Abstract

We propose and experimentally demonstrate a scheme of polarization independent fast Brillouin optical time domain analysis (F-BOTDA) based on pump frequency modulation and cyclic coding. The Brillouin gain spectrum (BGS) is reconstructed by fast scanning frequency of the pump using an arbitrary waveform generator (AWG). To realize long range distributed dynamic strain sensing, polarization diversity technique and cyclic coding are employed to eliminate polarization fading and enhance the signal-to-noise ratio (SNR). Based on this configuration, the need of trace averaging is avoided, sensing speed of 440 Hz is achieved over ~2 km single mode fiber with 50 scanning frequencies and a spatial resolution of 1.5 m. Vibration events up to 40 Hz are successfully identified.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Distributed measurement of dynamic strain based on multi-slope assisted fast BOTDA

Dexin Ba, Benzhang Wang, Dengwang Zhou, Mingjing Yin, Yongkang Dong, Hui Li, Zhiwei Lu, and Zhigang Fan
Opt. Express 24(9) 9781-9793 (2016)

Fast Brillouin optical time domain analysis for dynamic sensing

Yair Peled, Avi Motil, and Moshe Tur
Opt. Express 20(8) 8584-8591 (2012)

Single-measurement digital optical frequency comb based phase-detection Brillouin optical time domain analyzer

Chao Jin, Liang Wang, Yuli Chen, Nan Guo, Wenghong Chung, Hoyin Au, Zhaohui Li, Hwa-Yaw Tam, and Chao Lu
Opt. Express 25(8) 9213-9224 (2017)

