Abstract

In this paper, we present a digital laser for on-demand modes with polarization control based on a single intra-cavity spatial light modulator (SLM). We employ a phase-only SLM as the back reflector in a dual-cavity resonator. We prove that we can digitally control and switch lasing modes with desired linear polarization at video rates. Moreover, we experimentally generate vector beams based on the selection and coherent summation of two orthogonally polarized Hermite-Gaussian (HG) beams inside the resonator.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Generation of radially and azimuthally polarized beams in Yb:YAG laser with intra-cavity lens and birefringent crystal

Manasadevi P. Thirugnanasambandam, Yuri Senatsky, and Ken-ichi Ueda
Opt. Express 19(3) 1905-1914 (2011)

Polarization and propagation characteristics of switchable first-order azimuthally asymmetric beam generated in dual-mode fiber

Saba N. Khan, Sudip K. Chatterjee, and Partha Roy Chaudhuri
Appl. Opt. 54(6) 1528-1542 (2015)

Spin-controlled twisted laser beams: intra-cavity multi-tasking geometric phase metasurfaces

Ronen Chriki, Elhanan Maguid, Chene Tradonsky, Vladimir Kleiner, Asher A. Friesem, Nir Davidson, and Erez Hasman
Opt. Express 26(2) 905-916 (2018)

References

  • View by:
  • |
  • |
  • |

  1. F. M. Dickey, Laser Beam Shaping: Theory and Techniques, 2nd ed. (CRC Press, 2014).
  2. N. Hodgson and H. Weber, Laser Resonators and Beam Propagation, 2nd ed. (Springer, 2005).
  3. Y. Matsuura, D. Akiyama, and M. Miyagi, “Beam homogenizer for hollow-fiber delivery system of excimer laser light,” Appl. Opt. 42(18), 3505–3508 (2003).
    [Crossref] [PubMed]
  4. C. Valentin, P. Calvet, Y. Quiquempois, G. Bouwmans, L. Bigot, Q. Coulombier, M. Douay, K. Delplace, A. Mussot, and E. Hugonnot, “Top-hat beam output of a single-mode microstructured optical fiber: impact of core index depression,” Opt. Express 21(20), 23250–23260 (2013).
    [Crossref] [PubMed]
  5. F. Wippermann, U.-D. Zeitner, P. Dannberg, A. Bräuer, and S. Sinzinger, “Beam homogenizers based on chirped microlens arrays,” Opt. Express 15(10), 6218–6231 (2007).
    [Crossref] [PubMed]
  6. S.-H. Chao, “Geometric optics-based design of laser beam shapers,” Opt. Eng. 42(11), 3123–3138 (2003).
    [Crossref]
  7. V. Bagnoud and J. D. Zuegel, “Independent phase and amplitude control of a laser beam by use of a single-phase-only spatial light modulator,” Opt. Lett. 29(3), 295–297 (2004).
    [Crossref] [PubMed]
  8. R. Oron, N. Davidson, A. A. Friesem, and E. Hasman, “Transverse mode shaping and selection in laser resonators,” Prog. Opt. 42, 325–386 (2001).
    [Crossref]
  9. A. J. Caley, M. J. Thomson, J. Liu, A. J. Waddie, and M. R. Taghizadeh, “Diffractive optical elements for high gain lasers with arbitrary output beam profiles,” Opt. Express 15(17), 10699–10704 (2007).
    [Crossref] [PubMed]
  10. P. A. Bélanger and C. Paré, “Optical resonators using graded-phase mirrors,” Opt. Lett. 16(14), 1057–1059 (1991).
    [Crossref] [PubMed]
  11. W. Lubeigt, G. Valentine, J. Girkin, E. Bente, and D. Burns, “Active transverse mode control and optimization of an all-solid-state laser using an intracavity adaptive-optic mirror,” Opt. Express 10(13), 550–555 (2002).
    [Crossref] [PubMed]
  12. S. Piehler, B. Weichelt, A. Voss, M. A. Ahmed, and T. Graf, “Power scaling of fundamental-mode thin-disk lasers using intracavity deformable mirrors,” Opt. Lett. 37(24), 5033–5035 (2012).
    [Crossref] [PubMed]
  13. W. Lubeigt, J. Gomes, G. Brown, A. Kelly, V. Savitski, D. Uttamchandani, and D. Burns, “Control of solid-state lasers using an intra-cavity MEMS micromirror,” Opt. Express 19(3), 2456–2465 (2011).
    [Crossref] [PubMed]
  14. S. Ngcobo, I. Litvin, L. Burger, and A. Forbes, “A digital laser for on-demand laser modes,” Nat. Commun. 4(1), 2289 (2013).
    [Crossref] [PubMed]
  15. R. Brüning, S. Ngcobo, M. Duparré, and A. Forbes, “Direct fiber excitation with a digitally controlled solid state laser source,” Opt. Lett. 40(3), 435–438 (2015).
    [Crossref] [PubMed]
  16. C. Tian, S. Yu, S. Cai, M. Lan, and W. Gu, “Fiber laser for on-demand mode generation in 1550 nm band,” Photon. Res. 5(3), 256–260 (2017).
    [Crossref]
  17. R. Oron, S. Blit, N. Davidson, A. A. Friesem, Z. Bomzon, and E. Hasman, “The formation of laser beams with pure azimuthal or radial polarization,” Appl. Phys. Lett. 77(21), 3322–3324 (2000).
    [Crossref]
  18. R. Oron, L. Shimshi, S. Blit, N. Davidson, A. A. Friesem, and E. Hasman, “Laser operation with two orthogonally polarized transverse modes,” Appl. Opt. 41(18), 3634–3637 (2002).
    [Crossref] [PubMed]
  19. D. J. Kim and J. W. Kim, “High-power TEM00 and Laguerre–Gaussian mode generation in double resonator configuration,” Appl. Phys. B 121(3), 401–405 (2015).
    [Crossref]
  20. L. Burger, I. Litvin, S. Ngcobo, and A. Forbes, “Intracavity beam shaping using an SLM,” in Laser Beam Shaping XVI (International Society for Optics and Photonics, 2015), p. 95810A.
  21. L. Burger, I. Litvin, S. Ngcobo, and A. Forbes, “Implementation of a spatial light modulator for intracavity beam shaping,” J. Opt. 17(1), 15604 (2015).
    [Crossref]
  22. C. Maurer, A. Jesacher, S. Fürhapter, S. Bernet, and M. Ritsch-Marte, “Tailoring of arbitrary optical vector beams,” New J. Phys. 9(3), 78 (2007).
    [Crossref]

