Abstract

In this paper we report a single mode InAs/GaAs quantum dot distributed feedback laser at 1.3 μm wavelength heterogeneously integrated on a Si photonics waveguide circuit. Single mode lasing around 1300 nm with a side-mode suppression ratio higher than 40 dB is demonstrated. High temperature operation with continuous wave lasing up to 100°C is obtained. Threshold current densities as low as 205 A/cm2 were measured. These devices are attractive candidates to use in uncooled silicon photonic transceivers in data centers.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Robust hybrid quantum dot laser for integrated silicon photonics

Géza Kurczveil, Di Liang, Marco Fiorentino, and Raymond G. Beausoleil
Opt. Express 24(14) 16167-16174 (2016)

Interband cascade laser on silicon

Alexander Spott, Eric J. Stanton, Alfredo Torres, Michael L. Davenport, Chadwick L. Canedy, Igor Vurgaftman, Mijin Kim, Chul Soo Kim, Charles D. Merritt, William W. Bewley, Jerry R. Meyer, and John E. Bowers
Optica 5(8) 996-1005 (2018)

2.3 µm range InP-based type-II quantum well Fabry-Perot lasers heterogeneously integrated on a silicon photonic integrated circuit

Ruijun Wang, Stephan Sprengel, Gerhard Boehm, Muhammad Muneeb, Roel Baets, Markus-Christian Amann, and Gunther Roelkens
Opt. Express 24(18) 21081-21089 (2016)

References

  • View by:
  • |
  • |
  • |

  1. D. A. Miller, “Rationale and challenges for optical interconnects to electronic chips,” Proc. IEEE 88, 728–749 (2000).
    [Crossref]
  2. Z. Zhou, B. Yin, and J. Michel, “On-chip light sources for silicon photonics,” Light. Sci. Appl. 4, e358 (2015).
    [Crossref]
  3. M. Sugawara and M. Usami, “Quantum dot devices: Handling the heat,” Nat. Photonics 3, 30–31 (2009).
    [Crossref]
  4. H. Liu, D. Childs, T. Badcock, K. Groom, I. Sellers, M. Hopkinson, R. Hogg, D. Robbins, D. Mowbray, and M. Skolnick, “High-performance three-layer 1.3-μm InAs-GaAs quantum-dot lasers with very low continuous-wave room-temperature threshold currents,” IEEE Photon. Technol. Lett. 17, 1139–1141 (2005).
    [Crossref]
  5. D. Liang, G. Kurczveil, X. Huang, C. Zhang, S. Srinivasan, Z. Huang, M. A. Seyedi, K. Norris, M. Fiorentino, J. E. Bowers, and R. G. Beausoleil, “Heterogeneous silicon light sources for datacom applications,” Opt. Fiber Technol., in press (2017).
  6. D. Jung, Z. Zhang, J. Norman, R. Herrick, M. Kennedy, P. Patel, K. Turnlund, C. Jan, Y. Wan, A. Gossard, and J. Bowers, “Highly reliable low threshold InAs quantum dot lasers on on-axis (001) Si with 87% injection efficiency,” ACS Photonics 5, 1094–1100 (2018).
    [Crossref]
  7. S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10, 307 (2016).
    [Crossref]
  8. N. Hatori, Y. Urino, T. Shimizu, M. Okano, T. Yamamoto, M. Mori, T. Nakamura, and Y. Arakawa, “Quantum dot laser for a light source of an athermal silicon optical interposer,” Photonics 2, 355–364 (2015).
    [Crossref]
  9. K. Tanabe, K. Watanabe, and Y. Arakawa, “Iii–v/si hybrid photonic devices by direct fusion bonding,” Sci. Rep. 2, 349 (2012).
    [Crossref]
  10. Y.-H. Jhang, K. Tanabe, S. Iwamoto, and Y. Arakawa, “Inas/gaas quantum dot lasers on silicon-on-insulator substrates by metal-stripe wafer bonding,” IEEE Photon. Technol. Lett. 27, 875–878 (2015).
    [Crossref]
  11. G. Kurczveil, D. Liang, M. Fiorentino, and R. G. Beausoleil, “Robust hybrid quantum dot laser for integrated silicon photonics,” Opt. Express 24, 16167–16174 (2016).
    [Crossref] [PubMed]
  12. B. Jang, K. Tanabe, S. Kako, S. Iwamoto, T. Tsuchizawa, H. Nishi, N. Hatori, M. Noguchi, T. Nakamura, K. Takemasa, M. Sugawara, and Y. Arakawa, “A hybrid silicon evanescent quantum dot laser,” Appl. Phys. Express 9, 092102 (2016).
    [Crossref]
  13. A. W. Fang, E. Lively, Y.-H. Kuo, D. Liang, and J. E. Bowers, “A distributed feedback silicon evanescent laser,” Opt. Express 16, 4413–4419 (2008).
    [Crossref] [PubMed]
  14. S. Keyvaninia, S. Verstuyft, L. Van Landschoot, F. Lelarge, G.-H. Duan, S. Messaoudene, J.-M. Fedeli, T. D. Vries, B. Smalbrugge, E. J. Geluk, J. Bolk, M. Smit, G. Morthier, D. Van Thourhout, and G. Roelkens, “Heterogeneously integrated iii–v/silicon distributed feedback lasers,” Opt. Lett. 38, 5434–5437 (2013).
    [Crossref] [PubMed]
  15. N. Anscombe, “Join up the quantum dots,” Nat. Photonics 1, 360–361 (2007).
    [Crossref]
  16. S. Keyvaninia, M. Muneeb, S. Stankovic, P. Van Veldhoven, D. Van Thourhout, and G. Roelkens, “Ultra-thin dvs-bcb adhesive bonding of iii–v wafers, dies and multiple dies to a patterned silicon-on-insulator substrate,” Opt. Mater. Express 3, 35–46 (2013).
    [Crossref]
  17. E. P. Haglund, S. Kumari, P. Westbergh, J. S. Gustavsson, G. Roelkens, R. Baets, and A. Larsson, “Silicon-integrated short-wavelength hybrid-cavity vcsel,” Opt. Express 23, 33634–33640 (2015).
    [Crossref]
  18. D. Vermeulen, Y. De Koninck, Y. Li, E. Lambert, W. Bogaerts, R. Baets, and G. Roelkens, “Reflectionless grating couplers for silicon-on-insulator photonic integrated circuits,” Opt. Express 20, 22278–22283 (2012).
    [Crossref] [PubMed]
  19. C. Zhang, S. Srinivasan, Y. Tang, M. J. Heck, M. L. Davenport, and J. E. Bowers, “Low threshold and high speed short cavity distributed feedback hybrid silicon lasers,” Opt. Express 22, 10202–10209 (2014).
    [Crossref] [PubMed]
  20. Q. Li, X. Wang, H. Chen, Y. Huang, C. Hou, J. Wang, R. Zhang, J. Ning, J. Min, and C. Zheng, “Development of modulation p-doped 1310 nm inas/gaas quantum dot laser materials, and ultra-short cavity fabry-perot and distributed-feedback laser diodes,” ACS Photonics 5, 1084–1093 (2018).
    [Crossref]

