Abstract

Interferenceless coded aperture correlation holography (I-COACH) is an incoherent digital holography technique for imaging 3D objects without two-wave interference. In I-COACH, the object beam is modulated by a pseudorandom coded phase mask (CPM) and propagates to the camera where its intensity pattern is recorded. The image of the object is reconstructed by a cross-correlation of the object intensity pattern with a point intensity response of the system, whereas the light from both the object and the point, are modulated by the same CPM. In order to recover the image of the object without bias level and background noise, multiple intensity recordings are necessary for both objects as well as the point object, which in turn significantly reduces the time resolution of imaging. In this study, a non-linear reconstruction technique is developed to reconstruct the image of the object with only a single camera shot. Furthermore, the proposed technique is adaptive to different experimental conditions in the sense of finding different optimal parameters for each experiment. The new method has been implemented on a regular I-COACH system in both transmission as well as reflection illumination modes.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Coded aperture correlation holography system with improved performance [Invited]

A. Vijayakumar, Yuval Kashter, Roy Kelner, and Joseph Rosen
Appl. Opt. 56(13) F67-F77 (2017)

Coded aperture correlation holography–a new type of incoherent digital holograms

A. Vijayakumar, Yuval Kashter, Roy Kelner, and Joseph Rosen
Opt. Express 24(11) 12430-12441 (2016)

References

  • View by:
  • |
  • |
  • |

  1. T.-C. Poon and J.-P. Liu, Introduction to Modern Digital Holography with MATLAB (Cambridge University, 2014).
  2. J. Rosen and G. Brooker, “Digital spatially incoherent Fresnel holography,” Opt. Lett. 32(8), 912–914 (2007).
    [Crossref] [PubMed]
  3. J. Rosen, N. Siegel, and G. Brooker, “Theoretical and experimental demonstration of resolution beyond the Rayleigh limit by FINCH fluorescence microscopic imaging,” Opt. Express 19(27), 26249–26268 (2011).
    [Crossref] [PubMed]
  4. R. Kelner and J. Rosen, “Spatially incoherent single channel digital Fourier holography,” Opt. Lett. 37(17), 3723–3725 (2012).
    [Crossref] [PubMed]
  5. J. Hong and M. K. Kim, “Single-shot self-interference incoherent digital holography using off-axis configuration,” Opt. Lett. 38(23), 5196–5199 (2013).
    [Crossref] [PubMed]
  6. Z. Zhu and Z. Shi, “Self-interference polarization holographic imaging of a three-dimensional incoherent scene,” Appl. Phys. Lett. 109(9), 091104 (2016).
    [Crossref]
  7. X. Quan, O. Matoba, and Y. Awatsuji, “Single-shot incoherent digital holography using a dual-focusing lens with diffraction gratings,” Opt. Lett. 42(3), 383–386 (2017).
    [Crossref] [PubMed]
  8. T. Tahara, T. Kanno, Y. Arai, and T. Ozawa, “Single-shot phase-shifting incoherent digital holography,” J. Opt. 19(6), 065705 (2017).
  9. C. M. Nguyen, D. Muhammad, and H.-S. Kwon, “Spatially incoherent common-path off-axis color digital holography,” Appl. Opt. 57(6), 1504–1509 (2018).
    [Crossref] [PubMed]
  10. T. Nobukawa, T. Muroi, Y. Katano, N. Kinoshita, and N. Ishii, “Single-shot phase-shifting incoherent digital holography with multiplexed checkerboard phase gratings,” Opt. Lett. 43(8), 1698–1701 (2018).
    [Crossref] [PubMed]
  11. A. Vijayakumar, Y. Kashter, R. Kelner, and J. Rosen, “Coded aperture correlation holography-a new type of incoherent digital holograms,” Opt. Express 24(11), 12430–12441 (2016).
    [Crossref] [PubMed]
  12. A. Vijayakumar and J. Rosen, “Interferenceless coded aperture correlation holography-a new technique for recording incoherent digital holograms without two-wave interference,” Opt. Express 25(12), 13883–13896 (2017).
    [Crossref] [PubMed]
  13. A. Vijayakumar, Y. Kashter, R. Kelner, and J. Rosen, “Coded aperture correlation holography system with improved performance [Invited],” Appl. Opt. 56(13), F67–F77 (2017).
    [Crossref] [PubMed]
  14. M. Ratnam Rai, A. Vijayakumar, and J. Rosen, “Single camera shot interferenceless coded aperture correlation holography,” Opt. Lett. 42(19), 3992–3995 (2017).
    [Crossref] [PubMed]
  15. R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik (Stuttg.) 35(2), 227–246 (1972).
  16. M. R. Rai, A. Vijayakumar, and J. Rosen, “Extending the field of view by a scattering window in an I-COACH system,” Opt. Lett. 43(5), 1043–1046 (2018).
    [Crossref] [PubMed]
  17. M. Kumar, A. Vijayakumar, and J. Rosen, “Incoherent digital holograms acquired by interferenceless coded aperture correlation holography system without refractive lenses,” Sci. Rep. 7(1), 11555 (2017).
    [Crossref] [PubMed]
  18. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1968).
  19. A. B. VanderLugt, “Signal detection by complex spatial filtering,” IEEE Trans. Inf. Theory IT-10, 139–145 (1964).
  20. J. L. Horner and P. D. Gianino, “Phase-only matched filtering,” Appl. Opt. 23(6), 812–816 (1984).
    [Crossref] [PubMed]
  21. T. Kotzer, J. Rosen, and J. Shamir, “Multiple-object input in nonlinear correlation,” Appl. Opt. 32(11), 1919–1932 (1993).
    [Crossref] [PubMed]
  22. M. Fleisher, U. Mahlab, and J. Shamir, “Entropy optimized filter for pattern recognition,” Appl. Opt. 29(14), 2091–2098 (1990).
    [Crossref] [PubMed]
  23. E. Edrei and G. Scarcelli, “Memory-effect based deconvolution microscopy for super-resolution imaging through scattering media,” Sci. Rep. 6(1), 33558 (2016).
    [Crossref] [PubMed]
  24. R. L. White, “Image restoration using the damped Richardson—Lucy method,” in The Restoration of HST Images and Spectra II, R. J. Hanisch, R. L. White, Eds., 1994.
  25. K. Kondo, Y. Ichioka, and T. Suzuki, “Image restoration by Wiener filtering in the presence of signal-dependent noise,” Appl. Opt. 16(9), 2554–2558 (1977).
    [Crossref] [PubMed]
  26. P. Campisi and K. Egiazarian, eds., Blind Image Deconvolution (CRC Press, 2007).
  27. S. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Image transmission through an opaque material,” Nat. Commun. 1(6), 81 (2010).
    [Crossref] [PubMed]