2017 (1)

2015 (3)

D. J. Kim and J. W. Kim, “High-power TEM00 and Laguerre–Gaussian mode generation in double resonator configuration,” Appl. Phys. B 121(3), 401–405 (2015).
[Crossref]

L. Burger, I. Litvin, S. Ngcobo, and A. Forbes, “Implementation of a spatial light modulator for intracavity beam shaping,” J. Opt. 17(1), 15604 (2015).
[Crossref]

R. Brüning, S. Ngcobo, M. Duparré, and A. Forbes, “Direct fiber excitation with a digitally controlled solid state laser source,” Opt. Lett. 40(3), 435–438 (2015).
[Crossref] [PubMed]

2013 (2)

2012 (1)

2011 (1)

2007 (3)

2004 (1)

2003 (2)

2002 (2)

2001 (1)

R. Oron, N. Davidson, A. A. Friesem, and E. Hasman, “Transverse mode shaping and selection in laser resonators,” Prog. Opt. 42, 325–386 (2001).
[Crossref]

2000 (1)

R. Oron, S. Blit, N. Davidson, A. A. Friesem, Z. Bomzon, and E. Hasman, “The formation of laser beams with pure azimuthal or radial polarization,” Appl. Phys. Lett. 77(21), 3322–3324 (2000).
[Crossref]

1991 (1)

Ahmed, M. A.

Akiyama, D.

Bagnoud, V.

Bélanger, P. A.

Bente, E.

Bernet, S.

C. Maurer, A. Jesacher, S. Fürhapter, S. Bernet, and M. Ritsch-Marte, “Tailoring of arbitrary optical vector beams,” New J. Phys. 9(3), 78 (2007).
[Crossref]

Bigot, L.

