Abstract

Time of flight light detection and ranging (LiDAR) has been tested and used as a key device for auto-driving of vehicles. Frequency-modulated continuous-wave (FMCW) LiDAR potentially achieves a high sensitivity. In this study, we fabricated and tested two components of FMCW LiDAR based on Si photonics. The ranging action was also experimentally simulated. A Si photonic crystal slow light Mach-Zehnder modulator was driven by linearly frequency-chirped signals to generate quasi-frequency-modulated signal light. Then, the light was inserted into a fiber delay line of 20–320 m. Its output was irradiated to a photonic crystal slow beam steering device that acted as an optical antenna via a free-space transmission. The detected light was mixed with the reference light branched after the modulation in balanced photodiodes. A sufficiently sharp beat spectrum was observed, whose frequency well agreed with that expected for the delay line. The experimental simulation of the FMCW LiDAR, thus, was achieved.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Thermally controlled Si photonic crystal slow light waveguide beam steering device

Goro Takeuchi, Yosuke Terada, Moe Takeuchi, Hiroshi Abe, Hiroyuki Ito, and Toshihiko Baba
Opt. Express 26(9) 11529-11537 (2018)

Electro-optic phase matching in a Si photonic crystal slow light modulator using meander-line electrodes

Yosuke Hinakura, Yosuke Terada, Hiroyuki Arai, and Toshihiko Baba
Opt. Express 26(9) 11538-11545 (2018)

Two-dimensional beam-steering device using a doubly periodic Si photonic-crystal waveguide

Hiroshi Abe, Moe Takeuchi, Goro Takeuchi, Hiroyuki Ito, Tomoki Yokokawa, Keisuke Kondo, Yuya Furukado, and Toshihiko Baba
Opt. Express 26(8) 9389-9397 (2018)