2018 (2)

D. Jung, Z. Zhang, J. Norman, R. Herrick, M. Kennedy, P. Patel, K. Turnlund, C. Jan, Y. Wan, A. Gossard, and J. Bowers, “Highly reliable low threshold InAs quantum dot lasers on on-axis (001) Si with 87% injection efficiency,” ACS Photonics 5, 1094–1100 (2018).
[Crossref]

Q. Li, X. Wang, H. Chen, Y. Huang, C. Hou, J. Wang, R. Zhang, J. Ning, J. Min, and C. Zheng, “Development of modulation p-doped 1310 nm inas/gaas quantum dot laser materials, and ultra-short cavity fabry-perot and distributed-feedback laser diodes,” ACS Photonics 5, 1084–1093 (2018).
[Crossref]

2016 (3)

B. Jang, K. Tanabe, S. Kako, S. Iwamoto, T. Tsuchizawa, H. Nishi, N. Hatori, M. Noguchi, T. Nakamura, K. Takemasa, M. Sugawara, and Y. Arakawa, “A hybrid silicon evanescent quantum dot laser,” Appl. Phys. Express 9, 092102 (2016).
[Crossref]

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10, 307 (2016).
[Crossref]

G. Kurczveil, D. Liang, M. Fiorentino, and R. G. Beausoleil, “Robust hybrid quantum dot laser for integrated silicon photonics,” Opt. Express 24, 16167–16174 (2016).
[Crossref] [PubMed]

2015 (4)

E. P. Haglund, S. Kumari, P. Westbergh, J. S. Gustavsson, G. Roelkens, R. Baets, and A. Larsson, “Silicon-integrated short-wavelength hybrid-cavity vcsel,” Opt. Express 23, 33634–33640 (2015).
[Crossref]

N. Hatori, Y. Urino, T. Shimizu, M. Okano, T. Yamamoto, M. Mori, T. Nakamura, and Y. Arakawa, “Quantum dot laser for a light source of an athermal silicon optical interposer,” Photonics 2, 355–364 (2015).
[Crossref]

Z. Zhou, B. Yin, and J. Michel, “On-chip light sources for silicon photonics,” Light. Sci. Appl. 4, e358 (2015).
[Crossref]

Y.-H. Jhang, K. Tanabe, S. Iwamoto, and Y. Arakawa, “Inas/gaas quantum dot lasers on silicon-on-insulator substrates by metal-stripe wafer bonding,” IEEE Photon. Technol. Lett. 27, 875–878 (2015).
[Crossref]

2014 (1)

2013 (2)

2012 (2)

2009 (1)

M. Sugawara and M. Usami, “Quantum dot devices: Handling the heat,” Nat. Photonics 3, 30–31 (2009).
[Crossref]

2008 (1)

2007 (1)

N. Anscombe, “Join up the quantum dots,” Nat. Photonics 1, 360–361 (2007).
[Crossref]

2005 (1)

H. Liu, D. Childs, T. Badcock, K. Groom, I. Sellers, M. Hopkinson, R. Hogg, D. Robbins, D. Mowbray, and M. Skolnick, “High-performance three-layer 1.3-μm InAs-GaAs quantum-dot lasers with very low continuous-wave room-temperature threshold currents,” IEEE Photon. Technol. Lett. 17, 1139–1141 (2005).
[Crossref]

2000 (1)

D. A. Miller, “Rationale and challenges for optical interconnects to electronic chips,” Proc. IEEE 88, 728–749 (2000).
[Crossref]

Anscombe, N.

N. Anscombe, “Join up the quantum dots,” Nat. Photonics 1, 360–361 (2007).
[Crossref]

Arakawa, Y.

B. Jang, K. Tanabe, S. Kako, S. Iwamoto, T. Tsuchizawa, H. Nishi, N. Hatori, M. Noguchi, T. Nakamura, K. Takemasa, M. Sugawara, and Y. Arakawa, “A hybrid silicon evanescent quantum dot laser,” Appl. Phys. Express 9, 092102 (2016).
[Crossref]

N. Hatori, Y. Urino, T. Shimizu, M. Okano, T. Yamamoto, M. Mori, T. Nakamura, and Y. Arakawa, “Quantum dot laser for a light source of an athermal silicon optical interposer,” Photonics 2, 355–364 (2015).
[Crossref]

Y.-H. Jhang, K. Tanabe, S. Iwamoto, and Y. Arakawa, “Inas/gaas quantum dot lasers on silicon-on-insulator substrates by metal-stripe wafer bonding,” IEEE Photon. Technol. Lett. 27, 875–878 (2015).
[Crossref]

K. Tanabe, K. Watanabe, and Y. Arakawa, “Iii–v/si hybrid photonic devices by direct fusion bonding,” Sci. Rep. 2, 349 (2012).
[Crossref]

Badcock, T.

