Abstract

Wire-medium endoscopes represent a promising tool of THz sensing/imaging. Bending should not critically harm the endoscope operation and the issue of bending losses is that of key importance for any endoscope. In this paper we show that the frequency-averaged power transmittance of a wire-medium endoscope is weakly sensitive to the bending. However, the frequency dispersion of the power loss/transmittance of the endoscope is strongly oscillating. Frequency maxima of the loss factor result from unusual eigenmodes of an elongated wire medium sample. These modes comprise power vortices and their sensitivity to the sample bending seems to be a critical issue for the future of wire-medium endoscopes.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Enhanced THz guiding properties of curved two-wire lines

Jingshu Zha, Geun Ju Kim, and Tae-In Jeon
Opt. Express 24(6) 6136-6144 (2016)

Hybrid metal wire–dielectric terahertz waveguides: challenges and opportunities [Invited]

Andrey Markov, Hichem Guerboukha, and Maksim Skorobogatiy
J. Opt. Soc. Am. B 31(11) 2587-2600 (2014)

References

  • View by:
  • |
  • |
  • |

  1. R. Kersting, H.-T. Chen, N. Karpowicz, and G. C. Cho, “Terahertz microscopy with submicrometre resolution,” J. Opt. A 7(2), S184–S189 (2005).
    [Crossref]
  2. P. Doradla, Terahertz Endoscopic System for Cancer Detection (Lambert Academic Publishing, 2015).
  3. W. L. Chan, J. Deibel, and D. M. Mittleman, “Imaging with terahertz radiation,” Rep. Prog. Phys. 70(8), 1325–1379 (2007).
    [Crossref]
  4. A. Hassani, A. Dupuis, and M. Skorobogatiy, “Porous polymer fibers for low-loss Terahertz guiding,” Opt. Express 16, 6341–6351 (2008).
    [Crossref]
  5. A. Hassani, A. Dupuis, and M. Skorobogatiy, “Low loss porous terahertz fibers containing multiple subwavelength holes,” Appl. Phys. Lett. 92, 071101 (2008).
    [Crossref]
  6. K. Nielsen, H. K. Rasmussen, A. J. Adam, P. C. Planken, O. Bang, and P. U. Jepsen, “Bendable, low-loss Topas fibers for the terahertz frequency range,” Opt. Express 17, 8592–8601 (2009).
    [Crossref] [PubMed]
  7. P. Doradla, C. Joseph, and R.H. Giles, “Terahertz endoscopic imaging for colorectal cancer detection: Current status and future perspectives,” World J. Gastrointest. Endoscopy 9, 346–358 (2017).
    [Crossref]
  8. M. S. Vitiello, J. Xu, F. Beltram, A. Tredicucci, O. Mitrofanov, J. A. Harrington, H. E. Beere, and D. A. Ritchie, “Guiding a terahertz quantum cascade laser into a flexible silver-coated waveguide,” J. Appl. Phys. 110, 063112 (2011).
    [Crossref]
  9. P. Doradla, C. S. Joseph, J. Kumar, and R. H. Giles, “Characterization of bending loss in hollow flexible terahertz waveguides,” Opt. Express 20 (17), 19176–19184 (2012).
    [Crossref] [PubMed]
  10. A. Markov and M. Skorobogatiy, “Two-wire terahertz fibers with porous dielectric support,” Opt. Express 21(10), 12728–12743 (2013).
    [Crossref] [PubMed]
  11. A. Tuniz, K. J. Kaltenecker, B. M. Fischer, M. Walther, S. C. Fleming, A. Argyros, and B. T. Kuhlmey, “Metamaterial fibres for subdiffraction imaging and focusing at terahertz frequencies over optically long distances,” Nat. Commun. 4, 2706 (2013).
    [Crossref] [PubMed]
  12. X. Radu, D. Garray, and C. Craeye, “Toward a wire medium endoscope for MRI imaging,” Metamaterials 3, 90–99 (2009).
    [Crossref]
  13. P. A. Belov, Y. Zhao, S. Tse, P. Ikonen, M. G. Silveirinha, C. R. Simovski, S. A. Tretyakov, Y. Hao, and C. Parini, “Transmission of images with subwavelength resolution to distances of several wavelengths in the microwave range,” Phys. Rev. B 77, 193108 (2008).
    [Crossref]
  14. C. R. Simovski, P. A. Belov, A. V. Atrashchenko, and Yu. S. Kivshar, “Wire metamaterials: physics and applications,” Adv. Mater. 24(31), 4229–4248 (2012).
    [Crossref] [PubMed]
  15. S. Kosulnikov and C. Simovski, “On Fabry-Perot resonances of a wire-medium hyperlens,” Photon. Nanostruct. Fundam. Appl. 15, 1–9 (2015).
    [Crossref]
  16. I. S. Nefedov and C. R. Simovski, “Giant radiation heat transfer through micron gaps,” Phys. Rev. B 84(19), 195459 (2011).
    [Crossref]
  17. D. Vovchuk, S. Kosulnikov, I. Nefedov, S. Tretyakov, and C. Simovski, “Multi-mode broadband power transfer through a wire medium slab,” Prog. Electromagn. Res. 154, 171–180 (2015).
    [Crossref]
  18. J. S. Brownless, B. C. P. Sturmberg, A. Argyros, B. T. Kuhlmey, and C. M. De Sterke, “Guided modes of a wire medium slab: comparison of effective medium approaches with exact calculations,” Phys. Rev. B 91, 155427 (2015).
    [Crossref]
  19. K. J. Kaltenecker, A. Tuniz, S. C. Fleming, A. Argyros, B. T. Kuhlmey, M. Walther, and B. M. Fischer, “Ultrabroad-band perfect imaging in terahertz wire media using single-cycle pulses,” Optica 3(5), 458–464 (2016).
    [Crossref]

