Abstract

We experimentally demonstrate the first polymer optical fiber Bragg gratings inscribed with only one Nd:YAG laser (266 nm) pulse. The gratings have been inscribed in a single-mode poly (methyl methacrylate) optical fiber, with a core doped with benzyl dimethyl ketal for photosensitivity enhancement. One laser pulse with a duration of 8 ns and energy of 72 µJ is adequate to introduce a refractive index change of 0.5 × 10−4 in the fiber core. The stability of the gratings has been confirmed and the strain and temperature sensitivity measurements demonstrate their tunable properties.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Polymer optical fiber Bragg grating inscription with a single UV laser pulse

A. Pospori, C. A. F. Marques, O. Bang, D. J. Webb, and P. André
Opt. Express 25(8) 9028-9038 (2017)

Fast and stable gratings inscription in POFs made of different materials with pulsed 248 nm KrF laser

C. A. F. Marques, R. Min, A. Leal Junior, P. Antunes, A. Fasano, G. Woyessa, K. Nielsen, H. K. Rasmussen, B. Ortega, and O. Bang
Opt. Express 26(2) 2013-2022 (2018)

Gratings fabrication in benzildimethylketal doped photosensitive polymer optical fibers using 355 nm nanosecond pulsed laser

Yanhua Luo, Qijin Zhang, Huiyong Liu, and Gang-Ding Peng
Opt. Lett. 35(5) 751-753 (2010)

References

  • View by:
  • |
  • |
  • |

  1. K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: Application to reflection filter fabrication,” Appl. Phys. Lett. 32(10), 647–649 (1978).
    [Crossref]
  2. G. Meltz, W. W. Morey, and W. H. Glenn, “Formation of Bragg gratings in optical fibers by a transverse holographic method,” Opt. Lett. 14(15), 823–825 (1989).
    [Crossref] [PubMed]
  3. O. K. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, “Bragg grating fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62(10), 1035–1037 (1993).
    [Crossref]
  4. Y. Qiu, Y. Sheng, and C. Beaulieu, “Optimal phase mask for fiber Bragg grating fabrication,” J. Lightwave Technol. 17(11), 2366–2370 (1999).
    [Crossref]
  5. O. W. Ziemann, J. Krauser, P. E. Zamzow, and W. Daum, POF Handbook, 2nd ed (Berlin: Springer-Verlag, 2008).
  6. K. Peters, “Polymer optical fiber sensors—a review,” Smart Mater. Struct. 20(1), 013002 (2011).
    [Crossref]
  7. A. Abang and D. J. Webb, “Influence of mounting on the hysteresis of polymer fiber Bragg grating strain sensors,” Opt. Lett. 38(9), 1376–1378 (2013).
    [Crossref] [PubMed]
  8. A. Pospori, C. A. F. Marques, D. Sáez-Rodríguez, K. Nielsen, O. Bang, and D. J. Webb, “Thermal and chemical treatment of polymer optical fiber Bragg grating sensors for enhanced mechanical sensitivity,” Opt. Fiber Technol. 36, 68–74 (2017).
    [Crossref]
  9. X. Chen, C. Zhang, D. J. Webb, K. Kalli, and G.-D. Peng, “Highly Sensitive Bend Sensor Based on Bragg Grating in Eccentric Core Polymer Fiber,” IEEE Photonics Technol. Lett. 22(11), 850–852 (2010).
    [Crossref]
  10. A. R. Prado, A. G. Leal-Junior, C. Marques, S. Leite, G. L. de Sena, L. C. Machado, A. Frizera, M. R. N. Ribeiro, and M. J. Pontes, “Polymethyl methacrylate (PMMA) recycling for the production of optical fiber sensor systems,” Opt. Express 25(24), 30051–30060 (2017).
    [Crossref] [PubMed]
  11. C. A. F. Marques, G.-D. Peng, and D. J. Webb, “Highly sensitive liquid level monitoring system utilizing polymer fiber Bragg gratings,” Opt. Express 23(5), 6058–6072 (2015).
    [Crossref] [PubMed]
  12. M. Large, G. W. Barton, L. Poladian, and M. A. van Eijkelenborg, Microstructured Polymer Optical Fibre (New York: Springer Science + Business Media LLC, 2008).
  13. D. J. Webb, “Fibre Bragg grating sensors in polymer optical fibres,” Meas. Sci. Technol. 26(9), 092004 (2015).
    [Crossref]
  14. G. Emiliyanov, P. E. Høiby, L. H. Pedersen, and O. Bang, “Selective serial multi-antibody biosensing with TOPAS microstructured polymer optical fibers,” Sensors (Basel) 13(3), 3242–3251 (2013).
    [Crossref] [PubMed]
  15. H. Hassan, J. Janting, S. Aasmul, and O. Bang, “Polymer Optical Fiber Compound Parabolic Concentrator fiber tip based glucose sensor: in-Vitro Testing,” IEEE Sens. J. 16(23), 8483–8488 (2016).
  16. G. D. Peng, Z. Xiong, and P. L. Chu, “Photosensitivity and Gratings in Dye-Doped Polymer Optical Fibers,” Opt. Fiber Technol. 5(2), 242–251 (1999).
    [Crossref]
  17. Z. Xiong, G. D. Peng, B. Wu, and P. L. Chu, “Highly tunable Bragg gratings in single-mode polymer optical fibers,” IEEE Photonics Technol. Lett. 11(3), 352–354 (1999).
    [Crossref]
  18. G. D. Peng and P. L. Chu, “Polymer Optical Fiber Photosensitivities and Highly Tunable Fiber Gratings,” Fiber Integr. Opt. 19(4), 277–293 (2000).
    [Crossref]
  19. R. Oliveira, L. Bilro, and R. Nogueira, “Bragg gratings in a few mode microstructured polymer optical fiber in less than 30 seconds,” Opt. Express 23(8), 10181–10187 (2015).
    [Crossref] [PubMed]
  20. C. A. F. Marques, P. Antunes, P. Mergo, D. Webb, and P. B. Andre, “Chirped Bragg gratings in PMMA step-index polymer optical fiber,” IEEE Photonics Technol. Lett. 29(6), 500–503 (2017).
    [Crossref]
  21. A. Pospori, C. A. F. Marques, O. Bang, D. J. Webb, and P. André, “Polymer optical fiber Bragg grating inscription with a single UV laser pulse,” Opt. Express 25(8), 9028–9038 (2017).
    [Crossref] [PubMed]
  22. R. M. Ahmed, “Optical Study on Poly(methyl methacrylate)/Poly(vinyl acetate) Blends,” Int. J. Photoenergy 2009, 1–7 (2009).
    [Crossref]
  23. C. A. F. Marques, R. Min, A. L. Junior, P. Antunes, A. Fasano, G. Woyessa, K. Nielsen, H. K. Rasmussen, B. Ortega, and O. Bang, “Fast and stable gratings inscription in POFs made of different materials with pulsed 248 nm KrF laser,” Opt. Express 26(2), 2013–2022 (2018).
    [Crossref] [PubMed]
  24. C. Wochnowski, M. A. S. Eldin, and S. Metev, “UV-laser-assisted degradation of poly(methyl methacrylate),” Polym. Degrad. Stabil. 89(2), 252–264 (2005).
    [Crossref]
  25. D. Sáez-Rodríguez, K. Nielsen, O. Bang, and D. J. Webb, “Photosensitivity mechanism of undoped poly(methyl methacrylate) under UV radiation at 325 nm and its spatial resolution limit,” Opt. Lett. 39(12), 3421–3424 (2014).
    [Crossref] [PubMed]
  26. C. A. F. Marques, L. B. Bilro, N. J. Alberto, D. J. Webb, and R. N. Nogueira, “Narrow bandwidth Bragg gratings imprinted in polymer optical fibers for different spectral windows,” Opt. Commun. 307, 57–61 (2013).
    [Crossref]
  27. I.-L. Bundalo, K. Nielsen, C. Markos, and O. Bang, “Bragg grating writing in PMMA microstructured polymer optical fibers in less than 7 minutes,” Opt. Express 22(5), 5270–5276 (2014).
    [Crossref] [PubMed]
  28. L. M. Pereira, A. Pospori, P. Antunes, M. F. Domingues, S. Marques, O. Bang, D. J. Webb, and C. A. F. Marques, “Phase-shifted Bragg grating inscription in PMMA microstructured POF using 248 nm UV radiation,” J. Lightwave Technol. 35(23), 5176–5184 (2017).
    [Crossref]
  29. R. Min, B. Ortega, and C. Marques, “Fabrication of tunable chirped mPOF Bragg gratings using a uniform phase mask,” Opt. Express 26(4), 4411–4420 (2018).
    [Crossref] [PubMed]
  30. Y. Luo, Q. Zhang, H. Liu, and G.-D. Peng, “Gratings fabrication in benzildimethylketal doped photosensitive polymer optical fibers using 355 nm nanosecond pulsed laser,” Opt. Lett. 35(5), 751–753 (2010).
    [Crossref] [PubMed]
  31. C. J. S. Matos, P. I. Torres, L. C. G. Valente, I. C. S. Carvalho, and W. Margulis, “Bragg grating fabrication by the external method with 266 nm light,” Proc. SPIE 3572, 400–404 (1999).
    [Crossref]
  32. A. Kameyama, M. Katt, and A. Yokotani, “A simplified fabrication technique for tilted fiber bragg grating for the simultaneous measurement of refractive index and temperature of liquids,” J. Laser Micro Nanoeng. 9(3), 230–233 (2014).
    [Crossref]
  33. H.-J. Deyerl, S. Henrik Rokkjær, J. Jesper Bo, N. Plougmann, and M. Kristensen, “Fabrication and stability of fiber Bragg gratings for WDM applications using a 266nm CW-laser,” in CLEO/QELS IEEE (2003).
  34. X. Hu, G. Woyessa, D. Kinet, J. Janting, K. Nielsen, O. Bang, and C. Caucheteur, “BDK-doped core microstructured PMMA optical fiber for effective Bragg grating photo-inscription,” Opt. Lett. 42(11), 2209–2212 (2017).
    [Crossref] [PubMed]
  35. T. A. Birks, J. C. Knight, and P. S. J. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett. 22(13), 961–963 (1997).
    [Crossref] [PubMed]
  36. A. Stefani, K. Nielsen, H. K. Rasmussen, and O. Bang, “Cleaving of TOPAS and PMMA microstructured polymer optical fibers: core-shift and statistical quality optimization,” Opt. Commun. 285(7), 1825–1833 (2012).
    [Crossref]
  37. W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. Herholdt-Rasmussen, F. K. Nielsen, S. Andresen, O. B. Sørensen, K. S. Hansen, and O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun. 284(1), 176–182 (2011).
    [Crossref]
  38. G. Woyessa, K. Nielsen, A. Stefani, C. Markos, and O. Bang, “Temperature insensitive hysteresis free highly sensitive polymer optical fiber Bragg grating humidity sensor,” Opt. Express 24(2), 1206–1213 (2016).
    [Crossref] [PubMed]
  39. C. A. F. Marques, A. Pospori, G. Demirci, O. Çetinkaya, B. Gawdzik, P. Antunes, O. Bang, P. Mergo, P. André, and D. J. Webb, “Fast bragg grating inscription in PMMA polymer optical fibres: Impact of thermal pre-treatment of preforms,” Sensors (Basel) 17(4), 1–8 (2017).
    [Crossref] [PubMed]
  40. W. Yuan, A. Stefani, and O. Bang, “Tunable polymer Fiber Bragg Grating (FBG) inscription: Fabrication of dual-FBG temperature compensated polymer optical fiber strain sensors,” IEEE Photonics Technol. Lett. 24(5), 401–403 (2012).
    [Crossref]
  41. D. Sáez-Rodríguez, K. Nielsen, H. K. Rasmussen, O. Bang, and D. J. Webb, “Highly photosensitive polymethyl methacrylate microstructured polymer optical fiber with doped core,” Opt. Lett. 38(19), 3769–3772 (2013).
    [Crossref] [PubMed]

