Abstract

Mode-locked lasers with strong high order dispersion exhibit rich nonlinear dynamics. Here we numerically and experimentally demonstrate coexistence of dissipative soliton (DS) and stretched pulse (SP) in a dual-wavelength mode-locked Tm-doped fiber laser with strong third-order dispersion (TOD), where the DS and SP show completely different pulse duration and peak power. Wavelength-dependent feature of the net cavity group-velocity dispersion (GVD) leaded by the strong TOD plays a key role for the coexistence patterns. To our best knowledge, this is the first demonstration of the coexistence of different mode-locked pulse regimes with strong laser cavity TOD.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Coexistence of noise-like pulse and high repetition rate harmonic mode-locking in a dual-wavelength mode-locked Tm-doped fiber laser

Yazhou Wang, Jianfeng Li, Entao Zhang, Kundong Mo, Yanyan Wang, Fei Liu, Xiaojun Zhou, and Yong Liu
Opt. Express 25(15) 17192-17200 (2017)

Time-stretch probing of ultra-fast soliton dynamics related to Q-switched instabilities in mode-locked fiber laser

Shuqian Sun, Zhixing Lin, Wei Li, Ninghua Zhu, and Ming Li
Opt. Express 26(16) 20888-20901 (2018)

All-fiber highly chirped dissipative soliton generation in the telecom range

Denis S. Kharenko, Innokentiy S. Zhdanov, Anastasia E. Bednyakova, Evgeniy V. Podivilov, Mikhail P. Fedoruk, Alexander Apolonski, Sergei K. Turitsyn, and Sergey A. Babin
Opt. Lett. 42(16) 3221-3224 (2017)