References

  • View by:
  • |
  • |
  • |

  1. A. Barrias, J. R. Casas, and S. Villalba, “A Review of Distributed Optical Fiber Sensors for Civil Engineering Applications,” Sensors (Basel) 16(5), 748 (2016).
    [Crossref] [PubMed]
  2. B. Shi, H. Sui, J. Liu, D. Zhang, B. Shi, and H. Sui, “The BOTDR-based distributed monitoring system for slope engineering,” in Proceedings of the 10th IAEG International Congress (2006).
  3. A. Klar, I. Dromy, and R. Linker, “Monitoring tunneling induced ground displacements using distributed fiber-optic sensing,” Tunn. Undergr. Space Technol. 40, 141–150 (2014).
    [Crossref]
  4. K. Lim, L. Wong, W. K. Chiu, and J. Kodikara, “Distributed fiber optic sensors for monitoring pressure and stiffness changes in out-of-round pipes,” Struct. Contr. Health Monit. 23(2), 303–314 (2016).
    [Crossref]
  5. X. Bao, C. Zhang, W. Li, M. Eisa, S. Elgamal, and B. Benmokrane, “Monitoring the distributed impact wave on a concrete slab due to the traffic based on polarization dependence on stimulated Brillouin scattering,” Smart Mater. Struct. 17(1), 015003 (2008).
    [Crossref]
  6. Y. Dong, L. Chen, and X. Bao, “Time-division multiplexing-based BOTDA over 100 km sensing length,” Opt. Lett. 36(2), 277–279 (2011).
    [Crossref] [PubMed]
  7. X. Angulo-Vinuesa, S. Martin-Lopez, J. Nuno, P. Corredera, J. D. Ania-Castanon, L. Thevenaz, and M. Gonzalez-Herraez, “Raman-Assisted Brillouin Distributed Temperature Sensor Over 100 km Featuring 2 m Resolution and 1.2 °C Uncertainty,” J. Lightwave Technol. 30(8), 1060–1065 (2012).
    [Crossref]
  8. M. A. Soto, G. Bolognini, and F. Di Pasquale, “Long-range simplex-coded BOTDA sensor over 120 km distance employing optical preamplification,” Opt. Lett. 36(2), 232–234 (2011).
    [Crossref] [PubMed]
  9. H. Iribas, A. Loayssa, F. Sauser, M. Llera, and S. Le Floch, “Cyclic coding for Brillouin optical time-domain analyzers using probe dithering,” Opt. Express 25(8), 8787–8800 (2017).
    [Crossref] [PubMed]
  10. K. Y. Song, Z. He, and K. Hotate, “Distributed strain measurement with millimeter-order spatial resolution based on Brillouin optical correlation domain analysis,” Opt. Lett. 31(17), 2526–2528 (2006).
    [Crossref] [PubMed]
  11. K. Y. Song and K. Hotate, “Distributed Fiber Strain Sensor With 1-kHz Sampling Rate Based on Brillouin Optical Correlation Domain Analysis,” IEEE Photon. Technol. Lett. 19(23), 1928–1930 (2007).
    [Crossref]
  12. L. Thévenaz, S. F. Mafang, and J. Lin, “Effect of pulse depletion in a Brillouin optical time-domain analysis system,” Opt. Express 21(12), 14017–14035 (2013).
    [Crossref] [PubMed]
  13. N. Guo, L. Wang, H. Wu, C. Jin, H.-Y. Tam, and C. Lu, “Enhanced Coherent BOTDA System Without Trace Averaging,” J. Lightwave Technol. 36(4), 871–878 (2018).
    [Crossref]
  14. H. Wu, L. Wang, Z. Zhao, N. Guo, C. Shu, and C. Lu, “Brillouin optical time domain analyzer sensors assisted by advanced image denoising techniques,” Opt. Express 26(5), 5126–5139 (2018).
    [Crossref] [PubMed]
  15. R. Bernini, A. Minardo, and L. Zeni, “Dynamic strain measurement in optical fibers by stimulated Brillouin scattering,” Opt. Lett. 34(17), 2613–2615 (2009).
    [Crossref] [PubMed]
  16. A. Voskoboinik, A. E. Willner, and M. Tur, “Extending the Dynamic Range of Sweep-Free Brillouin Optical Time-Domain Analyzer,” J. Lightwave Technol. 33(14), 2978–2985 (2015).
    [Crossref]
  17. A. Voskoboinik, O. F. Yilmaz, A. W. Willner, and M. Tur, “Sweep-free distributed Brillouin time-domain analyzer (SF-BOTDA),” Opt. Express 19(26), B842–B847 (2011).
    [Crossref] [PubMed]
  18. A. Voskoboinik, D. Rogawski, H. Huang, Y. Peled, A. E. Willner, and M. Tur, “Frequency-domain analysis of dynamically applied strain using sweep-free Brillouin time-domain analyzer and sloped-assisted FBG sensing,” Opt. Express 20(26), B581–B586 (2012).
    [Crossref] [PubMed]
  19. J. Fang, P. Xu, Y. Dong, and W. Shieh, “Single-shot distributed Brillouin optical time domain analyzer,” Opt. Express 25(13), 15188–15198 (2017).
    [Crossref] [PubMed]
  20. D. Zhou, Y. Dong, B. Wang, C. Pang, D. Ba, H. Zhang, Z. Lu, H. Li, and X. Bao, “Single-shot BOTDA based on an optical chirp chain probe wave for distributed ultra-fast measurement,” Light Sci. Appl. (to be published).
  21. Y. Mizuno, N. Hayashi, H. Fukuda, K. Y. Song, and K. Nakamura, “Ultrahigh-speed distributed Brillouin reflectometry,” Light Sci. Appl. 5(12), e16184 (2016).
    [Crossref]
  22. Y. Peled, A. Motil, and M. Tur, “Fast Brillouin Optical Time Domain Analysis for dynamic sensing,” Opt. Express 20(8), 8584–8591 (2012).
    [Crossref] [PubMed]
  23. Y. Dong, D. Ba, T. Jiang, D. Zhou, H. Zhang, C. Zhu, Z. Lu, H. Li, L. Chen, and X. Bao, “High-Spatial-Resolution Fast BOTDA for Dynamic Strain Measurement Based on Differential Double-Pulse and Second-Order Sideband of Modulation,” IEEE Photon. J. 5(3), 2600407 (2013).
    [Crossref]
  24. I. Sovran, A. Motil, and M. Tur, “Frequency-Scanning BOTDA With Ultimately Fast Acquisition Speed,” IEEE Photon Technol. Lett. 27(13), 1426–1429 (2015).
    [Crossref]
  25. S. Le Floch, F. Sauser, M. Llera, and E. Rochat, “Novel Brillouin Optical Time-Domain Analyzer for Extreme Sensing Range Using High-Power Flat Frequency-Coded Pump Pulses,” J. Lightwave Technol. 33(12), 2623–2627 (2015).
    [Crossref]
  26. M. Taki, Y. Muanenda, C. J. Oton, T. Nannipieri, A. Signorini, and F. Di Pasquale, “Cyclic pulse coding for fast BOTDA fiber sensors,” Opt. Lett. 38(15), 2877–2880 (2013).
    [Crossref] [PubMed]
  27. Y. Muanenda, M. Taki, and F. D. Pasquale, “Long-range accelerated BOTDA sensor using adaptive linear prediction and cyclic coding,” Opt. Lett. 39(18), 5411–5414 (2014).
    [Crossref] [PubMed]
  28. F. Baronti, A. Lazzeri, R. Roncella, R. Saletti, A. Signorini, M. A. Soto, G. Bolognini, and F. Di Pasquale, “SNR enhancement of Raman-based long-range distributed temperature sensors using cyclic Simplex codes,” Electron. Lett. 46(17), 1221–1223 (2010).
    [Crossref]

2018 (2)

2017 (2)

2016 (3)

Y. Mizuno, N. Hayashi, H. Fukuda, K. Y. Song, and K. Nakamura, “Ultrahigh-speed distributed Brillouin reflectometry,” Light Sci. Appl. 5(12), e16184 (2016).
[Crossref]

A. Barrias, J. R. Casas, and S. Villalba, “A Review of Distributed Optical Fiber Sensors for Civil Engineering Applications,” Sensors (Basel) 16(5), 748 (2016).
[Crossref] [PubMed]

