Abstract

A snapshot multi-wavelength interference microscope is proposed for high-speed measurement of large vertical range discontinuous microstructures and surface roughness. A polarization CMOS camera with a linear micro-polarizer array and Bayer filter accomplishes snapshot multi-wavelength phase-shifting measurement. Four interferograms with 𝜋/2 phase shift are captured at each wavelength for phase measurement, the 2𝜋 ambiguities are removed by using two or three wavelengths.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Fringe-print-through error analysis and correction in snapshot phase-shifting interference microscope

Yu Zhang, Xiaobo Tian, and Rongguang Liang
Opt. Express 25(22) 26554-26566 (2017)

LED-based multi-wavelength phase imaging interference microscopy

N. Warnasooriya and M. K. Kim
Opt. Express 15(15) 9239-9247 (2007)

Snapshot phase shift fringe projection 3D surface measurement

Zhenyue Chen, Xia Wang, and Rongguang Liang
Opt. Express 23(2) 667-673 (2015)

References

  • View by:
  • |
  • |
  • |

  1. P. de Groot, “Principles of interference microscopy for the measurement of surface topography,” Adv. Opt. Photonics 7(1), 1–65 (2015).
    [Crossref]
  2. P. Sandoz, “Wavelet transform as a processing tool in white-light interferometry,” Opt. Lett. 22(14), 1065–1067 (1997).
    [Crossref] [PubMed]
  3. M. Li, C. Quan, and C. J. Tay, “Continuous wavelet transform for micro-component profile measurement using vertical scanning interferometry,” Opt. Laser Technol. 40(7), 920–929 (2008).
    [Crossref]
  4. S. Ma, C. Quan, R. Zhu, C. J. Tay, and L. Chen, “Surface profile measurement in white-light scanning interferometry using a three-chip color CCD,” Appl. Opt. 50(15), 2246–2254 (2011).
    [Crossref] [PubMed]
  5. P. K. Upputuri, L. Gong, H. Wang, M. Pramanik, K. Mohan Nandigana, and M. P. Kothiyal, “Measurement of large discontinuities using single white light interferogram,” Opt. Express 22(22), 27373–27380 (2014).
    [Crossref] [PubMed]
  6. Y.-Y. Cheng and J. C. Wyant, “Multiple-wavelength phase-shifting interferometry,” Appl. Opt. 24(6), 804–807 (1985).
    [Crossref] [PubMed]
  7. A. Pförtner and J. Schwider, “Red-green-blue interferometer for the metrology of discontinuous structures,” Appl. Opt. 42(4), 667–673 (2003).
    [Crossref] [PubMed]
  8. A. Wada, M. Kato, and Y. Ishii, “Large step-height measurements using multiple-wavelength holographic interferometry with tunable laser diodes,” J. Opt. Soc. Am. A 25(12), 3013–3020 (2008).
    [Crossref] [PubMed]
  9. M. B. North-Morris, J. E. Millerd, N. J. Brock, and J. B. Hayes, “Phase shifting multi-wave length dynamic interferometry,” Proc. SPIE 5531, 64–75 (2004).
    [Crossref]
  10. A. Safrani and I. Abdulhalim, “High-speed 3D imaging using two-wavelength parallel-phase-shift interferometry,” Opt. Lett. 40(20), 4651–4654 (2015).
    [Crossref] [PubMed]
  11. M. Ney, A. Safrani, and I. Abdulhalim, “Three wavelengths parallel phase-shift interferometry for real-time focus tracking and vibration measurement,” Opt. Lett. 42(4), 719–722 (2017).
    [Crossref] [PubMed]
  12. J. Kühn, T. Colomb, F. Montfort, F. Charrière, Y. Emery, E. Cuche, P. Marquet, and C. Depeursinge, “Real-time dual-wavelength digital holographic microscopy with a single hologram acquisition,” Opt. Express 15(12), 7231–7242 (2007).
    [Crossref] [PubMed]
  13. C. J. Mann, P. R. Bingham, V. C. Paquit, and K. W. Tobin, “Quantitative phase imaging by three-wavelength digital holography,” Opt. Express 16(13), 9753–9764 (2008).
    [Crossref] [PubMed]
  14. M. T. Rinehart, N. T. Shaked, N. J. Jenness, R. L. Clark, and A. Wax, “Simultaneous two-wavelength transmission quantitative phase microscopy with a color camera,” Opt. Lett. 35(15), 2612–2614 (2010).
    [Crossref] [PubMed]
  15. B. Tayebi, F. Sharif, A. Karimi, and J. Han, “Stable extended imaging area sensing without mechanical movement based on spatial frequency multiplexing,” IEEE Trans. Ind. Electron. 65(10), 8195–8203 (2018).
    [Crossref]
  16. J. E. Millerd and J. Wyant, “Simultaneous phase-shifting Fizeau interferometer.” U.S. Patent No. 7,230,718 (2007).
  17. D. Wang and R. Liang, “Simultaneous polarization Mirau interferometer based on pixelated polarization camera,” Opt. Lett. 41(1), 41–44 (2016).
    [Crossref] [PubMed]
  18. X. Tu, O. J. Spires, X. Tian, N. Brock, R. Liang, and S. Pau, “Division of amplitude RGB full-Stokes camera using micro-polarizer arrays,” Opt. Express 25(26), 33160–33175 (2017).
    [Crossref] [PubMed]
  19. M. Novak, J. Millerd, N. Brock, M. North-Morris, J. Hayes, and J. Wyant, “Analysis of a micropolarizer array-based simultaneous phase-shifting interferometer,” Appl. Opt. 44(32), 6861–6868 (2005).
    [Crossref] [PubMed]
  20. Y.-Y. Cheng and J. C. Wyant, “Two-wavelength phase shifting interferometry,” Appl. Opt. 23(24), 4539–4543 (1984).
    [Crossref] [PubMed]
  21. K. Creath, “Step height measurement using two-wavelength phase-shifting interferometry,” Appl. Opt. 26(14), 2810–2816 (1987).
    [Crossref] [PubMed]
  22. J. Gass, A. Dakoff, and M. K. Kim, “Phase imaging without 2π ambiguity by multiwavelength digital holography,” Opt. Lett. 28(13), 1141–1143 (2003).
    [Crossref] [PubMed]
  23. I. Abdulhalim, “Competence between spatial and temporal coherence in full field optical coherence tomography and interference microscopy,” J. Opt. A, Pure Appl. Opt. 8(11), 952–958 (2006).
    [Crossref]

