb/s impulse radio ultra-wideband photonic generation and distribution over a 50 km fiber with wireless transmission,” IEEE Microw. Wirel. Compon. Lett. 20(2), 127–129 (2010).
[Crossref]

Sahinoglu, Z.

S. Gezici, Z. Tian, G. B. Giannakis, H. Kobayashi, A. F. Molisch, H. V. Poor, and Z. Sahinoglu, “Localization via ultra-wideband radios: a look at positioning aspects for future sensor networks,” IEEE Signal Process. Mag. 22(4), 70–84 (2005).
[Crossref]

Scaffardi, M.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Scholtz, R.

J. Lee and R. Scholtz, “Ranging in a dense multipath environment using an UWB radio link,” IEEE J. Sel. Areas Comm. 20(9), 1677–1683 (2002).
[Crossref]

Scotti, F.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Serafino, G.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Shao, T.

Sharp, I.

I. Sharp, K. Yu, and Y. J. Guo, “GDOP analysis for positioning system design,” IEEE Trans. Vehicular Technol. 58(7), 3371–3382 (2009).
[Crossref]

Sobhani, B.

B. Sobhani, M. Mazzotti, E. Paolini, A. Giorgetti, and M. Chiani, “Multiple target detection and localization in UWB multistatic radars,” in IEEE International Conference on Ultra-WideBand, (IEEE, 2014), pp. 135–140.
[Crossref]

Song, H.

Sun, J.

Tian, M.

X. Chen, H. Leung, and M. Tian, “Multitarget detection and tracking for through-the-wall radars,” IEEE Trans. Aerosp. Electron. Syst. 50(2), 1403–1415 (2014).
[Crossref]

Tian, Y.

Tian, Z.

S. Gezici, Z. Tian, G. B. Giannakis, H. Kobayashi, A. F. Molisch, H. V. Poor, and Z. Sahinoglu, “Localization via ultra-wideband radios: a look at positioning aspects for future sensor networks,” IEEE Signal Process. Mag. 22(4), 70–84 (2005).
[Crossref]

Townsend, J.

W. Lovelace and J. Townsend, “The effects of timing jitter and tracking on the performance of impulse radio,” IEEE J. Sel. Areas Comm. 20(9), 1646–1651 (2002).
[Crossref]

Vercesi, V.

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Wang, H.

Wang, L.

Wang, Q.

Wang, Z.

Wei, L.

Wen, Z.

Widrow, B.

B. Widrow, J. R. Glover, J. M. McCool, J. Kaunitz, C. S. Williams, R. H. Hearn, J. R. Zeidler, E. Dong, and R. C. Goodlin, “Adaptive noise cancelling: Principles and applications,” Proc. IEEE 63(12), 1692–1716 (1975).
[Crossref]

Williams, C. S.

B. Widrow, J. R. Glover, J. M. McCool, J. Kaunitz, C. S. Williams, R. H. Hearn, J. R. Zeidler, E. Dong, and R. C. Goodlin, “Adaptive noise cancelling: Principles and applications,” Proc. IEEE 63(12), 1692–1716 (1975).
[Crossref]

Woodbridge, K.

T. Derham, K. Woodbridge, H. Griffiths, and C. Baker, “The design and development of an experimental netted radar system,” in Proceedings of the International Radar Conference, (IEEE, 2003), pp. 293–298.
[Crossref]

Wu, Y.

M. Zhang, Y. Ji, Y. Zhang, Y. Wu, H. Xu, and W. Xu, “Remote Radar Based on Chaos Generation and Radio Over Fiber,” IEEE Photonics J. 6(5), 1–12 (2014).
[Crossref]

Xing, T.

Xu, H.

M. Zhang, Y. Ji, Y. Zhang, Y. Wu, H. Xu, and W. Xu, “Remote Radar Based on Chaos Generation and Radio Over Fiber,” IEEE Photonics J. 6(5), 1–12 (2014).
[Crossref]

Xu, W.

M. Zhang, Y. Ji, Y. Zhang, Y. Wu, H. Xu, and W. Xu, “Remote Radar Based on Chaos Generation and Radio Over Fiber,” IEEE Photonics J. 6(5), 1–12 (2014).
[Crossref]

Yang, S.

Yao, J.

Yao, T.

Yu, J.

Yu, K.