Blit, S.

R. Oron, L. Shimshi, S. Blit, N. Davidson, A. A. Friesem, and E. Hasman, “Laser operation with two orthogonally polarized transverse modes,” Appl. Opt. 41(18), 3634–3637 (2002).
[Crossref] [PubMed]

R. Oron, S. Blit, N. Davidson, A. A. Friesem, Z. Bomzon, and E. Hasman, “The formation of laser beams with pure azimuthal or radial polarization,” Appl. Phys. Lett. 77(21), 3322–3324 (2000).
[Crossref]

Bomzon, Z.

R. Oron, S. Blit, N. Davidson, A. A. Friesem, Z. Bomzon, and E. Hasman, “The formation of laser beams with pure azimuthal or radial polarization,” Appl. Phys. Lett. 77(21), 3322–3324 (2000).
[Crossref]

Bouwmans, G.

Bräuer, A.

Brown, G.

Brüning, R.

Burger, L.

L. Burger, I. Litvin, S. Ngcobo, and A. Forbes, “Implementation of a spatial light modulator for intracavity beam shaping,” J. Opt. 17(1), 15604 (2015).
[Crossref]

S. Ngcobo, I. Litvin, L. Burger, and A. Forbes, “A digital laser for on-demand laser modes,” Nat. Commun. 4(1), 2289 (2013).
[Crossref] [PubMed]

Burns, D.

Cai, S.

Caley, A. J.

Calvet, P.

Chao, S.-H.

S.-H. Chao, “Geometric optics-based design of laser beam shapers,” Opt. Eng. 42(11), 3123–3138 (2003).
[Crossref]

Coulombier, Q.

Dannberg, P.

Davidson, N.

R. Oron, L. Shimshi, S. Blit, N. Davidson, A. A. Friesem, and E. Hasman, “Laser operation with two orthogonally polarized transverse modes,” Appl. Opt. 41(18), 3634–3637 (2002).
[Crossref] [PubMed]

R. Oron, N. Davidson, A. A. Friesem, and E. Hasman, “Transverse mode shaping and selection in laser resonators,” Prog. Opt. 42, 325–386 (2001).
[Crossref]

R. Oron, S. Blit, N. Davidson, A. A. Friesem, Z. Bomzon, and E. Hasman, “The formation of laser beams with pure azimuthal or radial polarization,” Appl. Phys. Lett. 77(21), 3322–3324 (2000).
[Crossref]

Delplace, K.

Douay, M.

Duparré, M.

Forbes, A.

R. Brüning, S. Ngcobo, M. Duparré, and A. Forbes, “Direct fiber excitation with a digitally controlled solid state laser source,” Opt. Lett. 40(3), 435–438 (2015).
[Crossref] [PubMed]

L. Burger, I. Litvin, S. Ngcobo, and A. Forbes, “Implementation of a spatial light modulator for intracavity beam shaping,” J. Opt. 17(1), 15604 (2015).
[Crossref]

S. Ngcobo, I. Litvin, L. Burger, and A. Forbes, “A digital laser for on-demand laser modes,” Nat. Commun. 4(1), 2289 (2013).
[Crossref] [PubMed]

Friesem, A. A.

R. Oron, L. Shimshi, S. Blit, N. Davidson, A. A. Friesem, and E. Hasman, “Laser operation with two orthogonally polarized transverse modes,” Appl. Opt. 41(18), 3634–3637 (2002).
[Crossref] [PubMed]

R. Oron, N. Davidson, A. A. Friesem, and E. Hasman, “Transverse mode shaping and selection in laser resonators,” Prog. Opt. 42, 325–386 (2001).
[Crossref]

R. Oron, S. Blit, N. Davidson, A. A. Friesem, Z. Bomzon, and E. Hasman, “The formation of laser beams with pure azimuthal or radial polarization,” Appl. Phys. Lett. 77(21), 3322–3324 (2000).
[Crossref]

Fürhapter, S.

C. Maurer, A. Jesacher, S. Fürhapter, S. Bernet, and M. Ritsch-Marte, “Tailoring of arbitrary optical vector beams,” New J. Phys. 9(3), 78 (2007).
[Crossref]

Girkin, J.

