Abstract

We investigate the interest of combined process of reactive ion etching (RIE) and dynamic chemical etching (DCE) as a final step after polishing to improve the laser damage resistance of fused silica optics at the wavelength of 355 nm. The investigation is carried out on the polished fused silica optics by changing the RIE depth while keeping the DCE depth fixed. We evidence that the combined etching process can effectively remove the damage precursors on the fused silica surface and thus improve its laser-induced damage threshold exceeding the level of the deep HF-etched surface. The effects of the combined etching depth on the surface roughness and surface error are also studied systematically. We show that the combined shallow etching can achieve better overall surface quality. Deeper etching will cause surface quality degradation of the fused silica optics, which is believed to be associated with the chemical etching during the combined process. Given that HF acid processing will degrade the surface quality of fused silica optics, the combined shallow etching appears as a pertinent alternative to HF-based deep etching.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Reaction ion etching process for improving laser damage resistance of fused silica optical surface

Laixi Sun, Hongjie Liu, Jin Huang, Xin Ye, Handing Xia, Qingzhi Li, Xiaodong Jiang, Weidong Wu, Liming Yang, and Wanguo Zheng
Opt. Express 24(1) 199-211 (2016)

Combination of reaction ion etching and dynamic chemical etching for improving laser damage resistance of fused silica optical surfaces

Laixi Sun, Jin Huang, Hongjie Liu, Xin Ye, Jingjun Wu, Xiaodong Jiang, Liming Yang, Wanguo Zheng, and Weidong Wu
Opt. Lett. 41(19) 4464-4467 (2016)

Effects of deep wet etching in HF/HNO3 and KOH solutions on the laser damage resistance and surface quality of fused silica optics at 351 nm

Mathilde Pfiffer, Philippe Cormont, Evelyne Fargin, Bruno Bousquet, Marc Dussauze, Sébastien Lambert, and Jérôme Néauport
Opt. Express 25(5) 4607-4620 (2017)

References

  • View by:
  • |
  • |
  • |

  1. R. A. Negres, D. A. Cross, Z. M. Liao, M. J. Matthews, and C. W. Carr, “Growth model for laser-induced damage on the exit surface of fused silica under UV, ns laser irradiation,” Opt. Express 22(4), 3824–3844 (2014).
    [Crossref] [PubMed]
  2. N. Shen, J. D. Bude, and C. W. Carr, “Model laser damage precursors for high quality optical materials,” Opt. Express 22(3), 3393–3404 (2014).
    [Crossref] [PubMed]
  3. A. A. Manenkov, “Fundamental mechanisms of laser-induced damage in optical materials: today’s state of understanding and problems,” Opt. Eng. 53(1), 010901 (2014).
    [Crossref]
  4. T. Suratwala, L. Wong, P. Miller, M. Feit, J. Menapace, R. Steele, P. Davis, and D. Walmer, “Sub-surface mechanical damage distributions during grinding of fused silica,” J. Non-Cryst. Solids 352(52-54), 5601–5617 (2006).
    [Crossref]
  5. J. Neauport, C. Ambard, P. Cormont, N. Darbois, J. Destribats, C. Luitot, and O. Rondeau, “Subsurface damage measurement of ground fused silica parts by HF etching techniques,” Opt. Express 17(22), 20448–20456 (2009).
    [Crossref] [PubMed]
  6. T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-Based Etching Processes for Improving Laser Damage Resistance of Fused Silica Optical Surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).
    [Crossref]
  7. X. Ye, J. Huang, H. Liu, F. Geng, L. Sun, X. Jiang, W. Wu, L. Qiao, X. Zu, and W. Zheng, “Advanced Mitigation Process (AMP) for Improving Laser Damage Threshold of Fused Silica Optics,” Sci. Rep. 6(1), 31111 (2016).
    [Crossref] [PubMed]
  8. F. Shi, Y. Zhong, Y. Dai, X. Peng, M. Xu, and T. Sui, “Investigation of surface damage precursor evolutions and laser-induced damage threshold improvement mechanism during Ion beam etching of fused silica,” Opt. Express 24(18), 20842–20854 (2016).
    [Crossref] [PubMed]
  9. W. Liao, Y. Dai, Z. Liu, X. Xie, X. Nie, and M. Xu, “Detailed subsurface damage measurement and efficient damage-free fabrication of fused silica optics assisted by ion beam sputtering,” Opt. Express 24(4), 4247–4257 (2016).
    [Crossref] [PubMed]
  10. X. Peng, “Magnetorheological elastic super-smooth finishing for high-efficiency manufacturing of ultraviolet laser resistant optics,” Opt. Eng. 52(7), 075104 (2013).
    [Crossref]
  11. L. Sun, H. Liu, J. Huang, X. Ye, H. Xia, Q. Li, X. Jiang, W. Wu, L. Yang, and W. Zheng, “Reaction ion etching process for improving laser damage resistance of fused silica optical surface,” Opt. Express 24(1), 199–211 (2016).
    [Crossref] [PubMed]
  12. K. Juskevicius, R. Buzelis, R. Samuilovas, S. Abbas, G. Abromavičius, A. Puzas, and R. Drazdys, “Plasma etching of fused silica substrates for manufacturing high laser damage resistance optical interference coatings,” Opt. Mater. Express 7(10), 3598–3607 (2017).
    [Crossref]
  13. X. Jiang, Y. Liu, Z. Liu, K. Qiu, X. Xu, Y. Hong, and S. Fu, “Optimum inductively coupled plasma etching of fused silica to remove subsurface damage layer,” Appl. Surf. Sci. 355, 1180–1185 (2015).
    [Crossref]
  14. A. K. Paul, A. K. Dimri, and R. P. Bajpai, “Plasma etching processes for the realization of micromechanical structures for MEMS,” J. Indian Inst. Sci. 81, 669–674 (2001).
  15. J. Bude, P. Miller, S. Baxamusa, N. Shen, T. Laurence, W. Steele, T. Suratwala, L. Wong, W. Carr, D. Cross, and M. Monticelli, “High fluence laser damage precursors and their mitigation in fused silica,” Opt. Express 22(5), 5839–5851 (2014).
    [Crossref] [PubMed]
  16. S. Baxamusa, P. E. Miller, L. Wong, R. Steele, N. Shen, and J. Bude, “Mitigation of organic laser damage precursors from chemical processing of fused silica,” Opt. Express 22(24), 29568–29577 (2014).
    [Crossref] [PubMed]
  17. M. Pfiffer, P. Cormont, E. Fargin, B. Bousquet, M. Dussauze, S. Lambert, and J. Néauport, “Effects of deep wet etching in HF/HNO3 and KOH solutions on the laser damage resistance and surface quality of fused silica optics at 351 nm,” Opt. Express 25(5), 4607–4620 (2017).
    [Crossref] [PubMed]
  18. L. Wong, T. Suratwala, M. Feit, P. Miller, and R. Steele, “The Effect of HF/NH4F Etching on the Morphology of Surface Fractures on Fused Silica,” J. Non-Cryst. Solids 355(13), 797–810 (2009).
    [Crossref]
  19. M. Feit, T. Suratwala, L. Wong, W. Steele, P. Miller, and J. Bude, “Modeling wet chemical etching of surface flaws on fused silica,” in Laser Damage Symposium XLI: Annual Symposium on Optical Materials for High Power Lasers, 75040L–75040L–75013 (International Society for Optics and Photonics, 2009).
    [Crossref]
  20. L. Sun, J. Huang, H. Liu, X. Ye, J. Wu, X. Jiang, L. Yang, W. Zheng, and W. Wu, “Combination of reaction ion etching and dynamic chemical etching for improving laser damage resistance of fused silica optical surfaces,” Opt. Lett. 41(19), 4464–4467 (2016).
    [Crossref] [PubMed]
  21. L. M. Sheehan, M. R. Kozlowski, C. J. Stolz, F. Y. Genin, M. J. Runkel, S. Schwartz, and J. Hue, “Large-area damage testing of optics,” in Optical Instrumentation & Systems Design, 357–369 (International Society for Optics and Photonics, 1996).
  22. J. Hue, P. Garrec, J. Dijon, and P. Lyan, “R-on-1 automatic mapping: a new tool for laser damage testing,” in Laser-Induced Damage in Optical Materials: 1995, 90–101 (International Society for Optics and Photonics, 1996).
  23. P. D. Dragic, C. G. Carlson, and A. Croteau, “Characterization of defect luminescence in Yb doped silica fibers: part I NBOHC,” Opt. Express 16(7), 4688–4697 (2008).
    [Crossref] [PubMed]
  24. M. Guzzi, M. Martini, M. Mattaini, F. Pio, and G. Spinolo, “Luminescence of fused silica: Observation of the O2- emission band,” Phys. Rev. B Condens. Matter 35(17), 9407–9409 (1987).
    [Crossref] [PubMed]
  25. L. Sun, H. Jin, X. Ye, H. Liu, F. Wang, X. Jiang, W. Wu, and W. Zheng, “Surface modification and etch process optimization of fused silica during reaction CHF3-Ar plasma etching,” Optik (Stuttg.) 127(1), 206–211 (2016).
    [Crossref]