2018 (3)

2017 (6)

2016 (3)

A. Vijayakumar, Y. Kashter, R. Kelner, and J. Rosen, “Coded aperture correlation holography-a new type of incoherent digital holograms,” Opt. Express 24(11), 12430–12441 (2016).
[Crossref] [PubMed]

Z. Zhu and Z. Shi, “Self-interference polarization holographic imaging of a three-dimensional incoherent scene,” Appl. Phys. Lett. 109(9), 091104 (2016).
[Crossref]

E. Edrei and G. Scarcelli, “Memory-effect based deconvolution microscopy for super-resolution imaging through scattering media,” Sci. Rep. 6(1), 33558 (2016).
[Crossref] [PubMed]

2013 (1)

2012 (1)

2011 (1)

2010 (1)

S. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Image transmission through an opaque material,” Nat. Commun. 1(6), 81 (2010).
[Crossref] [PubMed]

2007 (1)

1993 (1)

1990 (1)

1984 (1)

1977 (1)

1972 (1)

R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik (Stuttg.) 35(2), 227–246 (1972).

1964 (1)

A. B. VanderLugt, “Signal detection by complex spatial filtering,” IEEE Trans. Inf. Theory IT-10, 139–145 (1964).

Arai, Y.

T. Tahara, T. Kanno, Y. Arai, and T. Ozawa, “Single-shot phase-shifting incoherent digital holography,” J. Opt. 19(6), 065705 (2017).

Awatsuji, Y.

Boccara, A. C.

S. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Image transmission through an opaque material,” Nat. Commun. 1(6), 81 (2010).
[Crossref] [PubMed]

Brooker, G.

Edrei, E.

E. Edrei and G. Scarcelli, “Memory-effect based deconvolution microscopy for super-resolution imaging through scattering media,” Sci. Rep. 6(1), 33558 (2016).
[Crossref] [PubMed]

Fink, M.

S. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Image transmission through an opaque material,” Nat. Commun. 1(6), 81 (2010).
[Crossref] [PubMed]

Fleisher, M.

Gerchberg, R. W.

R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik (Stuttg.) 35(2), 227–246 (1972).

Gianino, P. D.

Gigan, S.

S. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Image transmission through an opaque material,” Nat. Commun. 1(6), 81 (2010).
[Crossref] [PubMed]

Hong, J.

Horner, J. L.

Ichioka, Y.

Ishii, N.

Kanno, T.

T. Tahara, T. Kanno, Y. Arai, and T. Ozawa, “Single-shot phase-shifting incoherent digital holography,” J. Opt. 19(6), 065705 (2017).

Kashter, Y.

Katano, Y.

Kelner, R.

Kim, M. K.

Kinoshita, N.

Kondo, K.

Kotzer, T.

Kumar, M.