2018 (2)

2017 (7)

X. Hu, G. Woyessa, D. Kinet, J. Janting, K. Nielsen, O. Bang, and C. Caucheteur, “BDK-doped core microstructured PMMA optical fiber for effective Bragg grating photo-inscription,” Opt. Lett. 42(11), 2209–2212 (2017).
[Crossref] [PubMed]

C. A. F. Marques, P. Antunes, P. Mergo, D. Webb, and P. B. Andre, “Chirped Bragg gratings in PMMA step-index polymer optical fiber,” IEEE Photonics Technol. Lett. 29(6), 500–503 (2017).
[Crossref]

A. Pospori, C. A. F. Marques, O. Bang, D. J. Webb, and P. André, “Polymer optical fiber Bragg grating inscription with a single UV laser pulse,” Opt. Express 25(8), 9028–9038 (2017).
[Crossref] [PubMed]

L. M. Pereira, A. Pospori, P. Antunes, M. F. Domingues, S. Marques, O. Bang, D. J. Webb, and C. A. F. Marques, “Phase-shifted Bragg grating inscription in PMMA microstructured POF using 248 nm UV radiation,” J. Lightwave Technol. 35(23), 5176–5184 (2017).
[Crossref]

A. Pospori, C. A. F. Marques, D. Sáez-Rodríguez, K. Nielsen, O. Bang, and D. J. Webb, “Thermal and chemical treatment of polymer optical fiber Bragg grating sensors for enhanced mechanical sensitivity,” Opt. Fiber Technol. 36, 68–74 (2017).
[Crossref]

A. R. Prado, A. G. Leal-Junior, C. Marques, S. Leite, G. L. de Sena, L. C. Machado, A. Frizera, M. R. N. Ribeiro, and M. J. Pontes, “Polymethyl methacrylate (PMMA) recycling for the production of optical fiber sensor systems,” Opt. Express 25(24), 30051–30060 (2017).
[Crossref] [PubMed]

C. A. F. Marques, A. Pospori, G. Demirci, O. Çetinkaya, B. Gawdzik, P. Antunes, O. Bang, P. Mergo, P. André, and D. J. Webb, “Fast bragg grating inscription in PMMA polymer optical fibres: Impact of thermal pre-treatment of preforms,” Sensors (Basel) 17(4), 1–8 (2017).
[Crossref] [PubMed]

2016 (2)

H. Hassan, J. Janting, S. Aasmul, and O. Bang, “Polymer Optical Fiber Compound Parabolic Concentrator fiber tip based glucose sensor: in-Vitro Testing,” IEEE Sens. J. 16(23), 8483–8488 (2016).

