Abstract

Time-resolved femtosecond stimulated Raman spectroscopy (FSRS) is a powerful tool for investigating ultrafast structural and vibrational dynamics in light absorbing systems. However, the technique generally requires exposing a sample to high laser pulse fluences and long acquisition times to achieve adequate signal-to-noise ratios. Here, we describe a time-resolved FSRS instrument built around a Yb ultrafast amplifier operating at 200 kHz, and address some of the unique challenges that arise at high repetition-rates. The setup includes detection with a 9 kHz CMOS camera and an improved dual-chopping scheme to reject scattering artifacts that occur in the 3-pulse configuration. The instrument demonstrates good signal-to-noise performance while simultaneously achieving a 3-6 fold reduction in pulse energy and a 5-10 fold reduction in acquisition time relative to comparable 1 kHz instruments.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
100-kHz shot-to-shot broadband data acquisition for high-repetition-rate pump–probe spectroscopy

Florian Kanal, Sabine Keiber, Reiner Eck, and Tobias Brixner
Opt. Express 22(14) 16965-16975 (2014)

Broadband stimulated Raman scattering spectroscopy by a photonic time stretcher

Francesco Saltarelli, Vikas Kumar, Daniele Viola, Francesco Crisafi, Fabrizio Preda, Giulio Cerullo, and Dario Polli
Opt. Express 24(19) 21264-21275 (2016)

Raman mixture composition and flow velocity imaging with high repetition rates

Andreas Braeuer, Sascha Ronald Engel, Stefan Dowy, Sebastian Luther, Jürgen Goldlücke, and Alfred Leipertz
Opt. Express 18(24) 24579-24587 (2010)

References

  • View by:
  • |
  • |
  • |

  1. D. R. Dietze and R. A. Mathies, “Femtosecond stimulated raman spectroscopy,” ChemPhysChem 17(9), 1224–1251 (2016).
    [Crossref] [PubMed]
  2. R. M. Young, S. M. Dyar, J. C. Barnes, M. Juríček, J. F. Stoddart, D. T. Co, and M. R. Wasielewski, “Ultrafast conformational dynamics of electron transfer in exbox(4+) subset of perylene,” J. Phys. Chem. A 117(47), 12438–12448 (2013).
    [Crossref] [PubMed]
  3. K. E. Brown, B. S. Veldkamp, D. T. Co, and M. R. Wasielewski, “Vibrational dynamics of a perylene–perylenediimide donor–acceptor dyad probed with femtosecond stimulated raman spectroscopy,” J. Phys. Chem. Lett. 3(17), 2362–2366 (2012).
    [Crossref] [PubMed]
  4. J. M. Rhinehart, J. R. Challa, and D. W. McCamant, “Multimode charge-transfer dynamics of 4-(dimethylamino)benzonitrile probed with ultraviolet femtosecond stimulated raman spectroscopy,” J. Phys. Chem. B 116(35), 10522–10534 (2012).
    [Crossref] [PubMed]
  5. T. Fujisawa, M. Creelman, and R. A. Mathies, “Structural dynamics of a noncovalent charge transfer complex from femtosecond stimulated raman spectroscopy,” J. Phys. Chem. B 116(35), 10453–10460 (2012).
    [Crossref] [PubMed]
  6. K. Bera, C. J. Douglas, and R. R. Frontiera, “Femtosecond raman microscopy reveals structural dynamics leading to triplet separation in rubrene singlet fission,” J. Phys. Chem. Lett. 8(23), 5929–5934 (2017).
    [Crossref] [PubMed]
  7. S. M. Dyar, J. C. Barnes, M. Juríček, J. F. Stoddart, D. T. Co, R. M. Young, and M. R. Wasielewski, “Electron transfer and multi-electron accumulation in ExBox4+**,” Angew. Chem. Int. Ed. Engl. 53(21), 5371–5375 (2014).
    [Crossref] [PubMed]
  8. C. Ferrante, E. Pontecorvo, G. Cerullo, M. H. Vos, and T. Scopigno, “Direct observation of subpicosecond vibrational dynamics in photoexcited myoglobin,” Nat. Chem. 8(12), 1137–1143 (2016).
    [Crossref] [PubMed]
  9. D. W. McCamant, P. Kukura, S. Yoon, and R. A. Mathies, “Femtosecond broadband stimulated raman spectroscopy: Apparatus and methods,” Rev. Sci. Instrum. 75(11), 4971–4980 (2004).
    [Crossref] [PubMed]
  10. R. R. Frontiera, A.-I. Henry, N. L. Gruenke, and R. P. Van Duyne, “Surface-enhanced femtosecond stimulated raman spectroscopy,” J. Phys. Chem. Lett. 2(10), 1199–1203 (2011).
    [Crossref] [PubMed]
  11. L. E. Buchanan, N. L. Gruenke, M. O. McAnally, B. Negru, H. E. Mayhew, V. A. Apkarian, G. C. Schatz, and R. P. Van Duyne, “Surface-enhanced femtosecond stimulated raman spectroscopy at 1 mhz repetition rates,” J. Phys. Chem. Lett. 7(22), 4629–4634 (2016).
    [Crossref] [PubMed]
  12. E. Ploetz, B. Marx, T. Klein, R. Huber, and P. Gilch, “A 75 MHz light source for femtosecond stimulated raman microscopy,” Opt. Express 17(21), 18612–18620 (2009).
    [Crossref] [PubMed]
  13. B. R. Bachler, M. E. Fermann, and J. P. Ogilvie, “Multiplex Raman induced kerr effect microscopy,” Opt. Express 20(2), 835–844 (2012).
    [Crossref] [PubMed]
  14. S. Dobner and C. Fallnich, “Hyperspectral imaging with in-line interferometric femtosecond stimulated Raman scattering spectroscopy,” J. Chem. Phys. 140(8), 084201 (2014).
    [Crossref] [PubMed]
  15. D. P. Hoffman, D. Valley, S. R. Ellis, M. Creelman, and R. A. Mathies, “Optimally shaped narrowband picosecond pulses for femtosecond stimulated raman spectroscopy,” Opt. Express 21(18), 21685–21692 (2013).
    [Crossref] [PubMed]
  16. E. M. Grumstrup, Z. Chen, R. P. Vary, A. M. Moran, K. S. Schanze, and J. M. Papanikolas, “Frequency modulated femtosecond stimulated raman spectroscopy of ultrafast energy transfer in a donor-acceptor copolymer,” J. Phys. Chem. B 117(27), 8245–8255 (2013).
    [Crossref] [PubMed]
  17. J. R. Challa, Y. Du, and D. W. McCamant, “Femtosecond stimulated raman spectroscopy using a scanning multichannel technique,” Appl. Spectrosc. 66(2), 227–232 (2012).
    [Crossref] [PubMed]
  18. R. R. Petersburg, T. M. McCracken, D. Eggerman, C. A. Jurgenson, D. Sawyer, A. E. Szymkowiak, and D. A. Fischer, “Modal noise mitigation through fiber agitation for fiber-fed radial velocity spectrographs,” Astrophys. J. 853(2), 181 (2018).
    [Crossref]
  19. Z. Wang, J. A. Carter, A. Lagutchev, Y. K. Koh, N. H. Seong, D. G. Cahill, and D. D. Dlott, “Ultrafast flash thermal conductance of molecular chains,” Science 317(5839), 787–790 (2007).
    [Crossref] [PubMed]
  20. E. Busby, E. C. Carroll, E. M. Chinn, L. Chang, A. J. Moulé, and D. S. Larsen, “Excited-state self-trapping and ground-state relaxation dynamics in poly(3-hexylthiophene) resolved with broadband pump–dump–probe spectroscopy,” J. Phys. Chem. Lett. 2(21), 2764–2769 (2011).
    [Crossref]
  21. A. E. Fitzpatrick, C. N. Lincoln, L. J. G. W. van Wilderen, and J. J. van Thor, “Pump-dump-probe and pump-repump-probe ultrafast spectroscopy resolves cross section of an early ground state intermediate and stimulated emission in the photoreactions of the Pr ground state of the cyanobacterial phytochrome Cph1,” J. Phys. Chem. B 116(3), 1077–1088 (2012).
    [Crossref] [PubMed]
  22. T. W. Kee, “Femtosecond pump–push–probe and pump–dump–probe spectroscopy of conjugated polymers: New insight and opportunities,” J. Phys. Chem. Lett. 5(18), 3231–3240 (2014).
    [Crossref] [PubMed]
  23. A. A. Bakulin, A. Rao, V. G. Pavelyev, P. H. M. van Loosdrecht, M. S. Pshenichnikov, D. Niedzialek, J. Cornil, D. Beljonne, and R. H. Friend, “The role of driving energy and delocalized States for charge separation in organic semiconductors,” Science 335(6074), 1340–1344 (2012).
    [Crossref] [PubMed]

