Abstract

The paper presents simultaneous high-speed (7.5 kHz) planar laser-induced fluorescence (PLIF) of formaldehyde (CH2O) and the hydroxyl-radical (OH) for visualization of the flame structure and heat release zone in a non-premixed unsteady CH4/O2/N2 flame. For this purpose, a dye laser designed for high-speed operation is pumped by the second-harmonic 532 nm output of a Nd:YAG burst-mode laser to produce a tunable, 566 nm beam. After frequency doubling a high-energy kHz-rate narrowband pulse train of approximately 2.2 mJ/pulse at 283 nm is used for excitation of the OH radical. Simultaneously, CH2O is excited by the frequency-tripled output of the same Nd:YAG laser, providing a high-frequency pulse train over 10 ms in duration at high pulse energies (>100 mJ/pulse). The excitation energies enable signal-to-noise ratios (SNRs) of ~10 and ~60 for CH2O and OH PLIF, respectively, using a single high-speed intensified CMOS camera equipped with an image doubler. This allows sufficient SNR for investigation of the temporal evolution of the primary heat release zone and the local flame structure at kHz rates from the spatial overlap of the OH- and CH2O-PLIF signals.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Ultra-high-speed PLIF imaging for simultaneous visualization of multiple species in turbulent flames

Zhenkan Wang, Panagiota Stamatoglou, Zheming Li, Marcus Aldén, and Mattias Richter
Opt. Express 25(24) 30214-30228 (2017)

Innovative scheme for high-repetition-rate imaging of CN radical

Aman Satija, Morgan D. Ruesch, Michael S. Powell, Steven F. Son, and Robert P. Lucht
Opt. Lett. 43(3) 443-446 (2018)

100  kHz thousand-frame burst-mode planar imaging in turbulent flames

James B. Michael, Prabhakar Venkateswaran, Joseph D. Miller, Mikhail N. Slipchenko, James R. Gord, Sukesh Roy, and Terrence R. Meyer
Opt. Lett. 39(4) 739-742 (2014)