I. Sharp, K. Yu, and Y. J. Guo, “GDOP analysis for positioning system design,” IEEE Trans. Vehicular Technol. 58(7), 3371–3382 (2009).
[Crossref]

Yu, S.

Yu, X.

T. B. Gibbon, X. Yu, R. Gamatham, N. Guerrero Gonzalez, R. Rodes, J. B. Jensen, A. Caballero, and I. T. Monroy, “3.125 Gb/s impulse radio ultra-wideband photonic generation and distribution over a 50 km fiber with wireless transmission,” IEEE Microw. Wirel. Compon. Lett. 20(2), 127–129 (2010).
[Crossref]

Zadok, A.

D. Grodensky, D. Kravitz, and A. Zadok, “Ultra-wideband microwave-photonic noise radar based on optical waveform generation,” IEEE Photonics Technol. Lett. 24(10), 839–841 (2012).

Zeidler, J. R.

B. Widrow, J. R. Glover, J. M. McCool, J. Kaunitz, C. S. Williams, R. H. Hearn, J. R. Zeidler, E. Dong, and R. C. Goodlin, “Adaptive noise cancelling: Principles and applications,” Proc. IEEE 63(12), 1692–1716 (1975).
[Crossref]

Zeng, F.

Zhang, F.

F. Zhang, Q. Guo, Z. Wang, P. Zhou, G. Zhang, J. Sun, and S. Pan, “Photonics-based broadband radar for high-resolution and real-time inverse synthetic aperture imaging,” Opt. Express 25(14), 16274–16281 (2017).
[Crossref] [PubMed]

S. Pan, D. Zhu, and F. Zhang, “Microwave photonics for modern radar systems,” Trans. Nanjing Univ. Aeronaut. Astronaut. 31(3), 219–240 (2014).

J. Fu, F. Zhang, D. Zhu, J. Zhou, and S. Pan, “A photonic-assisted transceiver with wavelength reuse for distributed UWB radar,” in International Topical Meeting on Microwave Photonics and the 9th Asia-Pacific Microwave Photonics Conference (IEEE, 2014), pp. 232–234.
[Crossref]

Zhang, G.

Zhang, H.

W. Zou, H. Zhang, X. Long, S. Zhang, Y. Cui, and J. Chen, “All-optical central-frequency-programmable and bandwidth-tailorable radar,” Sci. Rep. 6(1), 19786 (2016).
[Crossref] [PubMed]

Zhang, M.

M. Zhang, Y. Ji, Y. Zhang, Y. Wu, H. Xu, and W. Xu, “Remote Radar Based on Chaos Generation and Radio Over Fiber,” IEEE Photonics J. 6(5), 1–12 (2014).
[Crossref]

Zhang, S.

W. Zou, H. Zhang, X. Long, S. Zhang, Y. Cui, and J. Chen, “All-optical central-frequency-programmable and bandwidth-tailorable radar,” Sci. Rep. 6(1), 19786 (2016).
[Crossref] [PubMed]

Zhang, Y.

M. Zhang, Y. Ji, Y. Zhang, Y. Wu, H. Xu, and W. Xu, “Remote Radar Based on Chaos Generation and Radio Over Fiber,” IEEE Photonics J. 6(5), 1–12 (2014).
[Crossref]

Zheng, J.

Zhou, J.

J. Fu, F. Zhang, D. Zhu, J. Zhou, and S. Pan, “A photonic-assisted transceiver with wavelength reuse for distributed UWB radar,” in International Topical Meeting on Microwave Photonics and the 9th Asia-Pacific Microwave Photonics Conference (IEEE, 2014), pp. 232–234.
[Crossref]

Zhou, L.

Zhou, P.

Zhu, B.

Zhu, D.

T. Yao, D. Zhu, D. Ben, and S. Pan, “Distributed MIMO chaotic radar based on wavelength-division multiplexing technology,” Opt. Lett. 40(8), 1631–1634 (2015).
[Crossref] [PubMed]

S. Pan, D. Zhu, and F. Zhang, “Microwave photonics for modern radar systems,” Trans. Nanjing Univ. Aeronaut. Astronaut. 31(3), 219–240 (2014).