2018 (1)

R. R. Petersburg, T. M. McCracken, D. Eggerman, C. A. Jurgenson, D. Sawyer, A. E. Szymkowiak, and D. A. Fischer, “Modal noise mitigation through fiber agitation for fiber-fed radial velocity spectrographs,” Astrophys. J. 853(2), 181 (2018).
[Crossref]

2017 (1)

K. Bera, C. J. Douglas, and R. R. Frontiera, “Femtosecond raman microscopy reveals structural dynamics leading to triplet separation in rubrene singlet fission,” J. Phys. Chem. Lett. 8(23), 5929–5934 (2017).
[Crossref] [PubMed]

2016 (3)

C. Ferrante, E. Pontecorvo, G. Cerullo, M. H. Vos, and T. Scopigno, “Direct observation of subpicosecond vibrational dynamics in photoexcited myoglobin,” Nat. Chem. 8(12), 1137–1143 (2016).
[Crossref] [PubMed]

D. R. Dietze and R. A. Mathies, “Femtosecond stimulated raman spectroscopy,” ChemPhysChem 17(9), 1224–1251 (2016).
[Crossref] [PubMed]

L. E. Buchanan, N. L. Gruenke, M. O. McAnally, B. Negru, H. E. Mayhew, V. A. Apkarian, G. C. Schatz, and R. P. Van Duyne, “Surface-enhanced femtosecond stimulated raman spectroscopy at 1 mhz repetition rates,” J. Phys. Chem. Lett. 7(22), 4629–4634 (2016).
[Crossref] [PubMed]

2014 (3)

S. Dobner and C. Fallnich, “Hyperspectral imaging with in-line interferometric femtosecond stimulated Raman scattering spectroscopy,” J. Chem. Phys. 140(8), 084201 (2014).
[Crossref] [PubMed]

T. W. Kee, “Femtosecond pump–push–probe and pump–dump–probe spectroscopy of conjugated polymers: New insight and opportunities,” J. Phys. Chem. Lett. 5(18), 3231–3240 (2014).
[Crossref] [PubMed]

S. M. Dyar, J. C. Barnes, M. Juríček, J. F. Stoddart, D. T. Co, R. M. Young, and M. R. Wasielewski, “Electron transfer and multi-electron accumulation in ExBox4+**,” Angew. Chem. Int. Ed. Engl. 53(21), 5371–5375 (2014).
[Crossref] [PubMed]

2013 (3)

R. M. Young, S. M. Dyar, J. C. Barnes, M. Juríček, J. F. Stoddart, D. T. Co, and M. R. Wasielewski, “Ultrafast conformational dynamics of electron transfer in exbox(4+) subset of perylene,” J. Phys. Chem. A 117(47), 12438–12448 (2013).
[Crossref] [PubMed]

E. M. Grumstrup, Z. Chen, R. P. Vary, A. M. Moran, K. S. Schanze, and J. M. Papanikolas, “Frequency modulated femtosecond stimulated raman spectroscopy of ultrafast energy transfer in a donor-acceptor copolymer,” J. Phys. Chem. B 117(27), 8245–8255 (2013).
[Crossref] [PubMed]

D. P. Hoffman, D. Valley, S. R. Ellis, M. Creelman, and R. A. Mathies, “Optimally shaped narrowband picosecond pulses for femtosecond stimulated raman spectroscopy,” Opt. Express 21(18), 21685–21692 (2013).
[Crossref] [PubMed]

2012 (7)

A. E. Fitzpatrick, C. N. Lincoln, L. J. G. W. van Wilderen, and J. J. van Thor, “Pump-dump-probe and pump-repump-probe ultrafast spectroscopy resolves cross section of an early ground state intermediate and stimulated emission in the photoreactions of the Pr ground state of the cyanobacterial phytochrome Cph1,” J. Phys. Chem. B 116(3), 1077–1088 (2012).
[Crossref] [PubMed]

B. R. Bachler, M. E. Fermann, and J. P. Ogilvie, “Multiplex Raman induced kerr effect microscopy,” Opt. Express 20(2), 835–844 (2012).
[Crossref] [PubMed]

J. R. Challa, Y. Du, and D. W. McCamant, “Femtosecond stimulated raman spectroscopy using a scanning multichannel technique,” Appl. Spectrosc. 66(2), 227–232 (2012).
[Crossref] [PubMed]

A. A. Bakulin, A. Rao, V. G. Pavelyev, P. H. M. van Loosdrecht, M. S. Pshenichnikov, D. Niedzialek, J. Cornil, D. Beljonne, and R. H. Friend, “The role of driving energy and delocalized States for charge separation in organic semiconductors,” Science 335(6074), 1340–1344 (2012).
[Crossref] [PubMed]

K. E. Brown, B. S. Veldkamp, D. T. Co, and M. R. Wasielewski, “Vibrational dynamics of a perylene–perylenediimide donor–acceptor dyad probed with femtosecond stimulated raman spectroscopy,” J. Phys. Chem. Lett. 3(17), 2362–2366 (2012).
[Crossref] [PubMed]

J. M. Rhinehart, J. R. Challa, and D. W. McCamant, “Multimode charge-transfer dynamics of 4-(dimethylamino)benzonitrile probed with ultraviolet femtosecond stimulated raman spectroscopy,” J. Phys. Chem. B 116(35), 10522–10534 (2012).
[Crossref] [PubMed]

T. Fujisawa, M. Creelman, and R. A. Mathies, “Structural dynamics of a noncovalent charge transfer complex from femtosecond stimulated raman spectroscopy,” J. Phys. Chem. B 116(35), 10453–10460 (2012).
[Crossref] [PubMed]

2011 (2)

R. R. Frontiera, A.-I. Henry, N. L. Gruenke, and R. P. Van Duyne, “Surface-enhanced femtosecond stimulated raman spectroscopy,” J. Phys. Chem. Lett. 2(10), 1199–1203 (2011).
[Crossref] [PubMed]

E. Busby, E. C. Carroll, E. M. Chinn, L. Chang, A. J. Moulé, and D. S. Larsen, “Excited-state self-trapping and ground-state relaxation dynamics in poly(3-hexylthiophene) resolved with broadband pump–dump–probe spectroscopy,” J. Phys. Chem. Lett. 2(21), 2764–2769 (2011).
[Crossref]

2009 (1)

2007 (1)

Z. Wang, J. A. Carter, A. Lagutchev, Y. K. Koh, N. H. Seong, D. G. Cahill, and D. D. Dlott, “Ultrafast flash thermal conductance of molecular chains,” Science 317(5839), 787–790 (2007).
[Crossref] [PubMed]

2004 (1)

D. W. McCamant, P. Kukura, S. Yoon, and R. A. Mathies, “Femtosecond broadband stimulated raman spectroscopy: Apparatus and methods,” Rev. Sci. Instrum. 75(11), 4971–4980 (2004).
[Crossref] [PubMed]

Apkarian, V. A.