References

  • View by:
  • |
  • |
  • |

  1. H. N. Najm, P. H. Paul, C. J. Mueller, and P. S. Wyckoff, “On the Adequacy of Certain Experimental Observables as Measurements of Flame Burning Rate,” Combust. Flame 113(3), 312–332 (1998).
    [Crossref]
  2. P. H. Paul and H. N. Najm, “Planar laser-induced fluorescence imaging of flame heat release rate,” Proc. Combust. Inst. 27(1), 43–50 (1998).
    [Crossref]
  3. M. Röder, T. Dreier, and C. Schulz, “Simultaneous measurement of localized heat-release with OH/CH2O–LIF imaging and spatially integrated OH* chemiluminescence in turbulent swirl flames,” Proc. Combust. Inst. 34(2), 3549–3556 (2013).
    [Crossref]
  4. S. Pfadler, F. Beyrau, and A. Leipertz, “Flame front detection and characterization using conditioned particle image velocimetry (CPIV),” Opt. Express 15(23), 15444–15456 (2007).
    [Crossref] [PubMed]
  5. J. R. Osborne, S. A. Ramji, C. D. Carter, S. Peltier, S. Hammack, T. Lee, and A. M. Steinberg, “Simultaneous 10 kHz TPIV, OH PLIF, and CH2O PLIF measurements of turbulent flame structure and dynamics,” Exp. Fluids 57(5), 65 (2016).
    [Crossref]
  6. Z. Li, J. Rosell, M. Aldén, and M. Richter, “Simultaneous Burst Imaging of Dual Species Using Planar Laser-Induced Fluorescence at 50 kHz in Turbulent Premixed Flames,” Appl. Spectrosc. 71(6), 1363–1367 (2017).
    [Crossref] [PubMed]
  7. S. Böckle, J. Kazenwadel, T. kunzelmann, D.-I. Shin, C. Schulz, and J. Wolfrum, “Simultaneous single-shot laser-based imaging of formaldehyde, OH, and temperature in turbulent flames,” Proc. Combust. Inst. 28(1), 279–286 (2000).
    [Crossref]
  8. S. D. Hammack, C. D. Carter, A. W. Skiba, C. A. Fugger, J. J. Felver, J. D. Miller, J. R. Gord, and T. Lee, “20 kHz CH2O and OH PLIF with stereo PIV,” Opt. Lett. 43(5), 1115–1118 (2018).
    [Crossref] [PubMed]
  9. F. Altendorfner, J. Kuhl, L. Zigan, and A. Leipertz, “Study of the influence of electric fields on flames using planar LIF and PIV techniques,” Proc. Combust. Inst. 33(2), 3195–3201 (2011).
    [Crossref]
  10. Z. Wang, P. Stamatoglou, Z. Li, M. Aldén, and M. Richter, “Ultra-high-speed PLIF imaging for simultaneous visualization of multiple species in turbulent flames,” Opt. Express 25(24), 30214–30228 (2017).
    [Crossref] [PubMed]
  11. J. D. Miller, M. Slipchenko, T. R. Meyer, N. Jiang, W. R. Lempert, and J. R. Gord, “Ultrahigh-frame-rate OH fluorescence imaging in turbulent flames using a burst-mode optical parametric oscillator,” Opt. Lett. 34(9), 1309–1311 (2009).
    [Crossref] [PubMed]
  12. M. N. Slipchenko, J. D. Miller, S. Roy, J. R. Gord, and T. R. Meyer, “All-diode-pumped quasi-continuous burst-mode laser for extended high-speed planar imaging,” Opt. Express 21(1), 681–689 (2013).
    [Crossref] [PubMed]
  13. J. B. Michael, P. Venkateswaran, J. D. Miller, M. N. Slipchenko, J. R. Gord, S. Roy, and T. R. Meyer, “100 kHz thousand-frame burst-mode planar imaging in turbulent flames,” Opt. Lett. 39(4), 739–742 (2014).
    [Crossref] [PubMed]
  14. K. N. Gabet, R. A. Patton, N. Jiang, W. R. Lempert, and J. A. Sutton, “High-speed CH2O PLIF imaging in turbulent flames using a pulse-burst laser system,” Appl. Phys. B 106(3), 569–575 (2012).
    [Crossref]
  15. B. R. Halls, P. S. Hsu, N. Jiang, E. S. Legge, J. J. Felver, M. N. Slipchenko, S. Roy, T. R. Meyer, and J. R. Gord, “kHz-rate four-dimensional fluorescence tomography using an ultraviolet-tunable narrowband burst-mode optical parametric oscillator,” Optica 4(8), 897–902 (2017).
    [Crossref]
  16. N. Jiang, P. S. Hsu, J. G. Mance, Y. Wu, M. Gragston, Z. Zhang, J. D. Miller, J. R. Gord, and S. Roy, “High-speed 2D Raman imaging at elevated pressures,” Opt. Lett. 42(18), 3678–3681 (2017).
    [Crossref] [PubMed]
  17. R. Pan, U. Retzer, T. Werblinski, M. N. Slipchenko, T. R. Meyer, L. Zigan, and S. Will, “Generation of high-energy, kilohertz-rate narrowband tunable ultraviolet pulses using a burst-mode dye laser system,” Opt. Lett. 43(5), 1191–1194 (2018).
    [Crossref] [PubMed]
  18. N. Jiang, W. R. Lempert, G. L. Switzer, T. R. Meyer, and J. R. Gord, “Narrow-linewidth megahertz-repetition-rate optical parametric oscillator for high-speed flow and combustion diagnostics,” Appl. Opt. 47(1), 64–71 (2008).
    [Crossref] [PubMed]
  19. K. Wegner and S. E. Pratsinis, “Scale-up of nanoparticle synthesis in diffusion flame reactors,” Chem. Eng. Sci. 58(20), 4581–4589 (2003).
    [Crossref]
  20. G. H. Dieke and H. M. Crosswhite, “The ultraviolet bands of OH Fundamental data,” J. Quant. Spectrosc. Radiat. Transf. 2(2), 97–199 (1962).
    [Crossref]
  21. H. Oltmann, Die Weitwinkel-Lichtstreuung zur Charakterisierung gasgetragener Nanopartikelaggregate (University of Bremen, Germany, 2013).
  22. S. R. Turns, An introduction to combustion, (McGraw Hill Higher Education, 2011), Chap. 12.
  23. G. P. Smith, D. M. G. M. Frenklach, N. W. Moriarty, B. Eiteneer, M. Goldenberg, C. T. Bowman, R. K. Hanson, S. Song, W. C. Gardiner, V. V. Lissianski, and Z. Qin, “GRI-MECH 3.0” http://combustion.berkeley.edu/gri-mech/ .

