Abstract

This work establishes the relationship between the electron energy and the electron concentration within the multiple quantum wells (MQWs) for AlGaN based deep ultraviolet light-emitting diodes (DUV LEDs). The electron energy of different values can be obtained by modulating the Si doping concentration in the n-AlGaN layer and/or engineering the polarization induced interface charges. The modulated Si doping concentration in the n-AlGaN layer will cause the interface depletion region within which the electric field can be generated and then tunes the electron energy. The polarization induced charges and the polarization induced electric field can be obtained by stepwisely reducing the AlN composition for the n-AlGaN layer along the [0001] orientation. We find that the electron concentration in the MQWs can be increased once the electron energy is reduced to a proper level, which correspondingly improves the external quantum efficiency (EQE) for DUV LEDs. According to our investigations, it is more advisable to adopt the n-AlGaN layer with the stepwise AlN composition, which can make both the EQE and the wall plug efficiency high.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Khan, K. Balakrishnan, and T. Katona, “Ultraviolet light-emitting diodes based on group three nitrides,” Nat. Photonics 2(2), 77–84 (2008).
    [Crossref]
  2. D. Li, K. Jiang, X. Sun, and C. Guo, “AlGaN phtonics: advances in materials and ultraviolet devices,” Adv. Opt. Photonics 10(1), 43–109 (2018).
    [Crossref]
  3. T.-Y. Wang, C. T. Tasi, C.-F. Lin, and D.-S. Wuu, “85% internal quantum efficiency of 280-nm AlGaN multiple quantum wells by defect engineering,” Sci. Rep. 7(1), 14422 (2017).
    [Crossref] [PubMed]
  4. T. Takano, T. Mino, J. Sakai, N. Noguchi, K. Tsubaki, and H. Hirayama, “Deep-ultraviolet light-emitting diodes with external quantum efficiency higher than 20% at 275 nm achieved by improving light-extraction efficiency,” Appl. Phys. Express 10(3), 031002 (2017).
    [Crossref]
  5. C.-Y. Su, M.-C. Tsai, K.-P. Chou, H.-C. Chiang, H.-H. Lin, M.-Y. Su, Y.-R. Wu, Y.-W. Kiang, and C. C. Yang, “Method for enhancing the favored transverse-electric-polarized emission of an AlGaN deep-ultraviolet quantum well,” Opt. Express 25(22), 26365–26377 (2017).
    [Crossref] [PubMed]
  6. L. Li, Y. Zhang, S. Xu, W. Bi, Z.-H. Zhang, and H.-C. Kuo, “On the hole injection for III-nitride based deep ultraviolet light-emitting diodes,” Materials (Basel) 10(10), 1221 (2017).
    [Crossref] [PubMed]
  7. M. Katsuragawa, S. Sota, M. Komori, C. Anbe, T. Takeuchi, H. Sakai, H. Amano, and I. Akasaki, “Thermal ionization energy of Si and Mg in AlGaN,” J. Cryst. Growth 189–190, 528–531 (1998).
    [Crossref]
  8. Z.-H. Zhang, S.-W. H. Chen, Y. Zhang, L. Li, S.-W. Wang, K. Tian, C. Chu, M. Fang, H.-C. Kuo, and W. Bi, “Hole transport manipulation to improve the hole injection for deep ultraviolet light-emitting diodes,” ACS Photonics 4(7), 1846–1850 (2017).
    [Crossref]
  9. H. Hideki, T. Yusuke, M. Tetsutoshi, and K. Norihiko, “Marked enhancement in the efficiency of deep-ultraviolet AlGaN light-emitting diodes by using a multiquantum-barrier electron blocking layer,” Appl. Phys. Express 3(3), 031002 (2010).
    [Crossref]