2017 (2)

2016 (6)

X. Ye, J. Huang, H. Liu, F. Geng, L. Sun, X. Jiang, W. Wu, L. Qiao, X. Zu, and W. Zheng, “Advanced Mitigation Process (AMP) for Improving Laser Damage Threshold of Fused Silica Optics,” Sci. Rep. 6(1), 31111 (2016).
[Crossref] [PubMed]

F. Shi, Y. Zhong, Y. Dai, X. Peng, M. Xu, and T. Sui, “Investigation of surface damage precursor evolutions and laser-induced damage threshold improvement mechanism during Ion beam etching of fused silica,” Opt. Express 24(18), 20842–20854 (2016).
[Crossref] [PubMed]

W. Liao, Y. Dai, Z. Liu, X. Xie, X. Nie, and M. Xu, “Detailed subsurface damage measurement and efficient damage-free fabrication of fused silica optics assisted by ion beam sputtering,” Opt. Express 24(4), 4247–4257 (2016).
[Crossref] [PubMed]

L. Sun, J. Huang, H. Liu, X. Ye, J. Wu, X. Jiang, L. Yang, W. Zheng, and W. Wu, “Combination of reaction ion etching and dynamic chemical etching for improving laser damage resistance of fused silica optical surfaces,” Opt. Lett. 41(19), 4464–4467 (2016).
[Crossref] [PubMed]

L. Sun, H. Liu, J. Huang, X. Ye, H. Xia, Q. Li, X. Jiang, W. Wu, L. Yang, and W. Zheng, “Reaction ion etching process for improving laser damage resistance of fused silica optical surface,” Opt. Express 24(1), 199–211 (2016).
[Crossref] [PubMed]

L. Sun, H. Jin, X. Ye, H. Liu, F. Wang, X. Jiang, W. Wu, and W. Zheng, “Surface modification and etch process optimization of fused silica during reaction CHF3-Ar plasma etching,” Optik (Stuttg.) 127(1), 206–211 (2016).
[Crossref]

2015 (1)

X. Jiang, Y. Liu, Z. Liu, K. Qiu, X. Xu, Y. Hong, and S. Fu, “Optimum inductively coupled plasma etching of fused silica to remove subsurface damage layer,” Appl. Surf. Sci. 355, 1180–1185 (2015).
[Crossref]