2018 (2)

2017 (4)

2016 (1)

J. R. Osborne, S. A. Ramji, C. D. Carter, S. Peltier, S. Hammack, T. Lee, and A. M. Steinberg, “Simultaneous 10 kHz TPIV, OH PLIF, and CH2O PLIF measurements of turbulent flame structure and dynamics,” Exp. Fluids 57(5), 65 (2016).
[Crossref]

2014 (1)

2013 (2)

M. N. Slipchenko, J. D. Miller, S. Roy, J. R. Gord, and T. R. Meyer, “All-diode-pumped quasi-continuous burst-mode laser for extended high-speed planar imaging,” Opt. Express 21(1), 681–689 (2013).
[Crossref] [PubMed]

M. Röder, T. Dreier, and C. Schulz, “Simultaneous measurement of localized heat-release with OH/CH2O–LIF imaging and spatially integrated OH* chemiluminescence in turbulent swirl flames,” Proc. Combust. Inst. 34(2), 3549–3556 (2013).
[Crossref]

2012 (1)

K. N. Gabet, R. A. Patton, N. Jiang, W. R. Lempert, and J. A. Sutton, “High-speed CH2O PLIF imaging in turbulent flames using a pulse-burst laser system,” Appl. Phys. B 106(3), 569–575 (2012).
[Crossref]

2011 (1)

F. Altendorfner, J. Kuhl, L. Zigan, and A. Leipertz, “Study of the influence of electric fields on flames using planar LIF and PIV techniques,” Proc. Combust. Inst. 33(2), 3195–3201 (2011).
[Crossref]

2009 (1)

2008 (1)

2007 (1)

2003 (1)

K. Wegner and S. E. Pratsinis, “Scale-up of nanoparticle synthesis in diffusion flame reactors,” Chem. Eng. Sci. 58(20), 4581–4589 (2003).
[Crossref]

2000 (1)

S. Böckle, J. Kazenwadel, T. kunzelmann, D.-I. Shin, C. Schulz, and J. Wolfrum, “Simultaneous single-shot laser-based imaging of formaldehyde, OH, and temperature in turbulent flames,” Proc. Combust. Inst. 28(1), 279–286 (2000).
[Crossref]

1998 (2)

H. N. Najm, P. H. Paul, C. J. Mueller, and P. S. Wyckoff, “On the Adequacy of Certain Experimental Observables as Measurements of Flame Burning Rate,” Combust. Flame 113(3), 312–332 (1998).
[Crossref]

P. H. Paul and H. N. Najm, “Planar laser-induced fluorescence imaging of flame heat release rate,” Proc. Combust. Inst. 27(1), 43–50 (1998).
[Crossref]

1962 (1)

G. H. Dieke and H. M. Crosswhite, “The ultraviolet bands of OH Fundamental data,” J. Quant. Spectrosc. Radiat. Transf. 2(2), 97–199 (1962).
[Crossref]

Aldén, M.

Altendorfner, F.

F. Altendorfner, J. Kuhl, L. Zigan, and A. Leipertz, “Study of the influence of electric fields on flames using planar LIF and PIV techniques,” Proc. Combust. Inst. 33(2), 3195–3201 (2011).
[Crossref]

Beyrau, F.

Böckle, S.

S. Böckle, J. Kazenwadel, T. kunzelmann, D.-I. Shin, C. Schulz, and J. Wolfrum, “Simultaneous single-shot laser-based imaging of formaldehyde, OH, and temperature in turbulent flames,” Proc. Combust. Inst. 28(1), 279–286 (2000).
[Crossref]

Carter, C. D.