  10. Z.-H. Zhang, L. Li, Y. Zhang, F. Xu, Q. Shi, B. Shen, and W. Bi, “On the electric-field reservoir for III-nitride based deep ultraviolet light-emitting diodes,” Opt. Express 25(14), 16550–16559 (2017).
    [Crossref] [PubMed]
  11. L. He, W. Zhao, K. Zhang, C. He, H. Wu, N. Liu, W. Song, Z. Chen, and S. Li, “Performance enhancement of AlGaN-based 365 nm ultraviolet light-emitting diodes with a band-engineering last quantum barrier,” Opt. Lett. 43(3), 515–518 (2018).
    [Crossref] [PubMed]
  12. M.-C. Tsai, S.-H. Yen, and Y.-K. Kuo, “Deep-ultraviolet light-emitting diodes with gradually increased thicknesses from n-layers to p-layers,” Appl. Phys. Lett. 98(11), 111114 (2011).
    [Crossref]
  13. J. Y. Chang, H. T. Chang, Y. H. Shih, F. M. Chen, M. F. Huang, and Y. K. Kuo, ““Efficient carrier confinement in deep-ultraviolet light-emitting diodes with composition-graded configuration,” IEEE Trans. Electron Dev. 64(12), 4980–4984 (2017).
    [Crossref]
  14. F. Mehnke, C. Kuhn, M. Guttmann, C. Reich, T. Kolbe, V. Kueller, A. Knauer, M. Lapeyrade, S. Einfeldt, J. Rass, T. Wernicke, M. Weyers, and M. Kneissl, “Efficient charge carrier injection into sub-250 nm AlGaN multiple quantum well light emitting diodes,” Appl. Phys. Lett. 105(5), 051113 (2014).
    [Crossref]
  15. Z.-H. Zhang, Y. Ji, W. Liu, S. T. Tan, Z. Kyaw, Z. Ju, X. Zhang, N. Hasanov, S. Lu, Y. Zhang, B. Zhu, X. W. Sun, and H. V. Demir, “On the origin of the electron blocking effect by an n-type AlGaN electron blocking layer,” Appl. Phys. Lett. 104(7), 073511 (2014).
    [Crossref]
  16. Z.-H. Zhang, W. Liu, S. T. Tan, Z. Ju, Y. Ji, Z. Kyaw, X. Zhang, N. Hasanov, B. Zhu, S. Lu, Y. Zhang, X. W. Sun, and H. V. Demir, “On the mechanisms of InGaN electron cooler in InGaN/GaN light-emitting diodes,” Opt. Express 25(14), 16550–16559 (2017).
    [Crossref] [PubMed]
  17. X. Ni, X. Li, J. Lee, S. Liu, V. Avrutin, U. Ozgur, H. Morkoc, and A. Matulionis, “Hot electron effects on efficiency degradation in InGaN light emitting diodes and designs to mitigate them,” J. Appl. Phys. 108(3), 033112 (2010).
    [Crossref]
  18. X. Ni, X. Li, J. Lee, S. Liu, V. Avrutin, U. Ozgur, H. Morkoc, A. Matulionis, T. Paskova, G. Mulholland, and K. R. Evans, “InGaN staircase electron injector for reduction of electron overflow in InGaN light emitting diodes,” Appl. Phys. Lett. 97(3), 031110 (2010).
    [Crossref]
  19. L. Li, Q. Shi, K. Tian, C. Chu, M. Fang, R. Meng, Y. Zhang, Z.-H. Zhang, and W. Bi, “A dielectric-constant-controlled tunnel junction for III-nitride light-emitting diodes,” Phys. Status Solidi., A Appl. Mater. Sci. 214(6), 1600937 (2017).
    [Crossref]
  20. L. Li, Q. Shi, K. Tian, C. Chu, M. Fang, R. Meng, Y. Zhang, Z.-H. Zhang, and W. Bi, “Numerical investigations on the n+-GaN/AlGaN/p+-GaN tunnel junction for III-nitride UV light-emitting diodes,” Phys. Status Solidi., A Appl. Mater. Sci. 214(12), 1700624 (2017).
    [Crossref]
  21. H.-Y. Ryu, I.-G. Choi, H.-S. Choi, and J.-I. Shim, “Investigation of light extraction efficiency in AlGaN deep-ultraviolet light-emitting diodes,” Appl. Phys. Express 6(6), 062101 (2013).
    [Crossref]
  22. Z. Kyaw, Z.-H. Zhang, W. Liu, S. T. Tan, Z. G. Ju, X. L. Zhang, Y. Ji, N. Hasanov, B. Zhu, S. Lu, Y. Zhang, X. W. Sun, and H. V. Demir, “On the effect of N-GaN/P-GaN/N-GaN/P-GaN/N-GaN built-in junctions in the n-GaN layer for InGaN/GaN light-emitting diodes,” Opt. Express 22(1), 809–816 (2014).
    [PubMed]