K. Lim, L. Wong, W. K. Chiu, and J. Kodikara, “Distributed fiber optic sensors for monitoring pressure and stiffness changes in out-of-round pipes,” Struct. Contr. Health Monit. 23(2), 303–314 (2016).
[Crossref]

2015 (3)

2014 (2)

Y. Muanenda, M. Taki, and F. D. Pasquale, “Long-range accelerated BOTDA sensor using adaptive linear prediction and cyclic coding,” Opt. Lett. 39(18), 5411–5414 (2014).
[Crossref] [PubMed]

A. Klar, I. Dromy, and R. Linker, “Monitoring tunneling induced ground displacements using distributed fiber-optic sensing,” Tunn. Undergr. Space Technol. 40, 141–150 (2014).
[Crossref]

2013 (3)

L. Thévenaz, S. F. Mafang, and J. Lin, “Effect of pulse depletion in a Brillouin optical time-domain analysis system,” Opt. Express 21(12), 14017–14035 (2013).
[Crossref] [PubMed]

Y. Dong, D. Ba, T. Jiang, D. Zhou, H. Zhang, C. Zhu, Z. Lu, H. Li, L. Chen, and X. Bao, “High-Spatial-Resolution Fast BOTDA for Dynamic Strain Measurement Based on Differential Double-Pulse and Second-Order Sideband of Modulation,” IEEE Photon. J. 5(3), 2600407 (2013).
[Crossref]

M. Taki, Y. Muanenda, C. J. Oton, T. Nannipieri, A. Signorini, and F. Di Pasquale, “Cyclic pulse coding for fast BOTDA fiber sensors,” Opt. Lett. 38(15), 2877–2880 (2013).
[Crossref] [PubMed]

2012 (3)

2011 (3)

2010 (1)

F. Baronti, A. Lazzeri, R. Roncella, R. Saletti, A. Signorini, M. A. Soto, G. Bolognini, and F. Di Pasquale, “SNR enhancement of Raman-based long-range distributed temperature sensors using cyclic Simplex codes,” Electron. Lett. 46(17), 1221–1223 (2010).
[Crossref]

2009 (1)

2008 (1)

X. Bao, C. Zhang, W. Li, M. Eisa, S. Elgamal, and B. Benmokrane, “Monitoring the distributed impact wave on a concrete slab due to the traffic based on polarization dependence on stimulated Brillouin scattering,” Smart Mater. Struct. 17(1), 015003 (2008).
[Crossref]

2007 (1)

K. Y. Song and K. Hotate, “Distributed Fiber Strain Sensor With 1-kHz Sampling Rate Based on Brillouin Optical Correlation Domain Analysis,” IEEE Photon. Technol. Lett. 19(23), 1928–1930 (2007).
[Crossref]

2006 (1)

Angulo-Vinuesa, X.

Ania-Castanon, J. D.

Ba, D.

Y. Dong, D. Ba, T. Jiang, D. Zhou, H. Zhang, C. Zhu, Z. Lu, H. Li, L. Chen, and X. Bao, “High-Spatial-Resolution Fast BOTDA for Dynamic Strain Measurement Based on Differential Double-Pulse and Second-Order Sideband of Modulation,” IEEE Photon. J. 5(3), 2600407 (2013).
[Crossref]

D. Zhou, Y. Dong, B. Wang, C. Pang, D. Ba, H. Zhang, Z. Lu, H. Li, and X. Bao, “Single-shot BOTDA based on an optical chirp chain probe wave for distributed ultra-fast measurement,” Light Sci. Appl. (to be published).

Bao, X.

Y. Dong, D. Ba, T. Jiang, D. Zhou, H. Zhang, C. Zhu, Z. Lu, H. Li, L. Chen, and X. Bao, “High-Spatial-Resolution Fast BOTDA for Dynamic Strain Measurement Based on Differential Double-Pulse and Second-Order Sideband of Modulation,” IEEE Photon. J. 5(3), 2600407 (2013).
[Crossref]

Y. Dong, L. Chen, and X. Bao, “Time-division multiplexing-based BOTDA over 100 km sensing length,” Opt. Lett. 36(2), 277–279 (2011).
[Crossref] [PubMed]

X. Bao, C. Zhang, W. Li, M. Eisa, S. Elgamal, and B. Benmokrane, “Monitoring the distributed impact wave on a concrete slab due to the traffic based on polarization dependence on stimulated Brillouin scattering,” Smart Mater. Struct. 17(1), 015003 (2008).
[Crossref]

D. Zhou, Y. Dong, B. Wang, C. Pang, D. Ba, H. Zhang, Z. Lu, H. Li, and X. Bao, “Single-shot BOTDA based on an optical chirp chain probe wave for distributed ultra-fast measurement,” Light Sci. Appl. (to be published).

Baronti, F.