References

  • View by:
  • |
  • |
  • |

  1. L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, and E. P. Ippen, “Ultrashort-pulse fiber ring lasers,” Appl. Phys. B 65(2), 277–294 (1997).
    [Crossref]
  2. A. Cabasse, B. Ortaç, G. Martel, A. Hideur, and J. Limpert, “Dissipative solitons in a passively mode-locked Er-doped fiber with strong normal dispersion,” Opt. Express 16(23), 19322–19329 (2008).
    [Crossref] [PubMed]
  3. N. Akhmediev and A. Ankiewicz, “Dissipative Solitons in the Complex Ginzburg-Landau and Swift-Hohenberg Equations,” in Dissipative Solitons, N. Akhmediev and A. Ankiewicz, ed., (Springer, Berlin, 2005).
  4. F. Ö. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, “Self-Similar Evolution of Parabolic Pulses in a Laser,” Phys. Rev. Lett. 92(21), 213902 (2004).
    [Crossref] [PubMed]
  5. K. Tamura, E. P. Ippen, H. A. Haus, and L. E. Nelson, “77-fs pulse generation from a stretched-pulse mode-locked all-fiber ring laser,” Opt. Lett. 18(13), 1080–1082 (1993).
    [Crossref] [PubMed]
  6. D. Y. Tang, L. M. Zhao, G. Q. Xie, and L. J. Qian, “Coexistence and competition between different soliton-shaping mechanisms in a laser,” Phys. Rev. A 75(6), 063810 (2007).
    [Crossref]
  7. P. Grelu and N. Akhmediev, “Dissipative solitons for mode-locked lasers,” Nat. Photonics 6(2), 84–92 (2012).
    [Crossref]
  8. J. Herrmann, V. P. Kalosha, and M. Müller, “Higher-order phase dispersion in femtosecond Kerr-lens mode-locked solid-state lasers: sideband generation and pulse splitting,” Opt. Lett. 22(4), 236–238 (1997).
    [Crossref] [PubMed]
  9. V. E. Zakharov and E. A. Kuznetsov, “Optical solitons and quasisolitons,” J. Exp. Theor. Phys. 86(5), 1035–1046 (1998).
    [Crossref]
  10. J. M. Dudley, S. M. Boussen, D. M. J. Cameron, and J. D. Harvey, “Complete characterization of a self-mode-locked Ti:sapphire laser in the vicinity of zero group-delay dispersion by frequency-resolved optical gating,” Appl. Opt. 38(15), 3308–3315 (1999).
    [Crossref] [PubMed]
  11. Y. Logvin, V. P. Kalosha, and H. Anis, “Third-order dispersion impact on mode-locking regimes of Yb-doped fiber laser with photonic bandgap fiber for dispersion compensation,” Opt. Express 15(3), 985–991 (2007).
    [Crossref] [PubMed]
  12. Y. Logvin and H. Anis, “Similariton pulse instability in mode-locked Yb-doped fiber laser in the vicinity of zero cavity dispersion,” Opt. Express 15(21), 13607–13612 (2007).
    [Crossref] [PubMed]
  13. H. A. Haus, J. D. Moores, and L. E. Nelson, “Effect of third-order dispersion on passive mode locking,” Opt. Lett. 18(1), 51–53 (1993).
    [Crossref] [PubMed]
  14. V. L. Kalashnikov, A. Fernández, and A. Apolonski, “High-order dispersion in chirped-pulse oscillators,” Opt. Express 16(6), 4206–4216 (2008).
    [Crossref] [PubMed]
  15. E. Sorokin, N. Tolstik, V. L. Kalashnikov, and I. T. Sorokina, “Chaotic chirped-pulse oscillators,” Opt. Express 21(24), 29567–29577 (2013).
    [Crossref] [PubMed]
  16. L. Wang, “Coexistence and evolution of bright pulses and dark solitons in a fiber laser,” Opt. Commun. 297(15), 129–132 (2013).
    [Crossref]
  17. X. Liu, “Coexistence of strong and weak pulses in a fiber laser with largely anomalous dispersion,” Opt. Express 19(7), 5874–5887 (2011).
    [Crossref] [PubMed]
  18. S. Huang, Y. Wang, P. Yan, J. Zhao, H. Li, and R. Lin, “Tunable and switchable multi-wavelength dissipative soliton generation in a graphene oxide mode-locked Yb-doped fiber laser,” Opt. Express 22(10), 11417–11426 (2014).
    [Crossref] [PubMed]
  19. L. Yun, X. Liu, and D. Mao, “Observation of dual-wavelength dissipative solitons in a figure-eight erbium-doped fiber laser,” Opt. Express 20(19), 20992–20997 (2012).
    [Crossref] [PubMed]
  20. Z. X. Zhang, Z. W. Xu, and L. Zhang, “Tunable and switchable dual-wavelength dissipative soliton generation in an all-normal-dispersion Yb-doped fiber laser with birefringence fiber filter,” Opt. Express 20(24), 26736–26742 (2012).
    [Crossref] [PubMed]
  21. H. Zhang, D. Y. Tang, X. Wu, and L. M. Zhao, “Multi-wavelength dissipative soliton operation of an erbium-doped fiber laser,” Opt. Express 17(15), 12692–12697 (2009).
    [Crossref] [PubMed]
  22. Z. Yan, X. Li, Y. Tang, P. P. Shum, X. Yu, Y. Zhang, and Q. J. Wang, “Tunable and switchable dual-wavelength Tm-doped mode-locked fiber laser by nonlinear polarization evolution,” Opt. Express 23(4), 4369–4376 (2015).
    [Crossref] [PubMed]
  23. M. Guina, N. Xiang, A. Vainionpää, O. G. Okhotnikov, T. Sajavaara, and J. Keinonen, “Self-starting stretched-pulse fiber laser mode locked and stabilized with slow and fast semiconductor saturable absorbers,” Opt. Lett. 26(22), 1809–1811 (2001).
    [Crossref] [PubMed]
  24. H. T. Shang, “Chromatic dispersion measurement by white-light interferometry on metre-length single-mode optical fibres,” Electron. Lett. 17(17), 603–605 (1981).
    [Crossref]
  25. H. Zhang, D. Y. Tang, L. M. Zhao, and N. Xiang, “Coherent energy exchange between components of a vector soliton in fiber lasers,” Opt. Express 16(17), 12618–12623 (2008).
    [Crossref] [PubMed]
  26. F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nat. Nanotechnol. 3(12), 738–742 (2008).
    [Crossref] [PubMed]
  27. L. Xueming and L. Byoungho, “A fast method for nonlinear Schrodinger equation,” IEEE Photonics Technol. Lett. 15(11), 1549–1551 (2003).
    [Crossref]
  28. G. Martel, C. Chédot, V. Réglier, A. Hideur, B. Ortaç, and P. Grelu, “On the possibility of observing bound soliton pairs in a wave-breaking-free mode-locked fiber laser,” Opt. Lett. 32(4), 343–345 (2007).
    [Crossref] [PubMed]
  29. S. Kelly, “Characteristic sideband instability of periodically amplified average soliton,” Electron. Lett. 28(8), 806–807 (1992).
    [Crossref]
  30. B. G. Bale, S. Boscolo, and S. K. Turitsyn, “Dissipative dispersion-managed solitons in mode-locked lasers,” Opt. Lett. 34(21), 3286–3288 (2009).
    [Crossref] [PubMed]
  31. D. Y. Tang, L. M. Zhao, B. Zhao, and A. Q. Liu, “Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers,” Phys. Rev. A 72(4), 043816 (2005).
    [Crossref]
  32. Y. Wang, J. Li, B. Zhai, Y. Hu, K. Mo, R. Lu, and Y. Liu, “Tunable and switchable dual-wavelength mode-locked Tm3+-doped fiber laser based on a fiber taper,” Opt. Express 24(14), 15299–15306 (2016).
    [Crossref] [PubMed]
  33. Z. Yan, H. Wang, K. Zhou, Y. Wang, W. Zhao, and L. Zhang, “Broadband Tunable All-Fiber Polarization Interference Filter Based on 45° Tilted Fiber Gratings,” J. Lightwave Technol. 31(1), 94–98 (2013).
    [Crossref]
  34. D. Y. Tang, W. S. Man, H. Y. Tam, and P. D. Drummond, “Observation of bound states of solitons in a passively mode-locked fiber laser,” Phys. Rev. A 64(3), 033814 (2001).
    [Crossref]
  35. Y. Wang, J. Li, E. Zhang, K. Mo, Y. Wang, F. Liu, X. Zhou, and Y. Liu, “Coexistence of noise-like pulse and high repetition rate harmonic mode-locking in a dual-wavelength mode-locked Tm-doped fiber laser,” Opt. Express 25(15), 17192–17200 (2017).
    [Crossref] [PubMed]