Gomes, J.

Graf, T.

Gu, W.

Hasman, E.

R. Oron, L. Shimshi, S. Blit, N. Davidson, A. A. Friesem, and E. Hasman, “Laser operation with two orthogonally polarized transverse modes,” Appl. Opt. 41(18), 3634–3637 (2002).
[Crossref] [PubMed]

R. Oron, N. Davidson, A. A. Friesem, and E. Hasman, “Transverse mode shaping and selection in laser resonators,” Prog. Opt. 42, 325–386 (2001).
[Crossref]

R. Oron, S. Blit, N. Davidson, A. A. Friesem, Z. Bomzon, and E. Hasman, “The formation of laser beams with pure azimuthal or radial polarization,” Appl. Phys. Lett. 77(21), 3322–3324 (2000).
[Crossref]

Hugonnot, E.

Jesacher, A.

C. Maurer, A. Jesacher, S. Fürhapter, S. Bernet, and M. Ritsch-Marte, “Tailoring of arbitrary optical vector beams,” New J. Phys. 9(3), 78 (2007).
[Crossref]

Kelly, A.

Kim, D. J.

D. J. Kim and J. W. Kim, “High-power TEM00 and Laguerre–Gaussian mode generation in double resonator configuration,” Appl. Phys. B 121(3), 401–405 (2015).
[Crossref]

Kim, J. W.

D. J. Kim and J. W. Kim, “High-power TEM00 and Laguerre–Gaussian mode generation in double resonator configuration,” Appl. Phys. B 121(3), 401–405 (2015).
[Crossref]

Lan, M.

Litvin, I.

L. Burger, I. Litvin, S. Ngcobo, and A. Forbes, “Implementation of a spatial light modulator for intracavity beam shaping,” J. Opt. 17(1), 15604 (2015).
[Crossref]

S. Ngcobo, I. Litvin, L. Burger, and A. Forbes, “A digital laser for on-demand laser modes,” Nat. Commun. 4(1), 2289 (2013).
[Crossref] [PubMed]

Liu, J.

Lubeigt, W.

Matsuura, Y.

Maurer, C.

C. Maurer, A. Jesacher, S. Fürhapter, S. Bernet, and M. Ritsch-Marte, “Tailoring of arbitrary optical vector beams,” New J. Phys. 9(3), 78 (2007).
[Crossref]

Miyagi, M.

Mussot, A.

Ngcobo, S.

R. Brüning, S. Ngcobo, M. Duparré, and A. Forbes, “Direct fiber excitation with a digitally controlled solid state laser source,” Opt. Lett. 40(3), 435–438 (2015).
[Crossref] [PubMed]

L. Burger, I. Litvin, S. Ngcobo, and A. Forbes, “Implementation of a spatial light modulator for intracavity beam shaping,” J. Opt. 17(1), 15604 (2015).
[Crossref]

S. Ngcobo, I. Litvin, L. Burger, and A. Forbes, “A digital laser for on-demand laser modes,” Nat. Commun. 4(1), 2289 (2013).
[Crossref] [PubMed]

Oron, R.

R. Oron, L. Shimshi, S. Blit, N. Davidson, A. A. Friesem, and E. Hasman, “Laser operation with two orthogonally polarized transverse modes,” Appl. Opt. 41(18), 3634–3637 (2002).
[Crossref] [PubMed]

R. Oron, N. Davidson, A. A. Friesem, and E. Hasman, “Transverse mode shaping and selection in laser resonators,” Prog. Opt. 42, 325–386 (2001).
[Crossref]

R. Oron, S. Blit, N. Davidson, A. A. Friesem, Z. Bomzon, and E. Hasman, “The formation of laser beams with pure azimuthal or radial polarization,” Appl. Phys. Lett. 77(21), 3322–3324 (2000).
[Crossref]

Paré, C.

Piehler, S.

Quiquempois, Y.

Ritsch-Marte, M.

C. Maurer, A. Jesacher, S. Fürhapter, S. Bernet, and M. Ritsch-Marte, “Tailoring of arbitrary optical vector beams,” New J. Phys. 9(3), 78 (2007).
[Crossref]

Savitski, V.