F. Baronti, A. Lazzeri, R. Roncella, R. Saletti, A. Signorini, M. A. Soto, G. Bolognini, and F. Di Pasquale, “SNR enhancement of Raman-based long-range distributed temperature sensors using cyclic Simplex codes,” Electron. Lett. 46(17), 1221–1223 (2010).
[Crossref]

Barrias, A.

A. Barrias, J. R. Casas, and S. Villalba, “A Review of Distributed Optical Fiber Sensors for Civil Engineering Applications,” Sensors (Basel) 16(5), 748 (2016).
[Crossref] [PubMed]

Benmokrane, B.

X. Bao, C. Zhang, W. Li, M. Eisa, S. Elgamal, and B. Benmokrane, “Monitoring the distributed impact wave on a concrete slab due to the traffic based on polarization dependence on stimulated Brillouin scattering,” Smart Mater. Struct. 17(1), 015003 (2008).
[Crossref]

Bernini, R.

Bolognini, G.

M. A. Soto, G. Bolognini, and F. Di Pasquale, “Long-range simplex-coded BOTDA sensor over 120 km distance employing optical preamplification,” Opt. Lett. 36(2), 232–234 (2011).
[Crossref] [PubMed]

F. Baronti, A. Lazzeri, R. Roncella, R. Saletti, A. Signorini, M. A. Soto, G. Bolognini, and F. Di Pasquale, “SNR enhancement of Raman-based long-range distributed temperature sensors using cyclic Simplex codes,” Electron. Lett. 46(17), 1221–1223 (2010).
[Crossref]

Casas, J. R.

A. Barrias, J. R. Casas, and S. Villalba, “A Review of Distributed Optical Fiber Sensors for Civil Engineering Applications,” Sensors (Basel) 16(5), 748 (2016).
[Crossref] [PubMed]

Chen, L.

Y. Dong, D. Ba, T. Jiang, D. Zhou, H. Zhang, C. Zhu, Z. Lu, H. Li, L. Chen, and X. Bao, “High-Spatial-Resolution Fast BOTDA for Dynamic Strain Measurement Based on Differential Double-Pulse and Second-Order Sideband of Modulation,” IEEE Photon. J. 5(3), 2600407 (2013).
[Crossref]

Y. Dong, L. Chen, and X. Bao, “Time-division multiplexing-based BOTDA over 100 km sensing length,” Opt. Lett. 36(2), 277–279 (2011).
[Crossref] [PubMed]

Chiu, W. K.

K. Lim, L. Wong, W. K. Chiu, and J. Kodikara, “Distributed fiber optic sensors for monitoring pressure and stiffness changes in out-of-round pipes,” Struct. Contr. Health Monit. 23(2), 303–314 (2016).
[Crossref]

Corredera, P.

Di Pasquale, F.

Dong, Y.

J. Fang, P. Xu, Y. Dong, and W. Shieh, “Single-shot distributed Brillouin optical time domain analyzer,” Opt. Express 25(13), 15188–15198 (2017).
[Crossref] [PubMed]

Y. Dong, D. Ba, T. Jiang, D. Zhou, H. Zhang, C. Zhu, Z. Lu, H. Li, L. Chen, and X. Bao, “High-Spatial-Resolution Fast BOTDA for Dynamic Strain Measurement Based on Differential Double-Pulse and Second-Order Sideband of Modulation,” IEEE Photon. J. 5(3), 2600407 (2013).
[Crossref]

Y. Dong, L. Chen, and X. Bao, “Time-division multiplexing-based BOTDA over 100 km sensing length,” Opt. Lett. 36(2), 277–279 (2011).
[Crossref] [PubMed]

D. Zhou, Y. Dong, B. Wang, C. Pang, D. Ba, H. Zhang, Z. Lu, H. Li, and X. Bao, “Single-shot BOTDA based on an optical chirp chain probe wave for distributed ultra-fast measurement,” Light Sci. Appl. (to be published).

Dromy, I.

A. Klar, I. Dromy, and R. Linker, “Monitoring tunneling induced ground displacements using distributed fiber-optic sensing,” Tunn. Undergr. Space Technol. 40, 141–150 (2014).
[Crossref]

Eisa, M.

X. Bao, C. Zhang, W. Li, M. Eisa, S. Elgamal, and B. Benmokrane, “Monitoring the distributed impact wave on a concrete slab due to the traffic based on polarization dependence on stimulated Brillouin scattering,” Smart Mater. Struct. 17(1), 015003 (2008).
[Crossref]

Elgamal, S.

X. Bao, C. Zhang, W. Li, M. Eisa, S. Elgamal, and B. Benmokrane, “Monitoring the distributed impact wave on a concrete slab due to the traffic based on polarization dependence on stimulated Brillouin scattering,” Smart Mater. Struct. 17(1), 015003 (2008).
[Crossref]

Fang, J.

Fukuda, H.

Y. Mizuno, N. Hayashi, H. Fukuda, K. Y. Song, and K. Nakamura, “Ultrahigh-speed distributed Brillouin reflectometry,” Light Sci. Appl. 5(12), e16184 (2016).
[Crossref]

Gonzalez-Herraez, M.