2017 (1)

P. Doradla, C. Joseph, and R.H. Giles, “Terahertz endoscopic imaging for colorectal cancer detection: Current status and future perspectives,” World J. Gastrointest. Endoscopy 9, 346–358 (2017).
[Crossref]

2016 (1)

2015 (3)

S. Kosulnikov and C. Simovski, “On Fabry-Perot resonances of a wire-medium hyperlens,” Photon. Nanostruct. Fundam. Appl. 15, 1–9 (2015).
[Crossref]

D. Vovchuk, S. Kosulnikov, I. Nefedov, S. Tretyakov, and C. Simovski, “Multi-mode broadband power transfer through a wire medium slab,” Prog. Electromagn. Res. 154, 171–180 (2015).
[Crossref]

J. S. Brownless, B. C. P. Sturmberg, A. Argyros, B. T. Kuhlmey, and C. M. De Sterke, “Guided modes of a wire medium slab: comparison of effective medium approaches with exact calculations,” Phys. Rev. B 91, 155427 (2015).
[Crossref]

2013 (2)

A. Markov and M. Skorobogatiy, “Two-wire terahertz fibers with porous dielectric support,” Opt. Express 21(10), 12728–12743 (2013).
[Crossref] [PubMed]

A. Tuniz, K. J. Kaltenecker, B. M. Fischer, M. Walther, S. C. Fleming, A. Argyros, and B. T. Kuhlmey, “Metamaterial fibres for subdiffraction imaging and focusing at terahertz frequencies over optically long distances,” Nat. Commun. 4, 2706 (2013).
[Crossref] [PubMed]

2012 (2)

P. Doradla, C. S. Joseph, J. Kumar, and R. H. Giles, “Characterization of bending loss in hollow flexible terahertz waveguides,” Opt. Express 20 (17), 19176–19184 (2012).
[Crossref] [PubMed]

C. R. Simovski, P. A. Belov, A. V. Atrashchenko, and Yu. S. Kivshar, “Wire metamaterials: physics and applications,” Adv. Mater. 24(31), 4229–4248 (2012).
[Crossref] [PubMed]

2011 (2)

M. S. Vitiello, J. Xu, F. Beltram, A. Tredicucci, O. Mitrofanov, J. A. Harrington, H. E. Beere, and D. A. Ritchie, “Guiding a terahertz quantum cascade laser into a flexible silver-coated waveguide,” J. Appl. Phys. 110, 063112 (2011).
[Crossref]

I. S. Nefedov and C. R. Simovski, “Giant radiation heat transfer through micron gaps,” Phys. Rev. B 84(19), 195459 (2011).
[Crossref]

2009 (2)

2008 (3)

A. Hassani, A. Dupuis, and M. Skorobogatiy, “Porous polymer fibers for low-loss Terahertz guiding,” Opt. Express 16, 6341–6351 (2008).
[Crossref]

A. Hassani, A. Dupuis, and M. Skorobogatiy, “Low loss porous terahertz fibers containing multiple subwavelength holes,” Appl. Phys. Lett. 92, 071101 (2008).
[Crossref]

P. A. Belov, Y. Zhao, S. Tse, P. Ikonen, M. G. Silveirinha, C. R. Simovski, S. A. Tretyakov, Y. Hao, and C. Parini, “Transmission of images with subwavelength resolution to distances of several wavelengths in the microwave range,” Phys. Rev. B 77, 193108 (2008).
[Crossref]

2007 (1)

W. L. Chan, J. Deibel, and D. M. Mittleman, “Imaging with terahertz radiation,” Rep. Prog. Phys. 70(8), 1325–1379 (2007).
[Crossref]

2005 (1)

R. Kersting, H.-T. Chen, N. Karpowicz, and G. C. Cho, “Terahertz microscopy with submicrometre resolution,” J. Opt. A 7(2), S184–S189 (2005).
[Crossref]

Adam, A. J.