References

  • View by:
  • |
  • |
  • |

  1. E. E. Uthe, “Lidar evaluation of smoke and dust clouds,” Appl. Opt. 20(9), 1503–1510 (1981).
    [Crossref] [PubMed]
  2. H. Okamoto, K. Sato, T. Nishizawa, N. Sugimoto, T. Makino, Y. Jin, A. Shimizu, T. Takano, and M. Fujikawa, “Development of a multiple-field-of-view multiple-scattering polarization lidar: comparison with cloud radar,” Opt. Express 24(26), 30053–30067 (2016).
    [Crossref] [PubMed]
  3. T. Hakala, J. Suomalainen, S. Kaasalainen, and Y. Chen, “Full waveform hyperspectral LiDAR for terrestrial laser scanning,” Opt. Express 20(7), 7119–7127 (2012).
    [Crossref] [PubMed]
  4. W. D. Jones, “Keeping cars from crashing,” IEEE Spectr. 38(9), 40–45 (2001).
    [Crossref]
  5. U. Weiss and P. Biber, “Plant detection and mapping for agricultural robots using a 3D LIDAR sensor,” Robot. Auton. Syst. 59(5), 265–273 (2011).
    [Crossref]
  6. T. T. Sankey, J. McVay, T. L. Swetnam, M. P. McClaran, P. Heilman, and M. Nichols, “UAV hyperspectral and lidar data and their fusion for arid and semi-arid land vegetation monitoring,” Remote Sensing in Ecology and Conservation 4(1), 20–33 (2018).
    [Crossref]
  7. G. Shao, G. Shao, J. Gallion, M. R. Saunders, J. R. Frankenberger, and S. Fei, “Improving Lidar-based aboveground biomass estimation of temperate hardwood forest with varying site productivity,” Remote Sens. Environ. 204, 872–882 (2018).
    [Crossref]
  8. I. Puente, H. Gonzalez-Jorge, J. Martinez-Sanchez, and P. Arias, “Review of mobile mapping and surveying technologies,” Measurement 46(7), 2127–2145 (2013).
    [Crossref]
  9. K. Van Acoleyen, H. Rogier, and R. Baets, “Two-dimensional optical phased array antenna on silicon-on-insulator,” Opt. Express 18(13), 13655–13660 (2010).
    [Crossref] [PubMed]
  10. J. K. Doylend, M. J. R. Heck, J. T. Bovington, J. D. Peters, L. A. Coldren, and J. E. Bowers, “Two-dimensional free-space beam steering with an optical phased array on silicon-on-insulator,” Opt. Express 19(22), 21595–21604 (2011).
    [Crossref] [PubMed]
  11. J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature 493(7431), 195–199 (2013).
    [Crossref] [PubMed]
  12. H. Abediasl and H. Hashemi, “Monolithic optical phased-array transceiver in a standard SOI CMOS process,” Opt. Express 23(5), 6509–6519 (2015).
    [Crossref] [PubMed]
  13. D. N. Hutchison, J. Sun, J. K. Doylend, R. Kumar, J. Heck, W. Kim, C. T. Phare, A. Feshali, and H. Rong, “High-resolution aliasing-free optical beam steering,” Optica 3(8), 887 (2016).
    [Crossref]
  14. H. Hashiguchi, K. Kondo, T. Baba, and H. Arai, “An optical leaky wave antenna by waffled structure,” J. Lightwave Technol. 35(11), 2273–2279 (2017).
    [Crossref]
  15. K. Kondo, T. Tatebe, S. Hachuda, H. Abe, F. Koyama, and T. Baba, “Fan-beam steering device using a photonic crystal slow-light waveguide with surface diffraction grating,” Opt. Lett. 42(23), 4990–4993 (2017).
    [Crossref] [PubMed]
  16. H. Abe, M. Takeuchi, G. Takeuchi, H. Ito, T. Yokokawa, K. Kondo, Y. Furukado, and T. Baba, “Two-dimensional beam-steering device using a doubly periodic Si photonic-crystal waveguide,” Opt. Express 26(8), 9389–9397 (2018).
    [Crossref] [PubMed]
  17. G. Takeuchi, Y. Terada, M. Takeuchi, H. Abe, H. Ito, and T. Baba, “Thermally controlled Si photonic crystal slow light waveguide beam steering device,” Opt. Express 26(9), 11529–11537 (2018).
    [Crossref] [PubMed]
  18. H. Abe, and T. Baba, “Theoretical performance of FMCE LiDAR using Si photonics and photonic crystal waveguides,” Cong. Int. Commission for Opt., Tu1A–04 (2017).
  19. C. V. Poulton, A. Yaacobi, D. B. Cole, M. J. Byrd, M. Raval, D. Vermeulen, and M. R. Watts, “Coherent solid-state LIDAR with silicon photonic optical phased arrays,” Opt. Lett. 42(20), 4091–4094 (2017).
    [Crossref] [PubMed]
  20. T. DiLazaro and G. Nehmetallah, “Multi-terahertz frequency sweeps for high-resolution, frequency-modulated continuous wave ladar using a distributed feedback laser array,” Opt. Express 25(3), 2327–2340 (2017).
    [Crossref] [PubMed]
  21. Y. Terada, T. Tatebe, Y. Hinakura, and T. Baba, “Si Photonic Crystal Slow-Light Modulators with periodic p–n junctions,” J. Lightwave Technol. 35(9), 1684–1692 (2017).
    [Crossref]
  22. T. Tamura, K. Kondo, Y. Terada, Y. Hinakura, N. Ishikura, and T. Baba, “Silica-Clad Silicon Photonic Crystal Waveguides for Wideband Dispersion-Free Slow Light,” J. Lightwave Technol. 33(14), 3034–3040 (2015).
  23. G. Roelkens, D. Van Thourhout, and R. Baets, “High efficiency grating coupler between silicon-on-insulator waveguides and perfectly vertical optical fibers,” Opt. Lett. 32(11), 1495–1497 (2007).
    [Crossref] [PubMed]
  24. F. Aflatouni, B. Abiri, A. Rekhi, and A. Hajimiri, “Nanophotonic coherent imager,” Opt. Express 23(4), 5117–5125 (2015).
    [Crossref] [PubMed]

2018 (4)

T. T. Sankey, J. McVay, T. L. Swetnam, M. P. McClaran, P. Heilman, and M. Nichols, “UAV hyperspectral and lidar data and their fusion for arid and semi-arid land vegetation monitoring,” Remote Sensing in Ecology and Conservation 4(1), 20–33 (2018).
[Crossref]

G. Shao, G. Shao, J. Gallion, M. R. Saunders, J. R. Frankenberger, and S. Fei, “Improving Lidar-based aboveground biomass estimation of temperate hardwood forest with varying site productivity,” Remote Sens. Environ. 204, 872–882 (2018).
[Crossref]

H. Abe, M. Takeuchi, G. Takeuchi, H. Ito, T. Yokokawa, K. Kondo, Y. Furukado, and T. Baba, “Two-dimensional beam-steering device using a doubly periodic Si photonic-crystal waveguide,” Opt. Express 26(8), 9389–9397 (2018).
[Crossref] [PubMed]

G. Takeuchi, Y. Terada, M. Takeuchi, H. Abe, H. Ito, and T. Baba, “Thermally controlled Si photonic crystal slow light waveguide beam steering device,” Opt. Express 26(9), 11529–11537 (2018).
[Crossref] [PubMed]