B. Zhu, S. Pan, D. Zhu, and J. Yao, “Wavelength reuse in a bidirectional radio-over-fiber link based on cross-gain and cross-polarization modulation in a semiconductor optical amplifier,” Opt. Lett. 38(18), 3496–3498 (2013).
[Crossref] [PubMed]

J. Fu, F. Zhang, D. Zhu, J. Zhou, and S. Pan, “A photonic-assisted transceiver with wavelength reuse for distributed UWB radar,” in International Topical Meeting on Microwave Photonics and the 9th Asia-Pacific Microwave Photonics Conference (IEEE, 2014), pp. 232–234.
[Crossref]

Zhu, N.

Zhu, Y.

Zou, W.

W. Zou, H. Zhang, X. Long, S. Zhang, Y. Cui, and J. Chen, “All-optical central-frequency-programmable and bandwidth-tailorable radar,” Sci. Rep. 6(1), 19786 (2016).
[Crossref] [PubMed]

IEEE Aerosp. Electron. Syst. Mag. (2)

M. Hussain, “Ultra-wideband impulse radar - an overview of the principles,” IEEE Aerosp. Electron. Syst. Mag. 13(9), 9–14 (1998).
[Crossref]

C. Baker and A. Hume, “Netted radar sensing,” IEEE Aerosp. Electron. Syst. Mag. 18(2), 3–6 (2003).
[Crossref]

IEEE J. Sel. Areas Comm. (2)

W. Lovelace and J. Townsend, “The effects of timing jitter and tracking on the performance of impulse radio,” IEEE J. Sel. Areas Comm. 20(9), 1646–1651 (2002).
[Crossref]

J. Lee and R. Scholtz, “Ranging in a dense multipath environment using an UWB radio link,” IEEE J. Sel. Areas Comm. 20(9), 1677–1683 (2002).
[Crossref]

IEEE Microw. Wirel. Compon. Lett. (1)

T. B. Gibbon, X. Yu, R. Gamatham, N. Guerrero Gonzalez, R. Rodes, J. B. Jensen, A. Caballero, and I. T. Monroy, “3.125 Gb/s impulse radio ultra-wideband photonic generation and distribution over a 50 km fiber with wireless transmission,” IEEE Microw. Wirel. Compon. Lett. 20(2), 127–129 (2010).
[Crossref]

IEEE Photonics J. (1)

M. Zhang, Y. Ji, Y. Zhang, Y. Wu, H. Xu, and W. Xu, “Remote Radar Based on Chaos Generation and Radio Over Fiber,” IEEE Photonics J. 6(5), 1–12 (2014).
[Crossref]

IEEE Photonics Technol. Lett. (3)

D. Grodensky, D. Kravitz, and A. Zadok, “Ultra-wideband microwave-photonic noise radar based on optical waveform generation,” IEEE Photonics Technol. Lett. 24(10), 839–841 (2012).

H. C. Ji, H. Kim, and Y. C. Chung, “Full-duplex radio-over-fiber system using phase-modulated downlink and intensity-modulated uplink,” IEEE Photonics Technol. Lett. 21(1), 9–11 (2009).
[Crossref]

H. Kim, “Transmission of 10-Gb/s directly modulated RSOA signals in single-fiber loopback WDM PONs,” IEEE Photonics Technol. Lett. 23(14), 965–967 (2011).
[Crossref]

IEEE Signal Process. Mag. (2)

A. M. Haimovich, R. S. Blum, and L. J. Cimini, “MIMO radar with widely separated antennas,” IEEE Signal Process. Mag. 25(1), 116–129 (2008).
[Crossref]

S. Gezici, Z. Tian, G. B. Giannakis, H. Kobayashi, A. F. Molisch, H. V. Poor, and Z. Sahinoglu, “Localization via ultra-wideband radios: a look at positioning aspects for future sensor networks,” IEEE Signal Process. Mag. 22(4), 70–84 (2005).
[Crossref]

IEEE Trans. Aerosp. Electron. Syst. (2)

W. Foy, “Position-location solutions by Taylor-series estimation,” IEEE Trans. Aerosp. Electron. Syst. 12(2), 187–194 (1976).
[Crossref]

X. Chen, H. Leung, and M. Tian, “Multitarget detection and tracking for through-the-wall radars,” IEEE Trans. Aerosp. Electron. Syst. 50(2), 1403–1415 (2014).
[Crossref]