Argyros, A.

K. J. Kaltenecker, A. Tuniz, S. C. Fleming, A. Argyros, B. T. Kuhlmey, M. Walther, and B. M. Fischer, “Ultrabroad-band perfect imaging in terahertz wire media using single-cycle pulses,” Optica 3(5), 458–464 (2016).
[Crossref]

J. S. Brownless, B. C. P. Sturmberg, A. Argyros, B. T. Kuhlmey, and C. M. De Sterke, “Guided modes of a wire medium slab: comparison of effective medium approaches with exact calculations,” Phys. Rev. B 91, 155427 (2015).
[Crossref]

A. Tuniz, K. J. Kaltenecker, B. M. Fischer, M. Walther, S. C. Fleming, A. Argyros, and B. T. Kuhlmey, “Metamaterial fibres for subdiffraction imaging and focusing at terahertz frequencies over optically long distances,” Nat. Commun. 4, 2706 (2013).
[Crossref] [PubMed]

Atrashchenko, A. V.

C. R. Simovski, P. A. Belov, A. V. Atrashchenko, and Yu. S. Kivshar, “Wire metamaterials: physics and applications,” Adv. Mater. 24(31), 4229–4248 (2012).
[Crossref] [PubMed]

Bang, O.

Beere, H. E.

M. S. Vitiello, J. Xu, F. Beltram, A. Tredicucci, O. Mitrofanov, J. A. Harrington, H. E. Beere, and D. A. Ritchie, “Guiding a terahertz quantum cascade laser into a flexible silver-coated waveguide,” J. Appl. Phys. 110, 063112 (2011).
[Crossref]

Belov, P. A.

C. R. Simovski, P. A. Belov, A. V. Atrashchenko, and Yu. S. Kivshar, “Wire metamaterials: physics and applications,” Adv. Mater. 24(31), 4229–4248 (2012).
[Crossref] [PubMed]

P. A. Belov, Y. Zhao, S. Tse, P. Ikonen, M. G. Silveirinha, C. R. Simovski, S. A. Tretyakov, Y. Hao, and C. Parini, “Transmission of images with subwavelength resolution to distances of several wavelengths in the microwave range,” Phys. Rev. B 77, 193108 (2008).
[Crossref]

Beltram, F.

M. S. Vitiello, J. Xu, F. Beltram, A. Tredicucci, O. Mitrofanov, J. A. Harrington, H. E. Beere, and D. A. Ritchie, “Guiding a terahertz quantum cascade laser into a flexible silver-coated waveguide,” J. Appl. Phys. 110, 063112 (2011).
[Crossref]

Brownless, J. S.

J. S. Brownless, B. C. P. Sturmberg, A. Argyros, B. T. Kuhlmey, and C. M. De Sterke, “Guided modes of a wire medium slab: comparison of effective medium approaches with exact calculations,” Phys. Rev. B 91, 155427 (2015).
[Crossref]

Chan, W. L.

W. L. Chan, J. Deibel, and D. M. Mittleman, “Imaging with terahertz radiation,” Rep. Prog. Phys. 70(8), 1325–1379 (2007).
[Crossref]

Chen, H.-T.

R. Kersting, H.-T. Chen, N. Karpowicz, and G. C. Cho, “Terahertz microscopy with submicrometre resolution,” J. Opt. A 7(2), S184–S189 (2005).
[Crossref]

Cho, G. C.

R. Kersting, H.-T. Chen, N. Karpowicz, and G. C. Cho, “Terahertz microscopy with submicrometre resolution,” J. Opt. A 7(2), S184–S189 (2005).
[Crossref]

Craeye, C.

X. Radu, D. Garray, and C. Craeye, “Toward a wire medium endoscope for MRI imaging,” Metamaterials 3, 90–99 (2009).
[Crossref]

De Sterke, C. M.

J. S. Brownless, B. C. P. Sturmberg, A. Argyros, B. T. Kuhlmey, and C. M. De Sterke, “Guided modes of a wire medium slab: comparison of effective medium approaches with exact calculations,” Phys. Rev. B 91, 155427 (2015).
[Crossref]

Deibel, J.