Guo, N.

Hayashi, N.

Y. Mizuno, N. Hayashi, H. Fukuda, K. Y. Song, and K. Nakamura, “Ultrahigh-speed distributed Brillouin reflectometry,” Light Sci. Appl. 5(12), e16184 (2016).
[Crossref]

He, Z.

Hotate, K.

K. Y. Song and K. Hotate, “Distributed Fiber Strain Sensor With 1-kHz Sampling Rate Based on Brillouin Optical Correlation Domain Analysis,” IEEE Photon. Technol. Lett. 19(23), 1928–1930 (2007).
[Crossref]

K. Y. Song, Z. He, and K. Hotate, “Distributed strain measurement with millimeter-order spatial resolution based on Brillouin optical correlation domain analysis,” Opt. Lett. 31(17), 2526–2528 (2006).
[Crossref] [PubMed]

Huang, H.

Iribas, H.

Jiang, T.

Y. Dong, D. Ba, T. Jiang, D. Zhou, H. Zhang, C. Zhu, Z. Lu, H. Li, L. Chen, and X. Bao, “High-Spatial-Resolution Fast BOTDA for Dynamic Strain Measurement Based on Differential Double-Pulse and Second-Order Sideband of Modulation,” IEEE Photon. J. 5(3), 2600407 (2013).
[Crossref]

Jin, C.

Klar, A.

A. Klar, I. Dromy, and R. Linker, “Monitoring tunneling induced ground displacements using distributed fiber-optic sensing,” Tunn. Undergr. Space Technol. 40, 141–150 (2014).
[Crossref]

Kodikara, J.

K. Lim, L. Wong, W. K. Chiu, and J. Kodikara, “Distributed fiber optic sensors for monitoring pressure and stiffness changes in out-of-round pipes,” Struct. Contr. Health Monit. 23(2), 303–314 (2016).
[Crossref]

Lazzeri, A.

F. Baronti, A. Lazzeri, R. Roncella, R. Saletti, A. Signorini, M. A. Soto, G. Bolognini, and F. Di Pasquale, “SNR enhancement of Raman-based long-range distributed temperature sensors using cyclic Simplex codes,” Electron. Lett. 46(17), 1221–1223 (2010).
[Crossref]

Le Floch, S.

Li, H.

Y. Dong, D. Ba, T. Jiang, D. Zhou, H. Zhang, C. Zhu, Z. Lu, H. Li, L. Chen, and X. Bao, “High-Spatial-Resolution Fast BOTDA for Dynamic Strain Measurement Based on Differential Double-Pulse and Second-Order Sideband of Modulation,” IEEE Photon. J. 5(3), 2600407 (2013).
[Crossref]

D. Zhou, Y. Dong, B. Wang, C. Pang, D. Ba, H. Zhang, Z. Lu, H. Li, and X. Bao, “Single-shot BOTDA based on an optical chirp chain probe wave for distributed ultra-fast measurement,” Light Sci. Appl. (to be published).

Li, W.

X. Bao, C. Zhang, W. Li, M. Eisa, S. Elgamal, and B. Benmokrane, “Monitoring the distributed impact wave on a concrete slab due to the traffic based on polarization dependence on stimulated Brillouin scattering,” Smart Mater. Struct. 17(1), 015003 (2008).
[Crossref]

Lim, K.

K. Lim, L. Wong, W. K. Chiu, and J. Kodikara, “Distributed fiber optic sensors for monitoring pressure and stiffness changes in out-of-round pipes,” Struct. Contr. Health Monit. 23(2), 303–314 (2016).
[Crossref]

Lin, J.

Linker, R.

A. Klar, I. Dromy, and R. Linker, “Monitoring tunneling induced ground displacements using distributed fiber-optic sensing,” Tunn. Undergr. Space Technol. 40, 141–150 (2014).
[Crossref]

Liu, J.

B. Shi, H. Sui, J. Liu, D. Zhang, B. Shi, and H. Sui, “The BOTDR-based distributed monitoring system for slope engineering,” in Proceedings of the 10th IAEG International Congress (2006).

Llera, M.

Loayssa, A.

Lu, C.

Lu, Z.

Y. Dong, D. Ba, T. Jiang, D. Zhou, H. Zhang, C. Zhu, Z. Lu, H. Li, L. Chen, and X. Bao, “High-Spatial-Resolution Fast BOTDA for Dynamic Strain Measurement Based on Differential Double-Pulse and Second-Order Sideband of Modulation,” IEEE Photon. J. 5(3), 2600407 (2013).
[Crossref]

D. Zhou, Y. Dong, B. Wang, C. Pang, D. Ba, H. Zhang, Z. Lu, H. Li, and X. Bao, “Single-shot BOTDA based on an optical chirp chain probe wave for distributed ultra-fast measurement,” Light Sci. Appl. (to be published).

Mafang, S. F.

Martin-Lopez, S.

Minardo, A.

Mizuno, Y.

