Abstract

Wavelength- and OAM- tunable laser with large tunable range is the key source for the application in large capacity optical communications. In this paper, we demonstrate a wavelength- and OAM-tunable vortex laser in a 1.2 W single mode fiber coupled LD pumped Yb:phosphate laser. A z-type cavity has been used to precisely control the laser mode diameter. A thin film polarizer (TFP) is inserted to finely control the intra-cavity loss and tune the wavelength. Corresponding laser fundamental mode to pump beam ratio has been optimized to decrease the pump threshold for high order HG mode running. A pair of cylindrical lenses has been used to convert the HG mode to vortex output. The vortex beam with OAM-tunable range from 1ħ to 14 ħ with wavelength tuning range of ~36.2 nm for LG0,1 vortex beam, and ~14.5 nm for LG0,14 vortex beam at pump power of only 1.2 W have been realized, which is the largest tuning range of both OAM and wavelength at ~1 W pump power range to the best of our knowledge.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Controlled switching of orbital angular momentum in an optical parametric oscillator

A. Aadhi, G. K. Samanta, S. Chaitanya Kumar, and M. Ebrahim-Zadeh
Optica 4(3) 349-355 (2017)

Position measurement of non-integer OAM beams with structurally invariant propagation

A. M. Nugrowati, W. G. Stam, and J. P. Woerdman
Opt. Express 20(25) 27429-27441 (2012)

References

  • View by:
  • |
  • |
  • |

  1. K. T. Gahagan and G. A. Swartzlander., “Optical vortex trapping of particles,” Opt. Lett. 21(11), 827–829 (1996).
    [Crossref] [PubMed]
  2. J. Romero, J. Leach, B. Jack, M. R. Dennis, S. Franke-Arnold, S. M. Barnett, and M. J. Padgett, “Entangled optical vortex links,” Phys. Rev. Lett. 106(10), 100407 (2011).
    [Crossref] [PubMed]
  3. J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
    [Crossref]
  4. J. Wang, “Advances in communications using optical vortices,” Photon. Res. 4(5), B14–B28 (2016).
    [Crossref]
  5. N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
    [Crossref] [PubMed]
  6. Q. Liu, Y. Zhao, M. Ding, W. Yao, X. Fan, and D. Shen, “Wavelength- and OAM-tunable vortex laser with a reflective volume Bragg grating,” Opt. Express 25(19), 23312–23319 (2017).
    [Crossref] [PubMed]
  7. V. S. Lyubopytov, A. P. Porfirev, S. O. Gurbatov, S. Paul, M. F. Schumann, J. Cesar, M. Malekizandi, M. T. Haidar, M. Wegener, A. Chipouline, and F. Küppers, “Simultaneous wavelength and orbital angular momentum demultiplexing using tunable MEMS-based Fabry-Perot filter,” Opt. Express 25(9), 9634–9646 (2017).
    [Crossref] [PubMed]
  8. J. Liu, C. Min, T. Lei, L. Du, Y. Yuan, S. Wei, Y. Wang, and X.-C. Yuan, “Generation and detection of broadband multi-channel orbital angular momentum by micrometer-scale meta-reflectarray,” Opt. Express 24(1), 212–218 (2016).
    [Crossref] [PubMed]
  9. Y. Shen, Y. Meng, X. Fu, and M. Gong, “Wavelength-tunable Hermite-Gaussian modes and an orbital-angular-momentum-tunable vortex beam in a dual-off-axis pumped Yb:CALGO laser,” Opt. Lett. 43(2), 291–294 (2018).
    [Crossref] [PubMed]
  10. S.-C. Chu, T. Ohtomo, and K. Otsuka, “Generation of doughnutlike vortex beam with tunable orbital angular momentum from lasers with controlled Hermite-Gaussian modes,” Appl. Opt. 47(14), 2583–2591 (2008).