2017 (5)

2016 (2)

2015 (3)

2013 (2)

J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature 493(7431), 195–199 (2013).
[Crossref] [PubMed]

I. Puente, H. Gonzalez-Jorge, J. Martinez-Sanchez, and P. Arias, “Review of mobile mapping and surveying technologies,” Measurement 46(7), 2127–2145 (2013).
[Crossref]

2012 (1)

2011 (2)

2010 (1)

2007 (1)

2001 (1)

W. D. Jones, “Keeping cars from crashing,” IEEE Spectr. 38(9), 40–45 (2001).
[Crossref]

1981 (1)

Abe, H.

Abediasl, H.

Abiri, B.

Aflatouni, F.

Arai, H.

Arias, P.

I. Puente, H. Gonzalez-Jorge, J. Martinez-Sanchez, and P. Arias, “Review of mobile mapping and surveying technologies,” Measurement 46(7), 2127–2145 (2013).
[Crossref]

Baba, T.

Baets, R.

Biber, P.

U. Weiss and P. Biber, “Plant detection and mapping for agricultural robots using a 3D LIDAR sensor,” Robot. Auton. Syst. 59(5), 265–273 (2011).
[Crossref]

Bovington, J. T.

Bowers, J. E.

Byrd, M. J.

Chen, Y.

Coldren, L. A.

Cole, D. B.

DiLazaro, T.

Doylend, J. K.

Fei, S.

G. Shao, G. Shao, J. Gallion, M. R. Saunders, J. R. Frankenberger, and S. Fei, “Improving Lidar-based aboveground biomass estimation of temperate hardwood forest with varying site productivity,” Remote Sens. Environ. 204, 872–882 (2018).
[Crossref]

Feshali, A.

Frankenberger, J. R.

G. Shao, G. Shao, J. Gallion, M. R. Saunders, J. R. Frankenberger, and S. Fei, “Improving Lidar-based aboveground biomass estimation of temperate hardwood forest with varying site productivity,” Remote Sens. Environ. 204, 872–882 (2018).
[Crossref]

Fujikawa, M.

Furukado, Y.

Gallion, J.

G. Shao, G. Shao, J. Gallion, M. R. Saunders, J. R. Frankenberger, and S. Fei, “Improving Lidar-based aboveground biomass estimation of temperate hardwood forest with varying site productivity,” Remote Sens. Environ. 204, 872–882 (2018).
[Crossref]

Gonzalez-Jorge, H.

I. Puente, H. Gonzalez-Jorge, J. Martinez-Sanchez, and P. Arias, “Review of mobile mapping and surveying technologies,” Measurement 46(7), 2127–2145 (2013).
[Crossref]

Hachuda, S.

Hajimiri, A.

Hakala, T.

Hashemi, H.

Hashiguchi, H.

Heck, J.

Heck, M. J. R.

Heilman, P.

T. T. Sankey, J. McVay, T. L. Swetnam, M. P. McClaran, P. Heilman, and M. Nichols, “UAV hyperspectral and lidar data and their fusion for arid and semi-arid land vegetation monitoring,” Remote Sensing in Ecology and Conservation 4(1), 20–33 (2018).
[Crossref]

Hinakura, Y.

Hosseini, E. S.

J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature 493(7431), 195–199 (2013).
[Crossref] [PubMed]

Hutchison, D. N.

Ishikura, N.

Ito, H.

Jin, Y.

Jones, W. D.

W. D. Jones, “Keeping cars from crashing,” IEEE Spectr. 38(9), 40–45 (2001).
[Crossref]

Kaasalainen, S.

Kim, W.

Kondo, K.

Koyama, F.

Kumar, R.

Makino, T.

Martinez-Sanchez, J.

I. Puente, H. Gonzalez-Jorge, J. Martinez-Sanchez, and P. Arias, “Review of mobile mapping and surveying technologies,” Measurement 46(7), 2127–2145 (2013).
[Crossref]

McClaran, M. P.

T. T. Sankey, J. McVay, T. L. Swetnam, M. P. McClaran, P. Heilman, and M. Nichols, “UAV hyperspectral and lidar data and their fusion for arid and semi-arid land vegetation monitoring,” Remote Sensing in Ecology and Conservation 4(1), 20–33 (2018).
[Crossref]

McVay, J.

T. T. Sankey, J. McVay, T. L. Swetnam, M. P. McClaran, P. Heilman, and M. Nichols, “UAV hyperspectral and lidar data and their fusion for arid and semi-arid land vegetation monitoring,” Remote Sensing in Ecology and Conservation 4(1), 20–33 (2018).
[Crossref]

Nehmetallah, G.