G. Woyessa, K. Nielsen, A. Stefani, C. Markos, and O. Bang, “Temperature insensitive hysteresis free highly sensitive polymer optical fiber Bragg grating humidity sensor,” Opt. Express 24(2), 1206–1213 (2016).
[Crossref] [PubMed]

2015 (3)

2014 (3)

2013 (4)

C. A. F. Marques, L. B. Bilro, N. J. Alberto, D. J. Webb, and R. N. Nogueira, “Narrow bandwidth Bragg gratings imprinted in polymer optical fibers for different spectral windows,” Opt. Commun. 307, 57–61 (2013).
[Crossref]

G. Emiliyanov, P. E. Høiby, L. H. Pedersen, and O. Bang, “Selective serial multi-antibody biosensing with TOPAS microstructured polymer optical fibers,” Sensors (Basel) 13(3), 3242–3251 (2013).
[Crossref] [PubMed]

A. Abang and D. J. Webb, “Influence of mounting on the hysteresis of polymer fiber Bragg grating strain sensors,” Opt. Lett. 38(9), 1376–1378 (2013).
[Crossref] [PubMed]

D. Sáez-Rodríguez, K. Nielsen, H. K. Rasmussen, O. Bang, and D. J. Webb, “Highly photosensitive polymethyl methacrylate microstructured polymer optical fiber with doped core,” Opt. Lett. 38(19), 3769–3772 (2013).
[Crossref] [PubMed]

2012 (2)

W. Yuan, A. Stefani, and O. Bang, “Tunable polymer Fiber Bragg Grating (FBG) inscription: Fabrication of dual-FBG temperature compensated polymer optical fiber strain sensors,” IEEE Photonics Technol. Lett. 24(5), 401–403 (2012).
[Crossref]

A. Stefani, K. Nielsen, H. K. Rasmussen, and O. Bang, “Cleaving of TOPAS and PMMA microstructured polymer optical fibers: core-shift and statistical quality optimization,” Opt. Commun. 285(7), 1825–1833 (2012).
[Crossref]

2011 (2)

W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. Herholdt-Rasmussen, F. K. Nielsen, S. Andresen, O. B. Sørensen, K. S. Hansen, and O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun. 284(1), 176–182 (2011).
[Crossref]

K. Peters, “Polymer optical fiber sensors—a review,” Smart Mater. Struct. 20(1), 013002 (2011).
[Crossref]

2010 (2)

X. Chen, C. Zhang, D. J. Webb, K. Kalli, and G.-D. Peng, “Highly Sensitive Bend Sensor Based on Bragg Grating in Eccentric Core Polymer Fiber,” IEEE Photonics Technol. Lett. 22(11), 850–852 (2010).
[Crossref]

Y. Luo, Q. Zhang, H. Liu, and G.-D. Peng, “Gratings fabrication in benzildimethylketal doped photosensitive polymer optical fibers using 355 nm nanosecond pulsed laser,” Opt. Lett. 35(5), 751–753 (2010).
[Crossref] [PubMed]

2009 (1)

R. M. Ahmed, “Optical Study on Poly(methyl methacrylate)/Poly(vinyl acetate) Blends,” Int. J. Photoenergy 2009, 1–7 (2009).
[Crossref]

2005 (1)

C. Wochnowski, M. A. S. Eldin, and S. Metev, “UV-laser-assisted degradation of poly(methyl methacrylate),” Polym. Degrad. Stabil. 89(2), 252–264 (2005).
[Crossref]

2000 (1)

G. D. Peng and P. L. Chu, “Polymer Optical Fiber Photosensitivities and Highly Tunable Fiber Gratings,” Fiber Integr. Opt. 19(4), 277–293 (2000).
[Crossref]

1999 (4)

G. D. Peng, Z. Xiong, and P. L. Chu, “Photosensitivity and Gratings in Dye-Doped Polymer Optical Fibers,” Opt. Fiber Technol. 5(2), 242–251 (1999).
[Crossref]

Z. Xiong, G. D. Peng, B. Wu, and P. L. Chu, “Highly tunable Bragg gratings in single-mode polymer optical fibers,” IEEE Photonics Technol. Lett. 11(3), 352–354 (1999).
[Crossref]

Y. Qiu, Y. Sheng, and C. Beaulieu, “Optimal phase mask for fiber Bragg grating fabrication,” J. Lightwave Technol. 17(11), 2366–2370 (1999).
[Crossref]

C. J. S. Matos, P. I. Torres, L. C. G. Valente, I. C. S. Carvalho, and W. Margulis, “Bragg grating fabrication by the external method with 266 nm light,” Proc. SPIE 3572, 400–404 (1999).
[Crossref]

1997 (1)

1993 (1)

O. K. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, “Bragg grating fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62(10), 1035–1037 (1993).
[Crossref]

1989 (1)

1978 (1)

K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: Application to reflection filter fabrication,” Appl. Phys. Lett. 32(10), 647–649 (1978).
[Crossref]

Aasmul, S.

H. Hassan, J. Janting, S. Aasmul, and O. Bang, “Polymer Optical Fiber Compound Parabolic Concentrator fiber tip based glucose sensor: in-Vitro Testing,” IEEE Sens. J. 16(23), 8483–8488 (2016).

Abang, A.

Ahmed, R. M.

R. M. Ahmed, “Optical Study on Poly(methyl methacrylate)/Poly(vinyl acetate) Blends,” Int. J. Photoenergy 2009, 1–7 (2009).
[Crossref]

Albert, J.

O. K. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, “Bragg grating fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62(10), 1035–1037 (1993).
[Crossref]

Alberto, N. J.

C. A. F. Marques, L. B. Bilro, N. J. Alberto, D. J. Webb, and R. N. Nogueira, “Narrow bandwidth Bragg gratings imprinted in polymer optical fibers for different spectral windows,” Opt. Commun. 307, 57–61 (2013).
[Crossref]

Andre, P. B.

C. A. F. Marques, P. Antunes, P. Mergo, D. Webb, and P. B. Andre, “Chirped Bragg gratings in PMMA step-index polymer optical fiber,” IEEE Photonics Technol. Lett. 29(6), 500–503 (2017).
[Crossref]

André, P.

C. A. F. Marques, A. Pospori, G. Demirci, O. Çetinkaya, B. Gawdzik, P. Antunes, O. Bang, P. Mergo, P. André, and D. J. Webb, “Fast bragg grating inscription in PMMA polymer optical fibres: Impact of thermal pre-treatment of preforms,” Sensors (Basel) 17(4), 1–8 (2017).
[Crossref] [PubMed]

A. Pospori, C. A. F. Marques, O. Bang, D. J. Webb, and P. André, “Polymer optical fiber Bragg grating inscription with a single UV laser pulse,” Opt. Express 25(8), 9028–9038 (2017).
[Crossref] [PubMed]

Andresen, S.

W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. Herholdt-Rasmussen, F. K. Nielsen, S. Andresen, O. B. Sørensen, K. S. Hansen, and O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun. 284(1), 176–182 (2011).
[Crossref]

Antunes, P.

C. A. F. Marques, R. Min, A. L. Junior, P. Antunes, A. Fasano, G. Woyessa, K. Nielsen, H. K. Rasmussen, B. Ortega, and O. Bang, “Fast and stable gratings inscription in POFs made of different materials with pulsed 248 nm KrF laser,” Opt. Express 26(2), 2013–2022 (2018).
[Crossref] [PubMed]

L. M. Pereira, A. Pospori, P. Antunes, M. F. Domingues, S. Marques, O. Bang, D. J. Webb, and C. A. F. Marques, “Phase-shifted Bragg grating inscription in PMMA microstructured POF using 248 nm UV radiation,” J. Lightwave Technol. 35(23), 5176–5184 (2017).
[Crossref]

C. A. F. Marques, A. Pospori, G. Demirci, O. Çetinkaya, B. Gawdzik, P. Antunes, O. Bang, P. Mergo, P. André, and D. J. Webb, “Fast bragg grating inscription in PMMA polymer optical fibres: Impact of thermal pre-treatment of preforms,” Sensors (Basel) 17(4), 1–8 (2017).
[Crossref] [PubMed]

C. A. F. Marques, P. Antunes, P. Mergo, D. Webb, and P. B. Andre, “Chirped Bragg gratings in PMMA step-index polymer optical fiber,” IEEE Photonics Technol. Lett. 29(6), 500–503 (2017).
[Crossref]

Bache, M.

W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. Herholdt-Rasmussen, F. K. Nielsen, S. Andresen, O. B. Sørensen, K. S. Hansen, and O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun. 284(1), 176–182 (2011).
[Crossref]

Bang, O.