    [Crossref] [PubMed]
  11. T. Ohtomo, S.-C. Chu, and K. Otsuka, “Generation of vortex beams from lasers with controlled Hermite- and Ince-Gaussian modes,” Opt. Express 16(7), 5082–5094 (2008).
    [Crossref] [PubMed]
  12. M. W. Beijersbergen, L. Allen, H. Van der Veen, and J. Woerdman, “Astigmatic laser mode converters and transfer of orbital angular momentum,” Opt. Commun. 96(1-3), 123–132 (1993).
    [Crossref]
  13. H. Laabs and B. Ozygus, “Excitation of Hermite Gaussian modes in end-pumped solid-state lasers via off-axis pumping,” Opt. Laser Technol. 28(3), 213–214 (1996).
    [Crossref]
  14. C.-Y. Lee, C.-C. Chang, C.-Y. Cho, P.-H. Tuan, and Y.-F. Chen, “Generation of Higher Order Vortex Beams From a YVO4/Nd: YVO4 Self-Raman Laser via Off-Axis Pumping With Mode Converter,” IEEE J. Sel. Top. Quantum Electron. 21(1), 318–322 (2015).
    [Crossref]
  15. Y. Chen, Y. Lan, and S. Wang, “High-power diode-end-pumped Nd: YVO4 laser: thermally induced fracture versus pump-wavelength sensitivity,” Appl. Phys. B 71(6), 827–830 (2000).
    [Crossref]
  16. Y. Wang, S. Wang, G. Feng, and S. Zhou, “SESAM combined Kerr lens mode locked Yb: CALGO laser pumped by a 1.2 W single mode fiber coupled laser diode,” Laser Phys. Lett. 14(5), 055003 (2017).
    [Crossref]
  17. Y. Chen, T. Huang, C. Kao, C. Wang, and S. Wang, “Optimization in scaling fiber-coupled laser-diode end-pumped lasers to higher power: influence of thermal effect,” IEEE J. Quantum Electron. 33(8), 1424–1429 (1997).
    [Crossref]
  18. C. Hönninger, R. Paschotta, M. Graf, F. Morier-Genoud, G. Zhang, M. Moser, S. Biswal, J. Nees, A. Braun, G. Mourou, I. Johannsen, A. Giesen, W. Seeber, and U. Keller, “Ultrafast ytterbium-doped bulk lasers and laser amplifiers,” Appl. Phys. B 69(1), 3–17 (1999).
    [Crossref]
  19. A. Weiner, Ultrafast optics (John Wiley & Sons, 2011).
  20. M. Endo, M. Kawakami, K. Nanri, S. Takeda, and T. Fujioka, “Two-dimensional simulation of an unstable resonator with a stable core,” Appl. Opt. 38(15), 3298–3307 (1999).
    [Crossref] [PubMed]
  21. M. Endo, “Numerical simulation of an optical resonator for generation of a doughnut-like laser beam,” Opt. Express 12(9), 1959–1965 (2004).
    [Crossref] [PubMed]
  22. P. Laporta and M. Brussard, “Design criteria for mode size optimization in diode-pumped solid-state lasers,” IEEE J. Quantum Electron. 27(10), 2319–2326 (1991).
    [Crossref]

2018 (1)

2017 (3)

2016 (2)

2015 (1)

C.-Y. Lee, C.-C. Chang, C.-Y. Cho, P.-H. Tuan, and Y.-F. Chen, “Generation of Higher Order Vortex Beams From a YVO4/Nd: YVO4 Self-Raman Laser via Off-Axis Pumping With Mode Converter,” IEEE J. Sel. Top. Quantum Electron. 21(1), 318–322 (2015).
[Crossref]

2013 (1)

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

2012 (1)

J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

2011 (1)

J. Romero, J. Leach, B. Jack, M. R. Dennis, S. Franke-Arnold, S. M. Barnett, and M. J. Padgett, “Entangled optical vortex links,” Phys. Rev. Lett. 106(10), 100407 (2011).
[Crossref] [PubMed]

2008 (2)

2004 (1)

2000 (1)

Y. Chen, Y. Lan, and S. Wang, “High-power diode-end-pumped Nd: YVO4 laser: thermally induced fracture versus pump-wavelength sensitivity,” Appl. Phys. B 71(6), 827–830 (2000).
[Crossref]

1999 (2)