2014 (5)

2013 (1)

X. Peng, “Magnetorheological elastic super-smooth finishing for high-efficiency manufacturing of ultraviolet laser resistant optics,” Opt. Eng. 52(7), 075104 (2013).
[Crossref]

2011 (1)

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-Based Etching Processes for Improving Laser Damage Resistance of Fused Silica Optical Surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).
[Crossref]

2009 (2)

J. Neauport, C. Ambard, P. Cormont, N. Darbois, J. Destribats, C. Luitot, and O. Rondeau, “Subsurface damage measurement of ground fused silica parts by HF etching techniques,” Opt. Express 17(22), 20448–20456 (2009).
[Crossref] [PubMed]

L. Wong, T. Suratwala, M. Feit, P. Miller, and R. Steele, “The Effect of HF/NH4F Etching on the Morphology of Surface Fractures on Fused Silica,” J. Non-Cryst. Solids 355(13), 797–810 (2009).
[Crossref]

2008 (1)

2006 (1)

T. Suratwala, L. Wong, P. Miller, M. Feit, J. Menapace, R. Steele, P. Davis, and D. Walmer, “Sub-surface mechanical damage distributions during grinding of fused silica,” J. Non-Cryst. Solids 352(52-54), 5601–5617 (2006).
[Crossref]

2001 (1)

A. K. Paul, A. K. Dimri, and R. P. Bajpai, “Plasma etching processes for the realization of micromechanical structures for MEMS,” J. Indian Inst. Sci. 81, 669–674 (2001).

1987 (1)

M. Guzzi, M. Martini, M. Mattaini, F. Pio, and G. Spinolo, “Luminescence of fused silica: Observation of the O2- emission band,” Phys. Rev. B Condens. Matter 35(17), 9407–9409 (1987).
[Crossref] [PubMed]

Abbas, S.

Abromavicius, G.

Ambard, C.

Bajpai, R. P.

A. K. Paul, A. K. Dimri, and R. P. Bajpai, “Plasma etching processes for the realization of micromechanical structures for MEMS,” J. Indian Inst. Sci. 81, 669–674 (2001).

Baxamusa, S.

Bousquet, B.

Bude, J.

Bude, J. D.

N. Shen, J. D. Bude, and C. W. Carr, “Model laser damage precursors for high quality optical materials,” Opt. Express 22(3), 3393–3404 (2014).
[Crossref] [PubMed]

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-Based Etching Processes for Improving Laser Damage Resistance of Fused Silica Optical Surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).
[Crossref]

Buzelis, R.

Carlson, C. G.

Carr, C. W.

N. Shen, J. D. Bude, and C. W. Carr, “Model laser damage precursors for high quality optical materials,” Opt. Express 22(3), 3393–3404 (2014).
[Crossref] [PubMed]

R. A. Negres, D. A. Cross, Z. M. Liao, M. J. Matthews, and C. W. Carr, “Growth model for laser-induced damage on the exit surface of fused silica under UV, ns laser irradiation,” Opt. Express 22(4), 3824–3844 (2014).
[Crossref] [PubMed]

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-Based Etching Processes for Improving Laser Damage Resistance of Fused Silica Optical Surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).
[Crossref]

Carr, W.

Cormont, P.

Cross, D.

Cross, D. A.

Croteau, A.

Dai, Y.

Darbois, N.

Davis, P.

T. Suratwala, L. Wong, P. Miller, M. Feit, J. Menapace, R. Steele, P. Davis, and D. Walmer, “Sub-surface mechanical damage distributions during grinding of fused silica,” J. Non-Cryst. Solids 352(52-54), 5601–5617 (2006).
[Crossref]

Destribats, J.

Dimri, A. K.

A. K. Paul, A. K. Dimri, and R. P. Bajpai, “Plasma etching processes for the realization of micromechanical structures for MEMS,” J. Indian Inst. Sci. 81, 669–674 (2001).

Dragic, P. D.

Drazdys, R.

Dussauze, M.

Fargin, E.

Feit, M.

L. Wong, T. Suratwala, M. Feit, P. Miller, and R. Steele, “The Effect of HF/NH4F Etching on the Morphology of Surface Fractures on Fused Silica,” J. Non-Cryst. Solids 355(13), 797–810 (2009).
[Crossref]

T. Suratwala, L. Wong, P. Miller, M. Feit, J. Menapace, R. Steele, P. Davis, and D. Walmer, “Sub-surface mechanical damage distributions during grinding of fused silica,” J. Non-Cryst. Solids 352(52-54), 5601–5617 (2006).
[Crossref]

Feit, M. D.

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-Based Etching Processes for Improving Laser Damage Resistance of Fused Silica Optical Surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).
[Crossref]

Fu, S.

X. Jiang, Y. Liu, Z. Liu, K. Qiu, X. Xu, Y. Hong, and S. Fu, “Optimum inductively coupled plasma etching of fused silica to remove subsurface damage layer,” Appl. Surf. Sci. 355, 1180–1185 (2015).
[Crossref]

Geng, F.

X. Ye, J. Huang, H. Liu, F. Geng, L. Sun, X. Jiang, W. Wu, L. Qiao, X. Zu, and W. Zheng, “Advanced Mitigation Process (AMP) for Improving Laser Damage Threshold of Fused Silica Optics,” Sci. Rep. 6(1), 31111 (2016).
[Crossref] [PubMed]

Guzzi, M.

M. Guzzi, M. Martini, M. Mattaini, F. Pio, and G. Spinolo, “Luminescence of fused silica: Observation of the O2- emission band,” Phys. Rev. B Condens. Matter 35(17), 9407–9409 (1987).
[Crossref] [PubMed]

Hong, Y.