H. Liu, D. Childs, T. Badcock, K. Groom, I. Sellers, M. Hopkinson, R. Hogg, D. Robbins, D. Mowbray, and M. Skolnick, “High-performance three-layer 1.3-μm InAs-GaAs quantum-dot lasers with very low continuous-wave room-temperature threshold currents,” IEEE Photon. Technol. Lett. 17, 1139–1141 (2005).
[Crossref]

Baets, R.

Beausoleil, R. G.

G. Kurczveil, D. Liang, M. Fiorentino, and R. G. Beausoleil, “Robust hybrid quantum dot laser for integrated silicon photonics,” Opt. Express 24, 16167–16174 (2016).
[Crossref] [PubMed]

D. Liang, G. Kurczveil, X. Huang, C. Zhang, S. Srinivasan, Z. Huang, M. A. Seyedi, K. Norris, M. Fiorentino, J. E. Bowers, and R. G. Beausoleil, “Heterogeneous silicon light sources for datacom applications,” Opt. Fiber Technol., in press (2017).

Bogaerts, W.

Bolk, J.

Bowers, J.

D. Jung, Z. Zhang, J. Norman, R. Herrick, M. Kennedy, P. Patel, K. Turnlund, C. Jan, Y. Wan, A. Gossard, and J. Bowers, “Highly reliable low threshold InAs quantum dot lasers on on-axis (001) Si with 87% injection efficiency,” ACS Photonics 5, 1094–1100 (2018).
[Crossref]

Bowers, J. E.

Chen, H.

Q. Li, X. Wang, H. Chen, Y. Huang, C. Hou, J. Wang, R. Zhang, J. Ning, J. Min, and C. Zheng, “Development of modulation p-doped 1310 nm inas/gaas quantum dot laser materials, and ultra-short cavity fabry-perot and distributed-feedback laser diodes,” ACS Photonics 5, 1084–1093 (2018).
[Crossref]

Chen, S.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10, 307 (2016).
[Crossref]

Childs, D.

H. Liu, D. Childs, T. Badcock, K. Groom, I. Sellers, M. Hopkinson, R. Hogg, D. Robbins, D. Mowbray, and M. Skolnick, “High-performance three-layer 1.3-μm InAs-GaAs quantum-dot lasers with very low continuous-wave room-temperature threshold currents,” IEEE Photon. Technol. Lett. 17, 1139–1141 (2005).
[Crossref]

Davenport, M. L.

De Koninck, Y.

Duan, G.-H.

Elliott, S. N.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10, 307 (2016).
[Crossref]

Fang, A. W.

Fedeli, J.-M.

Fiorentino, M.

G. Kurczveil, D. Liang, M. Fiorentino, and R. G. Beausoleil, “Robust hybrid quantum dot laser for integrated silicon photonics,” Opt. Express 24, 16167–16174 (2016).
[Crossref] [PubMed]

D. Liang, G. Kurczveil, X. Huang, C. Zhang, S. Srinivasan, Z. Huang, M. A. Seyedi, K. Norris, M. Fiorentino, J. E. Bowers, and R. G. Beausoleil, “Heterogeneous silicon light sources for datacom applications,” Opt. Fiber Technol., in press (2017).

Geluk, E. J.

Gossard, A.

D. Jung, Z. Zhang, J. Norman, R. Herrick, M. Kennedy, P. Patel, K. Turnlund, C. Jan, Y. Wan, A. Gossard, and J. Bowers, “Highly reliable low threshold InAs quantum dot lasers on on-axis (001) Si with 87% injection efficiency,” ACS Photonics 5, 1094–1100 (2018).
[Crossref]

Groom, K.

H. Liu, D. Childs, T. Badcock, K. Groom, I. Sellers, M. Hopkinson, R. Hogg, D. Robbins, D. Mowbray, and M. Skolnick, “High-performance three-layer 1.3-μm InAs-GaAs quantum-dot lasers with very low continuous-wave room-temperature threshold currents,” IEEE Photon. Technol. Lett. 17, 1139–1141 (2005).
[Crossref]

Gustavsson, J. S.

Haglund, E. P.

Hatori, N.

B. Jang, K. Tanabe, S. Kako, S. Iwamoto, T. Tsuchizawa, H. Nishi, N. Hatori, M. Noguchi, T. Nakamura, K. Takemasa, M. Sugawara, and Y. Arakawa, “A hybrid silicon evanescent quantum dot laser,” Appl. Phys. Express 9, 092102 (2016).
[Crossref]

N. Hatori, Y. Urino, T. Shimizu, M. Okano, T. Yamamoto, M. Mori, T. Nakamura, and Y. Arakawa, “Quantum dot laser for a light source of an athermal silicon optical interposer,” Photonics 2, 355–364 (2015).
[Crossref]

Heck, M. J.

Herrick, R.

D. Jung, Z. Zhang, J. Norman, R. Herrick, M. Kennedy, P. Patel, K. Turnlund, C. Jan, Y. Wan, A. Gossard, and J. Bowers, “Highly reliable low threshold InAs quantum dot lasers on on-axis (001) Si with 87% injection efficiency,” ACS Photonics 5, 1094–1100 (2018).
[Crossref]

Hogg, R.

