Abstract

In this paper, a high resolution and large dynamic range fiber optic temperature sensor without measurement crosstalk has been proposed. Two combinational mechanisms of anti-resonant reflecting optical waveguide and inline Mach-Zehnder interference structure are integrated in single hole twin eccentric cores fiber. The dual-effect composite spectrum is consist of several dominant resonant wavelengths and comb pattern, which are corresponding to the two above-mentioned mechanisms. Gauss fit and fast Fourier transform filtering are used for extracting the resonant wavelengths and comb spectrum, respectively. Accordingly, the temperature sensitivity of 42.18pm/°C and 2.057nm/°C are achieved by tracking the coherent decrease point. The lower sensitivity can guarantee a large dynamic range, while the higher one will contribute to the enhanced resolution. Therefore, the temperature monitoring is the combination of large dynamic range and enhanced resolution. Moreover, the size of the ultracompact sensor is only 950μm, which has a great potential for engineering applications.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Single hole twin eccentric core fiber sensor based on anti-resonant effect combined with inline Mach-Zehnder interferometer

Wenjun Ni, Ping Lu, Jiangshan Zhang, Chunyong Yang, Xin Fu, Yuan Sun, Hao Liao, and Deming Liu
Opt. Express 25(11) 12372-12380 (2017)

Towards large dynamic range and ultrahigh measurement resolution in distributed fiber sensing based on multicore fiber

Yunli Dang, Zhiyong Zhao, Ming Tang, Can Zhao, Lin Gan, Songnian Fu, Tongqing Liu, Weijun Tong, Perry Ping Shum, and Deming Liu
Opt. Express 25(17) 20183-20193 (2017)

References

  • View by:
  • |
  • |
  • |

  1. G. Woyessa, A. Fasano, A. Stefani, C. Markos, K. Nielsen, H. K. Rasmussen, and O. Bang, “Single mode step-index polymer optical fiber for humidity insensitive high temperature fiber Bragg grating sensors,” Opt. Express 24(2), 1253–1260 (2016).
    [Crossref] [PubMed]
  2. A. Urrutia, J. Goicoecheaa, A. L. Ricchiutib, D. Barrerab, S. Salesb, and F. J. Arreguia, “Simultaneous measurement of humidity and temperature based on a partially coated optical fiber long period grating,” Sensor. Actuat. Biol. Chem. 227, 135–141 (2016).
  3. W. Ni, P. Lu, C. Luo, X. Fu, L. Liu, H. Liao, X. Jiang, D. Liu, and J. Zhang, “Bending direction detective fiber sensor for dual-parameter sensing based on an asymmetrical thin-core long-period fiber grating,” IEEE Photonics J. 8(4), 6803811 (2016).
    [Crossref]
  4. M. Deng, L. Liu, Y. Zhao, G. Yin, and T. Zhu, “Highly sensitive temperature sensor based on an ultra-compact Mach-Zehnder interferometer with side-opened channels,” Opt. Lett. 42(18), 3549–3552 (2017).
    [Crossref] [PubMed]
  5. X. Tan, Y. Geng, X. Li, R. Gao, and Z. Yin, “High temperature microstructured fiber sensor based on a partial-reflection-enabled intrinsic Fabry-Perot interferometer,” Appl. Opt. 52(34), 8195–8198 (2013).
    [Crossref] [PubMed]
  6. L. Shao, Y. Luo, Z. Zhang, X. Zou, B. Luo, W. Pan, and L. Yan, “Sensitivity-enhanced temperature sensor with cascaded fiber optic Sagnac interferometers based on Vernier-effect,” Opt. Commun. 336, 73–76 (2015).
    [Crossref]
  7. Y. Xue, Y. S. Yu, R. Yang, C. Wang, C. Chen, J. C. Guo, X. Y. Zhang, C. C. Zhu, and H. B. Sun, “Ultrasensitive temperature sensor based on an isopropanol-sealed optical microfiber taper,” Opt. Lett. 38(8), 1209–1211 (2013).
    [Crossref] [PubMed]
  8. J. E. Antonio-Lopez, Z. S. Eznaveh, P. LiKamWa, A. Schülzgen, and R. Amezcua-Correa, “Multicore fiber sensor for high-temperature applications up to 1000°C,” Opt. Lett. 39(15), 4309–4312 (2014).
    [Crossref] [PubMed]
  9. C. Li, Q. Liu, X. Peng, and S. Fan, “Analyzing the temperature sensitivity of Fabry-Perot sensor using multilayer graphene diaphragm,” Opt. Express 23(21), 27494–27502 (2015).
    [Crossref] [PubMed]
  10. Q. Sun, X. Sun, W. Jia, Z. Xu, H. Luo, D. Liu, and L. Zhang, “Graphene-assisted microfiber for optical-power-based temperature sensor,” IEEE Photonics Technol. Lett. 28(4), 383–386 (2016).
    [Crossref]
  11. I. Hernández-Romano, M. A. Cruz-Garcia, C. Moreno-Hernández, D. Monzón-Hernández, E. O. López-Figueroa, O. E. Paredes-Gallardo, M. Torres-Cisneros, and J. Villatoro, “Optical fiber temperature sensor based on a microcavity with polymer overlay,” Opt. Express 24(5), 5654–5661 (2016).
    [Crossref] [PubMed]
  12. H. Sun, H. Luo, X. Wu, L. Liang, Y. Wang, X. Ma, J. Zhang, M. Hu, and X. Qiao, “Spectrum ameliorative optical fiber temperature sensor based on hollow-core fiber and inner zinc oxide film,” Sensor. Actuat. Biol. Chem. 245, 423–427 (2017).
  13. Z. Zhang, C. Liao, J. Tang, Y. Wang, Z. Bai, Z. Li, M. Deng, S. Cao, and Y. Wang, “Hollow-Core-Fiber-Based Interferometer for High-Temperature Measurements,” IEEE Photonics J. 9(2), 7101109 (2017).
    [Crossref]
  14. S. Liu, Y. Wang, M. Hou, J. Guo, Z. Li, and P. Lu, “Anti-resonant reflecting guidance in alcohol-filled hollow core photonic crystal fiber for sensing applications,” Opt. Express 21(25), 31690–31697 (2013).
    [Crossref] [PubMed]
  15. Y. Yang, Y. Wang, Y. Zhao, J. Jiang, X. He, W. Yang, Z. Zhu, W. Gao, and L. Li, “Sensitivity-enhanced temperature sensor by hybrid cascaded configuration of a Sagnac loop and a FP cavity,” Opt. Express 25(26), 33290–33296 (2017).
    [Crossref]
  16. S. C. Warren-Smith, L. V. Nguyen, C. Lang, H. Ebendorff-Heidepriem, and T. M. Monro, “Temperature sensing up to 1300°C using suspended-core microstructured optical fibers,” Opt. Express 24(4), 3714–3719 (2016).
    [Crossref] [PubMed]
  17. Z. Tian, Z. Yu, B. Liu, and A. Wang, “Sourceless optical fiber high temperature sensor,” Opt. Lett. 41(2), 195–198 (2016).
    [Crossref] [PubMed]
  18. Y. Guo, W. Xia, Z. Hu, and M. Wang, “High-temperature sensor instrumentation with a thin-film-based sapphire fiber,” Appl. Opt. 56(8), 2068–2073 (2017).
    [Crossref] [PubMed]
  19. L. V. Nguyen, S. C. Warren-Smith, H. Ebendorff-Heidepriem, and T. M. Monro, “Interferometric high temperature sensor using suspended-core optical fibers,” Opt. Express 24(8), 8967–8977 (2016).
    [Crossref] [PubMed]
  20. R. Gao, D. Lu, J. Cheng, and Z. M. Qi, “Self-referenced antiresonant reflecting guidance mechanism for directional bending sensing with low temperature and strain crosstalk,” Opt. Express 25(15), 18081–18091 (2017).
    [Crossref] [PubMed]
  21. R. Gao, D. Lu, J. Cheng, Y. Jiang, L. Jiang, and Z. Qi, “Optical displacement sensor in a capillary covered hollow core fiber based on anti-resonant reflecting guidance,” IEEE J. Sel. Top. Quant. 23(2), 5600106 (2017).
    [Crossref]
  22. W. Ni, P. Lu, J. Zhang, C. Yang, X. Fu, Y. Sun, H. Liao, and D. Liu, “Single hole twin eccentric core fiber sensor based on anti-resonant effect combined with inline Mach-Zehnder interferometer,” Opt. Express 25(11), 12372–12380 (2017).
    [Crossref] [PubMed]
  23. J. R. Hayes, F. Poletti, M. S. Abokhamis, N. V. Wheeler, N. K. Baddela, and D. J. Richardson, “Anti-resonant hexagram hollow core fibers,” Opt. Express 23(2), 1289–1299 (2015).
    [Crossref] [PubMed]
  24. M. I. Hasan, N. Akhmediev, and W. Chang, “Positive and negative curvatures nested in an antiresonant hollow-core fiber,” Opt. Lett. 42(4), 703–706 (2017).
    [Crossref] [PubMed]
  25. M. S. Habib, O. Bang, and M. Bache, “Low-loss single-mode hollow-core fiber with anisotropic anti-resonant elements,” Opt. Express 24(8), 8429–8436 (2016).
    [Crossref] [PubMed]
  26. K. Cao, Y. Liu, and S. Qu, “Highly sensitive temperature sensor based on cascaded polymer-microbubble cavities by employing a subtraction between reciprocal thermal responses,” Opt. Express 24(18), 20655–20662 (2016).
    [Crossref] [PubMed]