X. Jiang, Y. Liu, Z. Liu, K. Qiu, X. Xu, Y. Hong, and S. Fu, “Optimum inductively coupled plasma etching of fused silica to remove subsurface damage layer,” Appl. Surf. Sci. 355, 1180–1185 (2015).
[Crossref]

Huang, J.

Jiang, X.

L. Sun, H. Liu, J. Huang, X. Ye, H. Xia, Q. Li, X. Jiang, W. Wu, L. Yang, and W. Zheng, “Reaction ion etching process for improving laser damage resistance of fused silica optical surface,” Opt. Express 24(1), 199–211 (2016).
[Crossref] [PubMed]

X. Ye, J. Huang, H. Liu, F. Geng, L. Sun, X. Jiang, W. Wu, L. Qiao, X. Zu, and W. Zheng, “Advanced Mitigation Process (AMP) for Improving Laser Damage Threshold of Fused Silica Optics,” Sci. Rep. 6(1), 31111 (2016).
[Crossref] [PubMed]

L. Sun, J. Huang, H. Liu, X. Ye, J. Wu, X. Jiang, L. Yang, W. Zheng, and W. Wu, “Combination of reaction ion etching and dynamic chemical etching for improving laser damage resistance of fused silica optical surfaces,” Opt. Lett. 41(19), 4464–4467 (2016).
[Crossref] [PubMed]

L. Sun, H. Jin, X. Ye, H. Liu, F. Wang, X. Jiang, W. Wu, and W. Zheng, “Surface modification and etch process optimization of fused silica during reaction CHF3-Ar plasma etching,” Optik (Stuttg.) 127(1), 206–211 (2016).
[Crossref]

X. Jiang, Y. Liu, Z. Liu, K. Qiu, X. Xu, Y. Hong, and S. Fu, “Optimum inductively coupled plasma etching of fused silica to remove subsurface damage layer,” Appl. Surf. Sci. 355, 1180–1185 (2015).
[Crossref]

Jin, H.

L. Sun, H. Jin, X. Ye, H. Liu, F. Wang, X. Jiang, W. Wu, and W. Zheng, “Surface modification and etch process optimization of fused silica during reaction CHF3-Ar plasma etching,” Optik (Stuttg.) 127(1), 206–211 (2016).
[Crossref]

Juskevicius, K.

Lambert, S.

Laurence, T.

Laurence, T. A.

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-Based Etching Processes for Improving Laser Damage Resistance of Fused Silica Optical Surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).
[Crossref]

Li, Q.

Liao, W.

Liao, Z. M.

Liu, H.

X. Ye, J. Huang, H. Liu, F. Geng, L. Sun, X. Jiang, W. Wu, L. Qiao, X. Zu, and W. Zheng, “Advanced Mitigation Process (AMP) for Improving Laser Damage Threshold of Fused Silica Optics,” Sci. Rep. 6(1), 31111 (2016).
[Crossref] [PubMed]

L. Sun, H. Liu, J. Huang, X. Ye, H. Xia, Q. Li, X. Jiang, W. Wu, L. Yang, and W. Zheng, “Reaction ion etching process for improving laser damage resistance of fused silica optical surface,” Opt. Express 24(1), 199–211 (2016).
[Crossref] [PubMed]

L. Sun, H. Jin, X. Ye, H. Liu, F. Wang, X. Jiang, W. Wu, and W. Zheng, “Surface modification and etch process optimization of fused silica during reaction CHF3-Ar plasma etching,” Optik (Stuttg.) 127(1), 206–211 (2016).
[Crossref]

L. Sun, J. Huang, H. Liu, X. Ye, J. Wu, X. Jiang, L. Yang, W. Zheng, and W. Wu, “Combination of reaction ion etching and dynamic chemical etching for improving laser damage resistance of fused silica optical surfaces,” Opt. Lett. 41(19), 4464–4467 (2016).
[Crossref] [PubMed]

Liu, Y.

X. Jiang, Y. Liu, Z. Liu, K. Qiu, X. Xu, Y. Hong, and S. Fu, “Optimum inductively coupled plasma etching of fused silica to remove subsurface damage layer,” Appl. Surf. Sci. 355, 1180–1185 (2015).
[Crossref]

Liu, Z.

W. Liao, Y. Dai, Z. Liu, X. Xie, X. Nie, and M. Xu, “Detailed subsurface damage measurement and efficient damage-free fabrication of fused silica optics assisted by ion beam sputtering,” Opt. Express 24(4), 4247–4257 (2016).
[Crossref] [PubMed]

X. Jiang, Y. Liu, Z. Liu, K. Qiu, X. Xu, Y. Hong, and S. Fu, “Optimum inductively coupled plasma etching of fused silica to remove subsurface damage layer,” Appl. Surf. Sci. 355, 1180–1185 (2015).
[Crossref]

Luitot, C.

Manenkov, A. A.

A. A. Manenkov, “Fundamental mechanisms of laser-induced damage in optical materials: today’s state of understanding and problems,” Opt. Eng. 53(1), 010901 (2014).
[Crossref]

Martini, M.

M. Guzzi, M. Martini, M. Mattaini, F. Pio, and G. Spinolo, “Luminescence of fused silica: Observation of the O2- emission band,” Phys. Rev. B Condens. Matter 35(17), 9407–9409 (1987).
[Crossref] [PubMed]

Mattaini, M.

M. Guzzi, M. Martini, M. Mattaini, F. Pio, and G. Spinolo, “Luminescence of fused silica: Observation of the O2- emission band,” Phys. Rev. B Condens. Matter 35(17), 9407–9409 (1987).
[Crossref] [PubMed]

Matthews, M. J.