H. Liu, D. Childs, T. Badcock, K. Groom, I. Sellers, M. Hopkinson, R. Hogg, D. Robbins, D. Mowbray, and M. Skolnick, “High-performance three-layer 1.3-μm InAs-GaAs quantum-dot lasers with very low continuous-wave room-temperature threshold currents,” IEEE Photon. Technol. Lett. 17, 1139–1141 (2005).
[Crossref]

Hopkinson, M.

H. Liu, D. Childs, T. Badcock, K. Groom, I. Sellers, M. Hopkinson, R. Hogg, D. Robbins, D. Mowbray, and M. Skolnick, “High-performance three-layer 1.3-μm InAs-GaAs quantum-dot lasers with very low continuous-wave room-temperature threshold currents,” IEEE Photon. Technol. Lett. 17, 1139–1141 (2005).
[Crossref]

Hou, C.

Q. Li, X. Wang, H. Chen, Y. Huang, C. Hou, J. Wang, R. Zhang, J. Ning, J. Min, and C. Zheng, “Development of modulation p-doped 1310 nm inas/gaas quantum dot laser materials, and ultra-short cavity fabry-perot and distributed-feedback laser diodes,” ACS Photonics 5, 1084–1093 (2018).
[Crossref]

Huang, X.

D. Liang, G. Kurczveil, X. Huang, C. Zhang, S. Srinivasan, Z. Huang, M. A. Seyedi, K. Norris, M. Fiorentino, J. E. Bowers, and R. G. Beausoleil, “Heterogeneous silicon light sources for datacom applications,” Opt. Fiber Technol., in press (2017).

Huang, Y.

Q. Li, X. Wang, H. Chen, Y. Huang, C. Hou, J. Wang, R. Zhang, J. Ning, J. Min, and C. Zheng, “Development of modulation p-doped 1310 nm inas/gaas quantum dot laser materials, and ultra-short cavity fabry-perot and distributed-feedback laser diodes,” ACS Photonics 5, 1084–1093 (2018).
[Crossref]

Huang, Z.

D. Liang, G. Kurczveil, X. Huang, C. Zhang, S. Srinivasan, Z. Huang, M. A. Seyedi, K. Norris, M. Fiorentino, J. E. Bowers, and R. G. Beausoleil, “Heterogeneous silicon light sources for datacom applications,” Opt. Fiber Technol., in press (2017).

Iwamoto, S.

B. Jang, K. Tanabe, S. Kako, S. Iwamoto, T. Tsuchizawa, H. Nishi, N. Hatori, M. Noguchi, T. Nakamura, K. Takemasa, M. Sugawara, and Y. Arakawa, “A hybrid silicon evanescent quantum dot laser,” Appl. Phys. Express 9, 092102 (2016).
[Crossref]

Y.-H. Jhang, K. Tanabe, S. Iwamoto, and Y. Arakawa, “Inas/gaas quantum dot lasers on silicon-on-insulator substrates by metal-stripe wafer bonding,” IEEE Photon. Technol. Lett. 27, 875–878 (2015).
[Crossref]

Jan, C.

D. Jung, Z. Zhang, J. Norman, R. Herrick, M. Kennedy, P. Patel, K. Turnlund, C. Jan, Y. Wan, A. Gossard, and J. Bowers, “Highly reliable low threshold InAs quantum dot lasers on on-axis (001) Si with 87% injection efficiency,” ACS Photonics 5, 1094–1100 (2018).
[Crossref]

Jang, B.

B. Jang, K. Tanabe, S. Kako, S. Iwamoto, T. Tsuchizawa, H. Nishi, N. Hatori, M. Noguchi, T. Nakamura, K. Takemasa, M. Sugawara, and Y. Arakawa, “A hybrid silicon evanescent quantum dot laser,” Appl. Phys. Express 9, 092102 (2016).
[Crossref]

Jhang, Y.-H.

Y.-H. Jhang, K. Tanabe, S. Iwamoto, and Y. Arakawa, “Inas/gaas quantum dot lasers on silicon-on-insulator substrates by metal-stripe wafer bonding,” IEEE Photon. Technol. Lett. 27, 875–878 (2015).
[Crossref]

Jiang, Q.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10, 307 (2016).
[Crossref]

Jung, D.

D. Jung, Z. Zhang, J. Norman, R. Herrick, M. Kennedy, P. Patel, K. Turnlund, C. Jan, Y. Wan, A. Gossard, and J. Bowers, “Highly reliable low threshold InAs quantum dot lasers on on-axis (001) Si with 87% injection efficiency,” ACS Photonics 5, 1094–1100 (2018).
[Crossref]

Kako, S.

B. Jang, K. Tanabe, S. Kako, S. Iwamoto, T. Tsuchizawa, H. Nishi, N. Hatori, M. Noguchi, T. Nakamura, K. Takemasa, M. Sugawara, and Y. Arakawa, “A hybrid silicon evanescent quantum dot laser,” Appl. Phys. Express 9, 092102 (2016).
[Crossref]

Kennedy, M.

D. Jung, Z. Zhang, J. Norman, R. Herrick, M. Kennedy, P. Patel, K. Turnlund, C. Jan, Y. Wan, A. Gossard, and J. Bowers, “Highly reliable low threshold InAs quantum dot lasers on on-axis (001) Si with 87% injection efficiency,” ACS Photonics 5, 1094–1100 (2018).
[Crossref]

Keyvaninia, S.

Kumari, S.

Kuo, Y.-H.

Kurczveil, G.