Y. Mizuno, N. Hayashi, H. Fukuda, K. Y. Song, and K. Nakamura, “Ultrahigh-speed distributed Brillouin reflectometry,” Light Sci. Appl. 5(12), e16184 (2016).
[Crossref]

Motil, A.

I. Sovran, A. Motil, and M. Tur, “Frequency-Scanning BOTDA With Ultimately Fast Acquisition Speed,” IEEE Photon Technol. Lett. 27(13), 1426–1429 (2015).
[Crossref]

Y. Peled, A. Motil, and M. Tur, “Fast Brillouin Optical Time Domain Analysis for dynamic sensing,” Opt. Express 20(8), 8584–8591 (2012).
[Crossref] [PubMed]

Muanenda, Y.

Nakamura, K.

Y. Mizuno, N. Hayashi, H. Fukuda, K. Y. Song, and K. Nakamura, “Ultrahigh-speed distributed Brillouin reflectometry,” Light Sci. Appl. 5(12), e16184 (2016).
[Crossref]

Nannipieri, T.

Nuno, J.

Oton, C. J.

Pang, C.

D. Zhou, Y. Dong, B. Wang, C. Pang, D. Ba, H. Zhang, Z. Lu, H. Li, and X. Bao, “Single-shot BOTDA based on an optical chirp chain probe wave for distributed ultra-fast measurement,” Light Sci. Appl. (to be published).

Pasquale, F. D.

Peled, Y.

Rochat, E.

Rogawski, D.

Roncella, R.

F. Baronti, A. Lazzeri, R. Roncella, R. Saletti, A. Signorini, M. A. Soto, G. Bolognini, and F. Di Pasquale, “SNR enhancement of Raman-based long-range distributed temperature sensors using cyclic Simplex codes,” Electron. Lett. 46(17), 1221–1223 (2010).
[Crossref]

Saletti, R.

F. Baronti, A. Lazzeri, R. Roncella, R. Saletti, A. Signorini, M. A. Soto, G. Bolognini, and F. Di Pasquale, “SNR enhancement of Raman-based long-range distributed temperature sensors using cyclic Simplex codes,” Electron. Lett. 46(17), 1221–1223 (2010).
[Crossref]

Sauser, F.

Shi, B.

B. Shi, H. Sui, J. Liu, D. Zhang, B. Shi, and H. Sui, “The BOTDR-based distributed monitoring system for slope engineering,” in Proceedings of the 10th IAEG International Congress (2006).

B. Shi, H. Sui, J. Liu, D. Zhang, B. Shi, and H. Sui, “The BOTDR-based distributed monitoring system for slope engineering,” in Proceedings of the 10th IAEG International Congress (2006).

Shieh, W.

Shu, C.

Signorini, A.

M. Taki, Y. Muanenda, C. J. Oton, T. Nannipieri, A. Signorini, and F. Di Pasquale, “Cyclic pulse coding for fast BOTDA fiber sensors,” Opt. Lett. 38(15), 2877–2880 (2013).
[Crossref] [PubMed]

F. Baronti, A. Lazzeri, R. Roncella, R. Saletti, A. Signorini, M. A. Soto, G. Bolognini, and F. Di Pasquale, “SNR enhancement of Raman-based long-range distributed temperature sensors using cyclic Simplex codes,” Electron. Lett. 46(17), 1221–1223 (2010).
[Crossref]

Song, K. Y.

Y. Mizuno, N. Hayashi, H. Fukuda, K. Y. Song, and K. Nakamura, “Ultrahigh-speed distributed Brillouin reflectometry,” Light Sci. Appl. 5(12), e16184 (2016).
[Crossref]

K. Y. Song and K. Hotate, “Distributed Fiber Strain Sensor With 1-kHz Sampling Rate Based on Brillouin Optical Correlation Domain Analysis,” IEEE Photon. Technol. Lett. 19(23), 1928–1930 (2007).
[Crossref]

K. Y. Song, Z. He, and K. Hotate, “Distributed strain measurement with millimeter-order spatial resolution based on Brillouin optical correlation domain analysis,” Opt. Lett. 31(17), 2526–2528 (2006).
[Crossref] [PubMed]

Soto, M. A.

M. A. Soto, G. Bolognini, and F. Di Pasquale, “Long-range simplex-coded BOTDA sensor over 120 km distance employing optical preamplification,” Opt. Lett. 36(2), 232–234 (2011).
[Crossref] [PubMed]

F. Baronti, A. Lazzeri, R. Roncella, R. Saletti, A. Signorini, M. A. Soto, G. Bolognini, and F. Di Pasquale, “SNR enhancement of Raman-based long-range distributed temperature sensors using cyclic Simplex codes,” Electron. Lett. 46(17), 1221–1223 (2010).
[Crossref]

Sovran, I.

I. Sovran, A. Motil, and M. Tur, “Frequency-Scanning BOTDA With Ultimately Fast Acquisition Speed,” IEEE Photon Technol. Lett. 27(13), 1426–1429 (2015).
[Crossref]

Sui, H.