C. A. F. Marques, R. Min, A. L. Junior, P. Antunes, A. Fasano, G. Woyessa, K. Nielsen, H. K. Rasmussen, B. Ortega, and O. Bang, “Fast and stable gratings inscription in POFs made of different materials with pulsed 248 nm KrF laser,” Opt. Express 26(2), 2013–2022 (2018).
[Crossref] [PubMed]

L. M. Pereira, A. Pospori, P. Antunes, M. F. Domingues, S. Marques, O. Bang, D. J. Webb, and C. A. F. Marques, “Phase-shifted Bragg grating inscription in PMMA microstructured POF using 248 nm UV radiation,” J. Lightwave Technol. 35(23), 5176–5184 (2017).
[Crossref]

A. Pospori, C. A. F. Marques, D. Sáez-Rodríguez, K. Nielsen, O. Bang, and D. J. Webb, “Thermal and chemical treatment of polymer optical fiber Bragg grating sensors for enhanced mechanical sensitivity,” Opt. Fiber Technol. 36, 68–74 (2017).
[Crossref]

C. A. F. Marques, A. Pospori, G. Demirci, O. Çetinkaya, B. Gawdzik, P. Antunes, O. Bang, P. Mergo, P. André, and D. J. Webb, “Fast bragg grating inscription in PMMA polymer optical fibres: Impact of thermal pre-treatment of preforms,” Sensors (Basel) 17(4), 1–8 (2017).
[Crossref] [PubMed]

A. Pospori, C. A. F. Marques, O. Bang, D. J. Webb, and P. André, “Polymer optical fiber Bragg grating inscription with a single UV laser pulse,” Opt. Express 25(8), 9028–9038 (2017).
[Crossref] [PubMed]

X. Hu, G. Woyessa, D. Kinet, J. Janting, K. Nielsen, O. Bang, and C. Caucheteur, “BDK-doped core microstructured PMMA optical fiber for effective Bragg grating photo-inscription,” Opt. Lett. 42(11), 2209–2212 (2017).
[Crossref] [PubMed]

G. Woyessa, K. Nielsen, A. Stefani, C. Markos, and O. Bang, “Temperature insensitive hysteresis free highly sensitive polymer optical fiber Bragg grating humidity sensor,” Opt. Express 24(2), 1206–1213 (2016).
[Crossref] [PubMed]

H. Hassan, J. Janting, S. Aasmul, and O. Bang, “Polymer Optical Fiber Compound Parabolic Concentrator fiber tip based glucose sensor: in-Vitro Testing,” IEEE Sens. J. 16(23), 8483–8488 (2016).

I.-L. Bundalo, K. Nielsen, C. Markos, and O. Bang, “Bragg grating writing in PMMA microstructured polymer optical fibers in less than 7 minutes,” Opt. Express 22(5), 5270–5276 (2014).
[Crossref] [PubMed]

D. Sáez-Rodríguez, K. Nielsen, O. Bang, and D. J. Webb, “Photosensitivity mechanism of undoped poly(methyl methacrylate) under UV radiation at 325 nm and its spatial resolution limit,” Opt. Lett. 39(12), 3421–3424 (2014).
[Crossref] [PubMed]

D. Sáez-Rodríguez, K. Nielsen, H. K. Rasmussen, O. Bang, and D. J. Webb, “Highly photosensitive polymethyl methacrylate microstructured polymer optical fiber with doped core,” Opt. Lett. 38(19), 3769–3772 (2013).
[Crossref] [PubMed]

G. Emiliyanov, P. E. Høiby, L. H. Pedersen, and O. Bang, “Selective serial multi-antibody biosensing with TOPAS microstructured polymer optical fibers,” Sensors (Basel) 13(3), 3242–3251 (2013).
[Crossref] [PubMed]

A. Stefani, K. Nielsen, H. K. Rasmussen, and O. Bang, “Cleaving of TOPAS and PMMA microstructured polymer optical fibers: core-shift and statistical quality optimization,” Opt. Commun. 285(7), 1825–1833 (2012).
[Crossref]

W. Yuan, A. Stefani, and O. Bang, “Tunable polymer Fiber Bragg Grating (FBG) inscription: Fabrication of dual-FBG temperature compensated polymer optical fiber strain sensors,” IEEE Photonics Technol. Lett. 24(5), 401–403 (2012).
[Crossref]

W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. Herholdt-Rasmussen, F. K. Nielsen, S. Andresen, O. B. Sørensen, K. S. Hansen, and O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun. 284(1), 176–182 (2011).
[Crossref]

Beaulieu, C.

Bilodeau, F.

O. K. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, “Bragg grating fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62(10), 1035–1037 (1993).
[Crossref]

Bilro, L.

Bilro, L. B.

C. A. F. Marques, L. B. Bilro, N. J. Alberto, D. J. Webb, and R. N. Nogueira, “Narrow bandwidth Bragg gratings imprinted in polymer optical fibers for different spectral windows,” Opt. Commun. 307, 57–61 (2013).
[Crossref]

Birks, T. A.

Bundalo, I.-L.

Carvalho, I. C. S.

C. J. S. Matos, P. I. Torres, L. C. G. Valente, I. C. S. Carvalho, and W. Margulis, “Bragg grating fabrication by the external method with 266 nm light,” Proc. SPIE 3572, 400–404 (1999).
[Crossref]

Caucheteur, C.

Çetinkaya, O.

C. A. F. Marques, A. Pospori, G. Demirci, O. Çetinkaya, B. Gawdzik, P. Antunes, O. Bang, P. Mergo, P. André, and D. J. Webb, “Fast bragg grating inscription in PMMA polymer optical fibres: Impact of thermal pre-treatment of preforms,” Sensors (Basel) 17(4), 1–8 (2017).
[Crossref] [PubMed]

Chen, X.

X. Chen, C. Zhang, D. J. Webb, K. Kalli, and G.-D. Peng, “Highly Sensitive Bend Sensor Based on Bragg Grating in Eccentric Core Polymer Fiber,” IEEE Photonics Technol. Lett. 22(11), 850–852 (2010).
[Crossref]

Chu, P. L.

G. D. Peng and P. L. Chu, “Polymer Optical Fiber Photosensitivities and Highly Tunable Fiber Gratings,” Fiber Integr. Opt. 19(4), 277–293 (2000).
[Crossref]

Z. Xiong, G. D. Peng, B. Wu, and P. L. Chu, “Highly tunable Bragg gratings in single-mode polymer optical fibers,” IEEE Photonics Technol. Lett. 11(3), 352–354 (1999).
[Crossref]

G. D. Peng, Z. Xiong, and P. L. Chu, “Photosensitivity and Gratings in Dye-Doped Polymer Optical Fibers,” Opt. Fiber Technol. 5(2), 242–251 (1999).
[Crossref]

de Sena, G. L.

Demirci, G.

C. A. F. Marques, A. Pospori, G. Demirci, O. Çetinkaya, B. Gawdzik, P. Antunes, O. Bang, P. Mergo, P. André, and D. J. Webb, “Fast bragg grating inscription in PMMA polymer optical fibres: Impact of thermal pre-treatment of preforms,” Sensors (Basel) 17(4), 1–8 (2017).
[Crossref] [PubMed]

Domingues, M. F.

Eldin, M. A. S.

C. Wochnowski, M. A. S. Eldin, and S. Metev, “UV-laser-assisted degradation of poly(methyl methacrylate),” Polym. Degrad. Stabil. 89(2), 252–264 (2005).
[Crossref]

Emiliyanov, G.

G. Emiliyanov, P. E. Høiby, L. H. Pedersen, and O. Bang, “Selective serial multi-antibody biosensing with TOPAS microstructured polymer optical fibers,” Sensors (Basel) 13(3), 3242–3251 (2013).
[Crossref] [PubMed]

Fasano, A.

Frizera, A.

Fujii, Y.

K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: Application to reflection filter fabrication,” Appl. Phys. Lett. 32(10), 647–649 (1978).
[Crossref]

Gawdzik, B.