2017 (1)

2016 (1)

2015 (1)

2014 (1)

2013 (3)

2012 (3)

2011 (1)

2009 (2)

2008 (4)

2007 (4)

2005 (1)

D. Y. Tang, L. M. Zhao, B. Zhao, and A. Q. Liu, “Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers,” Phys. Rev. A 72(4), 043816 (2005).
[Crossref]

2004 (1)

F. Ö. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, “Self-Similar Evolution of Parabolic Pulses in a Laser,” Phys. Rev. Lett. 92(21), 213902 (2004).
[Crossref] [PubMed]

2003 (1)

L. Xueming and L. Byoungho, “A fast method for nonlinear Schrodinger equation,” IEEE Photonics Technol. Lett. 15(11), 1549–1551 (2003).
[Crossref]

2001 (2)

1999 (1)

1998 (1)

V. E. Zakharov and E. A. Kuznetsov, “Optical solitons and quasisolitons,” J. Exp. Theor. Phys. 86(5), 1035–1046 (1998).
[Crossref]

1997 (2)

1993 (2)

1992 (1)

S. Kelly, “Characteristic sideband instability of periodically amplified average soliton,” Electron. Lett. 28(8), 806–807 (1992).
[Crossref]

1981 (1)

H. T. Shang, “Chromatic dispersion measurement by white-light interferometry on metre-length single-mode optical fibres,” Electron. Lett. 17(17), 603–605 (1981).
[Crossref]

Akhmediev, N.

P. Grelu and N. Akhmediev, “Dissipative solitons for mode-locked lasers,” Nat. Photonics 6(2), 84–92 (2012).
[Crossref]

Anis, H.

Apolonski, A.

Bale, B. G.

Boscolo, S.