2017 (9)

M. Deng, L. Liu, Y. Zhao, G. Yin, and T. Zhu, “Highly sensitive temperature sensor based on an ultra-compact Mach-Zehnder interferometer with side-opened channels,” Opt. Lett. 42(18), 3549–3552 (2017).
[Crossref] [PubMed]

H. Sun, H. Luo, X. Wu, L. Liang, Y. Wang, X. Ma, J. Zhang, M. Hu, and X. Qiao, “Spectrum ameliorative optical fiber temperature sensor based on hollow-core fiber and inner zinc oxide film,” Sensor. Actuat. Biol. Chem. 245, 423–427 (2017).

Z. Zhang, C. Liao, J. Tang, Y. Wang, Z. Bai, Z. Li, M. Deng, S. Cao, and Y. Wang, “Hollow-Core-Fiber-Based Interferometer for High-Temperature Measurements,” IEEE Photonics J. 9(2), 7101109 (2017).
[Crossref]

Y. Yang, Y. Wang, Y. Zhao, J. Jiang, X. He, W. Yang, Z. Zhu, W. Gao, and L. Li, “Sensitivity-enhanced temperature sensor by hybrid cascaded configuration of a Sagnac loop and a FP cavity,” Opt. Express 25(26), 33290–33296 (2017).
[Crossref]

Y. Guo, W. Xia, Z. Hu, and M. Wang, “High-temperature sensor instrumentation with a thin-film-based sapphire fiber,” Appl. Opt. 56(8), 2068–2073 (2017).
[Crossref] [PubMed]

R. Gao, D. Lu, J. Cheng, and Z. M. Qi, “Self-referenced antiresonant reflecting guidance mechanism for directional bending sensing with low temperature and strain crosstalk,” Opt. Express 25(15), 18081–18091 (2017).
[Crossref] [PubMed]

R. Gao, D. Lu, J. Cheng, Y. Jiang, L. Jiang, and Z. Qi, “Optical displacement sensor in a capillary covered hollow core fiber based on anti-resonant reflecting guidance,” IEEE J. Sel. Top. Quant. 23(2), 5600106 (2017).
[Crossref]