Menapace, J.

T. Suratwala, L. Wong, P. Miller, M. Feit, J. Menapace, R. Steele, P. Davis, and D. Walmer, “Sub-surface mechanical damage distributions during grinding of fused silica,” J. Non-Cryst. Solids 352(52-54), 5601–5617 (2006).
[Crossref]

Miller, P.

J. Bude, P. Miller, S. Baxamusa, N. Shen, T. Laurence, W. Steele, T. Suratwala, L. Wong, W. Carr, D. Cross, and M. Monticelli, “High fluence laser damage precursors and their mitigation in fused silica,” Opt. Express 22(5), 5839–5851 (2014).
[Crossref] [PubMed]

L. Wong, T. Suratwala, M. Feit, P. Miller, and R. Steele, “The Effect of HF/NH4F Etching on the Morphology of Surface Fractures on Fused Silica,” J. Non-Cryst. Solids 355(13), 797–810 (2009).
[Crossref]

T. Suratwala, L. Wong, P. Miller, M. Feit, J. Menapace, R. Steele, P. Davis, and D. Walmer, “Sub-surface mechanical damage distributions during grinding of fused silica,” J. Non-Cryst. Solids 352(52-54), 5601–5617 (2006).
[Crossref]

Miller, P. E.

S. Baxamusa, P. E. Miller, L. Wong, R. Steele, N. Shen, and J. Bude, “Mitigation of organic laser damage precursors from chemical processing of fused silica,” Opt. Express 22(24), 29568–29577 (2014).
[Crossref] [PubMed]

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-Based Etching Processes for Improving Laser Damage Resistance of Fused Silica Optical Surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).
[Crossref]

Monticelli, M.

Monticelli, M. V.

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-Based Etching Processes for Improving Laser Damage Resistance of Fused Silica Optical Surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).
[Crossref]

Neauport, J.

Néauport, J.

Negres, R. A.

Nie, X.

Norton, M. A.

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-Based Etching Processes for Improving Laser Damage Resistance of Fused Silica Optical Surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).
[Crossref]

Paul, A. K.

A. K. Paul, A. K. Dimri, and R. P. Bajpai, “Plasma etching processes for the realization of micromechanical structures for MEMS,” J. Indian Inst. Sci. 81, 669–674 (2001).

Peng, X.

Pfiffer, M.

Pio, F.

M. Guzzi, M. Martini, M. Mattaini, F. Pio, and G. Spinolo, “Luminescence of fused silica: Observation of the O2- emission band,” Phys. Rev. B Condens. Matter 35(17), 9407–9409 (1987).
[Crossref] [PubMed]

Puzas, A.

Qiao, L.

X. Ye, J. Huang, H. Liu, F. Geng, L. Sun, X. Jiang, W. Wu, L. Qiao, X. Zu, and W. Zheng, “Advanced Mitigation Process (AMP) for Improving Laser Damage Threshold of Fused Silica Optics,” Sci. Rep. 6(1), 31111 (2016).
[Crossref] [PubMed]

Qiu, K.

X. Jiang, Y. Liu, Z. Liu, K. Qiu, X. Xu, Y. Hong, and S. Fu, “Optimum inductively coupled plasma etching of fused silica to remove subsurface damage layer,” Appl. Surf. Sci. 355, 1180–1185 (2015).
[Crossref]

Rondeau, O.

Samuilovas, R.

Shen, N.

Shi, F.

Spinolo, G.

M. Guzzi, M. Martini, M. Mattaini, F. Pio, and G. Spinolo, “Luminescence of fused silica: Observation of the O2- emission band,” Phys. Rev. B Condens. Matter 35(17), 9407–9409 (1987).
[Crossref] [PubMed]

Steele, R.

S. Baxamusa, P. E. Miller, L. Wong, R. Steele, N. Shen, and J. Bude, “Mitigation of organic laser damage precursors from chemical processing of fused silica,” Opt. Express 22(24), 29568–29577 (2014).
[Crossref] [PubMed]

L. Wong, T. Suratwala, M. Feit, P. Miller, and R. Steele, “The Effect of HF/NH4F Etching on the Morphology of Surface Fractures on Fused Silica,” J. Non-Cryst. Solids 355(13), 797–810 (2009).
[Crossref]

T. Suratwala, L. Wong, P. Miller, M. Feit, J. Menapace, R. Steele, P. Davis, and D. Walmer, “Sub-surface mechanical damage distributions during grinding of fused silica,” J. Non-Cryst. Solids 352(52-54), 5601–5617 (2006).
[Crossref]

Steele, W.

Steele, W. A.

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-Based Etching Processes for Improving Laser Damage Resistance of Fused Silica Optical Surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).
[Crossref]

Sui, T.

Sun, L.

L. Sun, H. Liu, J. Huang, X. Ye, H. Xia, Q. Li, X. Jiang, W. Wu, L. Yang, and W. Zheng, “Reaction ion etching process for improving laser damage resistance of fused silica optical surface,” Opt. Express 24(1), 199–211 (2016).
[Crossref] [PubMed]

X. Ye, J. Huang, H. Liu, F. Geng, L. Sun, X. Jiang, W. Wu, L. Qiao, X. Zu, and W. Zheng, “Advanced Mitigation Process (AMP) for Improving Laser Damage Threshold of Fused Silica Optics,” Sci. Rep. 6(1), 31111 (2016).
[Crossref] [PubMed]

L. Sun, J. Huang, H. Liu, X. Ye, J. Wu, X. Jiang, L. Yang, W. Zheng, and W. Wu, “Combination of reaction ion etching and dynamic chemical etching for improving laser damage resistance of fused silica optical surfaces,” Opt. Lett. 41(19), 4464–4467 (2016).
[Crossref] [PubMed]

L. Sun, H. Jin, X. Ye, H. Liu, F. Wang, X. Jiang, W. Wu, and W. Zheng, “Surface modification and etch process optimization of fused silica during reaction CHF3-Ar plasma etching,” Optik (Stuttg.) 127(1), 206–211 (2016).
[Crossref]

Suratwala, T.