Nichols, M.

T. T. Sankey, J. McVay, T. L. Swetnam, M. P. McClaran, P. Heilman, and M. Nichols, “UAV hyperspectral and lidar data and their fusion for arid and semi-arid land vegetation monitoring,” Remote Sensing in Ecology and Conservation 4(1), 20–33 (2018).
[Crossref]

Nishizawa, T.

Okamoto, H.

Peters, J. D.

Phare, C. T.

Poulton, C. V.

Puente, I.

I. Puente, H. Gonzalez-Jorge, J. Martinez-Sanchez, and P. Arias, “Review of mobile mapping and surveying technologies,” Measurement 46(7), 2127–2145 (2013).
[Crossref]

Raval, M.

Rekhi, A.

Roelkens, G.

Rogier, H.

Rong, H.

Sankey, T. T.

T. T. Sankey, J. McVay, T. L. Swetnam, M. P. McClaran, P. Heilman, and M. Nichols, “UAV hyperspectral and lidar data and their fusion for arid and semi-arid land vegetation monitoring,” Remote Sensing in Ecology and Conservation 4(1), 20–33 (2018).
[Crossref]

Sato, K.

Saunders, M. R.

G. Shao, G. Shao, J. Gallion, M. R. Saunders, J. R. Frankenberger, and S. Fei, “Improving Lidar-based aboveground biomass estimation of temperate hardwood forest with varying site productivity,” Remote Sens. Environ. 204, 872–882 (2018).
[Crossref]

Shao, G.

G. Shao, G. Shao, J. Gallion, M. R. Saunders, J. R. Frankenberger, and S. Fei, “Improving Lidar-based aboveground biomass estimation of temperate hardwood forest with varying site productivity,” Remote Sens. Environ. 204, 872–882 (2018).
[Crossref]

G. Shao, G. Shao, J. Gallion, M. R. Saunders, J. R. Frankenberger, and S. Fei, “Improving Lidar-based aboveground biomass estimation of temperate hardwood forest with varying site productivity,” Remote Sens. Environ. 204, 872–882 (2018).
[Crossref]

Shimizu, A.

Sugimoto, N.

Sun, J.

D. N. Hutchison, J. Sun, J. K. Doylend, R. Kumar, J. Heck, W. Kim, C. T. Phare, A. Feshali, and H. Rong, “High-resolution aliasing-free optical beam steering,” Optica 3(8), 887 (2016).
[Crossref]

J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature 493(7431), 195–199 (2013).
[Crossref] [PubMed]

Suomalainen, J.

Swetnam, T. L.

T. T. Sankey, J. McVay, T. L. Swetnam, M. P. McClaran, P. Heilman, and M. Nichols, “UAV hyperspectral and lidar data and their fusion for arid and semi-arid land vegetation monitoring,” Remote Sensing in Ecology and Conservation 4(1), 20–33 (2018).
[Crossref]

Takano, T.

Takeuchi, G.

Takeuchi, M.

Tamura, T.

Tatebe, T.

Terada, Y.

Timurdogan, E.

J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature 493(7431), 195–199 (2013).
[Crossref] [PubMed]

Uthe, E. E.

Van Acoleyen, K.

Van Thourhout, D.

Vermeulen, D.

Watts, M. R.

Weiss, U.

U. Weiss and P. Biber, “Plant detection and mapping for agricultural robots using a 3D LIDAR sensor,” Robot. Auton. Syst. 59(5), 265–273 (2011).
[Crossref]

Yaacobi, A.

Yokokawa, T.

Appl. Opt. (1)

IEEE Spectr. (1)

W. D. Jones, “Keeping cars from crashing,” IEEE Spectr. 38(9), 40–45 (2001).
[Crossref]

J. Lightwave Technol. (3)

Measurement (1)

I. Puente, H. Gonzalez-Jorge, J. Martinez-Sanchez, and P. Arias, “Review of mobile mapping and surveying technologies,” Measurement 46(7), 2127–2145 (2013).
[Crossref]

Nature (1)

J. Sun, E. Timurdogan, A. Yaacobi, E. S. Hosseini, and M. R. Watts, “Large-scale nanophotonic phased array,” Nature 493(7431), 195–199 (2013).
[Crossref] [PubMed]

Opt. Express (9)

H. Okamoto, K. Sato, T. Nishizawa, N. Sugimoto, T. Makino, Y. Jin, A. Shimizu, T. Takano, and M. Fujikawa, “Development of a multiple-field-of-view multiple-scattering polarization lidar: comparison with cloud radar,” Opt. Express 24(26), 30053–30067 (2016).
[Crossref] [PubMed]