Boussen, S. M.

Buckley, J. R.

F. Ö. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, “Self-Similar Evolution of Parabolic Pulses in a Laser,” Phys. Rev. Lett. 92(21), 213902 (2004).
[Crossref] [PubMed]

Byoungho, L.

L. Xueming and L. Byoungho, “A fast method for nonlinear Schrodinger equation,” IEEE Photonics Technol. Lett. 15(11), 1549–1551 (2003).
[Crossref]

Cabasse, A.

Cameron, D. M. J.

Chédot, C.

Clark, W. G.

F. Ö. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, “Self-Similar Evolution of Parabolic Pulses in a Laser,” Phys. Rev. Lett. 92(21), 213902 (2004).
[Crossref] [PubMed]

Drummond, P. D.

D. Y. Tang, W. S. Man, H. Y. Tam, and P. D. Drummond, “Observation of bound states of solitons in a passively mode-locked fiber laser,” Phys. Rev. A 64(3), 033814 (2001).
[Crossref]

Dudley, J. M.

Fernández, A.

Ferrari, A. C.

F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nat. Nanotechnol. 3(12), 738–742 (2008).
[Crossref] [PubMed]

Grelu, P.

Guina, M.

Harvey, J. D.

Haus, H. A.

Hennrich, F.

F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nat. Nanotechnol. 3(12), 738–742 (2008).
[Crossref] [PubMed]

Herrmann, J.

Hideur, A.

Hu, Y.

Huang, S.

Ilday, F. Ö.

F. Ö. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, “Self-Similar Evolution of Parabolic Pulses in a Laser,” Phys. Rev. Lett. 92(21), 213902 (2004).
[Crossref] [PubMed]

Ippen, E. P.

L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, and E. P. Ippen, “Ultrashort-pulse fiber ring lasers,” Appl. Phys. B 65(2), 277–294 (1997).
[Crossref]

K. Tamura, E. P. Ippen, H. A. Haus, and L. E. Nelson, “77-fs pulse generation from a stretched-pulse mode-locked all-fiber ring laser,” Opt. Lett. 18(13), 1080–1082 (1993).
[Crossref] [PubMed]

Jones, D. J.

L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, and E. P. Ippen, “Ultrashort-pulse fiber ring lasers,” Appl. Phys. B 65(2), 277–294 (1997).
[Crossref]

Kalashnikov, V. L.

Kalosha, V. P.

Keinonen, J.

Kelly, S.

S. Kelly, “Characteristic sideband instability of periodically amplified average soliton,” Electron. Lett. 28(8), 806–807 (1992).
[Crossref]

Kuznetsov, E. A.

V. E. Zakharov and E. A. Kuznetsov, “Optical solitons and quasisolitons,” J. Exp. Theor. Phys. 86(5), 1035–1046 (1998).
[Crossref]

Li, H.

Li, J.

Li, X.

Limpert, J.

Lin, R.

Liu, A. Q.

D. Y. Tang, L. M. Zhao, B. Zhao, and A. Q. Liu, “Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers,” Phys. Rev. A 72(4), 043816 (2005).
[Crossref]

Liu, F.

Liu, X.

Liu, Y.

Logvin, Y.

Lu, R.

Man, W. S.

D. Y. Tang, W. S. Man, H. Y. Tam, and P. D. Drummond, “Observation of bound states of solitons in a passively mode-locked fiber laser,” Phys. Rev. A 64(3), 033814 (2001).
[Crossref]

Mao, D.

Martel, G.

Milne, W. I.

F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nat. Nanotechnol. 3(12), 738–742 (2008).
[Crossref] [PubMed]

Mo, K.

Moores, J. D.

Müller, M.

Nelson, L. E.

Okhotnikov, O. G.

Ortaç, B.

Qian, L. J.

D. Y. Tang, L. M. Zhao, G. Q. Xie, and L. J. Qian, “Coexistence and competition between different soliton-shaping mechanisms in a laser,” Phys. Rev. A 75(6), 063810 (2007).
[Crossref]

Réglier, V.

Rozhin, A. G.