C. A. F. Marques, A. Pospori, G. Demirci, O. Çetinkaya, B. Gawdzik, P. Antunes, O. Bang, P. Mergo, P. André, and D. J. Webb, “Fast bragg grating inscription in PMMA polymer optical fibres: Impact of thermal pre-treatment of preforms,” Sensors (Basel) 17(4), 1–8 (2017).
[Crossref] [PubMed]

Glenn, W. H.

Hansen, K. S.

W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. Herholdt-Rasmussen, F. K. Nielsen, S. Andresen, O. B. Sørensen, K. S. Hansen, and O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun. 284(1), 176–182 (2011).
[Crossref]

Hassan, H.

H. Hassan, J. Janting, S. Aasmul, and O. Bang, “Polymer Optical Fiber Compound Parabolic Concentrator fiber tip based glucose sensor: in-Vitro Testing,” IEEE Sens. J. 16(23), 8483–8488 (2016).

Herholdt-Rasmussen, N.

W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. Herholdt-Rasmussen, F. K. Nielsen, S. Andresen, O. B. Sørensen, K. S. Hansen, and O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun. 284(1), 176–182 (2011).
[Crossref]

Hill, K. O.

K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: Application to reflection filter fabrication,” Appl. Phys. Lett. 32(10), 647–649 (1978).
[Crossref]

Hill, O. K.

O. K. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, “Bragg grating fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62(10), 1035–1037 (1993).
[Crossref]

Høiby, P. E.

G. Emiliyanov, P. E. Høiby, L. H. Pedersen, and O. Bang, “Selective serial multi-antibody biosensing with TOPAS microstructured polymer optical fibers,” Sensors (Basel) 13(3), 3242–3251 (2013).
[Crossref] [PubMed]

Hu, X.

Jacobsen, T.

W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. Herholdt-Rasmussen, F. K. Nielsen, S. Andresen, O. B. Sørensen, K. S. Hansen, and O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun. 284(1), 176–182 (2011).
[Crossref]

Janting, J.

X. Hu, G. Woyessa, D. Kinet, J. Janting, K. Nielsen, O. Bang, and C. Caucheteur, “BDK-doped core microstructured PMMA optical fiber for effective Bragg grating photo-inscription,” Opt. Lett. 42(11), 2209–2212 (2017).
[Crossref] [PubMed]

H. Hassan, J. Janting, S. Aasmul, and O. Bang, “Polymer Optical Fiber Compound Parabolic Concentrator fiber tip based glucose sensor: in-Vitro Testing,” IEEE Sens. J. 16(23), 8483–8488 (2016).

Johnson, D. C.

O. K. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, “Bragg grating fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62(10), 1035–1037 (1993).
[Crossref]

K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: Application to reflection filter fabrication,” Appl. Phys. Lett. 32(10), 647–649 (1978).
[Crossref]

Junior, A. L.

Kalli, K.

X. Chen, C. Zhang, D. J. Webb, K. Kalli, and G.-D. Peng, “Highly Sensitive Bend Sensor Based on Bragg Grating in Eccentric Core Polymer Fiber,” IEEE Photonics Technol. Lett. 22(11), 850–852 (2010).
[Crossref]

Kameyama, A.

A. Kameyama, M. Katt, and A. Yokotani, “A simplified fabrication technique for tilted fiber bragg grating for the simultaneous measurement of refractive index and temperature of liquids,” J. Laser Micro Nanoeng. 9(3), 230–233 (2014).
[Crossref]

Katt, M.

A. Kameyama, M. Katt, and A. Yokotani, “A simplified fabrication technique for tilted fiber bragg grating for the simultaneous measurement of refractive index and temperature of liquids,” J. Laser Micro Nanoeng. 9(3), 230–233 (2014).
[Crossref]

Kawasaki, B. S.

K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: Application to reflection filter fabrication,” Appl. Phys. Lett. 32(10), 647–649 (1978).
[Crossref]

Kinet, D.

Knight, J. C.

Leal-Junior, A. G.

Leite, S.

Liu, H.

Luo, Y.

Machado, L. C.

Malo, B.

O. K. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, “Bragg grating fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62(10), 1035–1037 (1993).
[Crossref]

Margulis, W.

C. J. S. Matos, P. I. Torres, L. C. G. Valente, I. C. S. Carvalho, and W. Margulis, “Bragg grating fabrication by the external method with 266 nm light,” Proc. SPIE 3572, 400–404 (1999).
[Crossref]

Markos, C.

Marques, C.

Marques, C. A. F.

C. A. F. Marques, R. Min, A. L. Junior, P. Antunes, A. Fasano, G. Woyessa, K. Nielsen, H. K. Rasmussen, B. Ortega, and O. Bang, “Fast and stable gratings inscription in POFs made of different materials with pulsed 248 nm KrF laser,” Opt. Express 26(2), 2013–2022 (2018).
[Crossref] [PubMed]

L. M. Pereira, A. Pospori, P. Antunes, M. F. Domingues, S. Marques, O. Bang, D. J. Webb, and C. A. F. Marques, “Phase-shifted Bragg grating inscription in PMMA microstructured POF using 248 nm UV radiation,” J. Lightwave Technol. 35(23), 5176–5184 (2017).
[Crossref]

A. Pospori, C. A. F. Marques, O. Bang, D. J. Webb, and P. André, “Polymer optical fiber Bragg grating inscription with a single UV laser pulse,” Opt. Express 25(8), 9028–9038 (2017).
[Crossref] [PubMed]

C. A. F. Marques, A. Pospori, G. Demirci, O. Çetinkaya, B. Gawdzik, P. Antunes, O. Bang, P. Mergo, P. André, and D. J. Webb, “Fast bragg grating inscription in PMMA polymer optical fibres: Impact of thermal pre-treatment of preforms,” Sensors (Basel) 17(4), 1–8 (2017).
[Crossref] [PubMed]

C. A. F. Marques, P. Antunes, P. Mergo, D. Webb, and P. B. Andre, “Chirped Bragg gratings in PMMA step-index polymer optical fiber,” IEEE Photonics Technol. Lett. 29(6), 500–503 (2017).
[Crossref]

A. Pospori, C. A. F. Marques, D. Sáez-Rodríguez, K. Nielsen, O. Bang, and D. J. Webb, “Thermal and chemical treatment of polymer optical fiber Bragg grating sensors for enhanced mechanical sensitivity,” Opt. Fiber Technol. 36, 68–74 (2017).
[Crossref]

C. A. F. Marques, G.-D. Peng, and D. J. Webb, “Highly sensitive liquid level monitoring system utilizing polymer fiber Bragg gratings,” Opt. Express 23(5), 6058–6072 (2015).
[Crossref] [PubMed]

C. A. F. Marques, L. B. Bilro, N. J. Alberto, D. J. Webb, and R. N. Nogueira, “Narrow bandwidth Bragg gratings imprinted in polymer optical fibers for different spectral windows,” Opt. Commun. 307, 57–61 (2013).
[Crossref]

Marques, S.

Matos, C. J. S.

C. J. S. Matos, P. I. Torres, L. C. G. Valente, I. C. S. Carvalho, and W. Margulis, “Bragg grating fabrication by the external method with 266 nm light,” Proc. SPIE 3572, 400–404 (1999).
[Crossref]

Meltz, G.

Mergo, P.

C. A. F. Marques, A. Pospori, G. Demirci, O. Çetinkaya, B. Gawdzik, P. Antunes, O. Bang, P. Mergo, P. André, and D. J. Webb, “Fast bragg grating inscription in PMMA polymer optical fibres: Impact of thermal pre-treatment of preforms,” Sensors (Basel) 17(4), 1–8 (2017).
[Crossref] [PubMed]

C. A. F. Marques, P. Antunes, P. Mergo, D. Webb, and P. B. Andre, “Chirped Bragg gratings in PMMA step-index polymer optical fiber,” IEEE Photonics Technol. Lett. 29(6), 500–503 (2017).
[Crossref]

Metev, S.