S. D. Hammack, C. D. Carter, A. W. Skiba, C. A. Fugger, J. J. Felver, J. D. Miller, J. R. Gord, and T. Lee, “20 kHz CH2O and OH PLIF with stereo PIV,” Opt. Lett. 43(5), 1115–1118 (2018).
[Crossref] [PubMed]

J. R. Osborne, S. A. Ramji, C. D. Carter, S. Peltier, S. Hammack, T. Lee, and A. M. Steinberg, “Simultaneous 10 kHz TPIV, OH PLIF, and CH2O PLIF measurements of turbulent flame structure and dynamics,” Exp. Fluids 57(5), 65 (2016).
[Crossref]

Crosswhite, H. M.

G. H. Dieke and H. M. Crosswhite, “The ultraviolet bands of OH Fundamental data,” J. Quant. Spectrosc. Radiat. Transf. 2(2), 97–199 (1962).
[Crossref]

Dieke, G. H.

G. H. Dieke and H. M. Crosswhite, “The ultraviolet bands of OH Fundamental data,” J. Quant. Spectrosc. Radiat. Transf. 2(2), 97–199 (1962).
[Crossref]

Dreier, T.

M. Röder, T. Dreier, and C. Schulz, “Simultaneous measurement of localized heat-release with OH/CH2O–LIF imaging and spatially integrated OH* chemiluminescence in turbulent swirl flames,” Proc. Combust. Inst. 34(2), 3549–3556 (2013).
[Crossref]

Felver, J. J.

Fugger, C. A.

Gabet, K. N.

K. N. Gabet, R. A. Patton, N. Jiang, W. R. Lempert, and J. A. Sutton, “High-speed CH2O PLIF imaging in turbulent flames using a pulse-burst laser system,” Appl. Phys. B 106(3), 569–575 (2012).
[Crossref]

Gord, J. R.

S. D. Hammack, C. D. Carter, A. W. Skiba, C. A. Fugger, J. J. Felver, J. D. Miller, J. R. Gord, and T. Lee, “20 kHz CH2O and OH PLIF with stereo PIV,” Opt. Lett. 43(5), 1115–1118 (2018).
[Crossref] [PubMed]

B. R. Halls, P. S. Hsu, N. Jiang, E. S. Legge, J. J. Felver, M. N. Slipchenko, S. Roy, T. R. Meyer, and J. R. Gord, “kHz-rate four-dimensional fluorescence tomography using an ultraviolet-tunable narrowband burst-mode optical parametric oscillator,” Optica 4(8), 897–902 (2017).
[Crossref]

N. Jiang, P. S. Hsu, J. G. Mance, Y. Wu, M. Gragston, Z. Zhang, J. D. Miller, J. R. Gord, and S. Roy, “High-speed 2D Raman imaging at elevated pressures,” Opt. Lett. 42(18), 3678–3681 (2017).
[Crossref] [PubMed]

J. B. Michael, P. Venkateswaran, J. D. Miller, M. N. Slipchenko, J. R. Gord, S. Roy, and T. R. Meyer, “100 kHz thousand-frame burst-mode planar imaging in turbulent flames,” Opt. Lett. 39(4), 739–742 (2014).
[Crossref] [PubMed]

M. N. Slipchenko, J. D. Miller, S. Roy, J. R. Gord, and T. R. Meyer, “All-diode-pumped quasi-continuous burst-mode laser for extended high-speed planar imaging,” Opt. Express 21(1), 681–689 (2013).
[Crossref] [PubMed]

J. D. Miller, M. Slipchenko, T. R. Meyer, N. Jiang, W. R. Lempert, and J. R. Gord, “Ultrahigh-frame-rate OH fluorescence imaging in turbulent flames using a burst-mode optical parametric oscillator,” Opt. Lett. 34(9), 1309–1311 (2009).
[Crossref] [PubMed]

N. Jiang, W. R. Lempert, G. L. Switzer, T. R. Meyer, and J. R. Gord, “Narrow-linewidth megahertz-repetition-rate optical parametric oscillator for high-speed flow and combustion diagnostics,” Appl. Opt. 47(1), 64–71 (2008).
[Crossref] [PubMed]

Gragston, M.