M. Kumar, A. Vijayakumar, and J. Rosen, “Incoherent digital holograms acquired by interferenceless coded aperture correlation holography system without refractive lenses,” Sci. Rep. 7(1), 11555 (2017).
[Crossref] [PubMed]

Kwon, H.-S.

Lerosey, G.

S. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Image transmission through an opaque material,” Nat. Commun. 1(6), 81 (2010).
[Crossref] [PubMed]

Mahlab, U.

Matoba, O.

Muhammad, D.

Muroi, T.

Nguyen, C. M.

Nobukawa, T.

Ozawa, T.

T. Tahara, T. Kanno, Y. Arai, and T. Ozawa, “Single-shot phase-shifting incoherent digital holography,” J. Opt. 19(6), 065705 (2017).

Popoff, S.

S. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Image transmission through an opaque material,” Nat. Commun. 1(6), 81 (2010).
[Crossref] [PubMed]

Quan, X.

Rai, M. R.

Ratnam Rai, M.

Rosen, J.

M. R. Rai, A. Vijayakumar, and J. Rosen, “Extending the field of view by a scattering window in an I-COACH system,” Opt. Lett. 43(5), 1043–1046 (2018).
[Crossref] [PubMed]

M. Ratnam Rai, A. Vijayakumar, and J. Rosen, “Single camera shot interferenceless coded aperture correlation holography,” Opt. Lett. 42(19), 3992–3995 (2017).
[Crossref] [PubMed]

M. Kumar, A. Vijayakumar, and J. Rosen, “Incoherent digital holograms acquired by interferenceless coded aperture correlation holography system without refractive lenses,” Sci. Rep. 7(1), 11555 (2017).
[Crossref] [PubMed]

A. Vijayakumar, Y. Kashter, R. Kelner, and J. Rosen, “Coded aperture correlation holography system with improved performance [Invited],” Appl. Opt. 56(13), F67–F77 (2017).
[Crossref] [PubMed]

A. Vijayakumar and J. Rosen, “Interferenceless coded aperture correlation holography-a new technique for recording incoherent digital holograms without two-wave interference,” Opt. Express 25(12), 13883–13896 (2017).
[Crossref] [PubMed]

A. Vijayakumar, Y. Kashter, R. Kelner, and J. Rosen, “Coded aperture correlation holography-a new type of incoherent digital holograms,” Opt. Express 24(11), 12430–12441 (2016).
[Crossref] [PubMed]

R. Kelner and J. Rosen, “Spatially incoherent single channel digital Fourier holography,” Opt. Lett. 37(17), 3723–3725 (2012).
[Crossref] [PubMed]

J. Rosen, N. Siegel, and G. Brooker, “Theoretical and experimental demonstration of resolution beyond the Rayleigh limit by FINCH fluorescence microscopic imaging,” Opt. Express 19(27), 26249–26268 (2011).
[Crossref] [PubMed]

J. Rosen and G. Brooker, “Digital spatially incoherent Fresnel holography,” Opt. Lett. 32(8), 912–914 (2007).
[Crossref] [PubMed]

T. Kotzer, J. Rosen, and J. Shamir, “Multiple-object input in nonlinear correlation,” Appl. Opt. 32(11), 1919–1932 (1993).
[Crossref] [PubMed]

Saxton, W. O.

R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik (Stuttg.) 35(2), 227–246 (1972).

Scarcelli, G.

E. Edrei and G. Scarcelli, “Memory-effect based deconvolution microscopy for super-resolution imaging through scattering media,” Sci. Rep. 6(1), 33558 (2016).
[Crossref] [PubMed]

Shamir, J.

Shi, Z.

Z. Zhu and Z. Shi, “Self-interference polarization holographic imaging of a three-dimensional incoherent scene,” Appl. Phys. Lett. 109(9), 091104 (2016).
[Crossref]

Siegel, N.

Suzuki, T.

Tahara, T.

T. Tahara, T. Kanno, Y. Arai, and T. Ozawa, “Single-shot phase-shifting incoherent digital holography,” J. Opt. 19(6), 065705 (2017).

VanderLugt, A. B.

A. B. VanderLugt, “Signal detection by complex spatial filtering,” IEEE Trans. Inf. Theory IT-10, 139–145 (1964).

Vijayakumar, A.

Zhu, Z.

Z. Zhu and Z. Shi, “Self-interference polarization holographic imaging of a three-dimensional incoherent scene,” Appl. Phys. Lett. 109(9), 091104 (2016).
[Crossref]

Appl. Opt. (6)

Appl. Phys. Lett. (1)

Z. Zhu and Z. Shi, “Self-interference polarization holographic imaging of a three-dimensional incoherent scene,” Appl. Phys. Lett. 109(9), 091104 (2016).
[Crossref]

IEEE Trans. Inf. Theory (1)

A. B. VanderLugt, “Signal detection by complex spatial filtering,” IEEE Trans. Inf. Theory IT-10, 139–145 (1964).

J. Opt. (1)

T. Tahara, T. Kanno, Y. Arai, and T. Ozawa, “Single-shot phase-shifting incoherent digital holography,” J. Opt. 19(6), 065705 (2017).