T. DiLazaro and G. Nehmetallah, “Multi-terahertz frequency sweeps for high-resolution, frequency-modulated continuous wave ladar using a distributed feedback laser array,” Opt. Express 25(3), 2327–2340 (2017).
[Crossref] [PubMed]

K. Van Acoleyen, H. Rogier, and R. Baets, “Two-dimensional optical phased array antenna on silicon-on-insulator,” Opt. Express 18(13), 13655–13660 (2010).
[Crossref] [PubMed]

J. K. Doylend, M. J. R. Heck, J. T. Bovington, J. D. Peters, L. A. Coldren, and J. E. Bowers, “Two-dimensional free-space beam steering with an optical phased array on silicon-on-insulator,” Opt. Express 19(22), 21595–21604 (2011).
[Crossref] [PubMed]

T. Hakala, J. Suomalainen, S. Kaasalainen, and Y. Chen, “Full waveform hyperspectral LiDAR for terrestrial laser scanning,” Opt. Express 20(7), 7119–7127 (2012).
[Crossref] [PubMed]

F. Aflatouni, B. Abiri, A. Rekhi, and A. Hajimiri, “Nanophotonic coherent imager,” Opt. Express 23(4), 5117–5125 (2015).
[Crossref] [PubMed]

H. Abediasl and H. Hashemi, “Monolithic optical phased-array transceiver in a standard SOI CMOS process,” Opt. Express 23(5), 6509–6519 (2015).
[Crossref] [PubMed]

H. Abe, M. Takeuchi, G. Takeuchi, H. Ito, T. Yokokawa, K. Kondo, Y. Furukado, and T. Baba, “Two-dimensional beam-steering device using a doubly periodic Si photonic-crystal waveguide,” Opt. Express 26(8), 9389–9397 (2018).
[Crossref] [PubMed]

G. Takeuchi, Y. Terada, M. Takeuchi, H. Abe, H. Ito, and T. Baba, “Thermally controlled Si photonic crystal slow light waveguide beam steering device,” Opt. Express 26(9), 11529–11537 (2018).
[Crossref] [PubMed]

Opt. Lett. (3)

Optica (1)

Remote Sens. Environ. (1)

G. Shao, G. Shao, J. Gallion, M. R. Saunders, J. R. Frankenberger, and S. Fei, “Improving Lidar-based aboveground biomass estimation of temperate hardwood forest with varying site productivity,” Remote Sens. Environ. 204, 872–882 (2018).
[Crossref]

Remote Sensing in Ecology and Conservation (1)

T. T. Sankey, J. McVay, T. L. Swetnam, M. P. McClaran, P. Heilman, and M. Nichols, “UAV hyperspectral and lidar data and their fusion for arid and semi-arid land vegetation monitoring,” Remote Sensing in Ecology and Conservation 4(1), 20–33 (2018).
[Crossref]

Robot. Auton. Syst. (1)

U. Weiss and P. Biber, “Plant detection and mapping for agricultural robots using a 3D LIDAR sensor,” Robot. Auton. Syst. 59(5), 265–273 (2011).
[Crossref]

Other (1)

H. Abe, and T. Baba, “Theoretical performance of FMCE LiDAR using Si photonics and photonic crystal waveguides,” Cong. Int. Commission for Opt., Tu1A–04 (2017).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 Schematic of doubly periodic PCW optical antenna.
Fig. 2
Fig. 2 Evaluation of PCW optical antenna. (a) Radiation. (b) Reception.
Fig. 3
Fig. 3 Reception of free-space beam irradiated to the PCW antenna at θ = 24°. (a) Appearance of light reception. The right half shows a PCW array, while the left, the SSCs at the chip facet. (b) Relative intensity spectrum of received light where light output from the laser source is used as a reference.
Fig. 4
Fig. 4 Fabricated PCW Mach-Zehnder modulator.
Fig. 5
Fig. 5 Example of modulated signal. (a) Sinusoidal wave from AWG. (b) Spectrum of modulated light. (c) Temporal frequency of chirped signal. (d) Spectrum of frequency-chirped sideband. (e) Wide-range spectrum of frequency-chirped signal.
Fig. 6
Fig. 6 Measurement setup of FMCW beat signal.
Fig. 7
Fig. 7 Demonstration of ranging action. (a) Beat spectra for various fiber lengths. (b) Magnified view of beat spectrum.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

f= n L delay c B T +Δf=242( L delay [ m ] )+δf[ Hz ]
Δ L delay =c/nB.