Shimshi, L.

Sinzinger, S.

Taghizadeh, M. R.

Thomson, M. J.

Tian, C.

Uttamchandani, D.

Valentin, C.

Valentine, G.

Voss, A.

Waddie, A. J.

Weichelt, B.

Wippermann, F.

Yu, S.

Zeitner, U.-D.

Zuegel, J. D.

Appl. Opt. (2)

Appl. Phys. B (1)

D. J. Kim and J. W. Kim, “High-power TEM00 and Laguerre–Gaussian mode generation in double resonator configuration,” Appl. Phys. B 121(3), 401–405 (2015).
[Crossref]

Appl. Phys. Lett. (1)

R. Oron, S. Blit, N. Davidson, A. A. Friesem, Z. Bomzon, and E. Hasman, “The formation of laser beams with pure azimuthal or radial polarization,” Appl. Phys. Lett. 77(21), 3322–3324 (2000).
[Crossref]

J. Opt. (1)

L. Burger, I. Litvin, S. Ngcobo, and A. Forbes, “Implementation of a spatial light modulator for intracavity beam shaping,” J. Opt. 17(1), 15604 (2015).
[Crossref]

Nat. Commun. (1)

S. Ngcobo, I. Litvin, L. Burger, and A. Forbes, “A digital laser for on-demand laser modes,” Nat. Commun. 4(1), 2289 (2013).
[Crossref] [PubMed]

New J. Phys. (1)

C. Maurer, A. Jesacher, S. Fürhapter, S. Bernet, and M. Ritsch-Marte, “Tailoring of arbitrary optical vector beams,” New J. Phys. 9(3), 78 (2007).
[Crossref]

Opt. Eng. (1)

S.-H. Chao, “Geometric optics-based design of laser beam shapers,” Opt. Eng. 42(11), 3123–3138 (2003).
[Crossref]

Opt. Express (5)

Opt. Lett. (4)

Photon. Res. (1)

Prog. Opt. (1)

R. Oron, N. Davidson, A. A. Friesem, and E. Hasman, “Transverse mode shaping and selection in laser resonators,” Prog. Opt. 42, 325–386 (2001).
[Crossref]

Other (3)

F. M. Dickey, Laser Beam Shaping: Theory and Techniques, 2nd ed. (CRC Press, 2014).

N. Hodgson and H. Weber, Laser Resonators and Beam Propagation, 2nd ed. (Springer, 2005).

L. Burger, I. Litvin, S. Ngcobo, and A. Forbes, “Intracavity beam shaping using an SLM,” in Laser Beam Shaping XVI (International Society for Optics and Photonics, 2015), p. 95810A.

Supplementary Material (2)

NameDescription
» Visualization 1       A dynamic digital hologram imposed on the SLM in a digital laser.
» Visualization 2       The resulting real-time recording of laser output

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 Experimental setup for the digital laser, including the spatial light modulator (SLM), half-wave plate (HWP), beam displacer, sided-pumped Nd:YAG crystal and output coupler (OC).
Fig. 2
Fig. 2 The laser output power as a function of SLM gray level.
Fig. 3
Fig. 3 Digital holograms of the intra-cavity SLM and the corresponding laser modes. The modes are identified as (a) Gaussian; (b) HG10; (c) HG01; (d) HG11; and (e) TEM02. Each arrow indicates the polarization state of the laser mode. For a dynamic digital hologram and the resulting real-time recording of laser output, see Visualization 1 and Visualization 2, respectively.
Fig. 4
Fig. 4 Phase patterns displayed on the SLM for the generation of vector beams (the first two columns); the resulting intensity distributions directly from the laser (the right column).
Fig. 5
Fig. 5 Intensity distributions of the doughnut modes (as shown in Fig. 4) measured with a linear polarizer in front of the camera. Each arrow indicates the orientation of the polarizer.
Fig. 6
Fig. 6 (a) Experimental setup of modified Mach-Zehnder interferometer. NPBS, non-polarizing beam splitter. M1, M2, mirrors. DP, dove prism. A1, A2, knife-edges. (b) Interference fringes.