W. Ni, P. Lu, J. Zhang, C. Yang, X. Fu, Y. Sun, H. Liao, and D. Liu, “Single hole twin eccentric core fiber sensor based on anti-resonant effect combined with inline Mach-Zehnder interferometer,” Opt. Express 25(11), 12372–12380 (2017).
[Crossref] [PubMed]

M. I. Hasan, N. Akhmediev, and W. Chang, “Positive and negative curvatures nested in an antiresonant hollow-core fiber,” Opt. Lett. 42(4), 703–706 (2017).
[Crossref] [PubMed]

2016 (10)

M. S. Habib, O. Bang, and M. Bache, “Low-loss single-mode hollow-core fiber with anisotropic anti-resonant elements,” Opt. Express 24(8), 8429–8436 (2016).
[Crossref] [PubMed]

K. Cao, Y. Liu, and S. Qu, “Highly sensitive temperature sensor based on cascaded polymer-microbubble cavities by employing a subtraction between reciprocal thermal responses,” Opt. Express 24(18), 20655–20662 (2016).
[Crossref] [PubMed]

L. V. Nguyen, S. C. Warren-Smith, H. Ebendorff-Heidepriem, and T. M. Monro, “Interferometric high temperature sensor using suspended-core optical fibers,” Opt. Express 24(8), 8967–8977 (2016).
[Crossref] [PubMed]

S. C. Warren-Smith, L. V. Nguyen, C. Lang, H. Ebendorff-Heidepriem, and T. M. Monro, “Temperature sensing up to 1300°C using suspended-core microstructured optical fibers,” Opt. Express 24(4), 3714–3719 (2016).
[Crossref] [PubMed]

Z. Tian, Z. Yu, B. Liu, and A. Wang, “Sourceless optical fiber high temperature sensor,” Opt. Lett. 41(2), 195–198 (2016).
[Crossref] [PubMed]

Q. Sun, X. Sun, W. Jia, Z. Xu, H. Luo, D. Liu, and L. Zhang, “Graphene-assisted microfiber for optical-power-based temperature sensor,” IEEE Photonics Technol. Lett. 28(4), 383–386 (2016).
[Crossref]

I. Hernández-Romano, M. A. Cruz-Garcia, C. Moreno-Hernández, D. Monzón-Hernández, E. O. López-Figueroa, O. E. Paredes-Gallardo, M. Torres-Cisneros, and J. Villatoro, “Optical fiber temperature sensor based on a microcavity with polymer overlay,” Opt. Express 24(5), 5654–5661 (2016).
[Crossref] [PubMed]

G. Woyessa, A. Fasano, A. Stefani, C. Markos, K. Nielsen, H. K. Rasmussen, and O. Bang, “Single mode step-index polymer optical fiber for humidity insensitive high temperature fiber Bragg grating sensors,” Opt. Express 24(2), 1253–1260 (2016).
[Crossref] [PubMed]

A. Urrutia, J. Goicoecheaa, A. L. Ricchiutib, D. Barrerab, S. Salesb, and F. J. Arreguia, “Simultaneous measurement of humidity and temperature based on a partially coated optical fiber long period grating,” Sensor. Actuat. Biol. Chem. 227, 135–141 (2016).

W. Ni, P. Lu, C. Luo, X. Fu, L. Liu, H. Liao, X. Jiang, D. Liu, and J. Zhang, “Bending direction detective fiber sensor for dual-parameter sensing based on an asymmetrical thin-core long-period fiber grating,” IEEE Photonics J. 8(4), 6803811 (2016).
[Crossref]

2015 (3)

2014 (1)

2013 (3)

Abokhamis, M. S.

Akhmediev, N.

Amezcua-Correa, R.

Antonio-Lopez, J. E.

Arreguia, F. J.

A. Urrutia, J. Goicoecheaa, A. L. Ricchiutib, D. Barrerab, S. Salesb, and F. J. Arreguia, “Simultaneous measurement of humidity and temperature based on a partially coated optical fiber long period grating,” Sensor. Actuat. Biol. Chem. 227, 135–141 (2016).

Bache, M.

Baddela, N. K.

Bai, Z.

Z. Zhang, C. Liao, J. Tang, Y. Wang, Z. Bai, Z. Li, M. Deng, S. Cao, and Y. Wang, “Hollow-Core-Fiber-Based Interferometer for High-Temperature Measurements,” IEEE Photonics J. 9(2), 7101109 (2017).
[Crossref]

Bang, O.

Barrerab, D.

A. Urrutia, J. Goicoecheaa, A. L. Ricchiutib, D. Barrerab, S. Salesb, and F. J. Arreguia, “Simultaneous measurement of humidity and temperature based on a partially coated optical fiber long period grating,” Sensor. Actuat. Biol. Chem. 227, 135–141 (2016).

Cao, K.

Cao, S.

Z. Zhang, C. Liao, J. Tang, Y. Wang, Z. Bai, Z. Li, M. Deng, S. Cao, and Y. Wang, “Hollow-Core-Fiber-Based Interferometer for High-Temperature Measurements,” IEEE Photonics J. 9(2), 7101109 (2017).
[Crossref]

Chang, W.

Chen, C.

Cheng, J.

R. Gao, D. Lu, J. Cheng, Y. Jiang, L. Jiang, and Z. Qi, “Optical displacement sensor in a capillary covered hollow core fiber based on anti-resonant reflecting guidance,” IEEE J. Sel. Top. Quant. 23(2), 5600106 (2017).
[Crossref]

R. Gao, D. Lu, J. Cheng, and Z. M. Qi, “Self-referenced antiresonant reflecting guidance mechanism for directional bending sensing with low temperature and strain crosstalk,” Opt. Express 25(15), 18081–18091 (2017).
[Crossref] [PubMed]

Cruz-Garcia, M. A.