G. Kurczveil, D. Liang, M. Fiorentino, and R. G. Beausoleil, “Robust hybrid quantum dot laser for integrated silicon photonics,” Opt. Express 24, 16167–16174 (2016).
[Crossref] [PubMed]

D. Liang, G. Kurczveil, X. Huang, C. Zhang, S. Srinivasan, Z. Huang, M. A. Seyedi, K. Norris, M. Fiorentino, J. E. Bowers, and R. G. Beausoleil, “Heterogeneous silicon light sources for datacom applications,” Opt. Fiber Technol., in press (2017).

Lambert, E.

Larsson, A.

Lelarge, F.

Li, Q.

Q. Li, X. Wang, H. Chen, Y. Huang, C. Hou, J. Wang, R. Zhang, J. Ning, J. Min, and C. Zheng, “Development of modulation p-doped 1310 nm inas/gaas quantum dot laser materials, and ultra-short cavity fabry-perot and distributed-feedback laser diodes,” ACS Photonics 5, 1084–1093 (2018).
[Crossref]

Li, W.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10, 307 (2016).
[Crossref]

Li, Y.

Liang, D.

G. Kurczveil, D. Liang, M. Fiorentino, and R. G. Beausoleil, “Robust hybrid quantum dot laser for integrated silicon photonics,” Opt. Express 24, 16167–16174 (2016).
[Crossref] [PubMed]

A. W. Fang, E. Lively, Y.-H. Kuo, D. Liang, and J. E. Bowers, “A distributed feedback silicon evanescent laser,” Opt. Express 16, 4413–4419 (2008).
[Crossref] [PubMed]

D. Liang, G. Kurczveil, X. Huang, C. Zhang, S. Srinivasan, Z. Huang, M. A. Seyedi, K. Norris, M. Fiorentino, J. E. Bowers, and R. G. Beausoleil, “Heterogeneous silicon light sources for datacom applications,” Opt. Fiber Technol., in press (2017).

Liu, H.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10, 307 (2016).
[Crossref]

H. Liu, D. Childs, T. Badcock, K. Groom, I. Sellers, M. Hopkinson, R. Hogg, D. Robbins, D. Mowbray, and M. Skolnick, “High-performance three-layer 1.3-μm InAs-GaAs quantum-dot lasers with very low continuous-wave room-temperature threshold currents,” IEEE Photon. Technol. Lett. 17, 1139–1141 (2005).
[Crossref]

Lively, E.

Messaoudene, S.

Michel, J.

Z. Zhou, B. Yin, and J. Michel, “On-chip light sources for silicon photonics,” Light. Sci. Appl. 4, e358 (2015).
[Crossref]

Miller, D. A.

D. A. Miller, “Rationale and challenges for optical interconnects to electronic chips,” Proc. IEEE 88, 728–749 (2000).
[Crossref]

Min, J.

Q. Li, X. Wang, H. Chen, Y. Huang, C. Hou, J. Wang, R. Zhang, J. Ning, J. Min, and C. Zheng, “Development of modulation p-doped 1310 nm inas/gaas quantum dot laser materials, and ultra-short cavity fabry-perot and distributed-feedback laser diodes,” ACS Photonics 5, 1084–1093 (2018).
[Crossref]

Mori, M.

N. Hatori, Y. Urino, T. Shimizu, M. Okano, T. Yamamoto, M. Mori, T. Nakamura, and Y. Arakawa, “Quantum dot laser for a light source of an athermal silicon optical interposer,” Photonics 2, 355–364 (2015).
[Crossref]

Morthier, G.

Mowbray, D.

H. Liu, D. Childs, T. Badcock, K. Groom, I. Sellers, M. Hopkinson, R. Hogg, D. Robbins, D. Mowbray, and M. Skolnick, “High-performance three-layer 1.3-μm InAs-GaAs quantum-dot lasers with very low continuous-wave room-temperature threshold currents,” IEEE Photon. Technol. Lett. 17, 1139–1141 (2005).
[Crossref]

Muneeb, M.

Nakamura, T.

B. Jang, K. Tanabe, S. Kako, S. Iwamoto, T. Tsuchizawa, H. Nishi, N. Hatori, M. Noguchi, T. Nakamura, K. Takemasa, M. Sugawara, and Y. Arakawa, “A hybrid silicon evanescent quantum dot laser,” Appl. Phys. Express 9, 092102 (2016).
[Crossref]

N. Hatori, Y. Urino, T. Shimizu, M. Okano, T. Yamamoto, M. Mori, T. Nakamura, and Y. Arakawa, “Quantum dot laser for a light source of an athermal silicon optical interposer,” Photonics 2, 355–364 (2015).
[Crossref]

Ning, J.

Q. Li, X. Wang, H. Chen, Y. Huang, C. Hou, J. Wang, R. Zhang, J. Ning, J. Min, and C. Zheng, “Development of modulation p-doped 1310 nm inas/gaas quantum dot laser materials, and ultra-short cavity fabry-perot and distributed-feedback laser diodes,” ACS Photonics 5, 1084–1093 (2018).
[Crossref]

Nishi, H.

B. Jang, K. Tanabe, S. Kako, S. Iwamoto, T. Tsuchizawa, H. Nishi, N. Hatori, M. Noguchi, T. Nakamura, K. Takemasa, M. Sugawara, and Y. Arakawa, “A hybrid silicon evanescent quantum dot laser,” Appl. Phys. Express 9, 092102 (2016).
[Crossref]

Noguchi, M.

B. Jang, K. Tanabe, S. Kako, S. Iwamoto, T. Tsuchizawa, H. Nishi, N. Hatori, M. Noguchi, T. Nakamura, K. Takemasa, M. Sugawara, and Y. Arakawa, “A hybrid silicon evanescent quantum dot laser,” Appl. Phys. Express 9, 092102 (2016).
[Crossref]

Norman, J.