C. Wochnowski, M. A. S. Eldin, and S. Metev, “UV-laser-assisted degradation of poly(methyl methacrylate),” Polym. Degrad. Stabil. 89(2), 252–264 (2005).
[Crossref]

Min, R.

Morey, W. W.

Nielsen, F. K.

W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. Herholdt-Rasmussen, F. K. Nielsen, S. Andresen, O. B. Sørensen, K. S. Hansen, and O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun. 284(1), 176–182 (2011).
[Crossref]

Nielsen, K.

C. A. F. Marques, R. Min, A. L. Junior, P. Antunes, A. Fasano, G. Woyessa, K. Nielsen, H. K. Rasmussen, B. Ortega, and O. Bang, “Fast and stable gratings inscription in POFs made of different materials with pulsed 248 nm KrF laser,” Opt. Express 26(2), 2013–2022 (2018).
[Crossref] [PubMed]

A. Pospori, C. A. F. Marques, D. Sáez-Rodríguez, K. Nielsen, O. Bang, and D. J. Webb, “Thermal and chemical treatment of polymer optical fiber Bragg grating sensors for enhanced mechanical sensitivity,” Opt. Fiber Technol. 36, 68–74 (2017).
[Crossref]

X. Hu, G. Woyessa, D. Kinet, J. Janting, K. Nielsen, O. Bang, and C. Caucheteur, “BDK-doped core microstructured PMMA optical fiber for effective Bragg grating photo-inscription,” Opt. Lett. 42(11), 2209–2212 (2017).
[Crossref] [PubMed]

G. Woyessa, K. Nielsen, A. Stefani, C. Markos, and O. Bang, “Temperature insensitive hysteresis free highly sensitive polymer optical fiber Bragg grating humidity sensor,” Opt. Express 24(2), 1206–1213 (2016).
[Crossref] [PubMed]

D. Sáez-Rodríguez, K. Nielsen, O. Bang, and D. J. Webb, “Photosensitivity mechanism of undoped poly(methyl methacrylate) under UV radiation at 325 nm and its spatial resolution limit,” Opt. Lett. 39(12), 3421–3424 (2014).
[Crossref] [PubMed]

I.-L. Bundalo, K. Nielsen, C. Markos, and O. Bang, “Bragg grating writing in PMMA microstructured polymer optical fibers in less than 7 minutes,” Opt. Express 22(5), 5270–5276 (2014).
[Crossref] [PubMed]

D. Sáez-Rodríguez, K. Nielsen, H. K. Rasmussen, O. Bang, and D. J. Webb, “Highly photosensitive polymethyl methacrylate microstructured polymer optical fiber with doped core,” Opt. Lett. 38(19), 3769–3772 (2013).
[Crossref] [PubMed]

A. Stefani, K. Nielsen, H. K. Rasmussen, and O. Bang, “Cleaving of TOPAS and PMMA microstructured polymer optical fibers: core-shift and statistical quality optimization,” Opt. Commun. 285(7), 1825–1833 (2012).
[Crossref]

Nogueira, R.

Nogueira, R. N.

C. A. F. Marques, L. B. Bilro, N. J. Alberto, D. J. Webb, and R. N. Nogueira, “Narrow bandwidth Bragg gratings imprinted in polymer optical fibers for different spectral windows,” Opt. Commun. 307, 57–61 (2013).
[Crossref]

Oliveira, R.

Ortega, B.

Pedersen, L. H.

G. Emiliyanov, P. E. Høiby, L. H. Pedersen, and O. Bang, “Selective serial multi-antibody biosensing with TOPAS microstructured polymer optical fibers,” Sensors (Basel) 13(3), 3242–3251 (2013).
[Crossref] [PubMed]

Peng, G. D.

G. D. Peng and P. L. Chu, “Polymer Optical Fiber Photosensitivities and Highly Tunable Fiber Gratings,” Fiber Integr. Opt. 19(4), 277–293 (2000).
[Crossref]

Z. Xiong, G. D. Peng, B. Wu, and P. L. Chu, “Highly tunable Bragg gratings in single-mode polymer optical fibers,” IEEE Photonics Technol. Lett. 11(3), 352–354 (1999).
[Crossref]

G. D. Peng, Z. Xiong, and P. L. Chu, “Photosensitivity and Gratings in Dye-Doped Polymer Optical Fibers,” Opt. Fiber Technol. 5(2), 242–251 (1999).
[Crossref]

Peng, G.-D.

Pereira, L. M.

Peters, K.

K. Peters, “Polymer optical fiber sensors—a review,” Smart Mater. Struct. 20(1), 013002 (2011).
[Crossref]

Pontes, M. J.

Pospori, A.

L. M. Pereira, A. Pospori, P. Antunes, M. F. Domingues, S. Marques, O. Bang, D. J. Webb, and C. A. F. Marques, “Phase-shifted Bragg grating inscription in PMMA microstructured POF using 248 nm UV radiation,” J. Lightwave Technol. 35(23), 5176–5184 (2017).
[Crossref]

A. Pospori, C. A. F. Marques, D. Sáez-Rodríguez, K. Nielsen, O. Bang, and D. J. Webb, “Thermal and chemical treatment of polymer optical fiber Bragg grating sensors for enhanced mechanical sensitivity,” Opt. Fiber Technol. 36, 68–74 (2017).
[Crossref]

C. A. F. Marques, A. Pospori, G. Demirci, O. Çetinkaya, B. Gawdzik, P. Antunes, O. Bang, P. Mergo, P. André, and D. J. Webb, “Fast bragg grating inscription in PMMA polymer optical fibres: Impact of thermal pre-treatment of preforms,” Sensors (Basel) 17(4), 1–8 (2017).
[Crossref] [PubMed]

A. Pospori, C. A. F. Marques, O. Bang, D. J. Webb, and P. André, “Polymer optical fiber Bragg grating inscription with a single UV laser pulse,” Opt. Express 25(8), 9028–9038 (2017).
[Crossref] [PubMed]

Prado, A. R.

Qiu, Y.

Rasmussen, H. K.

Ribeiro, M. R. N.

Rose, B.

W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. Herholdt-Rasmussen, F. K. Nielsen, S. Andresen, O. B. Sørensen, K. S. Hansen, and O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun. 284(1), 176–182 (2011).
[Crossref]

Russell, P. S. J.

Sáez-Rodríguez, D.

Sheng, Y.

Sørensen, O. B.

W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. Herholdt-Rasmussen, F. K. Nielsen, S. Andresen, O. B. Sørensen, K. S. Hansen, and O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun. 284(1), 176–182 (2011).
[Crossref]

Stefani, A.

G. Woyessa, K. Nielsen, A. Stefani, C. Markos, and O. Bang, “Temperature insensitive hysteresis free highly sensitive polymer optical fiber Bragg grating humidity sensor,” Opt. Express 24(2), 1206–1213 (2016).
[Crossref] [PubMed]

W. Yuan, A. Stefani, and O. Bang, “Tunable polymer Fiber Bragg Grating (FBG) inscription: Fabrication of dual-FBG temperature compensated polymer optical fiber strain sensors,” IEEE Photonics Technol. Lett. 24(5), 401–403 (2012).
[Crossref]

A. Stefani, K. Nielsen, H. K. Rasmussen, and O. Bang, “Cleaving of TOPAS and PMMA microstructured polymer optical fibers: core-shift and statistical quality optimization,” Opt. Commun. 285(7), 1825–1833 (2012).
[Crossref]

W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. Herholdt-Rasmussen, F. K. Nielsen, S. Andresen, O. B. Sørensen, K. S. Hansen, and O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun. 284(1), 176–182 (2011).
[Crossref]

Torres, P. I.

C. J. S. Matos, P. I. Torres, L. C. G. Valente, I. C. S. Carvalho, and W. Margulis, “Bragg grating fabrication by the external method with 266 nm light,” Proc. SPIE 3572, 400–404 (1999).
[Crossref]

Valente, L. C. G.