2018 (2)

2017 (10)

J. Y. Chang, H. T. Chang, Y. H. Shih, F. M. Chen, M. F. Huang, and Y. K. Kuo, ““Efficient carrier confinement in deep-ultraviolet light-emitting diodes with composition-graded configuration,” IEEE Trans. Electron Dev. 64(12), 4980–4984 (2017).
[Crossref]

Z.-H. Zhang, W. Liu, S. T. Tan, Z. Ju, Y. Ji, Z. Kyaw, X. Zhang, N. Hasanov, B. Zhu, S. Lu, Y. Zhang, X. W. Sun, and H. V. Demir, “On the mechanisms of InGaN electron cooler in InGaN/GaN light-emitting diodes,” Opt. Express 25(14), 16550–16559 (2017).
[Crossref] [PubMed]

L. Li, Q. Shi, K. Tian, C. Chu, M. Fang, R. Meng, Y. Zhang, Z.-H. Zhang, and W. Bi, “A dielectric-constant-controlled tunnel junction for III-nitride light-emitting diodes,” Phys. Status Solidi., A Appl. Mater. Sci. 214(6), 1600937 (2017).
[Crossref]

L. Li, Q. Shi, K. Tian, C. Chu, M. Fang, R. Meng, Y. Zhang, Z.-H. Zhang, and W. Bi, “Numerical investigations on the n+-GaN/AlGaN/p+-GaN tunnel junction for III-nitride UV light-emitting diodes,” Phys. Status Solidi., A Appl. Mater. Sci. 214(12), 1700624 (2017).
[Crossref]

T.-Y. Wang, C. T. Tasi, C.-F. Lin, and D.-S. Wuu, “85% internal quantum efficiency of 280-nm AlGaN multiple quantum wells by defect engineering,” Sci. Rep. 7(1), 14422 (2017).
[Crossref] [PubMed]

T. Takano, T. Mino, J. Sakai, N. Noguchi, K. Tsubaki, and H. Hirayama, “Deep-ultraviolet light-emitting diodes with external quantum efficiency higher than 20% at 275 nm achieved by improving light-extraction efficiency,” Appl. Phys. Express 10(3), 031002 (2017).
[Crossref]

C.-Y. Su, M.-C. Tsai, K.-P. Chou, H.-C. Chiang, H.-H. Lin, M.-Y. Su, Y.-R. Wu, Y.-W. Kiang, and C. C. Yang, “Method for enhancing the favored transverse-electric-polarized emission of an AlGaN deep-ultraviolet quantum well,” Opt. Express 25(22), 26365–26377 (2017).
[Crossref] [PubMed]

L. Li, Y. Zhang, S. Xu, W. Bi, Z.-H. Zhang, and H.-C. Kuo, “On the hole injection for III-nitride based deep ultraviolet light-emitting diodes,” Materials (Basel) 10(10), 1221 (2017).
[Crossref] [PubMed]

Z.-H. Zhang, S.-W. H. Chen, Y. Zhang, L. Li, S.-W. Wang, K. Tian, C. Chu, M. Fang, H.-C. Kuo, and W. Bi, “Hole transport manipulation to improve the hole injection for deep ultraviolet light-emitting diodes,” ACS Photonics 4(7), 1846–1850 (2017).
[Crossref]

Z.-H. Zhang, L. Li, Y. Zhang, F. Xu, Q. Shi, B. Shen, and W. Bi, “On the electric-field reservoir for III-nitride based deep ultraviolet light-emitting diodes,” Opt. Express 25(14), 16550–16559 (2017).
[Crossref] [PubMed]

2014 (3)

F. Mehnke, C. Kuhn, M. Guttmann, C. Reich, T. Kolbe, V. Kueller, A. Knauer, M. Lapeyrade, S. Einfeldt, J. Rass, T. Wernicke, M. Weyers, and M. Kneissl, “Efficient charge carrier injection into sub-250 nm AlGaN multiple quantum well light emitting diodes,” Appl. Phys. Lett. 105(5), 051113 (2014).
[Crossref]

Z.-H. Zhang, Y. Ji, W. Liu, S. T. Tan, Z. Kyaw, Z. Ju, X. Zhang, N. Hasanov, S. Lu, Y. Zhang, B. Zhu, X. W. Sun, and H. V. Demir, “On the origin of the electron blocking effect by an n-type AlGaN electron blocking layer,” Appl. Phys. Lett. 104(7), 073511 (2014).
[Crossref]

Z. Kyaw, Z.-H. Zhang, W. Liu, S. T. Tan, Z. G. Ju, X. L. Zhang, Y. Ji, N. Hasanov, B. Zhu, S. Lu, Y. Zhang, X. W. Sun, and H. V. Demir, “On the effect of N-GaN/P-GaN/N-GaN/P-GaN/N-GaN built-in junctions in the n-GaN layer for InGaN/GaN light-emitting diodes,” Opt. Express 22(1), 809–816 (2014).
[PubMed]

2013 (1)

H.-Y. Ryu, I.-G. Choi, H.-S. Choi, and J.-I. Shim, “Investigation of light extraction efficiency in AlGaN deep-ultraviolet light-emitting diodes,” Appl. Phys. Express 6(6), 062101 (2013).
[Crossref]

2011 (1)

M.-C. Tsai, S.-H. Yen, and Y.-K. Kuo, “Deep-ultraviolet light-emitting diodes with gradually increased thicknesses from n-layers to p-layers,” Appl. Phys. Lett. 98(11), 111114 (2011).
[Crossref]

2010 (3)

X. Ni, X. Li, J. Lee, S. Liu, V. Avrutin, U. Ozgur, H. Morkoc, and A. Matulionis, “Hot electron effects on efficiency degradation in InGaN light emitting diodes and designs to mitigate them,” J. Appl. Phys. 108(3), 033112 (2010).
[Crossref]

X. Ni, X. Li, J. Lee, S. Liu, V. Avrutin, U. Ozgur, H. Morkoc, A. Matulionis, T. Paskova, G. Mulholland, and K. R. Evans, “InGaN staircase electron injector for reduction of electron overflow in InGaN light emitting diodes,” Appl. Phys. Lett. 97(3), 031110 (2010).
[Crossref]