Deng, M.

Z. Zhang, C. Liao, J. Tang, Y. Wang, Z. Bai, Z. Li, M. Deng, S. Cao, and Y. Wang, “Hollow-Core-Fiber-Based Interferometer for High-Temperature Measurements,” IEEE Photonics J. 9(2), 7101109 (2017).
[Crossref]

M. Deng, L. Liu, Y. Zhao, G. Yin, and T. Zhu, “Highly sensitive temperature sensor based on an ultra-compact Mach-Zehnder interferometer with side-opened channels,” Opt. Lett. 42(18), 3549–3552 (2017).
[Crossref] [PubMed]

Ebendorff-Heidepriem, H.

Eznaveh, Z. S.

Fan, S.

Fasano, A.

Fu, X.

W. Ni, P. Lu, J. Zhang, C. Yang, X. Fu, Y. Sun, H. Liao, and D. Liu, “Single hole twin eccentric core fiber sensor based on anti-resonant effect combined with inline Mach-Zehnder interferometer,” Opt. Express 25(11), 12372–12380 (2017).
[Crossref] [PubMed]

W. Ni, P. Lu, C. Luo, X. Fu, L. Liu, H. Liao, X. Jiang, D. Liu, and J. Zhang, “Bending direction detective fiber sensor for dual-parameter sensing based on an asymmetrical thin-core long-period fiber grating,” IEEE Photonics J. 8(4), 6803811 (2016).
[Crossref]

Gao, R.

Gao, W.

Geng, Y.

Goicoecheaa, J.

A. Urrutia, J. Goicoecheaa, A. L. Ricchiutib, D. Barrerab, S. Salesb, and F. J. Arreguia, “Simultaneous measurement of humidity and temperature based on a partially coated optical fiber long period grating,” Sensor. Actuat. Biol. Chem. 227, 135–141 (2016).

Guo, J.

Guo, J. C.

Guo, Y.

Habib, M. S.

Hasan, M. I.

Hayes, J. R.

He, X.

Hernández-Romano, I.

Hou, M.

Hu, M.

H. Sun, H. Luo, X. Wu, L. Liang, Y. Wang, X. Ma, J. Zhang, M. Hu, and X. Qiao, “Spectrum ameliorative optical fiber temperature sensor based on hollow-core fiber and inner zinc oxide film,” Sensor. Actuat. Biol. Chem. 245, 423–427 (2017).

Hu, Z.

Jia, W.

Q. Sun, X. Sun, W. Jia, Z. Xu, H. Luo, D. Liu, and L. Zhang, “Graphene-assisted microfiber for optical-power-based temperature sensor,” IEEE Photonics Technol. Lett. 28(4), 383–386 (2016).
[Crossref]

Jiang, J.

Jiang, L.

R. Gao, D. Lu, J. Cheng, Y. Jiang, L. Jiang, and Z. Qi, “Optical displacement sensor in a capillary covered hollow core fiber based on anti-resonant reflecting guidance,” IEEE J. Sel. Top. Quant. 23(2), 5600106 (2017).
[Crossref]

Jiang, X.

W. Ni, P. Lu, C. Luo, X. Fu, L. Liu, H. Liao, X. Jiang, D. Liu, and J. Zhang, “Bending direction detective fiber sensor for dual-parameter sensing based on an asymmetrical thin-core long-period fiber grating,” IEEE Photonics J. 8(4), 6803811 (2016).
[Crossref]

Jiang, Y.

R. Gao, D. Lu, J. Cheng, Y. Jiang, L. Jiang, and Z. Qi, “Optical displacement sensor in a capillary covered hollow core fiber based on anti-resonant reflecting guidance,” IEEE J. Sel. Top. Quant. 23(2), 5600106 (2017).
[Crossref]

Lang, C.

Li, C.

Li, L.

Li, X.

Li, Z.

Z. Zhang, C. Liao, J. Tang, Y. Wang, Z. Bai, Z. Li, M. Deng, S. Cao, and Y. Wang, “Hollow-Core-Fiber-Based Interferometer for High-Temperature Measurements,” IEEE Photonics J. 9(2), 7101109 (2017).
[Crossref]

S. Liu, Y. Wang, M. Hou, J. Guo, Z. Li, and P. Lu, “Anti-resonant reflecting guidance in alcohol-filled hollow core photonic crystal fiber for sensing applications,” Opt. Express 21(25), 31690–31697 (2013).
[Crossref] [PubMed]

Liang, L.

H. Sun, H. Luo, X. Wu, L. Liang, Y. Wang, X. Ma, J. Zhang, M. Hu, and X. Qiao, “Spectrum ameliorative optical fiber temperature sensor based on hollow-core fiber and inner zinc oxide film,” Sensor. Actuat. Biol. Chem. 245, 423–427 (2017).

Liao, C.

Z. Zhang, C. Liao, J. Tang, Y. Wang, Z. Bai, Z. Li, M. Deng, S. Cao, and Y. Wang, “Hollow-Core-Fiber-Based Interferometer for High-Temperature Measurements,” IEEE Photonics J. 9(2), 7101109 (2017).
[Crossref]

Liao, H.

W. Ni, P. Lu, J. Zhang, C. Yang, X. Fu, Y. Sun, H. Liao, and D. Liu, “Single hole twin eccentric core fiber sensor based on anti-resonant effect combined with inline Mach-Zehnder interferometer,” Opt. Express 25(11), 12372–12380 (2017).
[Crossref] [PubMed]

W. Ni, P. Lu, C. Luo, X. Fu, L. Liu, H. Liao, X. Jiang, D. Liu, and J. Zhang, “Bending direction detective fiber sensor for dual-parameter sensing based on an asymmetrical thin-core long-period fiber grating,” IEEE Photonics J. 8(4), 6803811 (2016).
[Crossref]

LiKamWa, P.