W. L. Chan, J. Deibel, and D. M. Mittleman, “Imaging with terahertz radiation,” Rep. Prog. Phys. 70(8), 1325–1379 (2007).
[Crossref]

Doradla, P.

P. Doradla, C. Joseph, and R.H. Giles, “Terahertz endoscopic imaging for colorectal cancer detection: Current status and future perspectives,” World J. Gastrointest. Endoscopy 9, 346–358 (2017).
[Crossref]

P. Doradla, C. S. Joseph, J. Kumar, and R. H. Giles, “Characterization of bending loss in hollow flexible terahertz waveguides,” Opt. Express 20 (17), 19176–19184 (2012).
[Crossref] [PubMed]

P. Doradla, Terahertz Endoscopic System for Cancer Detection (Lambert Academic Publishing, 2015).

Dupuis, A.

A. Hassani, A. Dupuis, and M. Skorobogatiy, “Porous polymer fibers for low-loss Terahertz guiding,” Opt. Express 16, 6341–6351 (2008).
[Crossref]

A. Hassani, A. Dupuis, and M. Skorobogatiy, “Low loss porous terahertz fibers containing multiple subwavelength holes,” Appl. Phys. Lett. 92, 071101 (2008).
[Crossref]

Fischer, B. M.

K. J. Kaltenecker, A. Tuniz, S. C. Fleming, A. Argyros, B. T. Kuhlmey, M. Walther, and B. M. Fischer, “Ultrabroad-band perfect imaging in terahertz wire media using single-cycle pulses,” Optica 3(5), 458–464 (2016).
[Crossref]

A. Tuniz, K. J. Kaltenecker, B. M. Fischer, M. Walther, S. C. Fleming, A. Argyros, and B. T. Kuhlmey, “Metamaterial fibres for subdiffraction imaging and focusing at terahertz frequencies over optically long distances,” Nat. Commun. 4, 2706 (2013).
[Crossref] [PubMed]

Fleming, S. C.

K. J. Kaltenecker, A. Tuniz, S. C. Fleming, A. Argyros, B. T. Kuhlmey, M. Walther, and B. M. Fischer, “Ultrabroad-band perfect imaging in terahertz wire media using single-cycle pulses,” Optica 3(5), 458–464 (2016).
[Crossref]

A. Tuniz, K. J. Kaltenecker, B. M. Fischer, M. Walther, S. C. Fleming, A. Argyros, and B. T. Kuhlmey, “Metamaterial fibres for subdiffraction imaging and focusing at terahertz frequencies over optically long distances,” Nat. Commun. 4, 2706 (2013).
[Crossref] [PubMed]

Garray, D.

X. Radu, D. Garray, and C. Craeye, “Toward a wire medium endoscope for MRI imaging,” Metamaterials 3, 90–99 (2009).
[Crossref]

Giles, R. H.

Giles, R.H.

P. Doradla, C. Joseph, and R.H. Giles, “Terahertz endoscopic imaging for colorectal cancer detection: Current status and future perspectives,” World J. Gastrointest. Endoscopy 9, 346–358 (2017).
[Crossref]

Hao, Y.

P. A. Belov, Y. Zhao, S. Tse, P. Ikonen, M. G. Silveirinha, C. R. Simovski, S. A. Tretyakov, Y. Hao, and C. Parini, “Transmission of images with subwavelength resolution to distances of several wavelengths in the microwave range,” Phys. Rev. B 77, 193108 (2008).
[Crossref]

Harrington, J. A.

M. S. Vitiello, J. Xu, F. Beltram, A. Tredicucci, O. Mitrofanov, J. A. Harrington, H. E. Beere, and D. A. Ritchie, “Guiding a terahertz quantum cascade laser into a flexible silver-coated waveguide,” J. Appl. Phys. 110, 063112 (2011).
[Crossref]

Hassani, A.

A. Hassani, A. Dupuis, and M. Skorobogatiy, “Low loss porous terahertz fibers containing multiple subwavelength holes,” Appl. Phys. Lett. 92, 071101 (2008).
[Crossref]

A. Hassani, A. Dupuis, and M. Skorobogatiy, “Porous polymer fibers for low-loss Terahertz guiding,” Opt. Express 16, 6341–6351 (2008).
[Crossref]

Ikonen, P.

P. A. Belov, Y. Zhao, S. Tse, P. Ikonen, M. G. Silveirinha, C. R. Simovski, S. A. Tretyakov, Y. Hao, and C. Parini, “Transmission of images with subwavelength resolution to distances of several wavelengths in the microwave range,” Phys. Rev. B 77, 193108 (2008).
[Crossref]

Jepsen, P. U.