J. Bude, P. Miller, S. Baxamusa, N. Shen, T. Laurence, W. Steele, T. Suratwala, L. Wong, W. Carr, D. Cross, and M. Monticelli, “High fluence laser damage precursors and their mitigation in fused silica,” Opt. Express 22(5), 5839–5851 (2014).
[Crossref] [PubMed]

L. Wong, T. Suratwala, M. Feit, P. Miller, and R. Steele, “The Effect of HF/NH4F Etching on the Morphology of Surface Fractures on Fused Silica,” J. Non-Cryst. Solids 355(13), 797–810 (2009).
[Crossref]

T. Suratwala, L. Wong, P. Miller, M. Feit, J. Menapace, R. Steele, P. Davis, and D. Walmer, “Sub-surface mechanical damage distributions during grinding of fused silica,” J. Non-Cryst. Solids 352(52-54), 5601–5617 (2006).
[Crossref]

Suratwala, T. I.

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-Based Etching Processes for Improving Laser Damage Resistance of Fused Silica Optical Surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).
[Crossref]

Walmer, D.

T. Suratwala, L. Wong, P. Miller, M. Feit, J. Menapace, R. Steele, P. Davis, and D. Walmer, “Sub-surface mechanical damage distributions during grinding of fused silica,” J. Non-Cryst. Solids 352(52-54), 5601–5617 (2006).
[Crossref]

Wang, F.

L. Sun, H. Jin, X. Ye, H. Liu, F. Wang, X. Jiang, W. Wu, and W. Zheng, “Surface modification and etch process optimization of fused silica during reaction CHF3-Ar plasma etching,” Optik (Stuttg.) 127(1), 206–211 (2016).
[Crossref]

Wong, L.

J. Bude, P. Miller, S. Baxamusa, N. Shen, T. Laurence, W. Steele, T. Suratwala, L. Wong, W. Carr, D. Cross, and M. Monticelli, “High fluence laser damage precursors and their mitigation in fused silica,” Opt. Express 22(5), 5839–5851 (2014).
[Crossref] [PubMed]

S. Baxamusa, P. E. Miller, L. Wong, R. Steele, N. Shen, and J. Bude, “Mitigation of organic laser damage precursors from chemical processing of fused silica,” Opt. Express 22(24), 29568–29577 (2014).
[Crossref] [PubMed]

L. Wong, T. Suratwala, M. Feit, P. Miller, and R. Steele, “The Effect of HF/NH4F Etching on the Morphology of Surface Fractures on Fused Silica,” J. Non-Cryst. Solids 355(13), 797–810 (2009).
[Crossref]

T. Suratwala, L. Wong, P. Miller, M. Feit, J. Menapace, R. Steele, P. Davis, and D. Walmer, “Sub-surface mechanical damage distributions during grinding of fused silica,” J. Non-Cryst. Solids 352(52-54), 5601–5617 (2006).
[Crossref]

Wong, L. L.

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-Based Etching Processes for Improving Laser Damage Resistance of Fused Silica Optical Surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).
[Crossref]

Wu, J.

Wu, W.

L. Sun, J. Huang, H. Liu, X. Ye, J. Wu, X. Jiang, L. Yang, W. Zheng, and W. Wu, “Combination of reaction ion etching and dynamic chemical etching for improving laser damage resistance of fused silica optical surfaces,” Opt. Lett. 41(19), 4464–4467 (2016).
[Crossref] [PubMed]

L. Sun, H. Jin, X. Ye, H. Liu, F. Wang, X. Jiang, W. Wu, and W. Zheng, “Surface modification and etch process optimization of fused silica during reaction CHF3-Ar plasma etching,” Optik (Stuttg.) 127(1), 206–211 (2016).
[Crossref]

X. Ye, J. Huang, H. Liu, F. Geng, L. Sun, X. Jiang, W. Wu, L. Qiao, X. Zu, and W. Zheng, “Advanced Mitigation Process (AMP) for Improving Laser Damage Threshold of Fused Silica Optics,” Sci. Rep. 6(1), 31111 (2016).
[Crossref] [PubMed]

L. Sun, H. Liu, J. Huang, X. Ye, H. Xia, Q. Li, X. Jiang, W. Wu, L. Yang, and W. Zheng, “Reaction ion etching process for improving laser damage resistance of fused silica optical surface,” Opt. Express 24(1), 199–211 (2016).
[Crossref] [PubMed]

Xia, H.

Xie, X.

Xu, M.

Xu, X.

X. Jiang, Y. Liu, Z. Liu, K. Qiu, X. Xu, Y. Hong, and S. Fu, “Optimum inductively coupled plasma etching of fused silica to remove subsurface damage layer,” Appl. Surf. Sci. 355, 1180–1185 (2015).
[Crossref]

Yang, L.

Ye, X.