Nat. Commun. (1)

S. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Image transmission through an opaque material,” Nat. Commun. 1(6), 81 (2010).
[Crossref] [PubMed]

Opt. Express (3)

Opt. Lett. (7)

Optik (Stuttg.) (1)

R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane pictures,” Optik (Stuttg.) 35(2), 227–246 (1972).

Sci. Rep. (2)

M. Kumar, A. Vijayakumar, and J. Rosen, “Incoherent digital holograms acquired by interferenceless coded aperture correlation holography system without refractive lenses,” Sci. Rep. 7(1), 11555 (2017).
[Crossref] [PubMed]

E. Edrei and G. Scarcelli, “Memory-effect based deconvolution microscopy for super-resolution imaging through scattering media,” Sci. Rep. 6(1), 33558 (2016).
[Crossref] [PubMed]

Other (4)

R. L. White, “Image restoration using the damped Richardson—Lucy method,” in The Restoration of HST Images and Spectra II, R. J. Hanisch, R. L. White, Eds., 1994.

P. Campisi and K. Egiazarian, eds., Blind Image Deconvolution (CRC Press, 2007).

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1968).

T.-C. Poon and J.-P. Liu, Introduction to Modern Digital Holography with MATLAB (Cambridge University, 2014).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1 Optical configuration of modified I-COACH.
Fig. 2
Fig. 2 Experimental setup of I-COACH with two illumination channels.
Fig. 3
Fig. 3 Images of (a) PSH and (b) Object hologram.
Fig. 4
Fig. 4 Reconstruction results with the NLR procedure. The red box shows the reconstruction results with minimum normalized entropy ( = 1). The blue, yellow and pink boxes show the reconstruction results with matched, phase-only and inverse filters, respectively.
Fig. 5
Fig. 5 Reconstruction results for the two-plane object using the NLR procedure. Row 1: Reconstruction results by PSH (Δz = 0). Row 2: Reconstruction results using PSH (Δz = 0, 4, 8 and 12 mm, respectively) matching with the axial location of the gratings.
Fig. 6
Fig. 6 Reconstruction results of RLA after (a) 50, (b) 100, (c) 150, (d) 250, (e) 500 iterations. (f) The reconstruction result of NLR technique with the least entropy value.
Fig. 7
Fig. 7 Reconstruction results of RLA with (a) 200, (b) 500, (c) 1000 iterations, and (d) reconstruction result of the NLR technique.
Fig. 8
Fig. 8 Experimental setup of I-COACH with object illumination in reflection mode.
Fig. 9
Fig. 9 Images of object holograms and point spread holograms in planes A and B separated by a distance of 1.8 cm.
Fig. 10
Fig. 10 Reconstruction results of the two object holograms using the two different PSHs and direct imaging.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

I PSH ( r ¯ 0 ; r ¯ s , z s )=| I s C 0 Q( 1 z s )L( r ¯ s z s )exp[ iΦ( r ¯ ) ]Q( - 1 f ) *Q( 1 z h )| 2 ,
I PSH ( r ¯ 0 ; r ¯ s , z s )=| I s C 0 L( r ¯ s z s )exp[ iΦ( r ¯ ) ]Q( - 1 z h ) *Q( 1 z h )| 2 .
I PSH ( r ¯ 0 ; r ¯ s , z s )= | ν[ 1 λ z h ] { I s C 0 L( r ¯ s z s )exp[ iΦ( r ¯ ) ] } | 2 , = I PSH ( r ¯ 0 z h z s r ¯ s ;0, z s ),
o( r ¯ s )= j N a j δ( r ¯ r ¯ s,j ) .
I OBJ ( r ¯ 0 ; z s )= j a j I PSH ( r ¯ 0 z h z s r ¯ s,j ;0, z s ) ,
C ˜ = { I OBJ I REC } = I ˜ OBJ I ˜ REC = I ˜ PSH exp( i2π z h r ¯ s ν ¯ / z s ) I ˜ REC
C ˜ =| I ˜ PSH |exp( i2π z h r ¯ s ν ¯ / z s )| I ˜ REC |.
C ˜ = | I ˜ PSH | o exp( i2π z h r ¯ s ν ¯ / z s ) | I ˜ PSH | r .
S( α,β )= M N ϕ(m,n)log[ ϕ(m,n) ] ,
ϕ(m,n)= | R( m,n ) | M N | R( m,n ) | .
I IMG = 1 { | I ˜ OBJ | o exp[ iarg( I ˜ OBJ ) ] | I ˜ PSH | r exp[ iarg( I ˜ PSH ) ] }.