D. Jung, Z. Zhang, J. Norman, R. Herrick, M. Kennedy, P. Patel, K. Turnlund, C. Jan, Y. Wan, A. Gossard, and J. Bowers, “Highly reliable low threshold InAs quantum dot lasers on on-axis (001) Si with 87% injection efficiency,” ACS Photonics 5, 1094–1100 (2018).
[Crossref]

Norris, K.

D. Liang, G. Kurczveil, X. Huang, C. Zhang, S. Srinivasan, Z. Huang, M. A. Seyedi, K. Norris, M. Fiorentino, J. E. Bowers, and R. G. Beausoleil, “Heterogeneous silicon light sources for datacom applications,” Opt. Fiber Technol., in press (2017).

Okano, M.

N. Hatori, Y. Urino, T. Shimizu, M. Okano, T. Yamamoto, M. Mori, T. Nakamura, and Y. Arakawa, “Quantum dot laser for a light source of an athermal silicon optical interposer,” Photonics 2, 355–364 (2015).
[Crossref]

Patel, P.

D. Jung, Z. Zhang, J. Norman, R. Herrick, M. Kennedy, P. Patel, K. Turnlund, C. Jan, Y. Wan, A. Gossard, and J. Bowers, “Highly reliable low threshold InAs quantum dot lasers on on-axis (001) Si with 87% injection efficiency,” ACS Photonics 5, 1094–1100 (2018).
[Crossref]

Robbins, D.

H. Liu, D. Childs, T. Badcock, K. Groom, I. Sellers, M. Hopkinson, R. Hogg, D. Robbins, D. Mowbray, and M. Skolnick, “High-performance three-layer 1.3-μm InAs-GaAs quantum-dot lasers with very low continuous-wave room-temperature threshold currents,” IEEE Photon. Technol. Lett. 17, 1139–1141 (2005).
[Crossref]

Roelkens, G.

Ross, I.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10, 307 (2016).
[Crossref]

Seeds, A. J.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10, 307 (2016).
[Crossref]

Sellers, I.

H. Liu, D. Childs, T. Badcock, K. Groom, I. Sellers, M. Hopkinson, R. Hogg, D. Robbins, D. Mowbray, and M. Skolnick, “High-performance three-layer 1.3-μm InAs-GaAs quantum-dot lasers with very low continuous-wave room-temperature threshold currents,” IEEE Photon. Technol. Lett. 17, 1139–1141 (2005).
[Crossref]

Seyedi, M. A.

D. Liang, G. Kurczveil, X. Huang, C. Zhang, S. Srinivasan, Z. Huang, M. A. Seyedi, K. Norris, M. Fiorentino, J. E. Bowers, and R. G. Beausoleil, “Heterogeneous silicon light sources for datacom applications,” Opt. Fiber Technol., in press (2017).

Shimizu, T.

N. Hatori, Y. Urino, T. Shimizu, M. Okano, T. Yamamoto, M. Mori, T. Nakamura, and Y. Arakawa, “Quantum dot laser for a light source of an athermal silicon optical interposer,” Photonics 2, 355–364 (2015).
[Crossref]

Shutts, S.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10, 307 (2016).
[Crossref]

Skolnick, M.

H. Liu, D. Childs, T. Badcock, K. Groom, I. Sellers, M. Hopkinson, R. Hogg, D. Robbins, D. Mowbray, and M. Skolnick, “High-performance three-layer 1.3-μm InAs-GaAs quantum-dot lasers with very low continuous-wave room-temperature threshold currents,” IEEE Photon. Technol. Lett. 17, 1139–1141 (2005).
[Crossref]

Smalbrugge, B.

Smit, M.

Smowton, P.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10, 307 (2016).
[Crossref]

Sobiesierski, A.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10, 307 (2016).
[Crossref]

Srinivasan, S.

C. Zhang, S. Srinivasan, Y. Tang, M. J. Heck, M. L. Davenport, and J. E. Bowers, “Low threshold and high speed short cavity distributed feedback hybrid silicon lasers,” Opt. Express 22, 10202–10209 (2014).
[Crossref] [PubMed]

D. Liang, G. Kurczveil, X. Huang, C. Zhang, S. Srinivasan, Z. Huang, M. A. Seyedi, K. Norris, M. Fiorentino, J. E. Bowers, and R. G. Beausoleil, “Heterogeneous silicon light sources for datacom applications,” Opt. Fiber Technol., in press (2017).

Stankovic, S.

Sugawara, M.

B. Jang, K. Tanabe, S. Kako, S. Iwamoto, T. Tsuchizawa, H. Nishi, N. Hatori, M. Noguchi, T. Nakamura, K. Takemasa, M. Sugawara, and Y. Arakawa, “A hybrid silicon evanescent quantum dot laser,” Appl. Phys. Express 9, 092102 (2016).
[Crossref]

M. Sugawara and M. Usami, “Quantum dot devices: Handling the heat,” Nat. Photonics 3, 30–31 (2009).
[Crossref]

Takemasa, K.

B. Jang, K. Tanabe, S. Kako, S. Iwamoto, T. Tsuchizawa, H. Nishi, N. Hatori, M. Noguchi, T. Nakamura, K. Takemasa, M. Sugawara, and Y. Arakawa, “A hybrid silicon evanescent quantum dot laser,” Appl. Phys. Express 9, 092102 (2016).
[Crossref]

Tanabe, K.