C. J. S. Matos, P. I. Torres, L. C. G. Valente, I. C. S. Carvalho, and W. Margulis, “Bragg grating fabrication by the external method with 266 nm light,” Proc. SPIE 3572, 400–404 (1999).
[Crossref]

Webb, D.

C. A. F. Marques, P. Antunes, P. Mergo, D. Webb, and P. B. Andre, “Chirped Bragg gratings in PMMA step-index polymer optical fiber,” IEEE Photonics Technol. Lett. 29(6), 500–503 (2017).
[Crossref]

Webb, D. J.

A. Pospori, C. A. F. Marques, D. Sáez-Rodríguez, K. Nielsen, O. Bang, and D. J. Webb, “Thermal and chemical treatment of polymer optical fiber Bragg grating sensors for enhanced mechanical sensitivity,” Opt. Fiber Technol. 36, 68–74 (2017).
[Crossref]

C. A. F. Marques, A. Pospori, G. Demirci, O. Çetinkaya, B. Gawdzik, P. Antunes, O. Bang, P. Mergo, P. André, and D. J. Webb, “Fast bragg grating inscription in PMMA polymer optical fibres: Impact of thermal pre-treatment of preforms,” Sensors (Basel) 17(4), 1–8 (2017).
[Crossref] [PubMed]

A. Pospori, C. A. F. Marques, O. Bang, D. J. Webb, and P. André, “Polymer optical fiber Bragg grating inscription with a single UV laser pulse,” Opt. Express 25(8), 9028–9038 (2017).
[Crossref] [PubMed]

L. M. Pereira, A. Pospori, P. Antunes, M. F. Domingues, S. Marques, O. Bang, D. J. Webb, and C. A. F. Marques, “Phase-shifted Bragg grating inscription in PMMA microstructured POF using 248 nm UV radiation,” J. Lightwave Technol. 35(23), 5176–5184 (2017).
[Crossref]

C. A. F. Marques, G.-D. Peng, and D. J. Webb, “Highly sensitive liquid level monitoring system utilizing polymer fiber Bragg gratings,” Opt. Express 23(5), 6058–6072 (2015).
[Crossref] [PubMed]

D. J. Webb, “Fibre Bragg grating sensors in polymer optical fibres,” Meas. Sci. Technol. 26(9), 092004 (2015).
[Crossref]

D. Sáez-Rodríguez, K. Nielsen, O. Bang, and D. J. Webb, “Photosensitivity mechanism of undoped poly(methyl methacrylate) under UV radiation at 325 nm and its spatial resolution limit,” Opt. Lett. 39(12), 3421–3424 (2014).
[Crossref] [PubMed]

A. Abang and D. J. Webb, “Influence of mounting on the hysteresis of polymer fiber Bragg grating strain sensors,” Opt. Lett. 38(9), 1376–1378 (2013).
[Crossref] [PubMed]

D. Sáez-Rodríguez, K. Nielsen, H. K. Rasmussen, O. Bang, and D. J. Webb, “Highly photosensitive polymethyl methacrylate microstructured polymer optical fiber with doped core,” Opt. Lett. 38(19), 3769–3772 (2013).
[Crossref] [PubMed]

C. A. F. Marques, L. B. Bilro, N. J. Alberto, D. J. Webb, and R. N. Nogueira, “Narrow bandwidth Bragg gratings imprinted in polymer optical fibers for different spectral windows,” Opt. Commun. 307, 57–61 (2013).
[Crossref]

X. Chen, C. Zhang, D. J. Webb, K. Kalli, and G.-D. Peng, “Highly Sensitive Bend Sensor Based on Bragg Grating in Eccentric Core Polymer Fiber,” IEEE Photonics Technol. Lett. 22(11), 850–852 (2010).
[Crossref]

Wochnowski, C.

C. Wochnowski, M. A. S. Eldin, and S. Metev, “UV-laser-assisted degradation of poly(methyl methacrylate),” Polym. Degrad. Stabil. 89(2), 252–264 (2005).
[Crossref]

Woyessa, G.

Wu, B.

Z. Xiong, G. D. Peng, B. Wu, and P. L. Chu, “Highly tunable Bragg gratings in single-mode polymer optical fibers,” IEEE Photonics Technol. Lett. 11(3), 352–354 (1999).
[Crossref]

Xiong, Z.

Z. Xiong, G. D. Peng, B. Wu, and P. L. Chu, “Highly tunable Bragg gratings in single-mode polymer optical fibers,” IEEE Photonics Technol. Lett. 11(3), 352–354 (1999).
[Crossref]

G. D. Peng, Z. Xiong, and P. L. Chu, “Photosensitivity and Gratings in Dye-Doped Polymer Optical Fibers,” Opt. Fiber Technol. 5(2), 242–251 (1999).
[Crossref]

Yokotani, A.

A. Kameyama, M. Katt, and A. Yokotani, “A simplified fabrication technique for tilted fiber bragg grating for the simultaneous measurement of refractive index and temperature of liquids,” J. Laser Micro Nanoeng. 9(3), 230–233 (2014).
[Crossref]

Yuan, W.

W. Yuan, A. Stefani, and O. Bang, “Tunable polymer Fiber Bragg Grating (FBG) inscription: Fabrication of dual-FBG temperature compensated polymer optical fiber strain sensors,” IEEE Photonics Technol. Lett. 24(5), 401–403 (2012).
[Crossref]

W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. Herholdt-Rasmussen, F. K. Nielsen, S. Andresen, O. B. Sørensen, K. S. Hansen, and O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun. 284(1), 176–182 (2011).
[Crossref]

Zhang, C.

X. Chen, C. Zhang, D. J. Webb, K. Kalli, and G.-D. Peng, “Highly Sensitive Bend Sensor Based on Bragg Grating in Eccentric Core Polymer Fiber,” IEEE Photonics Technol. Lett. 22(11), 850–852 (2010).
[Crossref]

Zhang, Q.

Appl. Phys. Lett. (2)

K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, “Photosensitivity in optical fiber waveguides: Application to reflection filter fabrication,” Appl. Phys. Lett. 32(10), 647–649 (1978).
[Crossref]

O. K. Hill, B. Malo, F. Bilodeau, D. C. Johnson, and J. Albert, “Bragg grating fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask,” Appl. Phys. Lett. 62(10), 1035–1037 (1993).
[Crossref]

Fiber Integr. Opt. (1)

G. D. Peng and P. L. Chu, “Polymer Optical Fiber Photosensitivities and Highly Tunable Fiber Gratings,” Fiber Integr. Opt. 19(4), 277–293 (2000).
[Crossref]

IEEE Photonics Technol. Lett. (4)

C. A. F. Marques, P. Antunes, P. Mergo, D. Webb, and P. B. Andre, “Chirped Bragg gratings in PMMA step-index polymer optical fiber,” IEEE Photonics Technol. Lett. 29(6), 500–503 (2017).
[Crossref]

X. Chen, C. Zhang, D. J. Webb, K. Kalli, and G.-D. Peng, “Highly Sensitive Bend Sensor Based on Bragg Grating in Eccentric Core Polymer Fiber,” IEEE Photonics Technol. Lett. 22(11), 850–852 (2010).
[Crossref]

Z. Xiong, G. D. Peng, B. Wu, and P. L. Chu, “Highly tunable Bragg gratings in single-mode polymer optical fibers,” IEEE Photonics Technol. Lett. 11(3), 352–354 (1999).
[Crossref]

W. Yuan, A. Stefani, and O. Bang, “Tunable polymer Fiber Bragg Grating (FBG) inscription: Fabrication of dual-FBG temperature compensated polymer optical fiber strain sensors,” IEEE Photonics Technol. Lett. 24(5), 401–403 (2012).
[Crossref]

IEEE Sens. J. (1)

H. Hassan, J. Janting, S. Aasmul, and O. Bang, “Polymer Optical Fiber Compound Parabolic Concentrator fiber tip based glucose sensor: in-Vitro Testing,” IEEE Sens. J. 16(23), 8483–8488 (2016).