IEEE Trans. Signal Process. (1)

Y. Chan and K. Ho, “A simple and efficient estimator for hyperbolic location,” IEEE Trans. Signal Process. 42(8), 1905–1915 (1994).
[Crossref]

IEEE Trans. Vehicular Technol. (1)

I. Sharp, K. Yu, and Y. J. Guo, “GDOP analysis for positioning system design,” IEEE Trans. Vehicular Technol. 58(7), 3371–3382 (2009).
[Crossref]

J. Lightwave Technol. (5)

J. Opt. Netw. (1)

Nat. Photonics (1)

J. Capmany and D. Novak, “Microwave photonics combines two worlds,” Nat. Photonics 1(6), 319–330 (2007).
[Crossref]

Nature (1)

P. Ghelfi, F. Laghezza, F. Scotti, G. Serafino, A. Capria, S. Pinna, D. Onori, C. Porzi, M. Scaffardi, A. Malacarne, V. Vercesi, E. Lazzeri, F. Berizzi, and A. Bogoni, “A fully photonics-based coherent radar system,” Nature 507(7492), 341–345 (2014).
[Crossref] [PubMed]

Opt. Express (5)

Opt. Lett. (2)

Proc. IEEE (1)

B. Widrow, J. R. Glover, J. M. McCool, J. Kaunitz, C. S. Williams, R. H. Hearn, J. R. Zeidler, E. Dong, and R. C. Goodlin, “Adaptive noise cancelling: Principles and applications,” Proc. IEEE 63(12), 1692–1716 (1975).
[Crossref]

Sci. Rep. (1)

W. Zou, H. Zhang, X. Long, S. Zhang, Y. Cui, and J. Chen, “All-optical central-frequency-programmable and bandwidth-tailorable radar,” Sci. Rep. 6(1), 19786 (2016).
[Crossref] [PubMed]

Trans. Nanjing Univ. Aeronaut. Astronaut. (1)

S. Pan, D. Zhu, and F. Zhang, “Microwave photonics for modern radar systems,” Trans. Nanjing Univ. Aeronaut. Astronaut. 31(3), 219–240 (2014).

Other (14)

T. Derham, K. Woodbridge, H. Griffiths, and C. Baker, “The design and development of an experimental netted radar system,” in Proceedings of the International Radar Conference, (IEEE, 2003), pp. 293–298.
[Crossref]

J. D. Taylor, Ultra-Wideband Radar Technology (CRC press, 2000).

I. Immoreev and D. Fedotov, “Ultra wideband radar systems: advantages and disadvantages,” in IEEE Conference on Ultra Wideband Systems and Technologies, (IEEE, 2002), pp. 201–205.
[Crossref]

R. Thomä, O. Hirsch, J. Sachs, and R. Zetik, “UWB sensor networks for position location and imaging of objects and environments,” Short-Range Wireless Communications: Emerging Technologies and Applications, 97–112 (2009).

V. Chernyak, “Multi-site ultra-wideband radar systems with information fusion: some principal features,” in Proceeding of the 7th International Conference on Information Fusion, (International Society of Information Fusion, 2004), pp. 463–470.

V. Chernyak, Fundamentals of Multisite Radar Systems: Multistatic Radars and Multistatic Radar Systems (CRC press, 1998).

Y. Xu, S. Wu, J. Shao, J. Chen, and G. Fang, “Life detection and location by MIMO ultra wideband radar,” in the 14th International Conference on Ground Penetrating Radar, (IEEE, 2012), pp. 80–84.

R. Leach, Jr., F. Nekoogar, and P. Haugen, “Ultra-wideband radar sensors and networks,” U.S. Patent 8 502 729 B2, Aug. 6, 2013.

J. Fu, F. Zhang, D. Zhu, J. Zhou, and S. Pan, “A photonic-assisted transceiver with wavelength reuse for distributed UWB radar,” in International Topical Meeting on Microwave Photonics and the 9th Asia-Pacific Microwave Photonics Conference (IEEE, 2014), pp. 232–234.
[Crossref]

J. Fu and S. Pan, “A Fiber-Distributed Bistatic Ultra-wideband Radar Based on Optical Time Division Multiplexing,” in 2015 IEEE Topical Meeting on Microwave Photonics, (IEEE, 2015), pp. WeD-5.