Joseph, C.

P. Doradla, C. Joseph, and R.H. Giles, “Terahertz endoscopic imaging for colorectal cancer detection: Current status and future perspectives,” World J. Gastrointest. Endoscopy 9, 346–358 (2017).
[Crossref]

Joseph, C. S.

Kaltenecker, K. J.

K. J. Kaltenecker, A. Tuniz, S. C. Fleming, A. Argyros, B. T. Kuhlmey, M. Walther, and B. M. Fischer, “Ultrabroad-band perfect imaging in terahertz wire media using single-cycle pulses,” Optica 3(5), 458–464 (2016).
[Crossref]

A. Tuniz, K. J. Kaltenecker, B. M. Fischer, M. Walther, S. C. Fleming, A. Argyros, and B. T. Kuhlmey, “Metamaterial fibres for subdiffraction imaging and focusing at terahertz frequencies over optically long distances,” Nat. Commun. 4, 2706 (2013).
[Crossref] [PubMed]

Karpowicz, N.

R. Kersting, H.-T. Chen, N. Karpowicz, and G. C. Cho, “Terahertz microscopy with submicrometre resolution,” J. Opt. A 7(2), S184–S189 (2005).
[Crossref]

Kersting, R.

R. Kersting, H.-T. Chen, N. Karpowicz, and G. C. Cho, “Terahertz microscopy with submicrometre resolution,” J. Opt. A 7(2), S184–S189 (2005).
[Crossref]

Kivshar, Yu. S.

C. R. Simovski, P. A. Belov, A. V. Atrashchenko, and Yu. S. Kivshar, “Wire metamaterials: physics and applications,” Adv. Mater. 24(31), 4229–4248 (2012).
[Crossref] [PubMed]

Kosulnikov, S.

S. Kosulnikov and C. Simovski, “On Fabry-Perot resonances of a wire-medium hyperlens,” Photon. Nanostruct. Fundam. Appl. 15, 1–9 (2015).
[Crossref]

D. Vovchuk, S. Kosulnikov, I. Nefedov, S. Tretyakov, and C. Simovski, “Multi-mode broadband power transfer through a wire medium slab,” Prog. Electromagn. Res. 154, 171–180 (2015).
[Crossref]

Kuhlmey, B. T.

K. J. Kaltenecker, A. Tuniz, S. C. Fleming, A. Argyros, B. T. Kuhlmey, M. Walther, and B. M. Fischer, “Ultrabroad-band perfect imaging in terahertz wire media using single-cycle pulses,” Optica 3(5), 458–464 (2016).
[Crossref]

J. S. Brownless, B. C. P. Sturmberg, A. Argyros, B. T. Kuhlmey, and C. M. De Sterke, “Guided modes of a wire medium slab: comparison of effective medium approaches with exact calculations,” Phys. Rev. B 91, 155427 (2015).
[Crossref]

A. Tuniz, K. J. Kaltenecker, B. M. Fischer, M. Walther, S. C. Fleming, A. Argyros, and B. T. Kuhlmey, “Metamaterial fibres for subdiffraction imaging and focusing at terahertz frequencies over optically long distances,” Nat. Commun. 4, 2706 (2013).
[Crossref] [PubMed]

Kumar, J.

Markov, A.

Mitrofanov, O.

M. S. Vitiello, J. Xu, F. Beltram, A. Tredicucci, O. Mitrofanov, J. A. Harrington, H. E. Beere, and D. A. Ritchie, “Guiding a terahertz quantum cascade laser into a flexible silver-coated waveguide,” J. Appl. Phys. 110, 063112 (2011).
[Crossref]

Mittleman, D. M.

W. L. Chan, J. Deibel, and D. M. Mittleman, “Imaging with terahertz radiation,” Rep. Prog. Phys. 70(8), 1325–1379 (2007).
[Crossref]

Nefedov, I.

D. Vovchuk, S. Kosulnikov, I. Nefedov, S. Tretyakov, and C. Simovski, “Multi-mode broadband power transfer through a wire medium slab,” Prog. Electromagn. Res. 154, 171–180 (2015).
[Crossref]

Nefedov, I. S.

I. S. Nefedov and C. R. Simovski, “Giant radiation heat transfer through micron gaps,” Phys. Rev. B 84(19), 195459 (2011).
[Crossref]

Nielsen, K.

Parini, C.

P. A. Belov, Y. Zhao, S. Tse, P. Ikonen, M. G. Silveirinha, C. R. Simovski, S. A. Tretyakov, Y. Hao, and C. Parini, “Transmission of images with subwavelength resolution to distances of several wavelengths in the microwave range,” Phys. Rev. B 77, 193108 (2008).
[Crossref]

Planken, P. C.