2018 (1)

B. Tayebi, F. Sharif, A. Karimi, and J. Han, “Stable extended imaging area sensing without mechanical movement based on spatial frequency multiplexing,” IEEE Trans. Ind. Electron. 65(10), 8195–8203 (2018).
[Crossref]

2017 (2)

2016 (1)

2015 (2)

A. Safrani and I. Abdulhalim, “High-speed 3D imaging using two-wavelength parallel-phase-shift interferometry,” Opt. Lett. 40(20), 4651–4654 (2015).
[Crossref] [PubMed]

P. de Groot, “Principles of interference microscopy for the measurement of surface topography,” Adv. Opt. Photonics 7(1), 1–65 (2015).
[Crossref]

2014 (1)

2011 (1)

2010 (1)

2008 (3)

2007 (1)

2006 (1)

I. Abdulhalim, “Competence between spatial and temporal coherence in full field optical coherence tomography and interference microscopy,” J. Opt. A, Pure Appl. Opt. 8(11), 952–958 (2006).
[Crossref]

2005 (1)

2004 (1)

M. B. North-Morris, J. E. Millerd, N. J. Brock, and J. B. Hayes, “Phase shifting multi-wave length dynamic interferometry,” Proc. SPIE 5531, 64–75 (2004).
[Crossref]

2003 (2)

1997 (1)

1987 (1)

1985 (1)

1984 (1)

Abdulhalim, I.

Bingham, P. R.

Brock, N.

Brock, N. J.

M. B. North-Morris, J. E. Millerd, N. J. Brock, and J. B. Hayes, “Phase shifting multi-wave length dynamic interferometry,” Proc. SPIE 5531, 64–75 (2004).
[Crossref]

Charrière, F.

Chen, L.

Cheng, Y.-Y.

Clark, R. L.

Colomb, T.

Creath, K.

Cuche, E.

Dakoff, A.

de Groot, P.

P. de Groot, “Principles of interference microscopy for the measurement of surface topography,” Adv. Opt. Photonics 7(1), 1–65 (2015).
[Crossref]

Depeursinge, C.

Emery, Y.

Gass, J.

Gong, L.

Han, J.

B. Tayebi, F. Sharif, A. Karimi, and J. Han, “Stable extended imaging area sensing without mechanical movement based on spatial frequency multiplexing,” IEEE Trans. Ind. Electron. 65(10), 8195–8203 (2018).
[Crossref]

Hayes, J.

Hayes, J. B.