L. E. Buchanan, N. L. Gruenke, M. O. McAnally, B. Negru, H. E. Mayhew, V. A. Apkarian, G. C. Schatz, and R. P. Van Duyne, “Surface-enhanced femtosecond stimulated raman spectroscopy at 1 mhz repetition rates,” J. Phys. Chem. Lett. 7(22), 4629–4634 (2016).
[Crossref] [PubMed]

Bachler, B. R.

Bakulin, A. A.

A. A. Bakulin, A. Rao, V. G. Pavelyev, P. H. M. van Loosdrecht, M. S. Pshenichnikov, D. Niedzialek, J. Cornil, D. Beljonne, and R. H. Friend, “The role of driving energy and delocalized States for charge separation in organic semiconductors,” Science 335(6074), 1340–1344 (2012).
[Crossref] [PubMed]

Barnes, J. C.

S. M. Dyar, J. C. Barnes, M. Juríček, J. F. Stoddart, D. T. Co, R. M. Young, and M. R. Wasielewski, “Electron transfer and multi-electron accumulation in ExBox4+**,” Angew. Chem. Int. Ed. Engl. 53(21), 5371–5375 (2014).
[Crossref] [PubMed]

R. M. Young, S. M. Dyar, J. C. Barnes, M. Juríček, J. F. Stoddart, D. T. Co, and M. R. Wasielewski, “Ultrafast conformational dynamics of electron transfer in exbox(4+) subset of perylene,” J. Phys. Chem. A 117(47), 12438–12448 (2013).
[Crossref] [PubMed]

Beljonne, D.

A. A. Bakulin, A. Rao, V. G. Pavelyev, P. H. M. van Loosdrecht, M. S. Pshenichnikov, D. Niedzialek, J. Cornil, D. Beljonne, and R. H. Friend, “The role of driving energy and delocalized States for charge separation in organic semiconductors,” Science 335(6074), 1340–1344 (2012).
[Crossref] [PubMed]

Bera, K.

K. Bera, C. J. Douglas, and R. R. Frontiera, “Femtosecond raman microscopy reveals structural dynamics leading to triplet separation in rubrene singlet fission,” J. Phys. Chem. Lett. 8(23), 5929–5934 (2017).
[Crossref] [PubMed]

Brown, K. E.

K. E. Brown, B. S. Veldkamp, D. T. Co, and M. R. Wasielewski, “Vibrational dynamics of a perylene–perylenediimide donor–acceptor dyad probed with femtosecond stimulated raman spectroscopy,” J. Phys. Chem. Lett. 3(17), 2362–2366 (2012).
[Crossref] [PubMed]

Buchanan, L. E.

L. E. Buchanan, N. L. Gruenke, M. O. McAnally, B. Negru, H. E. Mayhew, V. A. Apkarian, G. C. Schatz, and R. P. Van Duyne, “Surface-enhanced femtosecond stimulated raman spectroscopy at 1 mhz repetition rates,” J. Phys. Chem. Lett. 7(22), 4629–4634 (2016).
[Crossref] [PubMed]

Busby, E.

E. Busby, E. C. Carroll, E. M. Chinn, L. Chang, A. J. Moulé, and D. S. Larsen, “Excited-state self-trapping and ground-state relaxation dynamics in poly(3-hexylthiophene) resolved with broadband pump–dump–probe spectroscopy,” J. Phys. Chem. Lett. 2(21), 2764–2769 (2011).
[Crossref]

Cahill, D. G.

Z. Wang, J. A. Carter, A. Lagutchev, Y. K. Koh, N. H. Seong, D. G. Cahill, and D. D. Dlott, “Ultrafast flash thermal conductance of molecular chains,” Science 317(5839), 787–790 (2007).
[Crossref] [PubMed]

Carroll, E. C.

E. Busby, E. C. Carroll, E. M. Chinn, L. Chang, A. J. Moulé, and D. S. Larsen, “Excited-state self-trapping and ground-state relaxation dynamics in poly(3-hexylthiophene) resolved with broadband pump–dump–probe spectroscopy,” J. Phys. Chem. Lett. 2(21), 2764–2769 (2011).
[Crossref]

Carter, J. A.

Z. Wang, J. A. Carter, A. Lagutchev, Y. K. Koh, N. H. Seong, D. G. Cahill, and D. D. Dlott, “Ultrafast flash thermal conductance of molecular chains,” Science 317(5839), 787–790 (2007).
[Crossref] [PubMed]

Cerullo, G.

C. Ferrante, E. Pontecorvo, G. Cerullo, M. H. Vos, and T. Scopigno, “Direct observation of subpicosecond vibrational dynamics in photoexcited myoglobin,” Nat. Chem. 8(12), 1137–1143 (2016).
[Crossref] [PubMed]

Challa, J. R.

J. M. Rhinehart, J. R. Challa, and D. W. McCamant, “Multimode charge-transfer dynamics of 4-(dimethylamino)benzonitrile probed with ultraviolet femtosecond stimulated raman spectroscopy,” J. Phys. Chem. B 116(35), 10522–10534 (2012).
[Crossref] [PubMed]

J. R. Challa, Y. Du, and D. W. McCamant, “Femtosecond stimulated raman spectroscopy using a scanning multichannel technique,” Appl. Spectrosc. 66(2), 227–232 (2012).
[Crossref] [PubMed]

Chang, L.

E. Busby, E. C. Carroll, E. M. Chinn, L. Chang, A. J. Moulé, and D. S. Larsen, “Excited-state self-trapping and ground-state relaxation dynamics in poly(3-hexylthiophene) resolved with broadband pump–dump–probe spectroscopy,” J. Phys. Chem. Lett. 2(21), 2764–2769 (2011).
[Crossref]

Chen, Z.

E. M. Grumstrup, Z. Chen, R. P. Vary, A. M. Moran, K. S. Schanze, and J. M. Papanikolas, “Frequency modulated femtosecond stimulated raman spectroscopy of ultrafast energy transfer in a donor-acceptor copolymer,” J. Phys. Chem. B 117(27), 8245–8255 (2013).
[Crossref] [PubMed]

Chinn, E. M.

E. Busby, E. C. Carroll, E. M. Chinn, L. Chang, A. J. Moulé, and D. S. Larsen, “Excited-state self-trapping and ground-state relaxation dynamics in poly(3-hexylthiophene) resolved with broadband pump–dump–probe spectroscopy,” J. Phys. Chem. Lett. 2(21), 2764–2769 (2011).
[Crossref]

Co, D. T.