B. Jang, K. Tanabe, S. Kako, S. Iwamoto, T. Tsuchizawa, H. Nishi, N. Hatori, M. Noguchi, T. Nakamura, K. Takemasa, M. Sugawara, and Y. Arakawa, “A hybrid silicon evanescent quantum dot laser,” Appl. Phys. Express 9, 092102 (2016).
[Crossref]

Y.-H. Jhang, K. Tanabe, S. Iwamoto, and Y. Arakawa, “Inas/gaas quantum dot lasers on silicon-on-insulator substrates by metal-stripe wafer bonding,” IEEE Photon. Technol. Lett. 27, 875–878 (2015).
[Crossref]

K. Tanabe, K. Watanabe, and Y. Arakawa, “Iii–v/si hybrid photonic devices by direct fusion bonding,” Sci. Rep. 2, 349 (2012).
[Crossref]

Tang, M.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10, 307 (2016).
[Crossref]

Tang, Y.

Tsuchizawa, T.

B. Jang, K. Tanabe, S. Kako, S. Iwamoto, T. Tsuchizawa, H. Nishi, N. Hatori, M. Noguchi, T. Nakamura, K. Takemasa, M. Sugawara, and Y. Arakawa, “A hybrid silicon evanescent quantum dot laser,” Appl. Phys. Express 9, 092102 (2016).
[Crossref]

Turnlund, K.

D. Jung, Z. Zhang, J. Norman, R. Herrick, M. Kennedy, P. Patel, K. Turnlund, C. Jan, Y. Wan, A. Gossard, and J. Bowers, “Highly reliable low threshold InAs quantum dot lasers on on-axis (001) Si with 87% injection efficiency,” ACS Photonics 5, 1094–1100 (2018).
[Crossref]

Urino, Y.

N. Hatori, Y. Urino, T. Shimizu, M. Okano, T. Yamamoto, M. Mori, T. Nakamura, and Y. Arakawa, “Quantum dot laser for a light source of an athermal silicon optical interposer,” Photonics 2, 355–364 (2015).
[Crossref]

Usami, M.

M. Sugawara and M. Usami, “Quantum dot devices: Handling the heat,” Nat. Photonics 3, 30–31 (2009).
[Crossref]

Van Landschoot, L.

Van Thourhout, D.

Van Veldhoven, P.

Vermeulen, D.

Verstuyft, S.

Vries, T. D.

Wan, Y.

D. Jung, Z. Zhang, J. Norman, R. Herrick, M. Kennedy, P. Patel, K. Turnlund, C. Jan, Y. Wan, A. Gossard, and J. Bowers, “Highly reliable low threshold InAs quantum dot lasers on on-axis (001) Si with 87% injection efficiency,” ACS Photonics 5, 1094–1100 (2018).
[Crossref]

Wang, J.

Q. Li, X. Wang, H. Chen, Y. Huang, C. Hou, J. Wang, R. Zhang, J. Ning, J. Min, and C. Zheng, “Development of modulation p-doped 1310 nm inas/gaas quantum dot laser materials, and ultra-short cavity fabry-perot and distributed-feedback laser diodes,” ACS Photonics 5, 1084–1093 (2018).
[Crossref]

Wang, X.

Q. Li, X. Wang, H. Chen, Y. Huang, C. Hou, J. Wang, R. Zhang, J. Ning, J. Min, and C. Zheng, “Development of modulation p-doped 1310 nm inas/gaas quantum dot laser materials, and ultra-short cavity fabry-perot and distributed-feedback laser diodes,” ACS Photonics 5, 1084–1093 (2018).
[Crossref]

Watanabe, K.

K. Tanabe, K. Watanabe, and Y. Arakawa, “Iii–v/si hybrid photonic devices by direct fusion bonding,” Sci. Rep. 2, 349 (2012).
[Crossref]

Westbergh, P.

Wu, J.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10, 307 (2016).
[Crossref]

Yamamoto, T.

N. Hatori, Y. Urino, T. Shimizu, M. Okano, T. Yamamoto, M. Mori, T. Nakamura, and Y. Arakawa, “Quantum dot laser for a light source of an athermal silicon optical interposer,” Photonics 2, 355–364 (2015).
[Crossref]

Yin, B.

Z. Zhou, B. Yin, and J. Michel, “On-chip light sources for silicon photonics,” Light. Sci. Appl. 4, e358 (2015).
[Crossref]

Zhang, C.

C. Zhang, S. Srinivasan, Y. Tang, M. J. Heck, M. L. Davenport, and J. E. Bowers, “Low threshold and high speed short cavity distributed feedback hybrid silicon lasers,” Opt. Express 22, 10202–10209 (2014).
[Crossref] [PubMed]

D. Liang, G. Kurczveil, X. Huang, C. Zhang, S. Srinivasan, Z. Huang, M. A. Seyedi, K. Norris, M. Fiorentino, J. E. Bowers, and R. G. Beausoleil, “Heterogeneous silicon light sources for datacom applications,” Opt. Fiber Technol., in press (2017).

Zhang, R.

Q. Li, X. Wang, H. Chen, Y. Huang, C. Hou, J. Wang, R. Zhang, J. Ning, J. Min, and C. Zheng, “Development of modulation p-doped 1310 nm inas/gaas quantum dot laser materials, and ultra-short cavity fabry-perot and distributed-feedback laser diodes,” ACS Photonics 5, 1084–1093 (2018).
[Crossref]

Zhang, Z.

D. Jung, Z. Zhang, J. Norman, R. Herrick, M. Kennedy, P. Patel, K. Turnlund, C. Jan, Y. Wan, A. Gossard, and J. Bowers, “Highly reliable low threshold InAs quantum dot lasers on on-axis (001) Si with 87% injection efficiency,” ACS Photonics 5, 1094–1100 (2018).
[Crossref]

Zheng, C.

Q. Li, X. Wang, H. Chen, Y. Huang, C. Hou, J. Wang, R. Zhang, J. Ning, J. Min, and C. Zheng, “Development of modulation p-doped 1310 nm inas/gaas quantum dot laser materials, and ultra-short cavity fabry-perot and distributed-feedback laser diodes,” ACS Photonics 5, 1084–1093 (2018).
[Crossref]

Zhou, Z.