M. B. North-Morris, J. E. Millerd, N. J. Brock, and J. B. Hayes, “Phase shifting multi-wave length dynamic interferometry,” Proc. SPIE 5531, 64–75 (2004).
[Crossref]

Ishii, Y.

Jenness, N. J.

Karimi, A.

B. Tayebi, F. Sharif, A. Karimi, and J. Han, “Stable extended imaging area sensing without mechanical movement based on spatial frequency multiplexing,” IEEE Trans. Ind. Electron. 65(10), 8195–8203 (2018).
[Crossref]

Kato, M.

Kim, M. K.

Kothiyal, M. P.

Kühn, J.

Li, M.

M. Li, C. Quan, and C. J. Tay, “Continuous wavelet transform for micro-component profile measurement using vertical scanning interferometry,” Opt. Laser Technol. 40(7), 920–929 (2008).
[Crossref]

Liang, R.

Ma, S.

Mann, C. J.

Marquet, P.

Millerd, J.

Millerd, J. E.

M. B. North-Morris, J. E. Millerd, N. J. Brock, and J. B. Hayes, “Phase shifting multi-wave length dynamic interferometry,” Proc. SPIE 5531, 64–75 (2004).
[Crossref]

Mohan Nandigana, K.

Montfort, F.

Ney, M.

North-Morris, M.

North-Morris, M. B.

M. B. North-Morris, J. E. Millerd, N. J. Brock, and J. B. Hayes, “Phase shifting multi-wave length dynamic interferometry,” Proc. SPIE 5531, 64–75 (2004).
[Crossref]

Novak, M.

Paquit, V. C.

Pau, S.

Pförtner, A.

Pramanik, M.

Quan, C.

S. Ma, C. Quan, R. Zhu, C. J. Tay, and L. Chen, “Surface profile measurement in white-light scanning interferometry using a three-chip color CCD,” Appl. Opt. 50(15), 2246–2254 (2011).
[Crossref] [PubMed]

M. Li, C. Quan, and C. J. Tay, “Continuous wavelet transform for micro-component profile measurement using vertical scanning interferometry,” Opt. Laser Technol. 40(7), 920–929 (2008).
[Crossref]

Rinehart, M. T.

Safrani, A.

Sandoz, P.

Schwider, J.

Shaked, N. T.

Sharif, F.

B. Tayebi, F. Sharif, A. Karimi, and J. Han, “Stable extended imaging area sensing without mechanical movement based on spatial frequency multiplexing,” IEEE Trans. Ind. Electron. 65(10), 8195–8203 (2018).
[Crossref]

Spires, O. J.

Tay, C. J.

S. Ma, C. Quan, R. Zhu, C. J. Tay, and L. Chen, “Surface profile measurement in white-light scanning interferometry using a three-chip color CCD,” Appl. Opt. 50(15), 2246–2254 (2011).
[Crossref] [PubMed]

M. Li, C. Quan, and C. J. Tay, “Continuous wavelet transform for micro-component profile measurement using vertical scanning interferometry,” Opt. Laser Technol. 40(7), 920–929 (2008).
[Crossref]

Tayebi, B.

B. Tayebi, F. Sharif, A. Karimi, and J. Han, “Stable extended imaging area sensing without mechanical movement based on spatial frequency multiplexing,” IEEE Trans. Ind. Electron. 65(10), 8195–8203 (2018).
[Crossref]

Tian, X.

Tobin, K. W.

Tu, X.

Upputuri, P. K.

Wada, A.

Wang, D.

Wang, H.

Wax, A.

Wyant, J.

Wyant, J. C.

Zhu, R.

Adv. Opt. Photonics (1)

P. de Groot, “Principles of interference microscopy for the measurement of surface topography,” Adv. Opt. Photonics 7(1), 1–65 (2015).
[Crossref]

Appl. Opt. (6)

IEEE Trans. Ind. Electron. (1)

B. Tayebi, F. Sharif, A. Karimi, and J. Han, “Stable extended imaging area sensing without mechanical movement based on spatial frequency multiplexing,” IEEE Trans. Ind. Electron. 65(10), 8195–8203 (2018).
[Crossref]

J. Opt. A, Pure Appl. Opt. (1)

I. Abdulhalim, “Competence between spatial and temporal coherence in full field optical coherence tomography and interference microscopy,” J. Opt. A, Pure Appl. Opt. 8(11), 952–958 (2006).
[Crossref]

J. Opt. Soc. Am. A (1)

Opt. Express (4)

Opt. Laser Technol. (1)