H. Hideki, T. Yusuke, M. Tetsutoshi, and K. Norihiko, “Marked enhancement in the efficiency of deep-ultraviolet AlGaN light-emitting diodes by using a multiquantum-barrier electron blocking layer,” Appl. Phys. Express 3(3), 031002 (2010).
[Crossref]

2008 (1)

A. Khan, K. Balakrishnan, and T. Katona, “Ultraviolet light-emitting diodes based on group three nitrides,” Nat. Photonics 2(2), 77–84 (2008).
[Crossref]

1998 (1)

M. Katsuragawa, S. Sota, M. Komori, C. Anbe, T. Takeuchi, H. Sakai, H. Amano, and I. Akasaki, “Thermal ionization energy of Si and Mg in AlGaN,” J. Cryst. Growth 189–190, 528–531 (1998).
[Crossref]

Akasaki, I.

M. Katsuragawa, S. Sota, M. Komori, C. Anbe, T. Takeuchi, H. Sakai, H. Amano, and I. Akasaki, “Thermal ionization energy of Si and Mg in AlGaN,” J. Cryst. Growth 189–190, 528–531 (1998).
[Crossref]

Amano, H.

M. Katsuragawa, S. Sota, M. Komori, C. Anbe, T. Takeuchi, H. Sakai, H. Amano, and I. Akasaki, “Thermal ionization energy of Si and Mg in AlGaN,” J. Cryst. Growth 189–190, 528–531 (1998).
[Crossref]

Anbe, C.

M. Katsuragawa, S. Sota, M. Komori, C. Anbe, T. Takeuchi, H. Sakai, H. Amano, and I. Akasaki, “Thermal ionization energy of Si and Mg in AlGaN,” J. Cryst. Growth 189–190, 528–531 (1998).
[Crossref]

Avrutin, V.

X. Ni, X. Li, J. Lee, S. Liu, V. Avrutin, U. Ozgur, H. Morkoc, and A. Matulionis, “Hot electron effects on efficiency degradation in InGaN light emitting diodes and designs to mitigate them,” J. Appl. Phys. 108(3), 033112 (2010).
[Crossref]

X. Ni, X. Li, J. Lee, S. Liu, V. Avrutin, U. Ozgur, H. Morkoc, A. Matulionis, T. Paskova, G. Mulholland, and K. R. Evans, “InGaN staircase electron injector for reduction of electron overflow in InGaN light emitting diodes,” Appl. Phys. Lett. 97(3), 031110 (2010).
[Crossref]

Balakrishnan, K.

A. Khan, K. Balakrishnan, and T. Katona, “Ultraviolet light-emitting diodes based on group three nitrides,” Nat. Photonics 2(2), 77–84 (2008).
[Crossref]

Bi, W.

L. Li, Y. Zhang, S. Xu, W. Bi, Z.-H. Zhang, and H.-C. Kuo, “On the hole injection for III-nitride based deep ultraviolet light-emitting diodes,” Materials (Basel) 10(10), 1221 (2017).
[Crossref] [PubMed]

Z.-H. Zhang, S.-W. H. Chen, Y. Zhang, L. Li, S.-W. Wang, K. Tian, C. Chu, M. Fang, H.-C. Kuo, and W. Bi, “Hole transport manipulation to improve the hole injection for deep ultraviolet light-emitting diodes,” ACS Photonics 4(7), 1846–1850 (2017).
[Crossref]

Z.-H. Zhang, L. Li, Y. Zhang, F. Xu, Q. Shi, B. Shen, and W. Bi, “On the electric-field reservoir for III-nitride based deep ultraviolet light-emitting diodes,” Opt. Express 25(14), 16550–16559 (2017).
[Crossref] [PubMed]

L. Li, Q. Shi, K. Tian, C. Chu, M. Fang, R. Meng, Y. Zhang, Z.-H. Zhang, and W. Bi, “A dielectric-constant-controlled tunnel junction for III-nitride light-emitting diodes,” Phys. Status Solidi., A Appl. Mater. Sci. 214(6), 1600937 (2017).
[Crossref]

L. Li, Q. Shi, K. Tian, C. Chu, M. Fang, R. Meng, Y. Zhang, Z.-H. Zhang, and W. Bi, “Numerical investigations on the n+-GaN/AlGaN/p+-GaN tunnel junction for III-nitride UV light-emitting diodes,” Phys. Status Solidi., A Appl. Mater. Sci. 214(12), 1700624 (2017).
[Crossref]

Chang, H. T.

J. Y. Chang, H. T. Chang, Y. H. Shih, F. M. Chen, M. F. Huang, and Y. K. Kuo, ““Efficient carrier confinement in deep-ultraviolet light-emitting diodes with composition-graded configuration,” IEEE Trans. Electron Dev. 64(12), 4980–4984 (2017).
[Crossref]

Chang, J. Y.