S. M. Dyar, J. C. Barnes, M. Juríček, J. F. Stoddart, D. T. Co, R. M. Young, and M. R. Wasielewski, “Electron transfer and multi-electron accumulation in ExBox4+**,” Angew. Chem. Int. Ed. Engl. 53(21), 5371–5375 (2014).
[Crossref] [PubMed]

R. M. Young, S. M. Dyar, J. C. Barnes, M. Juríček, J. F. Stoddart, D. T. Co, and M. R. Wasielewski, “Ultrafast conformational dynamics of electron transfer in exbox(4+) subset of perylene,” J. Phys. Chem. A 117(47), 12438–12448 (2013).
[Crossref] [PubMed]

K. E. Brown, B. S. Veldkamp, D. T. Co, and M. R. Wasielewski, “Vibrational dynamics of a perylene–perylenediimide donor–acceptor dyad probed with femtosecond stimulated raman spectroscopy,” J. Phys. Chem. Lett. 3(17), 2362–2366 (2012).
[Crossref] [PubMed]

Cornil, J.

A. A. Bakulin, A. Rao, V. G. Pavelyev, P. H. M. van Loosdrecht, M. S. Pshenichnikov, D. Niedzialek, J. Cornil, D. Beljonne, and R. H. Friend, “The role of driving energy and delocalized States for charge separation in organic semiconductors,” Science 335(6074), 1340–1344 (2012).
[Crossref] [PubMed]

Creelman, M.

D. P. Hoffman, D. Valley, S. R. Ellis, M. Creelman, and R. A. Mathies, “Optimally shaped narrowband picosecond pulses for femtosecond stimulated raman spectroscopy,” Opt. Express 21(18), 21685–21692 (2013).
[Crossref] [PubMed]

T. Fujisawa, M. Creelman, and R. A. Mathies, “Structural dynamics of a noncovalent charge transfer complex from femtosecond stimulated raman spectroscopy,” J. Phys. Chem. B 116(35), 10453–10460 (2012).
[Crossref] [PubMed]

Dietze, D. R.

D. R. Dietze and R. A. Mathies, “Femtosecond stimulated raman spectroscopy,” ChemPhysChem 17(9), 1224–1251 (2016).
[Crossref] [PubMed]

Dlott, D. D.

Z. Wang, J. A. Carter, A. Lagutchev, Y. K. Koh, N. H. Seong, D. G. Cahill, and D. D. Dlott, “Ultrafast flash thermal conductance of molecular chains,” Science 317(5839), 787–790 (2007).
[Crossref] [PubMed]

Dobner, S.

S. Dobner and C. Fallnich, “Hyperspectral imaging with in-line interferometric femtosecond stimulated Raman scattering spectroscopy,” J. Chem. Phys. 140(8), 084201 (2014).
[Crossref] [PubMed]

Douglas, C. J.

K. Bera, C. J. Douglas, and R. R. Frontiera, “Femtosecond raman microscopy reveals structural dynamics leading to triplet separation in rubrene singlet fission,” J. Phys. Chem. Lett. 8(23), 5929–5934 (2017).
[Crossref] [PubMed]

Du, Y.

Dyar, S. M.

S. M. Dyar, J. C. Barnes, M. Juríček, J. F. Stoddart, D. T. Co, R. M. Young, and M. R. Wasielewski, “Electron transfer and multi-electron accumulation in ExBox4+**,” Angew. Chem. Int. Ed. Engl. 53(21), 5371–5375 (2014).
[Crossref] [PubMed]

R. M. Young, S. M. Dyar, J. C. Barnes, M. Juríček, J. F. Stoddart, D. T. Co, and M. R. Wasielewski, “Ultrafast conformational dynamics of electron transfer in exbox(4+) subset of perylene,” J. Phys. Chem. A 117(47), 12438–12448 (2013).
[Crossref] [PubMed]

Eggerman, D.

R. R. Petersburg, T. M. McCracken, D. Eggerman, C. A. Jurgenson, D. Sawyer, A. E. Szymkowiak, and D. A. Fischer, “Modal noise mitigation through fiber agitation for fiber-fed radial velocity spectrographs,” Astrophys. J. 853(2), 181 (2018).
[Crossref]

Ellis, S. R.

Fallnich, C.

S. Dobner and C. Fallnich, “Hyperspectral imaging with in-line interferometric femtosecond stimulated Raman scattering spectroscopy,” J. Chem. Phys. 140(8), 084201 (2014).
[Crossref] [PubMed]

Fermann, M. E.

Ferrante, C.

C. Ferrante, E. Pontecorvo, G. Cerullo, M. H. Vos, and T. Scopigno, “Direct observation of subpicosecond vibrational dynamics in photoexcited myoglobin,” Nat. Chem. 8(12), 1137–1143 (2016).
[Crossref] [PubMed]

Fischer, D. A.

R. R. Petersburg, T. M. McCracken, D. Eggerman, C. A. Jurgenson, D. Sawyer, A. E. Szymkowiak, and D. A. Fischer, “Modal noise mitigation through fiber agitation for fiber-fed radial velocity spectrographs,” Astrophys. J. 853(2), 181 (2018).
[Crossref]

Fitzpatrick, A. E.

A. E. Fitzpatrick, C. N. Lincoln, L. J. G. W. van Wilderen, and J. J. van Thor, “Pump-dump-probe and pump-repump-probe ultrafast spectroscopy resolves cross section of an early ground state intermediate and stimulated emission in the photoreactions of the Pr ground state of the cyanobacterial phytochrome Cph1,” J. Phys. Chem. B 116(3), 1077–1088 (2012).
[Crossref] [PubMed]

Friend, R. H.

A. A. Bakulin, A. Rao, V. G. Pavelyev, P. H. M. van Loosdrecht, M. S. Pshenichnikov, D. Niedzialek, J. Cornil, D. Beljonne, and R. H. Friend, “The role of driving energy and delocalized States for charge separation in organic semiconductors,” Science 335(6074), 1340–1344 (2012).
[Crossref] [PubMed]

Frontiera, R. R.

K. Bera, C. J. Douglas, and R. R. Frontiera, “Femtosecond raman microscopy reveals structural dynamics leading to triplet separation in rubrene singlet fission,” J. Phys. Chem. Lett. 8(23), 5929–5934 (2017).
[Crossref] [PubMed]

R. R. Frontiera, A.-I. Henry, N. L. Gruenke, and R. P. Van Duyne, “Surface-enhanced femtosecond stimulated raman spectroscopy,” J. Phys. Chem. Lett. 2(10), 1199–1203 (2011).
[Crossref] [PubMed]

Fujisawa, T.

T. Fujisawa, M. Creelman, and R. A. Mathies, “Structural dynamics of a noncovalent charge transfer complex from femtosecond stimulated raman spectroscopy,” J. Phys. Chem. B 116(35), 10453–10460 (2012).
[Crossref] [PubMed]

Gilch, P.

Gruenke, N. L.