F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nat. Nanotechnol. 3(12), 738–742 (2008).
[Crossref] [PubMed]

Sajavaara, T.

Scardaci, V.

F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nat. Nanotechnol. 3(12), 738–742 (2008).
[Crossref] [PubMed]

Shang, H. T.

H. T. Shang, “Chromatic dispersion measurement by white-light interferometry on metre-length single-mode optical fibres,” Electron. Lett. 17(17), 603–605 (1981).
[Crossref]

Shum, P. P.

Sorokin, E.

Sorokina, I. T.

Sun, Z.

F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nat. Nanotechnol. 3(12), 738–742 (2008).
[Crossref] [PubMed]

Tam, H. Y.

D. Y. Tang, W. S. Man, H. Y. Tam, and P. D. Drummond, “Observation of bound states of solitons in a passively mode-locked fiber laser,” Phys. Rev. A 64(3), 033814 (2001).
[Crossref]

Tamura, K.

L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, and E. P. Ippen, “Ultrashort-pulse fiber ring lasers,” Appl. Phys. B 65(2), 277–294 (1997).
[Crossref]

K. Tamura, E. P. Ippen, H. A. Haus, and L. E. Nelson, “77-fs pulse generation from a stretched-pulse mode-locked all-fiber ring laser,” Opt. Lett. 18(13), 1080–1082 (1993).
[Crossref] [PubMed]

Tang, D. Y.

H. Zhang, D. Y. Tang, X. Wu, and L. M. Zhao, “Multi-wavelength dissipative soliton operation of an erbium-doped fiber laser,” Opt. Express 17(15), 12692–12697 (2009).
[Crossref] [PubMed]

H. Zhang, D. Y. Tang, L. M. Zhao, and N. Xiang, “Coherent energy exchange between components of a vector soliton in fiber lasers,” Opt. Express 16(17), 12618–12623 (2008).
[Crossref] [PubMed]

D. Y. Tang, L. M. Zhao, G. Q. Xie, and L. J. Qian, “Coexistence and competition between different soliton-shaping mechanisms in a laser,” Phys. Rev. A 75(6), 063810 (2007).
[Crossref]

D. Y. Tang, L. M. Zhao, B. Zhao, and A. Q. Liu, “Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers,” Phys. Rev. A 72(4), 043816 (2005).
[Crossref]

D. Y. Tang, W. S. Man, H. Y. Tam, and P. D. Drummond, “Observation of bound states of solitons in a passively mode-locked fiber laser,” Phys. Rev. A 64(3), 033814 (2001).
[Crossref]

Tang, Y.

Tolstik, N.

Turitsyn, S. K.

Vainionpää, A.

Wang, F.

F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nat. Nanotechnol. 3(12), 738–742 (2008).
[Crossref] [PubMed]

Wang, H.

Wang, L.

L. Wang, “Coexistence and evolution of bright pulses and dark solitons in a fiber laser,” Opt. Commun. 297(15), 129–132 (2013).
[Crossref]

Wang, Q. J.

Wang, Y.

White, I. H.

F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nat. Nanotechnol. 3(12), 738–742 (2008).
[Crossref] [PubMed]

Wise, F. W.

F. Ö. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, “Self-Similar Evolution of Parabolic Pulses in a Laser,” Phys. Rev. Lett. 92(21), 213902 (2004).
[Crossref] [PubMed]

Wu, X.

Xiang, N.

Xie, G. Q.

D. Y. Tang, L. M. Zhao, G. Q. Xie, and L. J. Qian, “Coexistence and competition between different soliton-shaping mechanisms in a laser,” Phys. Rev. A 75(6), 063810 (2007).
[Crossref]

Xu, Z. W.

Xueming, L.

L. Xueming and L. Byoungho, “A fast method for nonlinear Schrodinger equation,” IEEE Photonics Technol. Lett. 15(11), 1549–1551 (2003).
[Crossref]

Yan, P.

Yan, Z.

Yu, X.

Yun, L.

Zakharov, V. E.

V. E. Zakharov and E. A. Kuznetsov, “Optical solitons and quasisolitons,” J. Exp. Theor. Phys. 86(5), 1035–1046 (1998).
[Crossref]

Zhai, B.