J. Y. Chang, H. T. Chang, Y. H. Shih, F. M. Chen, M. F. Huang, and Y. K. Kuo, ““Efficient carrier confinement in deep-ultraviolet light-emitting diodes with composition-graded configuration,” IEEE Trans. Electron Dev. 64(12), 4980–4984 (2017).
[Crossref]

Chen, F. M.

J. Y. Chang, H. T. Chang, Y. H. Shih, F. M. Chen, M. F. Huang, and Y. K. Kuo, ““Efficient carrier confinement in deep-ultraviolet light-emitting diodes with composition-graded configuration,” IEEE Trans. Electron Dev. 64(12), 4980–4984 (2017).
[Crossref]

Chen, S.-W. H.

Z.-H. Zhang, S.-W. H. Chen, Y. Zhang, L. Li, S.-W. Wang, K. Tian, C. Chu, M. Fang, H.-C. Kuo, and W. Bi, “Hole transport manipulation to improve the hole injection for deep ultraviolet light-emitting diodes,” ACS Photonics 4(7), 1846–1850 (2017).
[Crossref]

Chen, Z.

Chiang, H.-C.

Choi, H.-S.

H.-Y. Ryu, I.-G. Choi, H.-S. Choi, and J.-I. Shim, “Investigation of light extraction efficiency in AlGaN deep-ultraviolet light-emitting diodes,” Appl. Phys. Express 6(6), 062101 (2013).
[Crossref]

Choi, I.-G.

H.-Y. Ryu, I.-G. Choi, H.-S. Choi, and J.-I. Shim, “Investigation of light extraction efficiency in AlGaN deep-ultraviolet light-emitting diodes,” Appl. Phys. Express 6(6), 062101 (2013).
[Crossref]

Chou, K.-P.

Chu, C.

Z.-H. Zhang, S.-W. H. Chen, Y. Zhang, L. Li, S.-W. Wang, K. Tian, C. Chu, M. Fang, H.-C. Kuo, and W. Bi, “Hole transport manipulation to improve the hole injection for deep ultraviolet light-emitting diodes,” ACS Photonics 4(7), 1846–1850 (2017).
[Crossref]

L. Li, Q. Shi, K. Tian, C. Chu, M. Fang, R. Meng, Y. Zhang, Z.-H. Zhang, and W. Bi, “Numerical investigations on the n+-GaN/AlGaN/p+-GaN tunnel junction for III-nitride UV light-emitting diodes,” Phys. Status Solidi., A Appl. Mater. Sci. 214(12), 1700624 (2017).
[Crossref]

L. Li, Q. Shi, K. Tian, C. Chu, M. Fang, R. Meng, Y. Zhang, Z.-H. Zhang, and W. Bi, “A dielectric-constant-controlled tunnel junction for III-nitride light-emitting diodes,” Phys. Status Solidi., A Appl. Mater. Sci. 214(6), 1600937 (2017).
[Crossref]

Demir, H. V.

Einfeldt, S.

F. Mehnke, C. Kuhn, M. Guttmann, C. Reich, T. Kolbe, V. Kueller, A. Knauer, M. Lapeyrade, S. Einfeldt, J. Rass, T. Wernicke, M. Weyers, and M. Kneissl, “Efficient charge carrier injection into sub-250 nm AlGaN multiple quantum well light emitting diodes,” Appl. Phys. Lett. 105(5), 051113 (2014).
[Crossref]

Evans, K. R.

X. Ni, X. Li, J. Lee, S. Liu, V. Avrutin, U. Ozgur, H. Morkoc, A. Matulionis, T. Paskova, G. Mulholland, and K. R. Evans, “InGaN staircase electron injector for reduction of electron overflow in InGaN light emitting diodes,” Appl. Phys. Lett. 97(3), 031110 (2010).
[Crossref]

Fang, M.

L. Li, Q. Shi, K. Tian, C. Chu, M. Fang, R. Meng, Y. Zhang, Z.-H. Zhang, and W. Bi, “A dielectric-constant-controlled tunnel junction for III-nitride light-emitting diodes,” Phys. Status Solidi., A Appl. Mater. Sci. 214(6), 1600937 (2017).
[Crossref]

L. Li, Q. Shi, K. Tian, C. Chu, M. Fang, R. Meng, Y. Zhang, Z.-H. Zhang, and W. Bi, “Numerical investigations on the n+-GaN/AlGaN/p+-GaN tunnel junction for III-nitride UV light-emitting diodes,” Phys. Status Solidi., A Appl. Mater. Sci. 214(12), 1700624 (2017).
[Crossref]

Z.-H. Zhang, S.-W. H. Chen, Y. Zhang, L. Li, S.-W. Wang, K. Tian, C. Chu, M. Fang, H.-C. Kuo, and W. Bi, “Hole transport manipulation to improve the hole injection for deep ultraviolet light-emitting diodes,” ACS Photonics 4(7), 1846–1850 (2017).
[Crossref]

Guo, C.