L. E. Buchanan, N. L. Gruenke, M. O. McAnally, B. Negru, H. E. Mayhew, V. A. Apkarian, G. C. Schatz, and R. P. Van Duyne, “Surface-enhanced femtosecond stimulated raman spectroscopy at 1 mhz repetition rates,” J. Phys. Chem. Lett. 7(22), 4629–4634 (2016).
[Crossref] [PubMed]

R. R. Frontiera, A.-I. Henry, N. L. Gruenke, and R. P. Van Duyne, “Surface-enhanced femtosecond stimulated raman spectroscopy,” J. Phys. Chem. Lett. 2(10), 1199–1203 (2011).
[Crossref] [PubMed]

Grumstrup, E. M.

E. M. Grumstrup, Z. Chen, R. P. Vary, A. M. Moran, K. S. Schanze, and J. M. Papanikolas, “Frequency modulated femtosecond stimulated raman spectroscopy of ultrafast energy transfer in a donor-acceptor copolymer,” J. Phys. Chem. B 117(27), 8245–8255 (2013).
[Crossref] [PubMed]

Henry, A.-I.

R. R. Frontiera, A.-I. Henry, N. L. Gruenke, and R. P. Van Duyne, “Surface-enhanced femtosecond stimulated raman spectroscopy,” J. Phys. Chem. Lett. 2(10), 1199–1203 (2011).
[Crossref] [PubMed]

Hoffman, D. P.

Huber, R.

Jurgenson, C. A.

R. R. Petersburg, T. M. McCracken, D. Eggerman, C. A. Jurgenson, D. Sawyer, A. E. Szymkowiak, and D. A. Fischer, “Modal noise mitigation through fiber agitation for fiber-fed radial velocity spectrographs,” Astrophys. J. 853(2), 181 (2018).
[Crossref]

Jurícek, M.

S. M. Dyar, J. C. Barnes, M. Juríček, J. F. Stoddart, D. T. Co, R. M. Young, and M. R. Wasielewski, “Electron transfer and multi-electron accumulation in ExBox4+**,” Angew. Chem. Int. Ed. Engl. 53(21), 5371–5375 (2014).
[Crossref] [PubMed]

R. M. Young, S. M. Dyar, J. C. Barnes, M. Juríček, J. F. Stoddart, D. T. Co, and M. R. Wasielewski, “Ultrafast conformational dynamics of electron transfer in exbox(4+) subset of perylene,” J. Phys. Chem. A 117(47), 12438–12448 (2013).
[Crossref] [PubMed]

Kee, T. W.

T. W. Kee, “Femtosecond pump–push–probe and pump–dump–probe spectroscopy of conjugated polymers: New insight and opportunities,” J. Phys. Chem. Lett. 5(18), 3231–3240 (2014).
[Crossref] [PubMed]

Klein, T.

Koh, Y. K.

Z. Wang, J. A. Carter, A. Lagutchev, Y. K. Koh, N. H. Seong, D. G. Cahill, and D. D. Dlott, “Ultrafast flash thermal conductance of molecular chains,” Science 317(5839), 787–790 (2007).
[Crossref] [PubMed]

Kukura, P.

D. W. McCamant, P. Kukura, S. Yoon, and R. A. Mathies, “Femtosecond broadband stimulated raman spectroscopy: Apparatus and methods,” Rev. Sci. Instrum. 75(11), 4971–4980 (2004).
[Crossref] [PubMed]

Lagutchev, A.

Z. Wang, J. A. Carter, A. Lagutchev, Y. K. Koh, N. H. Seong, D. G. Cahill, and D. D. Dlott, “Ultrafast flash thermal conductance of molecular chains,” Science 317(5839), 787–790 (2007).
[Crossref] [PubMed]

Larsen, D. S.

E. Busby, E. C. Carroll, E. M. Chinn, L. Chang, A. J. Moulé, and D. S. Larsen, “Excited-state self-trapping and ground-state relaxation dynamics in poly(3-hexylthiophene) resolved with broadband pump–dump–probe spectroscopy,” J. Phys. Chem. Lett. 2(21), 2764–2769 (2011).
[Crossref]

Lincoln, C. N.

A. E. Fitzpatrick, C. N. Lincoln, L. J. G. W. van Wilderen, and J. J. van Thor, “Pump-dump-probe and pump-repump-probe ultrafast spectroscopy resolves cross section of an early ground state intermediate and stimulated emission in the photoreactions of the Pr ground state of the cyanobacterial phytochrome Cph1,” J. Phys. Chem. B 116(3), 1077–1088 (2012).
[Crossref] [PubMed]

Marx, B.

Mathies, R. A.

D. R. Dietze and R. A. Mathies, “Femtosecond stimulated raman spectroscopy,” ChemPhysChem 17(9), 1224–1251 (2016).
[Crossref] [PubMed]

D. P. Hoffman, D. Valley, S. R. Ellis, M. Creelman, and R. A. Mathies, “Optimally shaped narrowband picosecond pulses for femtosecond stimulated raman spectroscopy,” Opt. Express 21(18), 21685–21692 (2013).
[Crossref] [PubMed]

T. Fujisawa, M. Creelman, and R. A. Mathies, “Structural dynamics of a noncovalent charge transfer complex from femtosecond stimulated raman spectroscopy,” J. Phys. Chem. B 116(35), 10453–10460 (2012).
[Crossref] [PubMed]

D. W. McCamant, P. Kukura, S. Yoon, and R. A. Mathies, “Femtosecond broadband stimulated raman spectroscopy: Apparatus and methods,” Rev. Sci. Instrum. 75(11), 4971–4980 (2004).
[Crossref] [PubMed]

Mayhew, H. E.

L. E. Buchanan, N. L. Gruenke, M. O. McAnally, B. Negru, H. E. Mayhew, V. A. Apkarian, G. C. Schatz, and R. P. Van Duyne, “Surface-enhanced femtosecond stimulated raman spectroscopy at 1 mhz repetition rates,” J. Phys. Chem. Lett. 7(22), 4629–4634 (2016).
[Crossref] [PubMed]

McAnally, M. O.

L. E. Buchanan, N. L. Gruenke, M. O. McAnally, B. Negru, H. E. Mayhew, V. A. Apkarian, G. C. Schatz, and R. P. Van Duyne, “Surface-enhanced femtosecond stimulated raman spectroscopy at 1 mhz repetition rates,” J. Phys. Chem. Lett. 7(22), 4629–4634 (2016).
[Crossref] [PubMed]

McCamant, D. W.

J. M. Rhinehart, J. R. Challa, and D. W. McCamant, “Multimode charge-transfer dynamics of 4-(dimethylamino)benzonitrile probed with ultraviolet femtosecond stimulated raman spectroscopy,” J. Phys. Chem. B 116(35), 10522–10534 (2012).
[Crossref] [PubMed]

J. R. Challa, Y. Du, and D. W. McCamant, “Femtosecond stimulated raman spectroscopy using a scanning multichannel technique,” Appl. Spectrosc. 66(2), 227–232 (2012).
[Crossref] [PubMed]

D. W. McCamant, P. Kukura, S. Yoon, and R. A. Mathies, “Femtosecond broadband stimulated raman spectroscopy: Apparatus and methods,” Rev. Sci. Instrum. 75(11), 4971–4980 (2004).
[Crossref] [PubMed]

McCracken, T. M.

R. R. Petersburg, T. M. McCracken, D. Eggerman, C. A. Jurgenson, D. Sawyer, A. E. Szymkowiak, and D. A. Fischer, “Modal noise mitigation through fiber agitation for fiber-fed radial velocity spectrographs,” Astrophys. J. 853(2), 181 (2018).
[Crossref]

Moran, A. M.