Liu, B.

Liu, D.

W. Ni, P. Lu, J. Zhang, C. Yang, X. Fu, Y. Sun, H. Liao, and D. Liu, “Single hole twin eccentric core fiber sensor based on anti-resonant effect combined with inline Mach-Zehnder interferometer,” Opt. Express 25(11), 12372–12380 (2017).
[Crossref] [PubMed]

W. Ni, P. Lu, C. Luo, X. Fu, L. Liu, H. Liao, X. Jiang, D. Liu, and J. Zhang, “Bending direction detective fiber sensor for dual-parameter sensing based on an asymmetrical thin-core long-period fiber grating,” IEEE Photonics J. 8(4), 6803811 (2016).
[Crossref]

Q. Sun, X. Sun, W. Jia, Z. Xu, H. Luo, D. Liu, and L. Zhang, “Graphene-assisted microfiber for optical-power-based temperature sensor,” IEEE Photonics Technol. Lett. 28(4), 383–386 (2016).
[Crossref]

Liu, L.

M. Deng, L. Liu, Y. Zhao, G. Yin, and T. Zhu, “Highly sensitive temperature sensor based on an ultra-compact Mach-Zehnder interferometer with side-opened channels,” Opt. Lett. 42(18), 3549–3552 (2017).
[Crossref] [PubMed]

W. Ni, P. Lu, C. Luo, X. Fu, L. Liu, H. Liao, X. Jiang, D. Liu, and J. Zhang, “Bending direction detective fiber sensor for dual-parameter sensing based on an asymmetrical thin-core long-period fiber grating,” IEEE Photonics J. 8(4), 6803811 (2016).
[Crossref]

Liu, Q.

Liu, S.

Liu, Y.

López-Figueroa, E. O.

Lu, D.

R. Gao, D. Lu, J. Cheng, and Z. M. Qi, “Self-referenced antiresonant reflecting guidance mechanism for directional bending sensing with low temperature and strain crosstalk,” Opt. Express 25(15), 18081–18091 (2017).
[Crossref] [PubMed]

R. Gao, D. Lu, J. Cheng, Y. Jiang, L. Jiang, and Z. Qi, “Optical displacement sensor in a capillary covered hollow core fiber based on anti-resonant reflecting guidance,” IEEE J. Sel. Top. Quant. 23(2), 5600106 (2017).
[Crossref]

Lu, P.

Luo, B.

L. Shao, Y. Luo, Z. Zhang, X. Zou, B. Luo, W. Pan, and L. Yan, “Sensitivity-enhanced temperature sensor with cascaded fiber optic Sagnac interferometers based on Vernier-effect,” Opt. Commun. 336, 73–76 (2015).
[Crossref]

Luo, C.

W. Ni, P. Lu, C. Luo, X. Fu, L. Liu, H. Liao, X. Jiang, D. Liu, and J. Zhang, “Bending direction detective fiber sensor for dual-parameter sensing based on an asymmetrical thin-core long-period fiber grating,” IEEE Photonics J. 8(4), 6803811 (2016).
[Crossref]

Luo, H.

H. Sun, H. Luo, X. Wu, L. Liang, Y. Wang, X. Ma, J. Zhang, M. Hu, and X. Qiao, “Spectrum ameliorative optical fiber temperature sensor based on hollow-core fiber and inner zinc oxide film,” Sensor. Actuat. Biol. Chem. 245, 423–427 (2017).

Q. Sun, X. Sun, W. Jia, Z. Xu, H. Luo, D. Liu, and L. Zhang, “Graphene-assisted microfiber for optical-power-based temperature sensor,” IEEE Photonics Technol. Lett. 28(4), 383–386 (2016).
[Crossref]

Luo, Y.

L. Shao, Y. Luo, Z. Zhang, X. Zou, B. Luo, W. Pan, and L. Yan, “Sensitivity-enhanced temperature sensor with cascaded fiber optic Sagnac interferometers based on Vernier-effect,” Opt. Commun. 336, 73–76 (2015).
[Crossref]

Ma, X.

H. Sun, H. Luo, X. Wu, L. Liang, Y. Wang, X. Ma, J. Zhang, M. Hu, and X. Qiao, “Spectrum ameliorative optical fiber temperature sensor based on hollow-core fiber and inner zinc oxide film,” Sensor. Actuat. Biol. Chem. 245, 423–427 (2017).

Markos, C.

Monro, T. M.

Monzón-Hernández, D.

Moreno-Hernández, C.

Nguyen, L. V.

Ni, W.

W. Ni, P. Lu, J. Zhang, C. Yang, X. Fu, Y. Sun, H. Liao, and D. Liu, “Single hole twin eccentric core fiber sensor based on anti-resonant effect combined with inline Mach-Zehnder interferometer,” Opt. Express 25(11), 12372–12380 (2017).
[Crossref] [PubMed]

W. Ni, P. Lu, C. Luo, X. Fu, L. Liu, H. Liao, X. Jiang, D. Liu, and J. Zhang, “Bending direction detective fiber sensor for dual-parameter sensing based on an asymmetrical thin-core long-period fiber grating,” IEEE Photonics J. 8(4), 6803811 (2016).
[Crossref]

Nielsen, K.

Pan, W.

L. Shao, Y. Luo, Z. Zhang, X. Zou, B. Luo, W. Pan, and L. Yan, “Sensitivity-enhanced temperature sensor with cascaded fiber optic Sagnac interferometers based on Vernier-effect,” Opt. Commun. 336, 73–76 (2015).
[Crossref]

Paredes-Gallardo, O. E.

Peng, X.

Poletti, F.

Qi, Z.