D. Li, K. Jiang, X. Sun, and C. Guo, “AlGaN phtonics: advances in materials and ultraviolet devices,” Adv. Opt. Photonics 10(1), 43–109 (2018).
[Crossref]

Guttmann, M.

F. Mehnke, C. Kuhn, M. Guttmann, C. Reich, T. Kolbe, V. Kueller, A. Knauer, M. Lapeyrade, S. Einfeldt, J. Rass, T. Wernicke, M. Weyers, and M. Kneissl, “Efficient charge carrier injection into sub-250 nm AlGaN multiple quantum well light emitting diodes,” Appl. Phys. Lett. 105(5), 051113 (2014).
[Crossref]

Hasanov, N.

He, C.

He, L.

Hideki, H.

H. Hideki, T. Yusuke, M. Tetsutoshi, and K. Norihiko, “Marked enhancement in the efficiency of deep-ultraviolet AlGaN light-emitting diodes by using a multiquantum-barrier electron blocking layer,” Appl. Phys. Express 3(3), 031002 (2010).
[Crossref]

Hirayama, H.

T. Takano, T. Mino, J. Sakai, N. Noguchi, K. Tsubaki, and H. Hirayama, “Deep-ultraviolet light-emitting diodes with external quantum efficiency higher than 20% at 275 nm achieved by improving light-extraction efficiency,” Appl. Phys. Express 10(3), 031002 (2017).
[Crossref]

Huang, M. F.

J. Y. Chang, H. T. Chang, Y. H. Shih, F. M. Chen, M. F. Huang, and Y. K. Kuo, ““Efficient carrier confinement in deep-ultraviolet light-emitting diodes with composition-graded configuration,” IEEE Trans. Electron Dev. 64(12), 4980–4984 (2017).
[Crossref]

Ji, Y.

Jiang, K.

D. Li, K. Jiang, X. Sun, and C. Guo, “AlGaN phtonics: advances in materials and ultraviolet devices,” Adv. Opt. Photonics 10(1), 43–109 (2018).
[Crossref]

Ju, Z.

Z.-H. Zhang, W. Liu, S. T. Tan, Z. Ju, Y. Ji, Z. Kyaw, X. Zhang, N. Hasanov, B. Zhu, S. Lu, Y. Zhang, X. W. Sun, and H. V. Demir, “On the mechanisms of InGaN electron cooler in InGaN/GaN light-emitting diodes,” Opt. Express 25(14), 16550–16559 (2017).
[Crossref] [PubMed]

Z.-H. Zhang, Y. Ji, W. Liu, S. T. Tan, Z. Kyaw, Z. Ju, X. Zhang, N. Hasanov, S. Lu, Y. Zhang, B. Zhu, X. W. Sun, and H. V. Demir, “On the origin of the electron blocking effect by an n-type AlGaN electron blocking layer,” Appl. Phys. Lett. 104(7), 073511 (2014).
[Crossref]

Ju, Z. G.

Katona, T.

A. Khan, K. Balakrishnan, and T. Katona, “Ultraviolet light-emitting diodes based on group three nitrides,” Nat. Photonics 2(2), 77–84 (2008).
[Crossref]

Katsuragawa, M.

M. Katsuragawa, S. Sota, M. Komori, C. Anbe, T. Takeuchi, H. Sakai, H. Amano, and I. Akasaki, “Thermal ionization energy of Si and Mg in AlGaN,” J. Cryst. Growth 189–190, 528–531 (1998).
[Crossref]

Khan, A.

A. Khan, K. Balakrishnan, and T. Katona, “Ultraviolet light-emitting diodes based on group three nitrides,” Nat. Photonics 2(2), 77–84 (2008).
[Crossref]

Kiang, Y.-W.

Knauer, A.

F. Mehnke, C. Kuhn, M. Guttmann, C. Reich, T. Kolbe, V. Kueller, A. Knauer, M. Lapeyrade, S. Einfeldt, J. Rass, T. Wernicke, M. Weyers, and M. Kneissl, “Efficient charge carrier injection into sub-250 nm AlGaN multiple quantum well light emitting diodes,” Appl. Phys. Lett. 105(5), 051113 (2014).
[Crossref]

Kneissl, M.

F. Mehnke, C. Kuhn, M. Guttmann, C. Reich, T. Kolbe, V. Kueller, A. Knauer, M. Lapeyrade, S. Einfeldt, J. Rass, T. Wernicke, M. Weyers, and M. Kneissl, “Efficient charge carrier injection into sub-250 nm AlGaN multiple quantum well light emitting diodes,” Appl. Phys. Lett. 105(5), 051113 (2014).
[Crossref]

Kolbe, T.