B. Shi, H. Sui, J. Liu, D. Zhang, B. Shi, and H. Sui, “The BOTDR-based distributed monitoring system for slope engineering,” in Proceedings of the 10th IAEG International Congress (2006).

B. Shi, H. Sui, J. Liu, D. Zhang, B. Shi, and H. Sui, “The BOTDR-based distributed monitoring system for slope engineering,” in Proceedings of the 10th IAEG International Congress (2006).

Taki, M.

Tam, H.-Y.

Thevenaz, L.

Thévenaz, L.

Tur, M.

Villalba, S.

A. Barrias, J. R. Casas, and S. Villalba, “A Review of Distributed Optical Fiber Sensors for Civil Engineering Applications,” Sensors (Basel) 16(5), 748 (2016).
[Crossref] [PubMed]

Voskoboinik, A.

Wang, B.

D. Zhou, Y. Dong, B. Wang, C. Pang, D. Ba, H. Zhang, Z. Lu, H. Li, and X. Bao, “Single-shot BOTDA based on an optical chirp chain probe wave for distributed ultra-fast measurement,” Light Sci. Appl. (to be published).

Wang, L.

Willner, A. E.

Willner, A. W.

Wong, L.

K. Lim, L. Wong, W. K. Chiu, and J. Kodikara, “Distributed fiber optic sensors for monitoring pressure and stiffness changes in out-of-round pipes,” Struct. Contr. Health Monit. 23(2), 303–314 (2016).
[Crossref]

Wu, H.

Xu, P.

Yilmaz, O. F.

Zeni, L.

Zhang, C.

X. Bao, C. Zhang, W. Li, M. Eisa, S. Elgamal, and B. Benmokrane, “Monitoring the distributed impact wave on a concrete slab due to the traffic based on polarization dependence on stimulated Brillouin scattering,” Smart Mater. Struct. 17(1), 015003 (2008).
[Crossref]

Zhang, D.

B. Shi, H. Sui, J. Liu, D. Zhang, B. Shi, and H. Sui, “The BOTDR-based distributed monitoring system for slope engineering,” in Proceedings of the 10th IAEG International Congress (2006).

Zhang, H.

Y. Dong, D. Ba, T. Jiang, D. Zhou, H. Zhang, C. Zhu, Z. Lu, H. Li, L. Chen, and X. Bao, “High-Spatial-Resolution Fast BOTDA for Dynamic Strain Measurement Based on Differential Double-Pulse and Second-Order Sideband of Modulation,” IEEE Photon. J. 5(3), 2600407 (2013).
[Crossref]

D. Zhou, Y. Dong, B. Wang, C. Pang, D. Ba, H. Zhang, Z. Lu, H. Li, and X. Bao, “Single-shot BOTDA based on an optical chirp chain probe wave for distributed ultra-fast measurement,” Light Sci. Appl. (to be published).

Zhao, Z.

Zhou, D.

Y. Dong, D. Ba, T. Jiang, D. Zhou, H. Zhang, C. Zhu, Z. Lu, H. Li, L. Chen, and X. Bao, “High-Spatial-Resolution Fast BOTDA for Dynamic Strain Measurement Based on Differential Double-Pulse and Second-Order Sideband of Modulation,” IEEE Photon. J. 5(3), 2600407 (2013).
[Crossref]

D. Zhou, Y. Dong, B. Wang, C. Pang, D. Ba, H. Zhang, Z. Lu, H. Li, and X. Bao, “Single-shot BOTDA based on an optical chirp chain probe wave for distributed ultra-fast measurement,” Light Sci. Appl. (to be published).

Zhu, C.

Y. Dong, D. Ba, T. Jiang, D. Zhou, H. Zhang, C. Zhu, Z. Lu, H. Li, L. Chen, and X. Bao, “High-Spatial-Resolution Fast BOTDA for Dynamic Strain Measurement Based on Differential Double-Pulse and Second-Order Sideband of Modulation,” IEEE Photon. J. 5(3), 2600407 (2013).
[Crossref]

Electron. Lett. (1)

F. Baronti, A. Lazzeri, R. Roncella, R. Saletti, A. Signorini, M. A. Soto, G. Bolognini, and F. Di Pasquale, “SNR enhancement of Raman-based long-range distributed temperature sensors using cyclic Simplex codes,” Electron. Lett. 46(17), 1221–1223 (2010).
[Crossref]

IEEE Photon Technol. Lett. (1)

I. Sovran, A. Motil, and M. Tur, “Frequency-Scanning BOTDA With Ultimately Fast Acquisition Speed,” IEEE Photon Technol. Lett. 27(13), 1426–1429 (2015).
[Crossref]

IEEE Photon. J. (1)

Y. Dong, D. Ba, T. Jiang, D. Zhou, H. Zhang, C. Zhu, Z. Lu, H. Li, L. Chen, and X. Bao, “High-Spatial-Resolution Fast BOTDA for Dynamic Strain Measurement Based on Differential Double-Pulse and Second-Order Sideband of Modulation,” IEEE Photon. J. 5(3), 2600407 (2013).
[Crossref]