M. Li, C. Quan, and C. J. Tay, “Continuous wavelet transform for micro-component profile measurement using vertical scanning interferometry,” Opt. Laser Technol. 40(7), 920–929 (2008).
[Crossref]

Opt. Lett. (6)

Proc. SPIE (1)

M. B. North-Morris, J. E. Millerd, N. J. Brock, and J. B. Hayes, “Phase shifting multi-wave length dynamic interferometry,” Proc. SPIE 5531, 64–75 (2004).
[Crossref]

Other (1)

J. E. Millerd and J. Wyant, “Simultaneous phase-shifting Fizeau interferometer.” U.S. Patent No. 7,230,718 (2007).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1 System layout. BS: beam splitter; L1and L2: lens; P: polarizer; PBS: polarized beam splitter; QWP1, QWP2, and QWP3: achromatic quarter wave plate; MO1 and MO2: microscopy objective; RGB PolarCam: a custom camera with a wire-grid micro-polarizer array on the traditional RGB Bayer filter array.
Fig. 2
Fig. 2 (a) Retardance of achromatic QWP given by Bolder Vision Optik, Inc., and (b) phase errors caused by QWP retardance error for RGB LED light.
Fig. 3
Fig. 3 A 4 x 4 superpixel with Bayer color filter array and micro-polarizer array. The Bayer color filter has a 4.5��m pitch. The linear micro-polarizer array has a 9��m pitch.
Fig. 4
Fig. 4 Phase grid for 6 x 6 weighted average phase calculation.
Fig. 5
Fig. 5 Calibration setup for the RGB PolarCam.
Fig. 6
Fig. 6 Spectrum for RGB LED light source.
Fig. 7
Fig. 7 Surface topography of a diamond turned copper surface measured by (a) R channel, (b) G channel, and (c) B channel.
Fig. 8
Fig. 8 VSLI step height measurement. (a)-(d) are RGB, R, G and B interferograms, (e) and (f) are 3D surface and line profile.
Fig. 9
Fig. 9 VSLI step height measurement by Zygo Newview 8300.
Fig. 10
Fig. 10 System layout with RGB Laser and red LED as light source.
Fig. 11
Fig. 11 Spectrum for RGB laser and RLED.
Fig. 12
Fig. 12 Surface topography of a diamond turned copper surface measured by (a) R channel in our system (b) Zygo white light interference microscope NewView 8300.
Fig. 13
Fig. 13 Measurement result for diamond turned copper with 3, 4, and 5 ��m step heights. Gray scale interferograms are for (a) Blue laser, (b) Green laser, (c) Red LED, and (d) Red laser. (e) and (f) are 3D surface profile and line profile.
Fig. 14
Fig. 14 Measurement results for 3��m to 10��um step heights.

Tables (2)

Tables Icon

Table 1 Measurement results of the VLSI step height standard from the R channel.

Tables Icon

Table 2 Measurement results of the diamond turned copper step height.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

E T = Q 3 * T pbs * Q 1 '* M T * Q 1 * R pbs * E i *exp(iϕ)
E R = Q 3 * R pbs * Q 2 '* M R * Q 2 * T pbs * E i
I= 1 2 [ I T + I R +2 I T I R cos(ϕ+2θ)]
tan(ϕ)= I 135° I 45° I 0° I 90°
I 135° = I i,j I 0° =( I i,j2 + I i,j+2 )/2 I 90° =( I i2,j + I i+2,j )/2 I 45° =( I i2,j2 + I i+2,j2 + I i2,j+2 + I i+2,j+2 )/4
tan( ϕ R )= I R3 I R1 I R0 I R2 tan( ϕ G )= I G3 I G1 I G0 I G2 tan( ϕ B )= I B3 I B1 I B0 I B2
H 12 = Λ 12 2 Φ 2π
H 1 = λ 1 2 ( ϕ 1 2π + N 1 )
N 1 =round( 2 H 12 λ 1 )
H 1223 = Λ 1223 2 ( ϕ 1 ϕ 2 )( ϕ 2 ϕ ) 3 2π
I=AS [ I R I G I B ]=A[ S R S G S B ]
A=I S + =[ I R0 1 I R0 54 I B3 1 I B3 54 ] [ S R0 1 S R0 54 S B2 1 S B2 54 ] +
A ideal = 1 2 [ 1 1 0 1 0 1 1 1 0 1 0 1 ]
C=[ A ideal 0 0 0 A ideal 0 0 0 A ideal ] A + I ˜ =CI