Radu, X.

X. Radu, D. Garray, and C. Craeye, “Toward a wire medium endoscope for MRI imaging,” Metamaterials 3, 90–99 (2009).
[Crossref]

Rasmussen, H. K.

Ritchie, D. A.

M. S. Vitiello, J. Xu, F. Beltram, A. Tredicucci, O. Mitrofanov, J. A. Harrington, H. E. Beere, and D. A. Ritchie, “Guiding a terahertz quantum cascade laser into a flexible silver-coated waveguide,” J. Appl. Phys. 110, 063112 (2011).
[Crossref]

Silveirinha, M. G.

P. A. Belov, Y. Zhao, S. Tse, P. Ikonen, M. G. Silveirinha, C. R. Simovski, S. A. Tretyakov, Y. Hao, and C. Parini, “Transmission of images with subwavelength resolution to distances of several wavelengths in the microwave range,” Phys. Rev. B 77, 193108 (2008).
[Crossref]

Simovski, C.

S. Kosulnikov and C. Simovski, “On Fabry-Perot resonances of a wire-medium hyperlens,” Photon. Nanostruct. Fundam. Appl. 15, 1–9 (2015).
[Crossref]

D. Vovchuk, S. Kosulnikov, I. Nefedov, S. Tretyakov, and C. Simovski, “Multi-mode broadband power transfer through a wire medium slab,” Prog. Electromagn. Res. 154, 171–180 (2015).
[Crossref]

Simovski, C. R.

C. R. Simovski, P. A. Belov, A. V. Atrashchenko, and Yu. S. Kivshar, “Wire metamaterials: physics and applications,” Adv. Mater. 24(31), 4229–4248 (2012).
[Crossref] [PubMed]

I. S. Nefedov and C. R. Simovski, “Giant radiation heat transfer through micron gaps,” Phys. Rev. B 84(19), 195459 (2011).
[Crossref]

P. A. Belov, Y. Zhao, S. Tse, P. Ikonen, M. G. Silveirinha, C. R. Simovski, S. A. Tretyakov, Y. Hao, and C. Parini, “Transmission of images with subwavelength resolution to distances of several wavelengths in the microwave range,” Phys. Rev. B 77, 193108 (2008).
[Crossref]

Skorobogatiy, M.

A. Markov and M. Skorobogatiy, “Two-wire terahertz fibers with porous dielectric support,” Opt. Express 21(10), 12728–12743 (2013).
[Crossref] [PubMed]

A. Hassani, A. Dupuis, and M. Skorobogatiy, “Low loss porous terahertz fibers containing multiple subwavelength holes,” Appl. Phys. Lett. 92, 071101 (2008).
[Crossref]

A. Hassani, A. Dupuis, and M. Skorobogatiy, “Porous polymer fibers for low-loss Terahertz guiding,” Opt. Express 16, 6341–6351 (2008).
[Crossref]

Sturmberg, B. C. P.

J. S. Brownless, B. C. P. Sturmberg, A. Argyros, B. T. Kuhlmey, and C. M. De Sterke, “Guided modes of a wire medium slab: comparison of effective medium approaches with exact calculations,” Phys. Rev. B 91, 155427 (2015).
[Crossref]

Tredicucci, A.

M. S. Vitiello, J. Xu, F. Beltram, A. Tredicucci, O. Mitrofanov, J. A. Harrington, H. E. Beere, and D. A. Ritchie, “Guiding a terahertz quantum cascade laser into a flexible silver-coated waveguide,” J. Appl. Phys. 110, 063112 (2011).
[Crossref]

Tretyakov, S.

D. Vovchuk, S. Kosulnikov, I. Nefedov, S. Tretyakov, and C. Simovski, “Multi-mode broadband power transfer through a wire medium slab,” Prog. Electromagn. Res. 154, 171–180 (2015).
[Crossref]

Tretyakov, S. A.

P. A. Belov, Y. Zhao, S. Tse, P. Ikonen, M. G. Silveirinha, C. R. Simovski, S. A. Tretyakov, Y. Hao, and C. Parini, “Transmission of images with subwavelength resolution to distances of several wavelengths in the microwave range,” Phys. Rev. B 77, 193108 (2008).
[Crossref]

Tse, S.

P. A. Belov, Y. Zhao, S. Tse, P. Ikonen, M. G. Silveirinha, C. R. Simovski, S. A. Tretyakov, Y. Hao, and C. Parini, “Transmission of images with subwavelength resolution to distances of several wavelengths in the microwave range,” Phys. Rev. B 77, 193108 (2008).
[Crossref]

Tuniz, A.