C. Hönninger, R. Paschotta, M. Graf, F. Morier-Genoud, G. Zhang, M. Moser, S. Biswal, J. Nees, A. Braun, G. Mourou, I. Johannsen, A. Giesen, W. Seeber, and U. Keller, “Ultrafast ytterbium-doped bulk lasers and laser amplifiers,” Appl. Phys. B 69(1), 3–17 (1999).
[Crossref]

M. Endo, M. Kawakami, K. Nanri, S. Takeda, and T. Fujioka, “Two-dimensional simulation of an unstable resonator with a stable core,” Appl. Opt. 38(15), 3298–3307 (1999).
[Crossref] [PubMed]

1997 (1)

Y. Chen, T. Huang, C. Kao, C. Wang, and S. Wang, “Optimization in scaling fiber-coupled laser-diode end-pumped lasers to higher power: influence of thermal effect,” IEEE J. Quantum Electron. 33(8), 1424–1429 (1997).
[Crossref]

1996 (2)

H. Laabs and B. Ozygus, “Excitation of Hermite Gaussian modes in end-pumped solid-state lasers via off-axis pumping,” Opt. Laser Technol. 28(3), 213–214 (1996).
[Crossref]

K. T. Gahagan and G. A. Swartzlander., “Optical vortex trapping of particles,” Opt. Lett. 21(11), 827–829 (1996).
[Crossref] [PubMed]

1993 (1)

M. W. Beijersbergen, L. Allen, H. Van der Veen, and J. Woerdman, “Astigmatic laser mode converters and transfer of orbital angular momentum,” Opt. Commun. 96(1-3), 123–132 (1993).
[Crossref]

1991 (1)

P. Laporta and M. Brussard, “Design criteria for mode size optimization in diode-pumped solid-state lasers,” IEEE J. Quantum Electron. 27(10), 2319–2326 (1991).
[Crossref]

Ahmed, N.

J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Allen, L.

M. W. Beijersbergen, L. Allen, H. Van der Veen, and J. Woerdman, “Astigmatic laser mode converters and transfer of orbital angular momentum,” Opt. Commun. 96(1-3), 123–132 (1993).
[Crossref]

Barnett, S. M.

J. Romero, J. Leach, B. Jack, M. R. Dennis, S. Franke-Arnold, S. M. Barnett, and M. J. Padgett, “Entangled optical vortex links,” Phys. Rev. Lett. 106(10), 100407 (2011).
[Crossref] [PubMed]

Beijersbergen, M. W.

M. W. Beijersbergen, L. Allen, H. Van der Veen, and J. Woerdman, “Astigmatic laser mode converters and transfer of orbital angular momentum,” Opt. Commun. 96(1-3), 123–132 (1993).
[Crossref]

Biswal, S.

C. Hönninger, R. Paschotta, M. Graf, F. Morier-Genoud, G. Zhang, M. Moser, S. Biswal, J. Nees, A. Braun, G. Mourou, I. Johannsen, A. Giesen, W. Seeber, and U. Keller, “Ultrafast ytterbium-doped bulk lasers and laser amplifiers,” Appl. Phys. B 69(1), 3–17 (1999).
[Crossref]

Bozinovic, N.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

Braun, A.

C. Hönninger, R. Paschotta, M. Graf, F. Morier-Genoud, G. Zhang, M. Moser, S. Biswal, J. Nees, A. Braun, G. Mourou, I. Johannsen, A. Giesen, W. Seeber, and U. Keller, “Ultrafast ytterbium-doped bulk lasers and laser amplifiers,” Appl. Phys. B 69(1), 3–17 (1999).
[Crossref]

Brussard, M.

P. Laporta and M. Brussard, “Design criteria for mode size optimization in diode-pumped solid-state lasers,” IEEE J. Quantum Electron. 27(10), 2319–2326 (1991).
[Crossref]

Cesar, J.

Chang, C.-C.

C.-Y. Lee, C.-C. Chang, C.-Y. Cho, P.-H. Tuan, and Y.-F. Chen, “Generation of Higher Order Vortex Beams From a YVO4/Nd: YVO4 Self-Raman Laser via Off-Axis Pumping With Mode Converter,” IEEE J. Sel. Top. Quantum Electron. 21(1), 318–322 (2015).
[Crossref]

Chen, Y.