R. Gao, D. Lu, J. Cheng, Y. Jiang, L. Jiang, and Z. Qi, “Optical displacement sensor in a capillary covered hollow core fiber based on anti-resonant reflecting guidance,” IEEE J. Sel. Top. Quant. 23(2), 5600106 (2017).
[Crossref]

Qi, Z. M.

Qiao, X.

H. Sun, H. Luo, X. Wu, L. Liang, Y. Wang, X. Ma, J. Zhang, M. Hu, and X. Qiao, “Spectrum ameliorative optical fiber temperature sensor based on hollow-core fiber and inner zinc oxide film,” Sensor. Actuat. Biol. Chem. 245, 423–427 (2017).

Qu, S.

Rasmussen, H. K.

Ricchiutib, A. L.

A. Urrutia, J. Goicoecheaa, A. L. Ricchiutib, D. Barrerab, S. Salesb, and F. J. Arreguia, “Simultaneous measurement of humidity and temperature based on a partially coated optical fiber long period grating,” Sensor. Actuat. Biol. Chem. 227, 135–141 (2016).

Richardson, D. J.

Salesb, S.

A. Urrutia, J. Goicoecheaa, A. L. Ricchiutib, D. Barrerab, S. Salesb, and F. J. Arreguia, “Simultaneous measurement of humidity and temperature based on a partially coated optical fiber long period grating,” Sensor. Actuat. Biol. Chem. 227, 135–141 (2016).

Schülzgen, A.

Shao, L.

L. Shao, Y. Luo, Z. Zhang, X. Zou, B. Luo, W. Pan, and L. Yan, “Sensitivity-enhanced temperature sensor with cascaded fiber optic Sagnac interferometers based on Vernier-effect,” Opt. Commun. 336, 73–76 (2015).
[Crossref]

Stefani, A.

Sun, H.

H. Sun, H. Luo, X. Wu, L. Liang, Y. Wang, X. Ma, J. Zhang, M. Hu, and X. Qiao, “Spectrum ameliorative optical fiber temperature sensor based on hollow-core fiber and inner zinc oxide film,” Sensor. Actuat. Biol. Chem. 245, 423–427 (2017).

Sun, H. B.

Sun, Q.

Q. Sun, X. Sun, W. Jia, Z. Xu, H. Luo, D. Liu, and L. Zhang, “Graphene-assisted microfiber for optical-power-based temperature sensor,” IEEE Photonics Technol. Lett. 28(4), 383–386 (2016).
[Crossref]

Sun, X.

Q. Sun, X. Sun, W. Jia, Z. Xu, H. Luo, D. Liu, and L. Zhang, “Graphene-assisted microfiber for optical-power-based temperature sensor,” IEEE Photonics Technol. Lett. 28(4), 383–386 (2016).
[Crossref]

Sun, Y.

Tan, X.

Tang, J.

Z. Zhang, C. Liao, J. Tang, Y. Wang, Z. Bai, Z. Li, M. Deng, S. Cao, and Y. Wang, “Hollow-Core-Fiber-Based Interferometer for High-Temperature Measurements,” IEEE Photonics J. 9(2), 7101109 (2017).
[Crossref]

Tian, Z.

Torres-Cisneros, M.

Urrutia, A.

A. Urrutia, J. Goicoecheaa, A. L. Ricchiutib, D. Barrerab, S. Salesb, and F. J. Arreguia, “Simultaneous measurement of humidity and temperature based on a partially coated optical fiber long period grating,” Sensor. Actuat. Biol. Chem. 227, 135–141 (2016).

Villatoro, J.

Wang, A.

Wang, C.

Wang, M.

Wang, Y.

Z. Zhang, C. Liao, J. Tang, Y. Wang, Z. Bai, Z. Li, M. Deng, S. Cao, and Y. Wang, “Hollow-Core-Fiber-Based Interferometer for High-Temperature Measurements,” IEEE Photonics J. 9(2), 7101109 (2017).
[Crossref]

Z. Zhang, C. Liao, J. Tang, Y. Wang, Z. Bai, Z. Li, M. Deng, S. Cao, and Y. Wang, “Hollow-Core-Fiber-Based Interferometer for High-Temperature Measurements,” IEEE Photonics J. 9(2), 7101109 (2017).
[Crossref]

H. Sun, H. Luo, X. Wu, L. Liang, Y. Wang, X. Ma, J. Zhang, M. Hu, and X. Qiao, “Spectrum ameliorative optical fiber temperature sensor based on hollow-core fiber and inner zinc oxide film,” Sensor. Actuat. Biol. Chem. 245, 423–427 (2017).

Y. Yang, Y. Wang, Y. Zhao, J. Jiang, X. He, W. Yang, Z. Zhu, W. Gao, and L. Li, “Sensitivity-enhanced temperature sensor by hybrid cascaded configuration of a Sagnac loop and a FP cavity,” Opt. Express 25(26), 33290–33296 (2017).
[Crossref]

S. Liu, Y. Wang, M. Hou, J. Guo, Z. Li, and P. Lu, “Anti-resonant reflecting guidance in alcohol-filled hollow core photonic crystal fiber for sensing applications,” Opt. Express 21(25), 31690–31697 (2013).
[Crossref] [PubMed]

Warren-Smith, S. C.

Wheeler, N. V.

Woyessa, G.

Wu, X.

H. Sun, H. Luo, X. Wu, L. Liang, Y. Wang, X. Ma, J. Zhang, M. Hu, and X. Qiao, “Spectrum ameliorative optical fiber temperature sensor based on hollow-core fiber and inner zinc oxide film,” Sensor. Actuat. Biol. Chem. 245, 423–427 (2017).

Xia, W.

Xu, Z.

Q. Sun, X. Sun, W. Jia, Z. Xu, H. Luo, D. Liu, and L. Zhang, “Graphene-assisted microfiber for optical-power-based temperature sensor,” IEEE Photonics Technol. Lett. 28(4), 383–386 (2016).
[Crossref]

Xue, Y.