Halls, B. R.

Hammack, S.

J. R. Osborne, S. A. Ramji, C. D. Carter, S. Peltier, S. Hammack, T. Lee, and A. M. Steinberg, “Simultaneous 10 kHz TPIV, OH PLIF, and CH2O PLIF measurements of turbulent flame structure and dynamics,” Exp. Fluids 57(5), 65 (2016).
[Crossref]

Hammack, S. D.

Hsu, P. S.

Jiang, N.

Kazenwadel, J.

S. Böckle, J. Kazenwadel, T. kunzelmann, D.-I. Shin, C. Schulz, and J. Wolfrum, “Simultaneous single-shot laser-based imaging of formaldehyde, OH, and temperature in turbulent flames,” Proc. Combust. Inst. 28(1), 279–286 (2000).
[Crossref]

Kuhl, J.

F. Altendorfner, J. Kuhl, L. Zigan, and A. Leipertz, “Study of the influence of electric fields on flames using planar LIF and PIV techniques,” Proc. Combust. Inst. 33(2), 3195–3201 (2011).
[Crossref]

kunzelmann, T.

S. Böckle, J. Kazenwadel, T. kunzelmann, D.-I. Shin, C. Schulz, and J. Wolfrum, “Simultaneous single-shot laser-based imaging of formaldehyde, OH, and temperature in turbulent flames,” Proc. Combust. Inst. 28(1), 279–286 (2000).
[Crossref]

Lee, T.

S. D. Hammack, C. D. Carter, A. W. Skiba, C. A. Fugger, J. J. Felver, J. D. Miller, J. R. Gord, and T. Lee, “20 kHz CH2O and OH PLIF with stereo PIV,” Opt. Lett. 43(5), 1115–1118 (2018).
[Crossref] [PubMed]

J. R. Osborne, S. A. Ramji, C. D. Carter, S. Peltier, S. Hammack, T. Lee, and A. M. Steinberg, “Simultaneous 10 kHz TPIV, OH PLIF, and CH2O PLIF measurements of turbulent flame structure and dynamics,” Exp. Fluids 57(5), 65 (2016).
[Crossref]

Legge, E. S.

Leipertz, A.

F. Altendorfner, J. Kuhl, L. Zigan, and A. Leipertz, “Study of the influence of electric fields on flames using planar LIF and PIV techniques,” Proc. Combust. Inst. 33(2), 3195–3201 (2011).
[Crossref]

S. Pfadler, F. Beyrau, and A. Leipertz, “Flame front detection and characterization using conditioned particle image velocimetry (CPIV),” Opt. Express 15(23), 15444–15456 (2007).
[Crossref] [PubMed]

Lempert, W. R.

Li, Z.

Mance, J. G.

Meyer, T. R.

R. Pan, U. Retzer, T. Werblinski, M. N. Slipchenko, T. R. Meyer, L. Zigan, and S. Will, “Generation of high-energy, kilohertz-rate narrowband tunable ultraviolet pulses using a burst-mode dye laser system,” Opt. Lett. 43(5), 1191–1194 (2018).
[Crossref] [PubMed]

B. R. Halls, P. S. Hsu, N. Jiang, E. S. Legge, J. J. Felver, M. N. Slipchenko, S. Roy, T. R. Meyer, and J. R. Gord, “kHz-rate four-dimensional fluorescence tomography using an ultraviolet-tunable narrowband burst-mode optical parametric oscillator,” Optica 4(8), 897–902 (2017).
[Crossref]

J. B. Michael, P. Venkateswaran, J. D. Miller, M. N. Slipchenko, J. R. Gord, S. Roy, and T. R. Meyer, “100 kHz thousand-frame burst-mode planar imaging in turbulent flames,” Opt. Lett. 39(4), 739–742 (2014).
[Crossref] [PubMed]

M. N. Slipchenko, J. D. Miller, S. Roy, J. R. Gord, and T. R. Meyer, “All-diode-pumped quasi-continuous burst-mode laser for extended high-speed planar imaging,” Opt. Express 21(1), 681–689 (2013).
[Crossref] [PubMed]