Y. Chen, Y. Lan, and S. Wang, “High-power diode-end-pumped Nd: YVO4 laser: thermally induced fracture versus pump-wavelength sensitivity,” Appl. Phys. B 71(6), 827–830 (2000).
[Crossref]

Y. Chen, T. Huang, C. Kao, C. Wang, and S. Wang, “Optimization in scaling fiber-coupled laser-diode end-pumped lasers to higher power: influence of thermal effect,” IEEE J. Quantum Electron. 33(8), 1424–1429 (1997).
[Crossref]

Chen, Y.-F.

C.-Y. Lee, C.-C. Chang, C.-Y. Cho, P.-H. Tuan, and Y.-F. Chen, “Generation of Higher Order Vortex Beams From a YVO4/Nd: YVO4 Self-Raman Laser via Off-Axis Pumping With Mode Converter,” IEEE J. Sel. Top. Quantum Electron. 21(1), 318–322 (2015).
[Crossref]

Chipouline, A.

Cho, C.-Y.

C.-Y. Lee, C.-C. Chang, C.-Y. Cho, P.-H. Tuan, and Y.-F. Chen, “Generation of Higher Order Vortex Beams From a YVO4/Nd: YVO4 Self-Raman Laser via Off-Axis Pumping With Mode Converter,” IEEE J. Sel. Top. Quantum Electron. 21(1), 318–322 (2015).
[Crossref]

Chu, S.-C.

Dennis, M. R.

J. Romero, J. Leach, B. Jack, M. R. Dennis, S. Franke-Arnold, S. M. Barnett, and M. J. Padgett, “Entangled optical vortex links,” Phys. Rev. Lett. 106(10), 100407 (2011).
[Crossref] [PubMed]

Ding, M.

Dolinar, S.

J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Du, L.

Endo, M.

Fan, X.

Fazal, I. M.

J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Feng, G.

Y. Wang, S. Wang, G. Feng, and S. Zhou, “SESAM combined Kerr lens mode locked Yb: CALGO laser pumped by a 1.2 W single mode fiber coupled laser diode,” Laser Phys. Lett. 14(5), 055003 (2017).
[Crossref]

Franke-Arnold, S.

J. Romero, J. Leach, B. Jack, M. R. Dennis, S. Franke-Arnold, S. M. Barnett, and M. J. Padgett, “Entangled optical vortex links,” Phys. Rev. Lett. 106(10), 100407 (2011).
[Crossref] [PubMed]

Fu, X.

Fujioka, T.

Gahagan, K. T.

Giesen, A.

C. Hönninger, R. Paschotta, M. Graf, F. Morier-Genoud, G. Zhang, M. Moser, S. Biswal, J. Nees, A. Braun, G. Mourou, I. Johannsen, A. Giesen, W. Seeber, and U. Keller, “Ultrafast ytterbium-doped bulk lasers and laser amplifiers,” Appl. Phys. B 69(1), 3–17 (1999).
[Crossref]

Gong, M.

Graf, M.

C. Hönninger, R. Paschotta, M. Graf, F. Morier-Genoud, G. Zhang, M. Moser, S. Biswal, J. Nees, A. Braun, G. Mourou, I. Johannsen, A. Giesen, W. Seeber, and U. Keller, “Ultrafast ytterbium-doped bulk lasers and laser amplifiers,” Appl. Phys. B 69(1), 3–17 (1999).
[Crossref]

Gurbatov, S. O.

Haidar, M. T.

Hönninger, C.

C. Hönninger, R. Paschotta, M. Graf, F. Morier-Genoud, G. Zhang, M. Moser, S. Biswal, J. Nees, A. Braun, G. Mourou, I. Johannsen, A. Giesen, W. Seeber, and U. Keller, “Ultrafast ytterbium-doped bulk lasers and laser amplifiers,” Appl. Phys. B 69(1), 3–17 (1999).
[Crossref]

Huang, H.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Huang, T.