F. Mehnke, C. Kuhn, M. Guttmann, C. Reich, T. Kolbe, V. Kueller, A. Knauer, M. Lapeyrade, S. Einfeldt, J. Rass, T. Wernicke, M. Weyers, and M. Kneissl, “Efficient charge carrier injection into sub-250 nm AlGaN multiple quantum well light emitting diodes,” Appl. Phys. Lett. 105(5), 051113 (2014).
[Crossref]

Komori, M.

M. Katsuragawa, S. Sota, M. Komori, C. Anbe, T. Takeuchi, H. Sakai, H. Amano, and I. Akasaki, “Thermal ionization energy of Si and Mg in AlGaN,” J. Cryst. Growth 189–190, 528–531 (1998).
[Crossref]

Kueller, V.

F. Mehnke, C. Kuhn, M. Guttmann, C. Reich, T. Kolbe, V. Kueller, A. Knauer, M. Lapeyrade, S. Einfeldt, J. Rass, T. Wernicke, M. Weyers, and M. Kneissl, “Efficient charge carrier injection into sub-250 nm AlGaN multiple quantum well light emitting diodes,” Appl. Phys. Lett. 105(5), 051113 (2014).
[Crossref]

Kuhn, C.

F. Mehnke, C. Kuhn, M. Guttmann, C. Reich, T. Kolbe, V. Kueller, A. Knauer, M. Lapeyrade, S. Einfeldt, J. Rass, T. Wernicke, M. Weyers, and M. Kneissl, “Efficient charge carrier injection into sub-250 nm AlGaN multiple quantum well light emitting diodes,” Appl. Phys. Lett. 105(5), 051113 (2014).
[Crossref]

Kuo, H.-C.

Z.-H. Zhang, S.-W. H. Chen, Y. Zhang, L. Li, S.-W. Wang, K. Tian, C. Chu, M. Fang, H.-C. Kuo, and W. Bi, “Hole transport manipulation to improve the hole injection for deep ultraviolet light-emitting diodes,” ACS Photonics 4(7), 1846–1850 (2017).
[Crossref]

L. Li, Y. Zhang, S. Xu, W. Bi, Z.-H. Zhang, and H.-C. Kuo, “On the hole injection for III-nitride based deep ultraviolet light-emitting diodes,” Materials (Basel) 10(10), 1221 (2017).
[Crossref] [PubMed]

Kuo, Y. K.

J. Y. Chang, H. T. Chang, Y. H. Shih, F. M. Chen, M. F. Huang, and Y. K. Kuo, ““Efficient carrier confinement in deep-ultraviolet light-emitting diodes with composition-graded configuration,” IEEE Trans. Electron Dev. 64(12), 4980–4984 (2017).
[Crossref]

Kuo, Y.-K.

M.-C. Tsai, S.-H. Yen, and Y.-K. Kuo, “Deep-ultraviolet light-emitting diodes with gradually increased thicknesses from n-layers to p-layers,” Appl. Phys. Lett. 98(11), 111114 (2011).
[Crossref]

Kyaw, Z.

Lapeyrade, M.

F. Mehnke, C. Kuhn, M. Guttmann, C. Reich, T. Kolbe, V. Kueller, A. Knauer, M. Lapeyrade, S. Einfeldt, J. Rass, T. Wernicke, M. Weyers, and M. Kneissl, “Efficient charge carrier injection into sub-250 nm AlGaN multiple quantum well light emitting diodes,” Appl. Phys. Lett. 105(5), 051113 (2014).
[Crossref]

Lee, J.

X. Ni, X. Li, J. Lee, S. Liu, V. Avrutin, U. Ozgur, H. Morkoc, A. Matulionis, T. Paskova, G. Mulholland, and K. R. Evans, “InGaN staircase electron injector for reduction of electron overflow in InGaN light emitting diodes,” Appl. Phys. Lett. 97(3), 031110 (2010).
[Crossref]

X. Ni, X. Li, J. Lee, S. Liu, V. Avrutin, U. Ozgur, H. Morkoc, and A. Matulionis, “Hot electron effects on efficiency degradation in InGaN light emitting diodes and designs to mitigate them,” J. Appl. Phys. 108(3), 033112 (2010).
[Crossref]

Li, D.

D. Li, K. Jiang, X. Sun, and C. Guo, “AlGaN phtonics: advances in materials and ultraviolet devices,” Adv. Opt. Photonics 10(1), 43–109 (2018).
[Crossref]

Li, L.