E. M. Grumstrup, Z. Chen, R. P. Vary, A. M. Moran, K. S. Schanze, and J. M. Papanikolas, “Frequency modulated femtosecond stimulated raman spectroscopy of ultrafast energy transfer in a donor-acceptor copolymer,” J. Phys. Chem. B 117(27), 8245–8255 (2013).
[Crossref] [PubMed]

Moulé, A. J.

E. Busby, E. C. Carroll, E. M. Chinn, L. Chang, A. J. Moulé, and D. S. Larsen, “Excited-state self-trapping and ground-state relaxation dynamics in poly(3-hexylthiophene) resolved with broadband pump–dump–probe spectroscopy,” J. Phys. Chem. Lett. 2(21), 2764–2769 (2011).
[Crossref]

Negru, B.

L. E. Buchanan, N. L. Gruenke, M. O. McAnally, B. Negru, H. E. Mayhew, V. A. Apkarian, G. C. Schatz, and R. P. Van Duyne, “Surface-enhanced femtosecond stimulated raman spectroscopy at 1 mhz repetition rates,” J. Phys. Chem. Lett. 7(22), 4629–4634 (2016).
[Crossref] [PubMed]

Niedzialek, D.

A. A. Bakulin, A. Rao, V. G. Pavelyev, P. H. M. van Loosdrecht, M. S. Pshenichnikov, D. Niedzialek, J. Cornil, D. Beljonne, and R. H. Friend, “The role of driving energy and delocalized States for charge separation in organic semiconductors,” Science 335(6074), 1340–1344 (2012).
[Crossref] [PubMed]

Ogilvie, J. P.

Papanikolas, J. M.

E. M. Grumstrup, Z. Chen, R. P. Vary, A. M. Moran, K. S. Schanze, and J. M. Papanikolas, “Frequency modulated femtosecond stimulated raman spectroscopy of ultrafast energy transfer in a donor-acceptor copolymer,” J. Phys. Chem. B 117(27), 8245–8255 (2013).
[Crossref] [PubMed]

Pavelyev, V. G.

A. A. Bakulin, A. Rao, V. G. Pavelyev, P. H. M. van Loosdrecht, M. S. Pshenichnikov, D. Niedzialek, J. Cornil, D. Beljonne, and R. H. Friend, “The role of driving energy and delocalized States for charge separation in organic semiconductors,” Science 335(6074), 1340–1344 (2012).
[Crossref] [PubMed]

Petersburg, R. R.

R. R. Petersburg, T. M. McCracken, D. Eggerman, C. A. Jurgenson, D. Sawyer, A. E. Szymkowiak, and D. A. Fischer, “Modal noise mitigation through fiber agitation for fiber-fed radial velocity spectrographs,” Astrophys. J. 853(2), 181 (2018).
[Crossref]

Ploetz, E.

Pontecorvo, E.

C. Ferrante, E. Pontecorvo, G. Cerullo, M. H. Vos, and T. Scopigno, “Direct observation of subpicosecond vibrational dynamics in photoexcited myoglobin,” Nat. Chem. 8(12), 1137–1143 (2016).
[Crossref] [PubMed]

Pshenichnikov, M. S.

A. A. Bakulin, A. Rao, V. G. Pavelyev, P. H. M. van Loosdrecht, M. S. Pshenichnikov, D. Niedzialek, J. Cornil, D. Beljonne, and R. H. Friend, “The role of driving energy and delocalized States for charge separation in organic semiconductors,” Science 335(6074), 1340–1344 (2012).
[Crossref] [PubMed]

Rao, A.

A. A. Bakulin, A. Rao, V. G. Pavelyev, P. H. M. van Loosdrecht, M. S. Pshenichnikov, D. Niedzialek, J. Cornil, D. Beljonne, and R. H. Friend, “The role of driving energy and delocalized States for charge separation in organic semiconductors,” Science 335(6074), 1340–1344 (2012).
[Crossref] [PubMed]

Rhinehart, J. M.

J. M. Rhinehart, J. R. Challa, and D. W. McCamant, “Multimode charge-transfer dynamics of 4-(dimethylamino)benzonitrile probed with ultraviolet femtosecond stimulated raman spectroscopy,” J. Phys. Chem. B 116(35), 10522–10534 (2012).
[Crossref] [PubMed]

Sawyer, D.

R. R. Petersburg, T. M. McCracken, D. Eggerman, C. A. Jurgenson, D. Sawyer, A. E. Szymkowiak, and D. A. Fischer, “Modal noise mitigation through fiber agitation for fiber-fed radial velocity spectrographs,” Astrophys. J. 853(2), 181 (2018).
[Crossref]

Schanze, K. S.

E. M. Grumstrup, Z. Chen, R. P. Vary, A. M. Moran, K. S. Schanze, and J. M. Papanikolas, “Frequency modulated femtosecond stimulated raman spectroscopy of ultrafast energy transfer in a donor-acceptor copolymer,” J. Phys. Chem. B 117(27), 8245–8255 (2013).
[Crossref] [PubMed]

Schatz, G. C.

L. E. Buchanan, N. L. Gruenke, M. O. McAnally, B. Negru, H. E. Mayhew, V. A. Apkarian, G. C. Schatz, and R. P. Van Duyne, “Surface-enhanced femtosecond stimulated raman spectroscopy at 1 mhz repetition rates,” J. Phys. Chem. Lett. 7(22), 4629–4634 (2016).
[Crossref] [PubMed]

Scopigno, T.

C. Ferrante, E. Pontecorvo, G. Cerullo, M. H. Vos, and T. Scopigno, “Direct observation of subpicosecond vibrational dynamics in photoexcited myoglobin,” Nat. Chem. 8(12), 1137–1143 (2016).
[Crossref] [PubMed]

Seong, N. H.

Z. Wang, J. A. Carter, A. Lagutchev, Y. K. Koh, N. H. Seong, D. G. Cahill, and D. D. Dlott, “Ultrafast flash thermal conductance of molecular chains,” Science 317(5839), 787–790 (2007).
[Crossref] [PubMed]

Stoddart, J. F.

S. M. Dyar, J. C. Barnes, M. Juríček, J. F. Stoddart, D. T. Co, R. M. Young, and M. R. Wasielewski, “Electron transfer and multi-electron accumulation in ExBox4+**,” Angew. Chem. Int. Ed. Engl. 53(21), 5371–5375 (2014).
[Crossref] [PubMed]

R. M. Young, S. M. Dyar, J. C. Barnes, M. Juríček, J. F. Stoddart, D. T. Co, and M. R. Wasielewski, “Ultrafast conformational dynamics of electron transfer in exbox(4+) subset of perylene,” J. Phys. Chem. A 117(47), 12438–12448 (2013).
[Crossref] [PubMed]

Szymkowiak, A. E.

R. R. Petersburg, T. M. McCracken, D. Eggerman, C. A. Jurgenson, D. Sawyer, A. E. Szymkowiak, and D. A. Fischer, “Modal noise mitigation through fiber agitation for fiber-fed radial velocity spectrographs,” Astrophys. J. 853(2), 181 (2018).
[Crossref]

Valley, D.

Van Duyne, R. P.