Y. Chen, T. Huang, C. Kao, C. Wang, and S. Wang, “Optimization in scaling fiber-coupled laser-diode end-pumped lasers to higher power: influence of thermal effect,” IEEE J. Quantum Electron. 33(8), 1424–1429 (1997).
[Crossref]

Jack, B.

J. Romero, J. Leach, B. Jack, M. R. Dennis, S. Franke-Arnold, S. M. Barnett, and M. J. Padgett, “Entangled optical vortex links,” Phys. Rev. Lett. 106(10), 100407 (2011).
[Crossref] [PubMed]

Johannsen, I.

C. Hönninger, R. Paschotta, M. Graf, F. Morier-Genoud, G. Zhang, M. Moser, S. Biswal, J. Nees, A. Braun, G. Mourou, I. Johannsen, A. Giesen, W. Seeber, and U. Keller, “Ultrafast ytterbium-doped bulk lasers and laser amplifiers,” Appl. Phys. B 69(1), 3–17 (1999).
[Crossref]

Kao, C.

Y. Chen, T. Huang, C. Kao, C. Wang, and S. Wang, “Optimization in scaling fiber-coupled laser-diode end-pumped lasers to higher power: influence of thermal effect,” IEEE J. Quantum Electron. 33(8), 1424–1429 (1997).
[Crossref]

Kawakami, M.

Keller, U.

C. Hönninger, R. Paschotta, M. Graf, F. Morier-Genoud, G. Zhang, M. Moser, S. Biswal, J. Nees, A. Braun, G. Mourou, I. Johannsen, A. Giesen, W. Seeber, and U. Keller, “Ultrafast ytterbium-doped bulk lasers and laser amplifiers,” Appl. Phys. B 69(1), 3–17 (1999).
[Crossref]

Kristensen, P.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

Küppers, F.

Laabs, H.

H. Laabs and B. Ozygus, “Excitation of Hermite Gaussian modes in end-pumped solid-state lasers via off-axis pumping,” Opt. Laser Technol. 28(3), 213–214 (1996).
[Crossref]

Lan, Y.

Y. Chen, Y. Lan, and S. Wang, “High-power diode-end-pumped Nd: YVO4 laser: thermally induced fracture versus pump-wavelength sensitivity,” Appl. Phys. B 71(6), 827–830 (2000).
[Crossref]

Laporta, P.

P. Laporta and M. Brussard, “Design criteria for mode size optimization in diode-pumped solid-state lasers,” IEEE J. Quantum Electron. 27(10), 2319–2326 (1991).
[Crossref]

Leach, J.

J. Romero, J. Leach, B. Jack, M. R. Dennis, S. Franke-Arnold, S. M. Barnett, and M. J. Padgett, “Entangled optical vortex links,” Phys. Rev. Lett. 106(10), 100407 (2011).
[Crossref] [PubMed]

Lee, C.-Y.

C.-Y. Lee, C.-C. Chang, C.-Y. Cho, P.-H. Tuan, and Y.-F. Chen, “Generation of Higher Order Vortex Beams From a YVO4/Nd: YVO4 Self-Raman Laser via Off-Axis Pumping With Mode Converter,” IEEE J. Sel. Top. Quantum Electron. 21(1), 318–322 (2015).
[Crossref]

Lei, T.

Liu, J.

Liu, Q.

Lyubopytov, V. S.

Malekizandi, M.

Meng, Y.

Min, C.

Morier-Genoud, F.

C. Hönninger, R. Paschotta, M. Graf, F. Morier-Genoud, G. Zhang, M. Moser, S. Biswal, J. Nees, A. Braun, G. Mourou, I. Johannsen, A. Giesen, W. Seeber, and U. Keller, “Ultrafast ytterbium-doped bulk lasers and laser amplifiers,” Appl. Phys. B 69(1), 3–17 (1999).
[Crossref]

Moser, M.

C. Hönninger, R. Paschotta, M. Graf, F. Morier-Genoud, G. Zhang, M. Moser, S. Biswal, J. Nees, A. Braun, G. Mourou, I. Johannsen, A. Giesen, W. Seeber, and U. Keller, “Ultrafast ytterbium-doped bulk lasers and laser amplifiers,” Appl. Phys. B 69(1), 3–17 (1999).
[Crossref]

Mourou, G.