Zhang, E.

Zhang, H.

Zhang, L.

Zhang, Y.

Zhang, Z. X.

Zhao, B.

D. Y. Tang, L. M. Zhao, B. Zhao, and A. Q. Liu, “Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers,” Phys. Rev. A 72(4), 043816 (2005).
[Crossref]

Zhao, J.

Zhao, L. M.

H. Zhang, D. Y. Tang, X. Wu, and L. M. Zhao, “Multi-wavelength dissipative soliton operation of an erbium-doped fiber laser,” Opt. Express 17(15), 12692–12697 (2009).
[Crossref] [PubMed]

H. Zhang, D. Y. Tang, L. M. Zhao, and N. Xiang, “Coherent energy exchange between components of a vector soliton in fiber lasers,” Opt. Express 16(17), 12618–12623 (2008).
[Crossref] [PubMed]

D. Y. Tang, L. M. Zhao, G. Q. Xie, and L. J. Qian, “Coexistence and competition between different soliton-shaping mechanisms in a laser,” Phys. Rev. A 75(6), 063810 (2007).
[Crossref]

D. Y. Tang, L. M. Zhao, B. Zhao, and A. Q. Liu, “Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers,” Phys. Rev. A 72(4), 043816 (2005).
[Crossref]

Zhao, W.

Zhou, K.

Zhou, X.

Appl. Opt. (1)

Appl. Phys. B (1)

L. E. Nelson, D. J. Jones, K. Tamura, H. A. Haus, and E. P. Ippen, “Ultrashort-pulse fiber ring lasers,” Appl. Phys. B 65(2), 277–294 (1997).
[Crossref]

Electron. Lett. (2)

H. T. Shang, “Chromatic dispersion measurement by white-light interferometry on metre-length single-mode optical fibres,” Electron. Lett. 17(17), 603–605 (1981).
[Crossref]

S. Kelly, “Characteristic sideband instability of periodically amplified average soliton,” Electron. Lett. 28(8), 806–807 (1992).
[Crossref]

IEEE Photonics Technol. Lett. (1)

L. Xueming and L. Byoungho, “A fast method for nonlinear Schrodinger equation,” IEEE Photonics Technol. Lett. 15(11), 1549–1551 (2003).
[Crossref]

J. Exp. Theor. Phys. (1)

V. E. Zakharov and E. A. Kuznetsov, “Optical solitons and quasisolitons,” J. Exp. Theor. Phys. 86(5), 1035–1046 (1998).
[Crossref]

J. Lightwave Technol. (1)

Nat. Nanotechnol. (1)

F. Wang, A. G. Rozhin, V. Scardaci, Z. Sun, F. Hennrich, I. H. White, W. I. Milne, and A. C. Ferrari, “Wideband-tuneable, nanotube mode-locked, fibre laser,” Nat. Nanotechnol. 3(12), 738–742 (2008).
[Crossref] [PubMed]

Nat. Photonics (1)

P. Grelu and N. Akhmediev, “Dissipative solitons for mode-locked lasers,” Nat. Photonics 6(2), 84–92 (2012).
[Crossref]

Opt. Commun. (1)

L. Wang, “Coexistence and evolution of bright pulses and dark solitons in a fiber laser,” Opt. Commun. 297(15), 129–132 (2013).
[Crossref]

Opt. Express (14)

X. Liu, “Coexistence of strong and weak pulses in a fiber laser with largely anomalous dispersion,” Opt. Express 19(7), 5874–5887 (2011).
[Crossref] [PubMed]

S. Huang, Y. Wang, P. Yan, J. Zhao, H. Li, and R. Lin, “Tunable and switchable multi-wavelength dissipative soliton generation in a graphene oxide mode-locked Yb-doped fiber laser,” Opt. Express 22(10), 11417–11426 (2014).
[Crossref] [PubMed]

L. Yun, X. Liu, and D. Mao, “Observation of dual-wavelength dissipative solitons in a figure-eight erbium-doped fiber laser,” Opt. Express 20(19), 20992–20997 (2012).
[Crossref] [PubMed]