K. J. Kaltenecker, A. Tuniz, S. C. Fleming, A. Argyros, B. T. Kuhlmey, M. Walther, and B. M. Fischer, “Ultrabroad-band perfect imaging in terahertz wire media using single-cycle pulses,” Optica 3(5), 458–464 (2016).
[Crossref]

A. Tuniz, K. J. Kaltenecker, B. M. Fischer, M. Walther, S. C. Fleming, A. Argyros, and B. T. Kuhlmey, “Metamaterial fibres for subdiffraction imaging and focusing at terahertz frequencies over optically long distances,” Nat. Commun. 4, 2706 (2013).
[Crossref] [PubMed]

Vitiello, M. S.

M. S. Vitiello, J. Xu, F. Beltram, A. Tredicucci, O. Mitrofanov, J. A. Harrington, H. E. Beere, and D. A. Ritchie, “Guiding a terahertz quantum cascade laser into a flexible silver-coated waveguide,” J. Appl. Phys. 110, 063112 (2011).
[Crossref]

Vovchuk, D.

D. Vovchuk, S. Kosulnikov, I. Nefedov, S. Tretyakov, and C. Simovski, “Multi-mode broadband power transfer through a wire medium slab,” Prog. Electromagn. Res. 154, 171–180 (2015).
[Crossref]

Walther, M.

K. J. Kaltenecker, A. Tuniz, S. C. Fleming, A. Argyros, B. T. Kuhlmey, M. Walther, and B. M. Fischer, “Ultrabroad-band perfect imaging in terahertz wire media using single-cycle pulses,” Optica 3(5), 458–464 (2016).
[Crossref]

A. Tuniz, K. J. Kaltenecker, B. M. Fischer, M. Walther, S. C. Fleming, A. Argyros, and B. T. Kuhlmey, “Metamaterial fibres for subdiffraction imaging and focusing at terahertz frequencies over optically long distances,” Nat. Commun. 4, 2706 (2013).
[Crossref] [PubMed]

Xu, J.

M. S. Vitiello, J. Xu, F. Beltram, A. Tredicucci, O. Mitrofanov, J. A. Harrington, H. E. Beere, and D. A. Ritchie, “Guiding a terahertz quantum cascade laser into a flexible silver-coated waveguide,” J. Appl. Phys. 110, 063112 (2011).
[Crossref]

Zhao, Y.

P. A. Belov, Y. Zhao, S. Tse, P. Ikonen, M. G. Silveirinha, C. R. Simovski, S. A. Tretyakov, Y. Hao, and C. Parini, “Transmission of images with subwavelength resolution to distances of several wavelengths in the microwave range,” Phys. Rev. B 77, 193108 (2008).
[Crossref]

Adv. Mater. (1)

C. R. Simovski, P. A. Belov, A. V. Atrashchenko, and Yu. S. Kivshar, “Wire metamaterials: physics and applications,” Adv. Mater. 24(31), 4229–4248 (2012).
[Crossref] [PubMed]

Appl. Phys. Lett. (1)

A. Hassani, A. Dupuis, and M. Skorobogatiy, “Low loss porous terahertz fibers containing multiple subwavelength holes,” Appl. Phys. Lett. 92, 071101 (2008).
[Crossref]

J. Appl. Phys. (1)

M. S. Vitiello, J. Xu, F. Beltram, A. Tredicucci, O. Mitrofanov, J. A. Harrington, H. E. Beere, and D. A. Ritchie, “Guiding a terahertz quantum cascade laser into a flexible silver-coated waveguide,” J. Appl. Phys. 110, 063112 (2011).
[Crossref]

J. Opt. A (1)

R. Kersting, H.-T. Chen, N. Karpowicz, and G. C. Cho, “Terahertz microscopy with submicrometre resolution,” J. Opt. A 7(2), S184–S189 (2005).
[Crossref]

Metamaterials (1)

X. Radu, D. Garray, and C. Craeye, “Toward a wire medium endoscope for MRI imaging,” Metamaterials 3, 90–99 (2009).
[Crossref]

Nat. Commun. (1)

A. Tuniz, K. J. Kaltenecker, B. M. Fischer, M. Walther, S. C. Fleming, A. Argyros, and B. T. Kuhlmey, “Metamaterial fibres for subdiffraction imaging and focusing at terahertz frequencies over optically long distances,” Nat. Commun. 4, 2706 (2013).
[Crossref] [PubMed]

Opt. Express (4)

Optica (1)

Photon. Nanostruct. Fundam. Appl. (1)