C. Hönninger, R. Paschotta, M. Graf, F. Morier-Genoud, G. Zhang, M. Moser, S. Biswal, J. Nees, A. Braun, G. Mourou, I. Johannsen, A. Giesen, W. Seeber, and U. Keller, “Ultrafast ytterbium-doped bulk lasers and laser amplifiers,” Appl. Phys. B 69(1), 3–17 (1999).
[Crossref]

Nanri, K.

Nees, J.

C. Hönninger, R. Paschotta, M. Graf, F. Morier-Genoud, G. Zhang, M. Moser, S. Biswal, J. Nees, A. Braun, G. Mourou, I. Johannsen, A. Giesen, W. Seeber, and U. Keller, “Ultrafast ytterbium-doped bulk lasers and laser amplifiers,” Appl. Phys. B 69(1), 3–17 (1999).
[Crossref]

Ohtomo, T.

Otsuka, K.

Ozygus, B.

H. Laabs and B. Ozygus, “Excitation of Hermite Gaussian modes in end-pumped solid-state lasers via off-axis pumping,” Opt. Laser Technol. 28(3), 213–214 (1996).
[Crossref]

Padgett, M. J.

J. Romero, J. Leach, B. Jack, M. R. Dennis, S. Franke-Arnold, S. M. Barnett, and M. J. Padgett, “Entangled optical vortex links,” Phys. Rev. Lett. 106(10), 100407 (2011).
[Crossref] [PubMed]

Paschotta, R.

C. Hönninger, R. Paschotta, M. Graf, F. Morier-Genoud, G. Zhang, M. Moser, S. Biswal, J. Nees, A. Braun, G. Mourou, I. Johannsen, A. Giesen, W. Seeber, and U. Keller, “Ultrafast ytterbium-doped bulk lasers and laser amplifiers,” Appl. Phys. B 69(1), 3–17 (1999).
[Crossref]

Paul, S.

Porfirev, A. P.

Ramachandran, S.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

Ren, Y.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Romero, J.

J. Romero, J. Leach, B. Jack, M. R. Dennis, S. Franke-Arnold, S. M. Barnett, and M. J. Padgett, “Entangled optical vortex links,” Phys. Rev. Lett. 106(10), 100407 (2011).
[Crossref] [PubMed]

Schumann, M. F.

Seeber, W.

C. Hönninger, R. Paschotta, M. Graf, F. Morier-Genoud, G. Zhang, M. Moser, S. Biswal, J. Nees, A. Braun, G. Mourou, I. Johannsen, A. Giesen, W. Seeber, and U. Keller, “Ultrafast ytterbium-doped bulk lasers and laser amplifiers,” Appl. Phys. B 69(1), 3–17 (1999).
[Crossref]

Shen, D.

Shen, Y.

Swartzlander, G. A.

Takeda, S.

Tuan, P.-H.

C.-Y. Lee, C.-C. Chang, C.-Y. Cho, P.-H. Tuan, and Y.-F. Chen, “Generation of Higher Order Vortex Beams From a YVO4/Nd: YVO4 Self-Raman Laser via Off-Axis Pumping With Mode Converter,” IEEE J. Sel. Top. Quantum Electron. 21(1), 318–322 (2015).
[Crossref]

Tur, M.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Van der Veen, H.

M. W. Beijersbergen, L. Allen, H. Van der Veen, and J. Woerdman, “Astigmatic laser mode converters and transfer of orbital angular momentum,” Opt. Commun. 96(1-3), 123–132 (1993).
[Crossref]

Wang, C.

Y. Chen, T. Huang, C. Kao, C. Wang, and S. Wang, “Optimization in scaling fiber-coupled laser-diode end-pumped lasers to higher power: influence of thermal effect,” IEEE J. Quantum Electron. 33(8), 1424–1429 (1997).
[Crossref]

Wang, J.

J. Wang, “Advances in communications using optical vortices,” Photon. Res. 4(5), B14–B28 (2016).
[Crossref]

J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Wang, S.