J. D. Miller, M. Slipchenko, T. R. Meyer, N. Jiang, W. R. Lempert, and J. R. Gord, “Ultrahigh-frame-rate OH fluorescence imaging in turbulent flames using a burst-mode optical parametric oscillator,” Opt. Lett. 34(9), 1309–1311 (2009).
[Crossref] [PubMed]

N. Jiang, W. R. Lempert, G. L. Switzer, T. R. Meyer, and J. R. Gord, “Narrow-linewidth megahertz-repetition-rate optical parametric oscillator for high-speed flow and combustion diagnostics,” Appl. Opt. 47(1), 64–71 (2008).
[Crossref] [PubMed]

Michael, J. B.

Miller, J. D.

Mueller, C. J.

H. N. Najm, P. H. Paul, C. J. Mueller, and P. S. Wyckoff, “On the Adequacy of Certain Experimental Observables as Measurements of Flame Burning Rate,” Combust. Flame 113(3), 312–332 (1998).
[Crossref]

Najm, H. N.

H. N. Najm, P. H. Paul, C. J. Mueller, and P. S. Wyckoff, “On the Adequacy of Certain Experimental Observables as Measurements of Flame Burning Rate,” Combust. Flame 113(3), 312–332 (1998).
[Crossref]

P. H. Paul and H. N. Najm, “Planar laser-induced fluorescence imaging of flame heat release rate,” Proc. Combust. Inst. 27(1), 43–50 (1998).
[Crossref]

Osborne, J. R.

J. R. Osborne, S. A. Ramji, C. D. Carter, S. Peltier, S. Hammack, T. Lee, and A. M. Steinberg, “Simultaneous 10 kHz TPIV, OH PLIF, and CH2O PLIF measurements of turbulent flame structure and dynamics,” Exp. Fluids 57(5), 65 (2016).
[Crossref]

Pan, R.

Patton, R. A.

K. N. Gabet, R. A. Patton, N. Jiang, W. R. Lempert, and J. A. Sutton, “High-speed CH2O PLIF imaging in turbulent flames using a pulse-burst laser system,” Appl. Phys. B 106(3), 569–575 (2012).
[Crossref]

Paul, P. H.

P. H. Paul and H. N. Najm, “Planar laser-induced fluorescence imaging of flame heat release rate,” Proc. Combust. Inst. 27(1), 43–50 (1998).
[Crossref]

H. N. Najm, P. H. Paul, C. J. Mueller, and P. S. Wyckoff, “On the Adequacy of Certain Experimental Observables as Measurements of Flame Burning Rate,” Combust. Flame 113(3), 312–332 (1998).
[Crossref]

Peltier, S.

J. R. Osborne, S. A. Ramji, C. D. Carter, S. Peltier, S. Hammack, T. Lee, and A. M. Steinberg, “Simultaneous 10 kHz TPIV, OH PLIF, and CH2O PLIF measurements of turbulent flame structure and dynamics,” Exp. Fluids 57(5), 65 (2016).
[Crossref]

Pfadler, S.

Pratsinis, S. E.

K. Wegner and S. E. Pratsinis, “Scale-up of nanoparticle synthesis in diffusion flame reactors,” Chem. Eng. Sci. 58(20), 4581–4589 (2003).
[Crossref]

Ramji, S. A.

J. R. Osborne, S. A. Ramji, C. D. Carter, S. Peltier, S. Hammack, T. Lee, and A. M. Steinberg, “Simultaneous 10 kHz TPIV, OH PLIF, and CH2O PLIF measurements of turbulent flame structure and dynamics,” Exp. Fluids 57(5), 65 (2016).
[Crossref]

Retzer, U.

Richter, M.

Röder, M.

M. Röder, T. Dreier, and C. Schulz, “Simultaneous measurement of localized heat-release with OH/CH2O–LIF imaging and spatially integrated OH* chemiluminescence in turbulent swirl flames,” Proc. Combust. Inst. 34(2), 3549–3556 (2013).
[Crossref]

Rosell, J.

Roy, S.