L. Sun, J. Huang, H. Liu, X. Ye, J. Wu, X. Jiang, L. Yang, W. Zheng, and W. Wu, “Combination of reaction ion etching and dynamic chemical etching for improving laser damage resistance of fused silica optical surfaces,” Opt. Lett. 41(19), 4464–4467 (2016).
[Crossref] [PubMed]

L. Sun, H. Jin, X. Ye, H. Liu, F. Wang, X. Jiang, W. Wu, and W. Zheng, “Surface modification and etch process optimization of fused silica during reaction CHF3-Ar plasma etching,” Optik (Stuttg.) 127(1), 206–211 (2016).
[Crossref]

L. Sun, H. Liu, J. Huang, X. Ye, H. Xia, Q. Li, X. Jiang, W. Wu, L. Yang, and W. Zheng, “Reaction ion etching process for improving laser damage resistance of fused silica optical surface,” Opt. Express 24(1), 199–211 (2016).
[Crossref] [PubMed]

X. Ye, J. Huang, H. Liu, F. Geng, L. Sun, X. Jiang, W. Wu, L. Qiao, X. Zu, and W. Zheng, “Advanced Mitigation Process (AMP) for Improving Laser Damage Threshold of Fused Silica Optics,” Sci. Rep. 6(1), 31111 (2016).
[Crossref] [PubMed]

Zheng, W.

L. Sun, H. Liu, J. Huang, X. Ye, H. Xia, Q. Li, X. Jiang, W. Wu, L. Yang, and W. Zheng, “Reaction ion etching process for improving laser damage resistance of fused silica optical surface,” Opt. Express 24(1), 199–211 (2016).
[Crossref] [PubMed]

X. Ye, J. Huang, H. Liu, F. Geng, L. Sun, X. Jiang, W. Wu, L. Qiao, X. Zu, and W. Zheng, “Advanced Mitigation Process (AMP) for Improving Laser Damage Threshold of Fused Silica Optics,” Sci. Rep. 6(1), 31111 (2016).
[Crossref] [PubMed]

L. Sun, H. Jin, X. Ye, H. Liu, F. Wang, X. Jiang, W. Wu, and W. Zheng, “Surface modification and etch process optimization of fused silica during reaction CHF3-Ar plasma etching,” Optik (Stuttg.) 127(1), 206–211 (2016).
[Crossref]

L. Sun, J. Huang, H. Liu, X. Ye, J. Wu, X. Jiang, L. Yang, W. Zheng, and W. Wu, “Combination of reaction ion etching and dynamic chemical etching for improving laser damage resistance of fused silica optical surfaces,” Opt. Lett. 41(19), 4464–4467 (2016).
[Crossref] [PubMed]

Zhong, Y.

Zu, X.

X. Ye, J. Huang, H. Liu, F. Geng, L. Sun, X. Jiang, W. Wu, L. Qiao, X. Zu, and W. Zheng, “Advanced Mitigation Process (AMP) for Improving Laser Damage Threshold of Fused Silica Optics,” Sci. Rep. 6(1), 31111 (2016).
[Crossref] [PubMed]

Appl. Surf. Sci. (1)

X. Jiang, Y. Liu, Z. Liu, K. Qiu, X. Xu, Y. Hong, and S. Fu, “Optimum inductively coupled plasma etching of fused silica to remove subsurface damage layer,” Appl. Surf. Sci. 355, 1180–1185 (2015).
[Crossref]

J. Am. Ceram. Soc. (1)

T. I. Suratwala, P. E. Miller, J. D. Bude, W. A. Steele, N. Shen, M. V. Monticelli, M. D. Feit, T. A. Laurence, M. A. Norton, C. W. Carr, and L. L. Wong, “HF-Based Etching Processes for Improving Laser Damage Resistance of Fused Silica Optical Surfaces,” J. Am. Ceram. Soc. 94(2), 416–428 (2011).
[Crossref]

J. Indian Inst. Sci. (1)

A. K. Paul, A. K. Dimri, and R. P. Bajpai, “Plasma etching processes for the realization of micromechanical structures for MEMS,” J. Indian Inst. Sci. 81, 669–674 (2001).

J. Non-Cryst. Solids (2)

L. Wong, T. Suratwala, M. Feit, P. Miller, and R. Steele, “The Effect of HF/NH4F Etching on the Morphology of Surface Fractures on Fused Silica,” J. Non-Cryst. Solids 355(13), 797–810 (2009).
[Crossref]

T. Suratwala, L. Wong, P. Miller, M. Feit, J. Menapace, R. Steele, P. Davis, and D. Walmer, “Sub-surface mechanical damage distributions during grinding of fused silica,” J. Non-Cryst. Solids 352(52-54), 5601–5617 (2006).
[Crossref]

Opt. Eng. (2)

X. Peng, “Magnetorheological elastic super-smooth finishing for high-efficiency manufacturing of ultraviolet laser resistant optics,” Opt. Eng. 52(7), 075104 (2013).
[Crossref]

A. A. Manenkov, “Fundamental mechanisms of laser-induced damage in optical materials: today’s state of understanding and problems,” Opt. Eng. 53(1), 010901 (2014).
[Crossref]

Opt. Express (10)

P. D. Dragic, C. G. Carlson, and A. Croteau, “Characterization of defect luminescence in Yb doped silica fibers: part I NBOHC,” Opt. Express 16(7), 4688–4697 (2008).
[Crossref] [PubMed]

L. Sun, H. Liu, J. Huang, X. Ye, H. Xia, Q. Li, X. Jiang, W. Wu, L. Yang, and W. Zheng, “Reaction ion etching process for improving laser damage resistance of fused silica optical surface,” Opt. Express 24(1), 199–211 (2016).
[Crossref] [PubMed]

J. Bude, P. Miller, S. Baxamusa, N. Shen, T. Laurence, W. Steele, T. Suratwala, L. Wong, W. Carr, D. Cross, and M. Monticelli, “High fluence laser damage precursors and their mitigation in fused silica,” Opt. Express 22(5), 5839–5851 (2014).
[Crossref] [PubMed]

S. Baxamusa, P. E. Miller, L. Wong, R. Steele, N. Shen, and J. Bude, “Mitigation of organic laser damage precursors from chemical processing of fused silica,” Opt. Express 22(24), 29568–29577 (2014).
[Crossref] [PubMed]