J. Fu, X. Chen, and S. Pan, “A fiber-distributed multistatic ultra-wideband radar,” in the 14th International Conference on Optical Communications and Networks, (IEEE, 2015), pp. 1–3.
[Crossref]

B. Sobhani, M. Mazzotti, E. Paolini, A. Giorgetti, and M. Chiani, “Multiple target detection and localization in UWB multistatic radars,” in IEEE International Conference on Ultra-WideBand, (IEEE, 2014), pp. 135–140.
[Crossref]

D. Kim, D. Lim, L. Shen, H. Kim, S. Woo, and H. Yu, “Localization methods of multi-targets for UWB radar sensor networks,” in the 3rd International Asia-Pacific Conference on Synthetic Aperture Radar, (IEEE, 2011), pp. 1–4.

J. Adams, W. Gregorwich, L. Capots, and D. Liccardo, “Ultra-wideband for navigation and communications,” in IEEE Aerospace Conference Proceedings, (IEEE, 2001), pp. 2/785–2/792.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1 Schematic diagram of the proposed fiber-distributed UWB radar network based on wavelength reusing transceivers. PM: phase modulator; OC: optical circulator; WDM: wavelength-division multiplexer; PD: photodetector; SMF: single-mode fiber; OS: optical splitter; OFD: optical frequency discriminator; EA: electrical amplifier; EC: electrical circulator; MZM: Mach-Zehnder Modulator.
Fig. 2
Fig. 2 Geometric method for localization using the proposed fiber-distributed ultra-wideband radar network: (a) geometric model; (b) the simulated UWB sequences received by Transceiver 1 and 2. T1: Transceiver 1; T2: Transceiver 2; Tar: Target; t11, t21, t12, and t22: the propagation times of the UWB pulses in the routes of T1-Tar-T1, T2-Tar-T1, T1-Tar-T2, and T2-Tar-T2, respectively; D11, D21, D12, and D22: the system delays for the routes of T1-CU-T1, T2-CU-T1, T1-CU-T2, and T2-CU-T2, respectively.
Fig. 3
Fig. 3 Experimental setup of the proposed UWB transceiver for 1-D localization. TLS: tunable laser source, PC: polarization controller.
Fig. 4
Fig. 4 The optical spectrum of the optical carrier and the transmission response of the tunable optical frequency discriminator with a negative or positive slope.
Fig. 5
Fig. 5 The waveforms and electrical spectra of the generated UWB monocycles with (a)(c) negative and (b)(d) positive polarities.
Fig. 6
Fig. 6 Eye diagrams of the upstream UWB pulses received at the CU with periods of (a) 1280 ps and (b) 640 ps.
Fig. 7
Fig. 7 (a) The recorded waveforms when the target is 40 cm (upper) and 30 cm (middle) away, and the Gaussian pulse train (lower) served as the clock reference. (b) The corresponding waveforms after signal processing.
Fig. 8
Fig. 8 Experimental setup of the fiber-distributed UWB radar network with two transceivers for 2-D localization.
Fig. 9
Fig. 9 Photograph of the experimental setup of the fiber-distributed UWB radar network with two transceivers for 2-D localization. CU: central unit.
Fig. 10
Fig. 10 The optical spectra of the two optical carriers and the transmission responses of the two optical frequency discriminators in Transceiver 1 and 2, respectively.
Fig. 11
Fig. 11 The waveforms received by (a) Transceiver 1 and (b) Transceiver 2; (c),(d) the waveforms after signal processing; and (e) the Gaussian pulse train served as the clock reference.
Fig. 12
Fig. 12 The geometric locations of fifteen samples of the estimated positions and the actual positions.

Tables (1)

Tables Icon

Table 1 Fifteen Samples of the Estimated and Actual Positions of the Target

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

{ (x x 1 ) 2 + (y y 1 ) 2 = 1 2 c t 11 (1) (x x 2 ) 2 + (y y 2 ) 2 = 1 2 c t 22 (2) (x x 1 ) 2 + (y y 1 ) 2 + (x x 2 ) 2 + (y y 2 ) 2 =c t 12 (3) (x x 1 ) 2 + (y y 1 ) 2 + (x x 2 ) 2 + (y y 2 ) 2 =c t 21 (4)
Var(d) c 2π 2S/N B .