Z. X. Zhang, Z. W. Xu, and L. Zhang, “Tunable and switchable dual-wavelength dissipative soliton generation in an all-normal-dispersion Yb-doped fiber laser with birefringence fiber filter,” Opt. Express 20(24), 26736–26742 (2012).
[Crossref] [PubMed]

H. Zhang, D. Y. Tang, X. Wu, and L. M. Zhao, “Multi-wavelength dissipative soliton operation of an erbium-doped fiber laser,” Opt. Express 17(15), 12692–12697 (2009).
[Crossref] [PubMed]

Z. Yan, X. Li, Y. Tang, P. P. Shum, X. Yu, Y. Zhang, and Q. J. Wang, “Tunable and switchable dual-wavelength Tm-doped mode-locked fiber laser by nonlinear polarization evolution,” Opt. Express 23(4), 4369–4376 (2015).
[Crossref] [PubMed]

A. Cabasse, B. Ortaç, G. Martel, A. Hideur, and J. Limpert, “Dissipative solitons in a passively mode-locked Er-doped fiber with strong normal dispersion,” Opt. Express 16(23), 19322–19329 (2008).
[Crossref] [PubMed]

Y. Wang, J. Li, B. Zhai, Y. Hu, K. Mo, R. Lu, and Y. Liu, “Tunable and switchable dual-wavelength mode-locked Tm3+-doped fiber laser based on a fiber taper,” Opt. Express 24(14), 15299–15306 (2016).
[Crossref] [PubMed]

H. Zhang, D. Y. Tang, L. M. Zhao, and N. Xiang, “Coherent energy exchange between components of a vector soliton in fiber lasers,” Opt. Express 16(17), 12618–12623 (2008).
[Crossref] [PubMed]

V. L. Kalashnikov, A. Fernández, and A. Apolonski, “High-order dispersion in chirped-pulse oscillators,” Opt. Express 16(6), 4206–4216 (2008).
[Crossref] [PubMed]

E. Sorokin, N. Tolstik, V. L. Kalashnikov, and I. T. Sorokina, “Chaotic chirped-pulse oscillators,” Opt. Express 21(24), 29567–29577 (2013).
[Crossref] [PubMed]

Y. Logvin, V. P. Kalosha, and H. Anis, “Third-order dispersion impact on mode-locking regimes of Yb-doped fiber laser with photonic bandgap fiber for dispersion compensation,” Opt. Express 15(3), 985–991 (2007).
[Crossref] [PubMed]

Y. Logvin and H. Anis, “Similariton pulse instability in mode-locked Yb-doped fiber laser in the vicinity of zero cavity dispersion,” Opt. Express 15(21), 13607–13612 (2007).
[Crossref] [PubMed]

Y. Wang, J. Li, E. Zhang, K. Mo, Y. Wang, F. Liu, X. Zhou, and Y. Liu, “Coexistence of noise-like pulse and high repetition rate harmonic mode-locking in a dual-wavelength mode-locked Tm-doped fiber laser,” Opt. Express 25(15), 17192–17200 (2017).
[Crossref] [PubMed]

Opt. Lett. (6)

Phys. Rev. A (3)

D. Y. Tang, L. M. Zhao, G. Q. Xie, and L. J. Qian, “Coexistence and competition between different soliton-shaping mechanisms in a laser,” Phys. Rev. A 75(6), 063810 (2007).
[Crossref]

D. Y. Tang, L. M. Zhao, B. Zhao, and A. Q. Liu, “Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers,” Phys. Rev. A 72(4), 043816 (2005).
[Crossref]

D. Y. Tang, W. S. Man, H. Y. Tam, and P. D. Drummond, “Observation of bound states of solitons in a passively mode-locked fiber laser,” Phys. Rev. A 64(3), 033814 (2001).
[Crossref]

Phys. Rev. Lett. (1)

F. Ö. Ilday, J. R. Buckley, W. G. Clark, and F. W. Wise, “Self-Similar Evolution of Parabolic Pulses in a Laser,” Phys. Rev. Lett. 92(21), 213902 (2004).
[Crossref] [PubMed]

Other (1)

N. Akhmediev and A. Ankiewicz, “Dissipative Solitons in the Complex Ginzburg-Landau and Swift-Hohenberg Equations,” in Dissipative Solitons, N. Akhmediev and A. Ankiewicz, ed., (Springer, Berlin, 2005).