L. E. Buchanan, N. L. Gruenke, M. O. McAnally, B. Negru, H. E. Mayhew, V. A. Apkarian, G. C. Schatz, and R. P. Van Duyne, “Surface-enhanced femtosecond stimulated raman spectroscopy at 1 mhz repetition rates,” J. Phys. Chem. Lett. 7(22), 4629–4634 (2016).
[Crossref] [PubMed]

R. R. Frontiera, A.-I. Henry, N. L. Gruenke, and R. P. Van Duyne, “Surface-enhanced femtosecond stimulated raman spectroscopy,” J. Phys. Chem. Lett. 2(10), 1199–1203 (2011).
[Crossref] [PubMed]

van Loosdrecht, P. H. M.

A. A. Bakulin, A. Rao, V. G. Pavelyev, P. H. M. van Loosdrecht, M. S. Pshenichnikov, D. Niedzialek, J. Cornil, D. Beljonne, and R. H. Friend, “The role of driving energy and delocalized States for charge separation in organic semiconductors,” Science 335(6074), 1340–1344 (2012).
[Crossref] [PubMed]

van Thor, J. J.

A. E. Fitzpatrick, C. N. Lincoln, L. J. G. W. van Wilderen, and J. J. van Thor, “Pump-dump-probe and pump-repump-probe ultrafast spectroscopy resolves cross section of an early ground state intermediate and stimulated emission in the photoreactions of the Pr ground state of the cyanobacterial phytochrome Cph1,” J. Phys. Chem. B 116(3), 1077–1088 (2012).
[Crossref] [PubMed]

van Wilderen, L. J. G. W.

A. E. Fitzpatrick, C. N. Lincoln, L. J. G. W. van Wilderen, and J. J. van Thor, “Pump-dump-probe and pump-repump-probe ultrafast spectroscopy resolves cross section of an early ground state intermediate and stimulated emission in the photoreactions of the Pr ground state of the cyanobacterial phytochrome Cph1,” J. Phys. Chem. B 116(3), 1077–1088 (2012).
[Crossref] [PubMed]

Vary, R. P.

E. M. Grumstrup, Z. Chen, R. P. Vary, A. M. Moran, K. S. Schanze, and J. M. Papanikolas, “Frequency modulated femtosecond stimulated raman spectroscopy of ultrafast energy transfer in a donor-acceptor copolymer,” J. Phys. Chem. B 117(27), 8245–8255 (2013).
[Crossref] [PubMed]

Veldkamp, B. S.

K. E. Brown, B. S. Veldkamp, D. T. Co, and M. R. Wasielewski, “Vibrational dynamics of a perylene–perylenediimide donor–acceptor dyad probed with femtosecond stimulated raman spectroscopy,” J. Phys. Chem. Lett. 3(17), 2362–2366 (2012).
[Crossref] [PubMed]

Vos, M. H.

C. Ferrante, E. Pontecorvo, G. Cerullo, M. H. Vos, and T. Scopigno, “Direct observation of subpicosecond vibrational dynamics in photoexcited myoglobin,” Nat. Chem. 8(12), 1137–1143 (2016).
[Crossref] [PubMed]

Wang, Z.

Z. Wang, J. A. Carter, A. Lagutchev, Y. K. Koh, N. H. Seong, D. G. Cahill, and D. D. Dlott, “Ultrafast flash thermal conductance of molecular chains,” Science 317(5839), 787–790 (2007).
[Crossref] [PubMed]

Wasielewski, M. R.

S. M. Dyar, J. C. Barnes, M. Juríček, J. F. Stoddart, D. T. Co, R. M. Young, and M. R. Wasielewski, “Electron transfer and multi-electron accumulation in ExBox4+**,” Angew. Chem. Int. Ed. Engl. 53(21), 5371–5375 (2014).
[Crossref] [PubMed]

R. M. Young, S. M. Dyar, J. C. Barnes, M. Juríček, J. F. Stoddart, D. T. Co, and M. R. Wasielewski, “Ultrafast conformational dynamics of electron transfer in exbox(4+) subset of perylene,” J. Phys. Chem. A 117(47), 12438–12448 (2013).
[Crossref] [PubMed]

K. E. Brown, B. S. Veldkamp, D. T. Co, and M. R. Wasielewski, “Vibrational dynamics of a perylene–perylenediimide donor–acceptor dyad probed with femtosecond stimulated raman spectroscopy,” J. Phys. Chem. Lett. 3(17), 2362–2366 (2012).
[Crossref] [PubMed]

Yoon, S.

D. W. McCamant, P. Kukura, S. Yoon, and R. A. Mathies, “Femtosecond broadband stimulated raman spectroscopy: Apparatus and methods,” Rev. Sci. Instrum. 75(11), 4971–4980 (2004).
[Crossref] [PubMed]

Young, R. M.

S. M. Dyar, J. C. Barnes, M. Juríček, J. F. Stoddart, D. T. Co, R. M. Young, and M. R. Wasielewski, “Electron transfer and multi-electron accumulation in ExBox4+**,” Angew. Chem. Int. Ed. Engl. 53(21), 5371–5375 (2014).
[Crossref] [PubMed]

R. M. Young, S. M. Dyar, J. C. Barnes, M. Juríček, J. F. Stoddart, D. T. Co, and M. R. Wasielewski, “Ultrafast conformational dynamics of electron transfer in exbox(4+) subset of perylene,” J. Phys. Chem. A 117(47), 12438–12448 (2013).
[Crossref] [PubMed]

Angew. Chem. Int. Ed. Engl. (1)

S. M. Dyar, J. C. Barnes, M. Juríček, J. F. Stoddart, D. T. Co, R. M. Young, and M. R. Wasielewski, “Electron transfer and multi-electron accumulation in ExBox4+**,” Angew. Chem. Int. Ed. Engl. 53(21), 5371–5375 (2014).
[Crossref] [PubMed]

Appl. Spectrosc. (1)

Astrophys. J. (1)

R. R. Petersburg, T. M. McCracken, D. Eggerman, C. A. Jurgenson, D. Sawyer, A. E. Szymkowiak, and D. A. Fischer, “Modal noise mitigation through fiber agitation for fiber-fed radial velocity spectrographs,” Astrophys. J. 853(2), 181 (2018).
[Crossref]

ChemPhysChem (1)

D. R. Dietze and R. A. Mathies, “Femtosecond stimulated raman spectroscopy,” ChemPhysChem 17(9), 1224–1251 (2016).
[Crossref] [PubMed]

J. Chem. Phys. (1)

S. Dobner and C. Fallnich, “Hyperspectral imaging with in-line interferometric femtosecond stimulated Raman scattering spectroscopy,” J. Chem. Phys. 140(8), 084201 (2014).
[Crossref] [PubMed]

J. Phys. Chem. A (1)

R. M. Young, S. M. Dyar, J. C. Barnes, M. Juríček, J. F. Stoddart, D. T. Co, and M. R. Wasielewski, “Ultrafast conformational dynamics of electron transfer in exbox(4+) subset of perylene,” J. Phys. Chem. A 117(47), 12438–12448 (2013).
[Crossref] [PubMed]

J. Phys. Chem. B (4)

J. M. Rhinehart, J. R. Challa, and D. W. McCamant, “Multimode charge-transfer dynamics of 4-(dimethylamino)benzonitrile probed with ultraviolet femtosecond stimulated raman spectroscopy,” J. Phys. Chem. B 116(35), 10522–10534 (2012).
[Crossref] [PubMed]