Yan, L.

L. Shao, Y. Luo, Z. Zhang, X. Zou, B. Luo, W. Pan, and L. Yan, “Sensitivity-enhanced temperature sensor with cascaded fiber optic Sagnac interferometers based on Vernier-effect,” Opt. Commun. 336, 73–76 (2015).
[Crossref]

Yang, C.

Yang, R.

Yang, W.

Yang, Y.

Yin, G.

Yin, Z.

Yu, Y. S.

Yu, Z.

Zhang, J.

W. Ni, P. Lu, J. Zhang, C. Yang, X. Fu, Y. Sun, H. Liao, and D. Liu, “Single hole twin eccentric core fiber sensor based on anti-resonant effect combined with inline Mach-Zehnder interferometer,” Opt. Express 25(11), 12372–12380 (2017).
[Crossref] [PubMed]

H. Sun, H. Luo, X. Wu, L. Liang, Y. Wang, X. Ma, J. Zhang, M. Hu, and X. Qiao, “Spectrum ameliorative optical fiber temperature sensor based on hollow-core fiber and inner zinc oxide film,” Sensor. Actuat. Biol. Chem. 245, 423–427 (2017).

W. Ni, P. Lu, C. Luo, X. Fu, L. Liu, H. Liao, X. Jiang, D. Liu, and J. Zhang, “Bending direction detective fiber sensor for dual-parameter sensing based on an asymmetrical thin-core long-period fiber grating,” IEEE Photonics J. 8(4), 6803811 (2016).
[Crossref]

Zhang, L.

Q. Sun, X. Sun, W. Jia, Z. Xu, H. Luo, D. Liu, and L. Zhang, “Graphene-assisted microfiber for optical-power-based temperature sensor,” IEEE Photonics Technol. Lett. 28(4), 383–386 (2016).
[Crossref]

Zhang, X. Y.

Zhang, Z.

Z. Zhang, C. Liao, J. Tang, Y. Wang, Z. Bai, Z. Li, M. Deng, S. Cao, and Y. Wang, “Hollow-Core-Fiber-Based Interferometer for High-Temperature Measurements,” IEEE Photonics J. 9(2), 7101109 (2017).
[Crossref]

L. Shao, Y. Luo, Z. Zhang, X. Zou, B. Luo, W. Pan, and L. Yan, “Sensitivity-enhanced temperature sensor with cascaded fiber optic Sagnac interferometers based on Vernier-effect,” Opt. Commun. 336, 73–76 (2015).
[Crossref]

Zhao, Y.

Zhu, C. C.

Zhu, T.

Zhu, Z.

Zou, X.

L. Shao, Y. Luo, Z. Zhang, X. Zou, B. Luo, W. Pan, and L. Yan, “Sensitivity-enhanced temperature sensor with cascaded fiber optic Sagnac interferometers based on Vernier-effect,” Opt. Commun. 336, 73–76 (2015).
[Crossref]

Appl. Opt. (2)

IEEE J. Sel. Top. Quant. (1)

R. Gao, D. Lu, J. Cheng, Y. Jiang, L. Jiang, and Z. Qi, “Optical displacement sensor in a capillary covered hollow core fiber based on anti-resonant reflecting guidance,” IEEE J. Sel. Top. Quant. 23(2), 5600106 (2017).
[Crossref]

IEEE Photonics J. (2)

Z. Zhang, C. Liao, J. Tang, Y. Wang, Z. Bai, Z. Li, M. Deng, S. Cao, and Y. Wang, “Hollow-Core-Fiber-Based Interferometer for High-Temperature Measurements,” IEEE Photonics J. 9(2), 7101109 (2017).
[Crossref]

W. Ni, P. Lu, C. Luo, X. Fu, L. Liu, H. Liao, X. Jiang, D. Liu, and J. Zhang, “Bending direction detective fiber sensor for dual-parameter sensing based on an asymmetrical thin-core long-period fiber grating,” IEEE Photonics J. 8(4), 6803811 (2016).
[Crossref]

IEEE Photonics Technol. Lett. (1)

Q. Sun, X. Sun, W. Jia, Z. Xu, H. Luo, D. Liu, and L. Zhang, “Graphene-assisted microfiber for optical-power-based temperature sensor,” IEEE Photonics Technol. Lett. 28(4), 383–386 (2016).
[Crossref]

Opt. Commun. (1)

L. Shao, Y. Luo, Z. Zhang, X. Zou, B. Luo, W. Pan, and L. Yan, “Sensitivity-enhanced temperature sensor with cascaded fiber optic Sagnac interferometers based on Vernier-effect,” Opt. Commun. 336, 73–76 (2015).
[Crossref]

Opt. Express (12)

G. Woyessa, A. Fasano, A. Stefani, C. Markos, K. Nielsen, H. K. Rasmussen, and O. Bang, “Single mode step-index polymer optical fiber for humidity insensitive high temperature fiber Bragg grating sensors,” Opt. Express 24(2), 1253–1260 (2016).
[Crossref] [PubMed]

I. Hernández-Romano, M. A. Cruz-Garcia, C. Moreno-Hernández, D. Monzón-Hernández, E. O. López-Figueroa, O. E. Paredes-Gallardo, M. Torres-Cisneros, and J. Villatoro, “Optical fiber temperature sensor based on a microcavity with polymer overlay,” Opt. Express 24(5), 5654–5661 (2016).
[Crossref] [PubMed]

L. V. Nguyen, S. C. Warren-Smith, H. Ebendorff-Heidepriem, and T. M. Monro, “Interferometric high temperature sensor using suspended-core optical fibers,” Opt. Express 24(8), 8967–8977 (2016).
[Crossref] [PubMed]

R. Gao, D. Lu, J. Cheng, and Z. M. Qi, “Self-referenced antiresonant reflecting guidance mechanism for directional bending sensing with low temperature and strain crosstalk,” Opt. Express 25(15), 18081–18091 (2017).
[Crossref] [PubMed]