S. Kosulnikov and C. Simovski, “On Fabry-Perot resonances of a wire-medium hyperlens,” Photon. Nanostruct. Fundam. Appl. 15, 1–9 (2015).
[Crossref]

Phys. Rev. B (3)

I. S. Nefedov and C. R. Simovski, “Giant radiation heat transfer through micron gaps,” Phys. Rev. B 84(19), 195459 (2011).
[Crossref]

J. S. Brownless, B. C. P. Sturmberg, A. Argyros, B. T. Kuhlmey, and C. M. De Sterke, “Guided modes of a wire medium slab: comparison of effective medium approaches with exact calculations,” Phys. Rev. B 91, 155427 (2015).
[Crossref]

P. A. Belov, Y. Zhao, S. Tse, P. Ikonen, M. G. Silveirinha, C. R. Simovski, S. A. Tretyakov, Y. Hao, and C. Parini, “Transmission of images with subwavelength resolution to distances of several wavelengths in the microwave range,” Phys. Rev. B 77, 193108 (2008).
[Crossref]

Prog. Electromagn. Res. (1)

D. Vovchuk, S. Kosulnikov, I. Nefedov, S. Tretyakov, and C. Simovski, “Multi-mode broadband power transfer through a wire medium slab,” Prog. Electromagn. Res. 154, 171–180 (2015).
[Crossref]

Rep. Prog. Phys. (1)

W. L. Chan, J. Deibel, and D. M. Mittleman, “Imaging with terahertz radiation,” Rep. Prog. Phys. 70(8), 1325–1379 (2007).
[Crossref]

World J. Gastrointest. Endoscopy (1)

P. Doradla, C. Joseph, and R.H. Giles, “Terahertz endoscopic imaging for colorectal cancer detection: Current status and future perspectives,” World J. Gastrointest. Endoscopy 9, 346–358 (2017).
[Crossref]

Other (1)

P. Doradla, Terahertz Endoscopic System for Cancer Detection (Lambert Academic Publishing, 2015).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1
Fig. 1 A bent THz endoscope with a 6 × 6 wire array in the PPF matrix. The source is emulated by dipole 1, fully similar to dipole 2, which is a receiving antenna.
Fig. 2
Fig. 2 (a) – Transmission coefficient S21 versus frequency for the straight and bent WMEs (mismatched dipoles). (b) – Reflection coefficient S11 versus frequency for the straight and bent WME. Two curves for the bent WME in both plots correspond to two orientations of the dipoles.
Fig. 3
Fig. 3 (a) – A folded endoscope whose central part has a curvature of radius R = 1.025 mm. Internal radius of curvature R1 = 0.4 mm is subwavelength below 0.75 THz. (b) – Transmission coefficient S21 versus frequency for the straight and folded WMEs (mismatched dipoles).
Fig. 4
Fig. 4 Transmission S21 and reflection S11 coefficients versus frequency for the straight WME connecting two rectangular waveguides and excited by a distributed wave port. Top inset shows the simulated structure. Three typical frequencies f1−3 are marked on the plot of S11.
Fig. 5
Fig. 5 Straight WME at frequency f1: (a) – Color map of the electric field amplitude in the central longitudinal cross section. (b) – Color map of the Poynting vector distribution in the same cross section.
Fig. 6
Fig. 6 The same as in Fig. 5 but at frequency f2.
Fig. 7
Fig. 7 The same as in Figs. 5 and 6 but at frequency f3.
Fig. 8
Fig. 8 WME with bending angle θ = 90° at frequency of type f1: (a) – Color map of the Poynting vector and (b) – color map of E.
Fig. 9
Fig. 9 The same as in Fig. 8 but at frequency of type f2.
Fig. 10
Fig. 10 The same as in Figs. 8 and 9 but at frequency of type f3.
Fig. 11
Fig. 11 WME with bending angle θ = 180° at the corresponding frequency f2. Color maps of the Poynting vector (a) and the electric field (b).
Fig. 12
Fig. 12 Power loss versus normalized frequency for three cases: straight WME, that with θ = 90° and that with θ = 180°. Simulations.
Fig. 13
Fig. 13 Pictures of our microwave model experiment: (a) – Straight WME, (b) – θ = 90°.
Fig. 14
Fig. 14 Measured S-parameters of our microwave WME versus frequency for three bending angles from zero to π: (a) – transmittance and (b) – reflectance.
Fig. 15
Fig. 15 S-parameters of the structure for the case θ = 115° with and without the WME: (a) – transmittance and (b) – reflectance.
Fig. 16
Fig. 16 Power loss versus frequency for three cases: straight WME, that with θ = 90° and that with θ = 180°. Experiment.

Metrics