Schulz, C.

M. Röder, T. Dreier, and C. Schulz, “Simultaneous measurement of localized heat-release with OH/CH2O–LIF imaging and spatially integrated OH* chemiluminescence in turbulent swirl flames,” Proc. Combust. Inst. 34(2), 3549–3556 (2013).
[Crossref]

S. Böckle, J. Kazenwadel, T. kunzelmann, D.-I. Shin, C. Schulz, and J. Wolfrum, “Simultaneous single-shot laser-based imaging of formaldehyde, OH, and temperature in turbulent flames,” Proc. Combust. Inst. 28(1), 279–286 (2000).
[Crossref]

Shin, D.-I.

S. Böckle, J. Kazenwadel, T. kunzelmann, D.-I. Shin, C. Schulz, and J. Wolfrum, “Simultaneous single-shot laser-based imaging of formaldehyde, OH, and temperature in turbulent flames,” Proc. Combust. Inst. 28(1), 279–286 (2000).
[Crossref]

Skiba, A. W.

Slipchenko, M.

Slipchenko, M. N.

Stamatoglou, P.

Steinberg, A. M.

J. R. Osborne, S. A. Ramji, C. D. Carter, S. Peltier, S. Hammack, T. Lee, and A. M. Steinberg, “Simultaneous 10 kHz TPIV, OH PLIF, and CH2O PLIF measurements of turbulent flame structure and dynamics,” Exp. Fluids 57(5), 65 (2016).
[Crossref]

Sutton, J. A.

K. N. Gabet, R. A. Patton, N. Jiang, W. R. Lempert, and J. A. Sutton, “High-speed CH2O PLIF imaging in turbulent flames using a pulse-burst laser system,” Appl. Phys. B 106(3), 569–575 (2012).
[Crossref]

Switzer, G. L.

Venkateswaran, P.

Wang, Z.

Wegner, K.

K. Wegner and S. E. Pratsinis, “Scale-up of nanoparticle synthesis in diffusion flame reactors,” Chem. Eng. Sci. 58(20), 4581–4589 (2003).
[Crossref]

Werblinski, T.

Will, S.

Wolfrum, J.

S. Böckle, J. Kazenwadel, T. kunzelmann, D.-I. Shin, C. Schulz, and J. Wolfrum, “Simultaneous single-shot laser-based imaging of formaldehyde, OH, and temperature in turbulent flames,” Proc. Combust. Inst. 28(1), 279–286 (2000).
[Crossref]

Wu, Y.

Wyckoff, P. S.

H. N. Najm, P. H. Paul, C. J. Mueller, and P. S. Wyckoff, “On the Adequacy of Certain Experimental Observables as Measurements of Flame Burning Rate,” Combust. Flame 113(3), 312–332 (1998).
[Crossref]

Zhang, Z.

Zigan, L.

R. Pan, U. Retzer, T. Werblinski, M. N. Slipchenko, T. R. Meyer, L. Zigan, and S. Will, “Generation of high-energy, kilohertz-rate narrowband tunable ultraviolet pulses using a burst-mode dye laser system,” Opt. Lett. 43(5), 1191–1194 (2018).
[Crossref] [PubMed]

F. Altendorfner, J. Kuhl, L. Zigan, and A. Leipertz, “Study of the influence of electric fields on flames using planar LIF and PIV techniques,” Proc. Combust. Inst. 33(2), 3195–3201 (2011).
[Crossref]

Appl. Opt. (1)

Appl. Phys. B (1)

K. N. Gabet, R. A. Patton, N. Jiang, W. R. Lempert, and J. A. Sutton, “High-speed CH2O PLIF imaging in turbulent flames using a pulse-burst laser system,” Appl. Phys. B 106(3), 569–575 (2012).
[Crossref]

Appl. Spectrosc. (1)

Chem. Eng. Sci. (1)

K. Wegner and S. E. Pratsinis, “Scale-up of nanoparticle synthesis in diffusion flame reactors,” Chem. Eng. Sci. 58(20), 4581–4589 (2003).
[Crossref]

Combust. Flame (1)