IEEE Photon. Technol. Lett. (1)

K. Y. Song and K. Hotate, “Distributed Fiber Strain Sensor With 1-kHz Sampling Rate Based on Brillouin Optical Correlation Domain Analysis,” IEEE Photon. Technol. Lett. 19(23), 1928–1930 (2007).
[Crossref]

J. Lightwave Technol. (4)

Light Sci. Appl. (1)

Y. Mizuno, N. Hayashi, H. Fukuda, K. Y. Song, and K. Nakamura, “Ultrahigh-speed distributed Brillouin reflectometry,” Light Sci. Appl. 5(12), e16184 (2016).
[Crossref]

Opt. Express (7)

Opt. Lett. (6)

Sensors (Basel) (1)

A. Barrias, J. R. Casas, and S. Villalba, “A Review of Distributed Optical Fiber Sensors for Civil Engineering Applications,” Sensors (Basel) 16(5), 748 (2016).
[Crossref] [PubMed]

Smart Mater. Struct. (1)

X. Bao, C. Zhang, W. Li, M. Eisa, S. Elgamal, and B. Benmokrane, “Monitoring the distributed impact wave on a concrete slab due to the traffic based on polarization dependence on stimulated Brillouin scattering,” Smart Mater. Struct. 17(1), 015003 (2008).
[Crossref]

Struct. Contr. Health Monit. (1)

K. Lim, L. Wong, W. K. Chiu, and J. Kodikara, “Distributed fiber optic sensors for monitoring pressure and stiffness changes in out-of-round pipes,” Struct. Contr. Health Monit. 23(2), 303–314 (2016).
[Crossref]

Tunn. Undergr. Space Technol. (1)

A. Klar, I. Dromy, and R. Linker, “Monitoring tunneling induced ground displacements using distributed fiber-optic sensing,” Tunn. Undergr. Space Technol. 40, 141–150 (2014).
[Crossref]

Other (2)

B. Shi, H. Sui, J. Liu, D. Zhang, B. Shi, and H. Sui, “The BOTDR-based distributed monitoring system for slope engineering,” in Proceedings of the 10th IAEG International Congress (2006).

D. Zhou, Y. Dong, B. Wang, C. Pang, D. Ba, H. Zhang, Z. Lu, H. Li, and X. Bao, “Single-shot BOTDA based on an optical chirp chain probe wave for distributed ultra-fast measurement,” Light Sci. Appl. (to be published).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 (a) Illustration of the proposed scanning technique. fc is the frequency of laser output, fp is the modulation frequency of pump and vB is the Brillouin frequency shift. (b) Eliminating polarization fading by using balanced detection.
Fig. 2
Fig. 2 (a) Experimental setup. PC: polarization controller, RF: radio-frequency generator, EOM: electro-optic modulator, EDFA: Erbium-doped fiber amplifier, FBG: fiber Bragg grating, PBC: polarization beam combiner, ISO: isolator, FUT: fiber under test, DAQ: data-acquisition card. (b) The layout of fiber under test (FUT).
Fig. 3
Fig. 3 Measured spectra of the probe light before and after PBC.
Fig. 4
Fig. 4 (a), (b) Trace obtained using the single sideband cases. (c) Balanced detection for a pump-probe frequency shift of 10.721 GHz.
Fig. 5
Fig. 5 (a) BGS distribution along the FUT. (b) Measured BFS distribution around the last 30 m fiber (inset: the distribution of BFS along the FUT).
Fig. 6
Fig. 6 (a) Estimated BFS around the stretched fiber with different strain. (b) BFS of the stretched fiber as a function of strain. Blue line is the linear curve fitting.
Fig. 7
Fig. 7 (a) BGS distribution along the FUT for 71-bit cyclic coding without averages. (b) Brillouin time-domain traces at 10.721 GHz for single pulse with 16 averages (blue line) and 71-bit cyclic coding without averages (red line).
Fig. 8
Fig. 8 (a) The measured BGS as a function of time at loose fiber. (b), (c) The measured BGS as a function of time at the vibrated section of fiber with driving voltage of 1.9 V and 2.4 V.
Fig. 9
Fig. 9 Frequency-domain normalized power spectrum of vibration at 20 Hz and 31 Hz.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

V AWG (t)= i=1 N V 0 cos(2π f i t)[rect( t(i1) T in τ p )]
f i = f 0 +(i1) f step
I up (z,Δv)= I up (L,Δv)exp(aL)[ 1- η up z z+ΔZ g B (z,Δv) I P (z,Δv)dz ]
I low (z,Δv)= I low (L,Δv)exp(aL)[ 1+ η low z z+Δz g B (z,Δv) I P (z,Δv)dz ]
Δ I cw =( η up + η low ) I low (L,Δv)exp(aL) z z+ΔZ g B (z,Δv) I P (z,Δv)dz
{ u 1 =0 u n+1 =( u n +n)modL

Metrics