Y. Wang, S. Wang, G. Feng, and S. Zhou, “SESAM combined Kerr lens mode locked Yb: CALGO laser pumped by a 1.2 W single mode fiber coupled laser diode,” Laser Phys. Lett. 14(5), 055003 (2017).
[Crossref]

Y. Chen, Y. Lan, and S. Wang, “High-power diode-end-pumped Nd: YVO4 laser: thermally induced fracture versus pump-wavelength sensitivity,” Appl. Phys. B 71(6), 827–830 (2000).
[Crossref]

Y. Chen, T. Huang, C. Kao, C. Wang, and S. Wang, “Optimization in scaling fiber-coupled laser-diode end-pumped lasers to higher power: influence of thermal effect,” IEEE J. Quantum Electron. 33(8), 1424–1429 (1997).
[Crossref]

Wang, Y.

Y. Wang, S. Wang, G. Feng, and S. Zhou, “SESAM combined Kerr lens mode locked Yb: CALGO laser pumped by a 1.2 W single mode fiber coupled laser diode,” Laser Phys. Lett. 14(5), 055003 (2017).
[Crossref]

J. Liu, C. Min, T. Lei, L. Du, Y. Yuan, S. Wei, Y. Wang, and X.-C. Yuan, “Generation and detection of broadband multi-channel orbital angular momentum by micrometer-scale meta-reflectarray,” Opt. Express 24(1), 212–218 (2016).
[Crossref] [PubMed]

Wegener, M.

Wei, S.

Willner, A. E.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Woerdman, J.

M. W. Beijersbergen, L. Allen, H. Van der Veen, and J. Woerdman, “Astigmatic laser mode converters and transfer of orbital angular momentum,” Opt. Commun. 96(1-3), 123–132 (1993).
[Crossref]

Yan, Y.

J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Yang, J.-Y.

J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Yao, W.

Yuan, X.-C.

Yuan, Y.

Yue, Y.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Zhang, G.

C. Hönninger, R. Paschotta, M. Graf, F. Morier-Genoud, G. Zhang, M. Moser, S. Biswal, J. Nees, A. Braun, G. Mourou, I. Johannsen, A. Giesen, W. Seeber, and U. Keller, “Ultrafast ytterbium-doped bulk lasers and laser amplifiers,” Appl. Phys. B 69(1), 3–17 (1999).
[Crossref]

Zhao, Y.

Zhou, S.

Y. Wang, S. Wang, G. Feng, and S. Zhou, “SESAM combined Kerr lens mode locked Yb: CALGO laser pumped by a 1.2 W single mode fiber coupled laser diode,” Laser Phys. Lett. 14(5), 055003 (2017).
[Crossref]

Appl. Opt. (2)

Appl. Phys. B (2)

C. Hönninger, R. Paschotta, M. Graf, F. Morier-Genoud, G. Zhang, M. Moser, S. Biswal, J. Nees, A. Braun, G. Mourou, I. Johannsen, A. Giesen, W. Seeber, and U. Keller, “Ultrafast ytterbium-doped bulk lasers and laser amplifiers,” Appl. Phys. B 69(1), 3–17 (1999).
[Crossref]

Y. Chen, Y. Lan, and S. Wang, “High-power diode-end-pumped Nd: YVO4 laser: thermally induced fracture versus pump-wavelength sensitivity,” Appl. Phys. B 71(6), 827–830 (2000).
[Crossref]

IEEE J. Quantum Electron. (2)

Y. Chen, T. Huang, C. Kao, C. Wang, and S. Wang, “Optimization in scaling fiber-coupled laser-diode end-pumped lasers to higher power: influence of thermal effect,” IEEE J. Quantum Electron. 33(8), 1424–1429 (1997).
[Crossref]

P. Laporta and M. Brussard, “Design criteria for mode size optimization in diode-pumped solid-state lasers,” IEEE J. Quantum Electron. 27(10), 2319–2326 (1991).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