S. Liu, Y. Wang, M. Hou, J. Guo, Z. Li, and P. Lu, “Anti-resonant reflecting guidance in alcohol-filled hollow core photonic crystal fiber for sensing applications,” Opt. Express 21(25), 31690–31697 (2013).
[Crossref] [PubMed]

Y. Yang, Y. Wang, Y. Zhao, J. Jiang, X. He, W. Yang, Z. Zhu, W. Gao, and L. Li, “Sensitivity-enhanced temperature sensor by hybrid cascaded configuration of a Sagnac loop and a FP cavity,” Opt. Express 25(26), 33290–33296 (2017).
[Crossref]

S. C. Warren-Smith, L. V. Nguyen, C. Lang, H. Ebendorff-Heidepriem, and T. M. Monro, “Temperature sensing up to 1300°C using suspended-core microstructured optical fibers,” Opt. Express 24(4), 3714–3719 (2016).
[Crossref] [PubMed]

W. Ni, P. Lu, J. Zhang, C. Yang, X. Fu, Y. Sun, H. Liao, and D. Liu, “Single hole twin eccentric core fiber sensor based on anti-resonant effect combined with inline Mach-Zehnder interferometer,” Opt. Express 25(11), 12372–12380 (2017).
[Crossref] [PubMed]

J. R. Hayes, F. Poletti, M. S. Abokhamis, N. V. Wheeler, N. K. Baddela, and D. J. Richardson, “Anti-resonant hexagram hollow core fibers,” Opt. Express 23(2), 1289–1299 (2015).
[Crossref] [PubMed]

M. S. Habib, O. Bang, and M. Bache, “Low-loss single-mode hollow-core fiber with anisotropic anti-resonant elements,” Opt. Express 24(8), 8429–8436 (2016).
[Crossref] [PubMed]

K. Cao, Y. Liu, and S. Qu, “Highly sensitive temperature sensor based on cascaded polymer-microbubble cavities by employing a subtraction between reciprocal thermal responses,” Opt. Express 24(18), 20655–20662 (2016).
[Crossref] [PubMed]

C. Li, Q. Liu, X. Peng, and S. Fan, “Analyzing the temperature sensitivity of Fabry-Perot sensor using multilayer graphene diaphragm,” Opt. Express 23(21), 27494–27502 (2015).
[Crossref] [PubMed]

Opt. Lett. (5)

Sensor. Actuat. Biol. Chem. (2)

A. Urrutia, J. Goicoecheaa, A. L. Ricchiutib, D. Barrerab, S. Salesb, and F. J. Arreguia, “Simultaneous measurement of humidity and temperature based on a partially coated optical fiber long period grating,” Sensor. Actuat. Biol. Chem. 227, 135–141 (2016).

H. Sun, H. Luo, X. Wu, L. Liang, Y. Wang, X. Ma, J. Zhang, M. Hu, and X. Qiao, “Spectrum ameliorative optical fiber temperature sensor based on hollow-core fiber and inner zinc oxide film,” Sensor. Actuat. Biol. Chem. 245, 423–427 (2017).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 The simulation result and schematic diagram of optical field distribution and propagation. (a) The cross-section micrograph of SHTECF and optical field distribution in air hole. The diameter of fiber core, air hole and cladding are 9.1μm, 40μm and 125μm, respectively. (b) The schematic diagram of light beams propagation in SHTECF. (c) The micrograph of the whole fiber sensor head. The length of SHTECF is 950μm. (d) A full-vector beam propagation simulation of the transmission of optical field distribution.
Fig. 2
Fig. 2 Experimental and simulated spectrum of the combinational two different mechanisms.
Fig. 3
Fig. 3 (a) FFT of the mixed spectrum, and band-pass filtering of five typical modes in inset. (b) The filtered comb spectrum is obtained by FFT filtering method, corresponding to the spatial frequency of 0.04nm−1, 0.07nm−1, 0.09nm−1, 0.17nm−1 and 1.20nm−1.
Fig. 4
Fig. 4 The band-pass filtering is to obtain the envelope. (a) and (b) are the two filtered out cladding modes, (c) The envelope is superposition of (a) and (b).
Fig. 5
Fig. 5 Gauss fit of spectrum and temperature monitoring. (a) The spectrum variation with temperature increasing from 25°C to 75°C. (b) Gauss fit of the resonant wavelength, and the wavelength range is from 1555nm to 1590nm. (c) Resonant wavelength shift with temperature increasing from 25°C to 75°C. (d) Linear fit of the resonant wavelength. The temperature sensitivity and linearity are respectively of 42.18pm/°C and 0.9927
Fig. 6
Fig. 6 Filtered spectrum shift with temperature increasing from 25°C to 30°C. (a) The spectrum of red and blue line respectively represents the temperature of 25°C and 30°C. (b) Gauss fit of the filtered envelope spectrum. The wavelength valley of the dipA and dipB are respectively corresponding to 1560.2nm and 1570nm.
Fig. 7
Fig. 7 FFT filtering method for temperature measurement. (a) Comb spectrum is filtered out by FFT filtering method. (b) Gauss fit of the filtered envelope spectrum. (c) The different envelope is extracted with the temperature increasing from 25°C to 30°C. (d) Linear fit of the wavelength valley value. The temperature sensitivity and linearity are 2.057nm/°C and 0.98844, respectively.
Fig. 8
Fig. 8 Schematic diagram of the large dynamic range and enhanced resolution temperature measurement. The minimum interval of the main scale and vernier gauge are 0.5°C and 0.01°C, respectively.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

T anti+MZI =A F sin 2 ( 2π λ n(λ)l) 1+F sin 2 ( 2π λ n(λ)l) + B i cos 2 ( π λ Δ n i L)

Metrics