Int. J. Photoenergy (1)

R. M. Ahmed, “Optical Study on Poly(methyl methacrylate)/Poly(vinyl acetate) Blends,” Int. J. Photoenergy 2009, 1–7 (2009).
[Crossref]

J. Laser Micro Nanoeng. (1)

A. Kameyama, M. Katt, and A. Yokotani, “A simplified fabrication technique for tilted fiber bragg grating for the simultaneous measurement of refractive index and temperature of liquids,” J. Laser Micro Nanoeng. 9(3), 230–233 (2014).
[Crossref]

J. Lightwave Technol. (2)

Meas. Sci. Technol. (1)

D. J. Webb, “Fibre Bragg grating sensors in polymer optical fibres,” Meas. Sci. Technol. 26(9), 092004 (2015).
[Crossref]

Opt. Commun. (3)

C. A. F. Marques, L. B. Bilro, N. J. Alberto, D. J. Webb, and R. N. Nogueira, “Narrow bandwidth Bragg gratings imprinted in polymer optical fibers for different spectral windows,” Opt. Commun. 307, 57–61 (2013).
[Crossref]

A. Stefani, K. Nielsen, H. K. Rasmussen, and O. Bang, “Cleaving of TOPAS and PMMA microstructured polymer optical fibers: core-shift and statistical quality optimization,” Opt. Commun. 285(7), 1825–1833 (2012).
[Crossref]

W. Yuan, A. Stefani, M. Bache, T. Jacobsen, B. Rose, N. Herholdt-Rasmussen, F. K. Nielsen, S. Andresen, O. B. Sørensen, K. S. Hansen, and O. Bang, “Improved thermal and strain performance of annealed polymer optical fiber Bragg gratings,” Opt. Commun. 284(1), 176–182 (2011).
[Crossref]

Opt. Express (8)

G. Woyessa, K. Nielsen, A. Stefani, C. Markos, and O. Bang, “Temperature insensitive hysteresis free highly sensitive polymer optical fiber Bragg grating humidity sensor,” Opt. Express 24(2), 1206–1213 (2016).
[Crossref] [PubMed]

I.-L. Bundalo, K. Nielsen, C. Markos, and O. Bang, “Bragg grating writing in PMMA microstructured polymer optical fibers in less than 7 minutes,” Opt. Express 22(5), 5270–5276 (2014).
[Crossref] [PubMed]

C. A. F. Marques, R. Min, A. L. Junior, P. Antunes, A. Fasano, G. Woyessa, K. Nielsen, H. K. Rasmussen, B. Ortega, and O. Bang, “Fast and stable gratings inscription in POFs made of different materials with pulsed 248 nm KrF laser,” Opt. Express 26(2), 2013–2022 (2018).
[Crossref] [PubMed]

A. Pospori, C. A. F. Marques, O. Bang, D. J. Webb, and P. André, “Polymer optical fiber Bragg grating inscription with a single UV laser pulse,” Opt. Express 25(8), 9028–9038 (2017).
[Crossref] [PubMed]

R. Oliveira, L. Bilro, and R. Nogueira, “Bragg gratings in a few mode microstructured polymer optical fiber in less than 30 seconds,” Opt. Express 23(8), 10181–10187 (2015).
[Crossref] [PubMed]

R. Min, B. Ortega, and C. Marques, “Fabrication of tunable chirped mPOF Bragg gratings using a uniform phase mask,” Opt. Express 26(4), 4411–4420 (2018).
[Crossref] [PubMed]

A. R. Prado, A. G. Leal-Junior, C. Marques, S. Leite, G. L. de Sena, L. C. Machado, A. Frizera, M. R. N. Ribeiro, and M. J. Pontes, “Polymethyl methacrylate (PMMA) recycling for the production of optical fiber sensor systems,” Opt. Express 25(24), 30051–30060 (2017).
[Crossref] [PubMed]

C. A. F. Marques, G.-D. Peng, and D. J. Webb, “Highly sensitive liquid level monitoring system utilizing polymer fiber Bragg gratings,” Opt. Express 23(5), 6058–6072 (2015).
[Crossref] [PubMed]

Opt. Fiber Technol. (2)

G. D. Peng, Z. Xiong, and P. L. Chu, “Photosensitivity and Gratings in Dye-Doped Polymer Optical Fibers,” Opt. Fiber Technol. 5(2), 242–251 (1999).
[Crossref]

A. Pospori, C. A. F. Marques, D. Sáez-Rodríguez, K. Nielsen, O. Bang, and D. J. Webb, “Thermal and chemical treatment of polymer optical fiber Bragg grating sensors for enhanced mechanical sensitivity,” Opt. Fiber Technol. 36, 68–74 (2017).
[Crossref]

Opt. Lett. (7)

Polym. Degrad. Stabil. (1)

C. Wochnowski, M. A. S. Eldin, and S. Metev, “UV-laser-assisted degradation of poly(methyl methacrylate),” Polym. Degrad. Stabil. 89(2), 252–264 (2005).
[Crossref]

Proc. SPIE (1)

C. J. S. Matos, P. I. Torres, L. C. G. Valente, I. C. S. Carvalho, and W. Margulis, “Bragg grating fabrication by the external method with 266 nm light,” Proc. SPIE 3572, 400–404 (1999).
[Crossref]

Sensors (Basel) (2)

G. Emiliyanov, P. E. Høiby, L. H. Pedersen, and O. Bang, “Selective serial multi-antibody biosensing with TOPAS microstructured polymer optical fibers,” Sensors (Basel) 13(3), 3242–3251 (2013).
[Crossref] [PubMed]

C. A. F. Marques, A. Pospori, G. Demirci, O. Çetinkaya, B. Gawdzik, P. Antunes, O. Bang, P. Mergo, P. André, and D. J. Webb, “Fast bragg grating inscription in PMMA polymer optical fibres: Impact of thermal pre-treatment of preforms,” Sensors (Basel) 17(4), 1–8 (2017).
[Crossref] [PubMed]

Smart Mater. Struct. (1)

K. Peters, “Polymer optical fiber sensors—a review,” Smart Mater. Struct. 20(1), 013002 (2011).
[Crossref]

Other (3)

O. W. Ziemann, J. Krauser, P. E. Zamzow, and W. Daum, POF Handbook, 2nd ed (Berlin: Springer-Verlag, 2008).

M. Large, G. W. Barton, L. Poladian, and M. A. van Eijkelenborg, Microstructured Polymer Optical Fibre (New York: Springer Science + Business Media LLC, 2008).

H.-J. Deyerl, S. Henrik Rokkjær, J. Jesper Bo, N. Plougmann, and M. Kristensen, “Fabrication and stability of fiber Bragg gratings for WDM applications using a 266nm CW-laser,” in CLEO/QELS IEEE (2003).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1 Sketch of the experimental setup based on phase mask technique.
Fig. 2
Fig. 2 Reflection/transmission spectra of the inscribed POFBG using a single pulse of 266 nm laser.
Fig. 3
Fig. 3 Stability of BDK-doped POFBG after 40 days. (a) Gratings strength, (b) bandwidth and (c) central wavelength.
Fig. 4
Fig. 4 (a) Transmission spectra of the POFBG at different temperatures; (b) Bragg wavelength tuning with increasing temperature.
Fig. 5
Fig. 5 (a) Transmission spectra of the POFBG at different strains; (b) Bragg wavelength tuning with increasing strain; (c) scattering of experimental points around the fit line with a Root Mean Square Error (RMSE) of 48 pm.

Tables (1)

Tables Icon

Table 1 Sensitivity analysis for each cycle and hysteresis.

Metrics