Supplementary Material (2)

NameDescription
» Visualization 1       Self-start evolution of coexistence of dissipative soliton and stretched pulse as pump stretgth increases.
» Visualization 2       Stable spectrum operation of coexistence of dissipative soliton and stretched pulse with fixed pump strength.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Setup of dual-wavelength mode-locked fiber laser.
Fig. 2
Fig. 2 Simulation of coexistence of DS and SP: (a) and (b) are spectrum and waveform evolution as a function of round-trip number, (c) and (d) are optical spectrum and waveform at round-trip number of 250. Red line in (c) is calculated net cavity GVD as a function of wavelength. Inset of (b) is a zoom-in of the waveform evolution within the round-trip number of 0-20.
Fig. 3
Fig. 3 Evolution of coexistence of DS and SP inside the laser cavity: (a) and (b) are waveform evolution of SP and DS as a function of laser cavity position, respectively, (c) and (d) are corresponding calculated results of pulse duration and slope of chirp at pulse center region.
Fig. 4
Fig. 4 Simulation of coexistence of DS and bounded SPs: (a) waveform evolution as a function of round-trip number, (b) optical spectrum at round-trip number of 250.
Fig. 5
Fig. 5 Simulation of spectra and waveforms of the coexistence of DS and SP with different types of filters: (a) and (b) are spectra based on comb filter with 0.3 m and 0.6 m PMF, respectively, (c) is spectrum with an artificial dual-bandpass filter. (d), (e) and (f) are waveforms corresponding to (a), (b) and (c) respectively. Red curve in (c) is the transmission of the dual-bandpass filter, where the center wavelength separation between the neighboring channels is twice of the comb filter period with 0.6 m PMF.
Fig. 6
Fig. 6 Experimental results of coexistence of DS and SP with 0.2 m PMF: (a) optical spectrum (b) oscilloscope trace with a scanning range of 600 ns, (c) RF spectrum with a scanning range of 150 Hz, (d) interference autocorrelation traces of the DS (bottom) and SP (top) with scanning range of 20 ps and 2 ps respectively. Inset of (b) is snapshot of the oscilloscope trace of the coexistence patterns.
Fig. 7
Fig. 7 Experimental results of coexistence of DS and bounded SPs with 0.2 m PMF: (a) (see Visualization 1 and Visualization 2) optical spectrum and (b) interference autocorrelation traces of the bounded SPs with scanning range of 50 ps. Inset of (a) is a zoom-in of the spectral fringe from 1990 nm to 2000 nm.
Fig. 8
Fig. 8 Experimental results of coexistence of DS and bounded SPs with 0.6 m PMF: (a) optical spectrum with center wavelength separation of 31 nm, (b) interference autocorrelation traces of the DS (top) and SP (bottom) with scanning range of 40 ps and 12 ps respectively. Inset of (a) is dual-wavelength mode-locking with center wavelength separation of ~15 nm.

Tables (1)

Tables Icon

Table 1 Measured GVD and TOD of three kinds of fibers at 1950 nm.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

{ U z =iβUδ U t i β 2 2 2 U t 2 + β 3 2 3 U t 3 +iγ( | U | 2 + 2 3 | V | 2 )U+ iγ 3 V 2 U * + g 2 U+ g 2 Ω g 2 2 U t 2 V z =iβV+δ V t i β 2 2 2 V t 2 + β 3 2 3 V t 3 +iγ( | V | 2 + 2 3 | U | 2 )V+ iγ 3 U 2 V * + g 2 V+ g 2 Ω g 2 2 V t 2
T= sin 2 (θ) sin 2 (φ)+ cos 2 (θ) cos 2 (φ)+0.5sin(2θ)sin(2φ)cos( φ PC + φ Birefringence + φ NL )
α( I )= α ns + α 0 1+I/ I sat

Metrics