T. Fujisawa, M. Creelman, and R. A. Mathies, “Structural dynamics of a noncovalent charge transfer complex from femtosecond stimulated raman spectroscopy,” J. Phys. Chem. B 116(35), 10453–10460 (2012).
[Crossref] [PubMed]

E. M. Grumstrup, Z. Chen, R. P. Vary, A. M. Moran, K. S. Schanze, and J. M. Papanikolas, “Frequency modulated femtosecond stimulated raman spectroscopy of ultrafast energy transfer in a donor-acceptor copolymer,” J. Phys. Chem. B 117(27), 8245–8255 (2013).
[Crossref] [PubMed]

A. E. Fitzpatrick, C. N. Lincoln, L. J. G. W. van Wilderen, and J. J. van Thor, “Pump-dump-probe and pump-repump-probe ultrafast spectroscopy resolves cross section of an early ground state intermediate and stimulated emission in the photoreactions of the Pr ground state of the cyanobacterial phytochrome Cph1,” J. Phys. Chem. B 116(3), 1077–1088 (2012).
[Crossref] [PubMed]

J. Phys. Chem. Lett. (6)

T. W. Kee, “Femtosecond pump–push–probe and pump–dump–probe spectroscopy of conjugated polymers: New insight and opportunities,” J. Phys. Chem. Lett. 5(18), 3231–3240 (2014).
[Crossref] [PubMed]

E. Busby, E. C. Carroll, E. M. Chinn, L. Chang, A. J. Moulé, and D. S. Larsen, “Excited-state self-trapping and ground-state relaxation dynamics in poly(3-hexylthiophene) resolved with broadband pump–dump–probe spectroscopy,” J. Phys. Chem. Lett. 2(21), 2764–2769 (2011).
[Crossref]

K. Bera, C. J. Douglas, and R. R. Frontiera, “Femtosecond raman microscopy reveals structural dynamics leading to triplet separation in rubrene singlet fission,” J. Phys. Chem. Lett. 8(23), 5929–5934 (2017).
[Crossref] [PubMed]

K. E. Brown, B. S. Veldkamp, D. T. Co, and M. R. Wasielewski, “Vibrational dynamics of a perylene–perylenediimide donor–acceptor dyad probed with femtosecond stimulated raman spectroscopy,” J. Phys. Chem. Lett. 3(17), 2362–2366 (2012).
[Crossref] [PubMed]

R. R. Frontiera, A.-I. Henry, N. L. Gruenke, and R. P. Van Duyne, “Surface-enhanced femtosecond stimulated raman spectroscopy,” J. Phys. Chem. Lett. 2(10), 1199–1203 (2011).
[Crossref] [PubMed]

L. E. Buchanan, N. L. Gruenke, M. O. McAnally, B. Negru, H. E. Mayhew, V. A. Apkarian, G. C. Schatz, and R. P. Van Duyne, “Surface-enhanced femtosecond stimulated raman spectroscopy at 1 mhz repetition rates,” J. Phys. Chem. Lett. 7(22), 4629–4634 (2016).
[Crossref] [PubMed]

Nat. Chem. (1)

C. Ferrante, E. Pontecorvo, G. Cerullo, M. H. Vos, and T. Scopigno, “Direct observation of subpicosecond vibrational dynamics in photoexcited myoglobin,” Nat. Chem. 8(12), 1137–1143 (2016).
[Crossref] [PubMed]

Opt. Express (3)

Rev. Sci. Instrum. (1)

D. W. McCamant, P. Kukura, S. Yoon, and R. A. Mathies, “Femtosecond broadband stimulated raman spectroscopy: Apparatus and methods,” Rev. Sci. Instrum. 75(11), 4971–4980 (2004).
[Crossref] [PubMed]

Science (2)

Z. Wang, J. A. Carter, A. Lagutchev, Y. K. Koh, N. H. Seong, D. G. Cahill, and D. D. Dlott, “Ultrafast flash thermal conductance of molecular chains,” Science 317(5839), 787–790 (2007).
[Crossref] [PubMed]

A. A. Bakulin, A. Rao, V. G. Pavelyev, P. H. M. van Loosdrecht, M. S. Pshenichnikov, D. Niedzialek, J. Cornil, D. Beljonne, and R. H. Friend, “The role of driving energy and delocalized States for charge separation in organic semiconductors,” Science 335(6074), 1340–1344 (2012).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) FSRS pulse sequence. (b) Ground-state FSRS spectrum and time-resolved FSRS gain at −6 ps and + 1 ps. (c) Optical layout for the FSRS instrument. BS – beamsplitter; WP1, WP2, and WP3 – half-wave plates; PBS – polarizing beamsplitter; BBO – β-barium borate; YAG – yttrium aluminum garnet; TEL – telescope; SDC – 750 nm shortpass dichroic beamsplitter; ETL – etalon; C1 and C2 – optical choppers; ND – variable ND wheel; L1-L6 – lenses (f = 1000 mm, 100 mm, 50 mm, 100 mm, 200 mm, and 50 mm respectively); POL – polarizer; RR1 and RR2 – retroreflectors; OAP – off-axis parabolic mirror (f = 50.8 mm); CM1, CM2, and CM3 – concave mirror (f = 100 mm, 50 mm, and 200 mm respectively); BD – beam dump; PC – prism compressor; ND – variable neutral density wheel; SC – sample cell.
Fig. 2
Fig. 2 (a) Schematic layout of the electronics connections. (b) Illustration of a typical data collection scheme applied to a high repetition-rate system depicting the synchronization signals and the modulation of the pump beams. The 4 interleaved spectra are labeled A-D. (c) Illustration of the improved chopping scheme proposed in this work. Again, the 4 interleaved spectra are labeled A-D and their position at the beginning or end of the long chopping phase is denoted 1-2.
Fig. 3
Fig. 3 Low-fluence FSRS data (0.95 mJ/cm2 RP, 1.75 mJ/cm2 AP). (a) Full time-resolved FSRS gain spectrum of fluorescein. (b) Offset FSRS gain spectra at selected time points. The ground state Raman spectrum acquired during the measurement is shown in black at the bottom of the panel, for reference.
Fig. 4
Fig. 4 High-fluence FSRS data (4.0 mJ/cm2 RP, 3.5 mJ/cm2 AP). (a) Full time-resolved FSRS gain spectrum of fluorescein. (b) Offset FSRS gain spectra at selected time points. The ground state Raman spectrum acquired during the measurement is shown in black at the bottom of the panel, for reference.
Fig. 5
Fig. 5 (a) FSRS gain spectra at t = 6.7 ps acquired with the typical chopping scheme and the flow cell peristaltic pump turned off (orange) and on (green). The blue trace was acquired with the flow cell running and the improved chopping scheme, showing superior signal-to-noise performance. (b) Comparison of transient absorption traces collected in the chopping window A (blue) and window B (red) phases of the chopping scheme shown in Fig. 2(b) (Raman pump blocked) as described in the main text.
Fig. 6
Fig. 6 FSRS gain spectra at t = 6.7 ps as a function of laser repetition-rate, using 0.95 mJ/cm2 Raman pump and 1.75 mJ/cm2 actinic pump pulse fluence. (a) Data collected with constant 8 second acquisition time. (b) Data collected with the integration time scaled so that all acquisitions include the same number of pulses. The integration time was set according to the number of pulses that fall within a camera detection window, and don’t scale strictly with the repetition-rate.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

R GS = C D .
FSRS= R ES R GS = A/B C/D .

Metrics