H. N. Najm, P. H. Paul, C. J. Mueller, and P. S. Wyckoff, “On the Adequacy of Certain Experimental Observables as Measurements of Flame Burning Rate,” Combust. Flame 113(3), 312–332 (1998).
[Crossref]

Exp. Fluids (1)

J. R. Osborne, S. A. Ramji, C. D. Carter, S. Peltier, S. Hammack, T. Lee, and A. M. Steinberg, “Simultaneous 10 kHz TPIV, OH PLIF, and CH2O PLIF measurements of turbulent flame structure and dynamics,” Exp. Fluids 57(5), 65 (2016).
[Crossref]

J. Quant. Spectrosc. Radiat. Transf. (1)

G. H. Dieke and H. M. Crosswhite, “The ultraviolet bands of OH Fundamental data,” J. Quant. Spectrosc. Radiat. Transf. 2(2), 97–199 (1962).
[Crossref]

Opt. Express (3)

Opt. Lett. (5)

Optica (1)

Proc. Combust. Inst. (4)

F. Altendorfner, J. Kuhl, L. Zigan, and A. Leipertz, “Study of the influence of electric fields on flames using planar LIF and PIV techniques,” Proc. Combust. Inst. 33(2), 3195–3201 (2011).
[Crossref]

S. Böckle, J. Kazenwadel, T. kunzelmann, D.-I. Shin, C. Schulz, and J. Wolfrum, “Simultaneous single-shot laser-based imaging of formaldehyde, OH, and temperature in turbulent flames,” Proc. Combust. Inst. 28(1), 279–286 (2000).
[Crossref]

P. H. Paul and H. N. Najm, “Planar laser-induced fluorescence imaging of flame heat release rate,” Proc. Combust. Inst. 27(1), 43–50 (1998).
[Crossref]

M. Röder, T. Dreier, and C. Schulz, “Simultaneous measurement of localized heat-release with OH/CH2O–LIF imaging and spatially integrated OH* chemiluminescence in turbulent swirl flames,” Proc. Combust. Inst. 34(2), 3549–3556 (2013).
[Crossref]

Other (3)

H. Oltmann, Die Weitwinkel-Lichtstreuung zur Charakterisierung gasgetragener Nanopartikelaggregate (University of Bremen, Germany, 2013).

S. R. Turns, An introduction to combustion, (McGraw Hill Higher Education, 2011), Chap. 12.

G. P. Smith, D. M. G. M. Frenklach, N. W. Moriarty, B. Eiteneer, M. Goldenberg, C. T. Bowman, R. K. Hanson, S. Song, W. C. Gardiner, V. V. Lissianski, and Z. Qin, “GRI-MECH 3.0” http://combustion.berkeley.edu/gri-mech/ .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 a) Experimental setup for simultaneous OH- and CH2O-PLIF. OC: oscillator cell, AC: amplifier cell, F1: bandpass filter BP 435/40, F2: bandpass filter BP 320/40; Energy distribution in the burst for 75 pulses at 7.5 kHz for (b) 355 nm and (c) 283 nm, MV: mean value.
Fig. 2
Fig. 2 Sketch of the silica-burner. left: side view, right: enlarged top view.
Fig. 3
Fig. 3 Procedure of separation between noise and CH2O-PLIF signal, including a) original image, b) binarized image, c) mask, and d) corrected image.
Fig. 4
Fig. 4 Series of PLIF images at 7.5 kHz. top row: CH2O-PLIF, center row: OH-PLIF, bottom row: primary heat release. The images are normalized to their maximum value.
Fig. 5
Fig. 5 Mean flame brush within a series of 75 images in a duration of 10 ms.
Fig. 6
Fig. 6 a) binary image including the skeleton for calculation of the thickness of the heat release zone; b) example of the pixel-wise determination of the thickness within a local region of interest (ROI); c) Fluctuation of the thickness of the heat release zone within a period of 3 ms for the complete flame (red) and the ROI with a height of 1 mm (blue curve); d) histogram for two time steps t1 and t2.
Fig. 7
Fig. 7 Effect of possible laser sheet inhomogeneities on the thickness of the determination of the heat release zone.

Metrics