C.-Y. Lee, C.-C. Chang, C.-Y. Cho, P.-H. Tuan, and Y.-F. Chen, “Generation of Higher Order Vortex Beams From a YVO4/Nd: YVO4 Self-Raman Laser via Off-Axis Pumping With Mode Converter,” IEEE J. Sel. Top. Quantum Electron. 21(1), 318–322 (2015).
[Crossref]

Laser Phys. Lett. (1)

Y. Wang, S. Wang, G. Feng, and S. Zhou, “SESAM combined Kerr lens mode locked Yb: CALGO laser pumped by a 1.2 W single mode fiber coupled laser diode,” Laser Phys. Lett. 14(5), 055003 (2017).
[Crossref]

Nat. Photonics (1)

J. Wang, J.-Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, and A. E. Willner, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6(7), 488–496 (2012).
[Crossref]

Opt. Commun. (1)

M. W. Beijersbergen, L. Allen, H. Van der Veen, and J. Woerdman, “Astigmatic laser mode converters and transfer of orbital angular momentum,” Opt. Commun. 96(1-3), 123–132 (1993).
[Crossref]

Opt. Express (5)

Opt. Laser Technol. (1)

H. Laabs and B. Ozygus, “Excitation of Hermite Gaussian modes in end-pumped solid-state lasers via off-axis pumping,” Opt. Laser Technol. 28(3), 213–214 (1996).
[Crossref]

Opt. Lett. (2)

Photon. Res. (1)

Phys. Rev. Lett. (1)

J. Romero, J. Leach, B. Jack, M. R. Dennis, S. Franke-Arnold, S. M. Barnett, and M. J. Padgett, “Entangled optical vortex links,” Phys. Rev. Lett. 106(10), 100407 (2011).
[Crossref] [PubMed]

Science (1)

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340(6140), 1545–1548 (2013).
[Crossref] [PubMed]

Other (1)

A. Weiner, Ultrafast optics (John Wiley & Sons, 2011).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 (a) Experimental setup; (b) equivalent two curved mirror cavity.
Fig. 2
Fig. 2 Simulation of HG mode generation: (a) HG0,0 mode generation by pointing the pump beam at x = 0 μm, y = 0 μm; (b) HG2,0 mode generation by pointing the pump beam at x = 39 μm, y = 0 μm; (c) HG8,0 mode generation by pointing the pump beam at x = 130 μm, y = 0 μm; fine tune the equivalent cavity length t to generate (d) HG7,0 mode (e) HG8,0 mode and (f) HG9,0 mode.
Fig. 3
Fig. 3 Simulation results of (a) HGn,0 mode dependent pump threshold; (b) corresponding fundamental mode-to-pump beam size ratio dependent pump threshold for HG8,0 mode and HG9,0 mode.
Fig. 4
Fig. 4 (a) Measured pump threshold for different HGn,0 mode with increasing off-axis displacement; (b) HGn,0 mode dependent pump threshold -●- measured results at laser cavity optimized for lower order mode,-■- measured results at laser cavity optimized for higher order mode.
Fig. 5
Fig. 5 Measured near-field of HG14,0 mode.
Fig. 6
Fig. 6 Experimental setup of cylindrical lens pair converter and schematic of interference setup.
Fig. 7
Fig. 7 Interferograms of the vortex with different OAMs: simulations and experimental results.
Fig. 8
Fig. 8 (a) Wavelength tuning for LG0,2 mode; (b) LG0,n mode dependent wavelength tuning: -●- upper limit of tuning wavelength, -■- lower limit of tuning wavelength, -▲- wavelength tuning range.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

R 1 eq = f 2 d 1 f
R 2 eq = f 2 d 2 f
t= R 1 eq + R 2 eq +Δ
P th (TE M n,0 )= A e γ I sat η p L 1 s n,0 (x,y,z) r p (x,y,z)dxdydz
s 0,n (x,y,z)= 2 π w l 2 2 n n!L H n 2 ( 2 x w l )exp[ 2( x 2 + y 2 ) w l 2 ]
r p (x,y,z)= 2 π w x (z) w y (z) α 1 e αl exp[ 2 x 2 w x 2 (z) 2 y 2 w y 2 (z) αz].

Metrics