M. Pfiffer, P. Cormont, E. Fargin, B. Bousquet, M. Dussauze, S. Lambert, and J. Néauport, “Effects of deep wet etching in HF/HNO3 and KOH solutions on the laser damage resistance and surface quality of fused silica optics at 351 nm,” Opt. Express 25(5), 4607–4620 (2017).
[Crossref] [PubMed]

J. Neauport, C. Ambard, P. Cormont, N. Darbois, J. Destribats, C. Luitot, and O. Rondeau, “Subsurface damage measurement of ground fused silica parts by HF etching techniques,” Opt. Express 17(22), 20448–20456 (2009).
[Crossref] [PubMed]

R. A. Negres, D. A. Cross, Z. M. Liao, M. J. Matthews, and C. W. Carr, “Growth model for laser-induced damage on the exit surface of fused silica under UV, ns laser irradiation,” Opt. Express 22(4), 3824–3844 (2014).
[Crossref] [PubMed]

N. Shen, J. D. Bude, and C. W. Carr, “Model laser damage precursors for high quality optical materials,” Opt. Express 22(3), 3393–3404 (2014).
[Crossref] [PubMed]

F. Shi, Y. Zhong, Y. Dai, X. Peng, M. Xu, and T. Sui, “Investigation of surface damage precursor evolutions and laser-induced damage threshold improvement mechanism during Ion beam etching of fused silica,” Opt. Express 24(18), 20842–20854 (2016).
[Crossref] [PubMed]

W. Liao, Y. Dai, Z. Liu, X. Xie, X. Nie, and M. Xu, “Detailed subsurface damage measurement and efficient damage-free fabrication of fused silica optics assisted by ion beam sputtering,” Opt. Express 24(4), 4247–4257 (2016).
[Crossref] [PubMed]

Opt. Lett. (1)

Opt. Mater. Express (1)

Optik (Stuttg.) (1)

L. Sun, H. Jin, X. Ye, H. Liu, F. Wang, X. Jiang, W. Wu, and W. Zheng, “Surface modification and etch process optimization of fused silica during reaction CHF3-Ar plasma etching,” Optik (Stuttg.) 127(1), 206–211 (2016).
[Crossref]

Phys. Rev. B Condens. Matter (1)

M. Guzzi, M. Martini, M. Mattaini, F. Pio, and G. Spinolo, “Luminescence of fused silica: Observation of the O2- emission band,” Phys. Rev. B Condens. Matter 35(17), 9407–9409 (1987).
[Crossref] [PubMed]

Sci. Rep. (1)

X. Ye, J. Huang, H. Liu, F. Geng, L. Sun, X. Jiang, W. Wu, L. Qiao, X. Zu, and W. Zheng, “Advanced Mitigation Process (AMP) for Improving Laser Damage Threshold of Fused Silica Optics,” Sci. Rep. 6(1), 31111 (2016).
[Crossref] [PubMed]

Other (3)

M. Feit, T. Suratwala, L. Wong, W. Steele, P. Miller, and J. Bude, “Modeling wet chemical etching of surface flaws on fused silica,” in Laser Damage Symposium XLI: Annual Symposium on Optical Materials for High Power Lasers, 75040L–75040L–75013 (International Society for Optics and Photonics, 2009).
[Crossref]

L. M. Sheehan, M. R. Kozlowski, C. J. Stolz, F. Y. Genin, M. J. Runkel, S. Schwartz, and J. Hue, “Large-area damage testing of optics,” in Optical Instrumentation & Systems Design, 357–369 (International Society for Optics and Photonics, 1996).

J. Hue, P. Garrec, J. Dijon, and P. Lyan, “R-on-1 automatic mapping: a new tool for laser damage testing,” in Laser-Induced Damage in Optical Materials: 1995, 90–101 (International Society for Optics and Photonics, 1996).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1 Flow diagram of the combined etching process for the fused silica samples. Figures 1(a)-(d) show the anisotropic RIE pretreatment on the fused silica surface to remove the SSD step by step. Figures 1(e)-(g) show the isotropic DCE retreatment on the RIE-pretreated fused silica surface to passivate the unstable chemical-structure.
Fig. 2
Fig. 2 Average LIDT of the samples with different RIE depths.
Fig. 3
Fig. 3 Surface roughness of the samples with different RIE depths.
Fig. 4
Fig. 4 FL spectra of the samples treated with different RIE depths.
Fig. 5
Fig. 5 Damage probability of the samples treated with different etching processes. Sample A: black squares - reference, sample B: red circles - 20 μm DCE, sample C1: blue triangles - 1 μm RIE and 3 μm DCE, sample C2: green stars - 5 μm RIE and 3 μm DCE, sample C3: pink diamonds - 15 μm RIE and 3 μm DCE.
Fig. 6
Fig. 6 Surface roughness of the samples with different processes (sub-millimeter scale).
Fig. 7
Fig. 7 Surface roughness and morphology of the samples treated with different etching processes (micron scale).
Fig. 8
Fig. 8 Surface error of the samples treated with different etching processes.
Fig. 9
Fig. 9 3D plot and histogram of the surface error for all the samples treated with different etching processes.
Fig. 10
Fig. 10 FL spectra of the samples treated with different etching processes.
Fig. 11
Fig. 11 Microscopy observation of the samples treated with different etching processes. a - sample C3: 15 μm RIE and 3 μm DCE, b - sample B: 20 μm DCE. Three testing positions for each sample were presented.

Tables (2)

Tables Icon

Table 1 Parameters of the samples treated by combined etching process.

Tables Icon

Table 2 Detail parameters of RIE process.