Z. Zhou, B. Yin, and J. Michel, “On-chip light sources for silicon photonics,” Light. Sci. Appl. 4, e358 (2015).
[Crossref]

ACS Photonics (2)

D. Jung, Z. Zhang, J. Norman, R. Herrick, M. Kennedy, P. Patel, K. Turnlund, C. Jan, Y. Wan, A. Gossard, and J. Bowers, “Highly reliable low threshold InAs quantum dot lasers on on-axis (001) Si with 87% injection efficiency,” ACS Photonics 5, 1094–1100 (2018).
[Crossref]

Q. Li, X. Wang, H. Chen, Y. Huang, C. Hou, J. Wang, R. Zhang, J. Ning, J. Min, and C. Zheng, “Development of modulation p-doped 1310 nm inas/gaas quantum dot laser materials, and ultra-short cavity fabry-perot and distributed-feedback laser diodes,” ACS Photonics 5, 1084–1093 (2018).
[Crossref]

Appl. Phys. Express (1)

B. Jang, K. Tanabe, S. Kako, S. Iwamoto, T. Tsuchizawa, H. Nishi, N. Hatori, M. Noguchi, T. Nakamura, K. Takemasa, M. Sugawara, and Y. Arakawa, “A hybrid silicon evanescent quantum dot laser,” Appl. Phys. Express 9, 092102 (2016).
[Crossref]

IEEE Photon. Technol. Lett. (2)

Y.-H. Jhang, K. Tanabe, S. Iwamoto, and Y. Arakawa, “Inas/gaas quantum dot lasers on silicon-on-insulator substrates by metal-stripe wafer bonding,” IEEE Photon. Technol. Lett. 27, 875–878 (2015).
[Crossref]

H. Liu, D. Childs, T. Badcock, K. Groom, I. Sellers, M. Hopkinson, R. Hogg, D. Robbins, D. Mowbray, and M. Skolnick, “High-performance three-layer 1.3-μm InAs-GaAs quantum-dot lasers with very low continuous-wave room-temperature threshold currents,” IEEE Photon. Technol. Lett. 17, 1139–1141 (2005).
[Crossref]

Light. Sci. Appl. (1)

Z. Zhou, B. Yin, and J. Michel, “On-chip light sources for silicon photonics,” Light. Sci. Appl. 4, e358 (2015).
[Crossref]

Nat. Photonics (3)

M. Sugawara and M. Usami, “Quantum dot devices: Handling the heat,” Nat. Photonics 3, 30–31 (2009).
[Crossref]

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10, 307 (2016).
[Crossref]

N. Anscombe, “Join up the quantum dots,” Nat. Photonics 1, 360–361 (2007).
[Crossref]

Opt. Express (5)

Opt. Lett. (1)

Opt. Mater. Express (1)

Photonics (1)

N. Hatori, Y. Urino, T. Shimizu, M. Okano, T. Yamamoto, M. Mori, T. Nakamura, and Y. Arakawa, “Quantum dot laser for a light source of an athermal silicon optical interposer,” Photonics 2, 355–364 (2015).
[Crossref]

Proc. IEEE (1)

D. A. Miller, “Rationale and challenges for optical interconnects to electronic chips,” Proc. IEEE 88, 728–749 (2000).
[Crossref]

Sci. Rep. (1)

K. Tanabe, K. Watanabe, and Y. Arakawa, “Iii–v/si hybrid photonic devices by direct fusion bonding,” Sci. Rep. 2, 349 (2012).
[Crossref]

Other (1)

D. Liang, G. Kurczveil, X. Huang, C. Zhang, S. Srinivasan, Z. Huang, M. A. Seyedi, K. Norris, M. Fiorentino, J. E. Bowers, and R. G. Beausoleil, “Heterogeneous silicon light sources for datacom applications,” Opt. Fiber Technol., in press (2017).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 III–V/Si distributed feedback laser design: (a) 3D view of the III–V-on-silicon DFB laser; (b) cross-sectional diagram of the laser structure.
Fig. 2
Fig. 2 III–V/Si distributed feedback laser fabrication: (a) SEM picture of the actual device; (b) Optical micrograph of an array of DFB lasers with GSG contacts.
Fig. 3
Fig. 3 LIV curve as a function of temperature. The power in the waveguide is plotted. (a) corresponds with the 1300 nm DFB laser, (b) corresponds with the 1320 nm DFB laser.
Fig. 4
Fig. 4 Threshold current data as a function of stage temperature: (a) for the 1300 nm DFB laser, (b) for the 1320 nm DFB laser
Fig. 5
Fig. 5 (a) Optical spectrum for a drive current of 60 mA as a function of temperature: single mode operation with a SMSR of 47 dB. The DFB laser has a grating period of 392 nm. (OSA resolution: 0.06 nm) (b) Optical spectrum for a drive current of 60 mA as a function of temperature: single mode operation with a SMSR of 40 dB for a DFB laser with a grating period of 400 nm. (OSA resolution: 0.1 nm) Note that the difference in shape between the lasing peaks of Fig. (a) and Fig. (b) is due to the fact that different optical spectrum analyzers (OSA) were used to measure both lasers.
Fig. 6
Fig. 6 Optical spectra for different drive currents at room temperature. The different spectra are shifted 40 dB apart for clarity (OSA resolution: 0.06 nm). In (a) the DFB laser has a grating period of 392 nm and in (b) the DFB laser has a grating period of 400 nm.
Fig. 7
Fig. 7 Mode profiles of the hybrid modes present in the laser cavity: (a) fundamental mode and (b) first order mode.

Metrics