L. Li, Y. Zhang, S. Xu, W. Bi, Z.-H. Zhang, and H.-C. Kuo, “On the hole injection for III-nitride based deep ultraviolet light-emitting diodes,” Materials (Basel) 10(10), 1221 (2017).
[Crossref] [PubMed]

Z.-H. Zhang, S.-W. H. Chen, Y. Zhang, L. Li, S.-W. Wang, K. Tian, C. Chu, M. Fang, H.-C. Kuo, and W. Bi, “Hole transport manipulation to improve the hole injection for deep ultraviolet light-emitting diodes,” ACS Photonics 4(7), 1846–1850 (2017).
[Crossref]

Z.-H. Zhang, L. Li, Y. Zhang, F. Xu, Q. Shi, B. Shen, and W. Bi, “On the electric-field reservoir for III-nitride based deep ultraviolet light-emitting diodes,” Opt. Express 25(14), 16550–16559 (2017).
[Crossref] [PubMed]

L. Li, Q. Shi, K. Tian, C. Chu, M. Fang, R. Meng, Y. Zhang, Z.-H. Zhang, and W. Bi, “Numerical investigations on the n+-GaN/AlGaN/p+-GaN tunnel junction for III-nitride UV light-emitting diodes,” Phys. Status Solidi., A Appl. Mater. Sci. 214(12), 1700624 (2017).
[Crossref]

L. Li, Q. Shi, K. Tian, C. Chu, M. Fang, R. Meng, Y. Zhang, Z.-H. Zhang, and W. Bi, “A dielectric-constant-controlled tunnel junction for III-nitride light-emitting diodes,” Phys. Status Solidi., A Appl. Mater. Sci. 214(6), 1600937 (2017).
[Crossref]

Li, S.

Li, X.

X. Ni, X. Li, J. Lee, S. Liu, V. Avrutin, U. Ozgur, H. Morkoc, and A. Matulionis, “Hot electron effects on efficiency degradation in InGaN light emitting diodes and designs to mitigate them,” J. Appl. Phys. 108(3), 033112 (2010).
[Crossref]

X. Ni, X. Li, J. Lee, S. Liu, V. Avrutin, U. Ozgur, H. Morkoc, A. Matulionis, T. Paskova, G. Mulholland, and K. R. Evans, “InGaN staircase electron injector for reduction of electron overflow in InGaN light emitting diodes,” Appl. Phys. Lett. 97(3), 031110 (2010).
[Crossref]

Lin, C.-F.

T.-Y. Wang, C. T. Tasi, C.-F. Lin, and D.-S. Wuu, “85% internal quantum efficiency of 280-nm AlGaN multiple quantum wells by defect engineering,” Sci. Rep. 7(1), 14422 (2017).
[Crossref] [PubMed]

Lin, H.-H.

Liu, N.

Liu, S.

X. Ni, X. Li, J. Lee, S. Liu, V. Avrutin, U. Ozgur, H. Morkoc, A. Matulionis, T. Paskova, G. Mulholland, and K. R. Evans, “InGaN staircase electron injector for reduction of electron overflow in InGaN light emitting diodes,” Appl. Phys. Lett. 97(3), 031110 (2010).
[Crossref]

X. Ni, X. Li, J. Lee, S. Liu, V. Avrutin, U. Ozgur, H. Morkoc, and A. Matulionis, “Hot electron effects on efficiency degradation in InGaN light emitting diodes and designs to mitigate them,” J. Appl. Phys. 108(3), 033112 (2010).
[Crossref]

Liu, W.

Lu, S.

Matulionis, A.

X. Ni, X. Li, J. Lee, S. Liu, V. Avrutin, U. Ozgur, H. Morkoc, and A. Matulionis, “Hot electron effects on efficiency degradation in InGaN light emitting diodes and designs to mitigate them,” J. Appl. Phys. 108(3), 033112 (2010).
[Crossref]

X. Ni, X. Li, J. Lee, S. Liu, V. Avrutin, U. Ozgur, H. Morkoc, A. Matulionis, T. Paskova, G. Mulholland, and K. R. Evans, “InGaN staircase electron injector for reduction of electron overflow in InGaN light emitting diodes,” Appl. Phys. Lett. 97(3), 031110 (2010).
[Crossref]

Mehnke, F.

F. Mehnke, C. Kuhn, M. Guttmann, C. Reich, T. Kolbe, V. Kueller, A. Knauer, M. Lapeyrade, S. Einfeldt, J. Rass, T. Wernicke, M. Weyers, and M. Kneissl, “Efficient charge carrier injection into sub-250 nm AlGaN multiple quantum well light emitting diodes,” Appl. Phys. Lett. 105(5), 051113 (2014).
[Crossref]

Meng, R.

L. Li, Q. Shi, K. Tian, C. Chu, M. Fang, R. Meng, Y. Zhang, Z.-H. Zhang, and W. Bi, “A dielectric-constant-controlled tunnel junction for III-nitride light-emitting diodes,” Phys. Status Solidi., A Appl. Mater. Sci. 214(6), 1600937 (2017).
[Crossref]

L. Li, Q. Shi, K. Tian, C. Chu, M. Fang, R. Meng, Y. Zhang, Z.-H. Zhang, and W. Bi, “Numerical investigations on the n+-GaN/AlGaN/p+-GaN tunnel junction for III-nitride UV light-emitting diodes,” Phys. Status Solidi., A Appl. Mater. Sci. 214(12), 1700624 (2017).
[Crossref]

Mino, T.

T. Takano, T. Mino, J. Sakai, N. Noguchi, K. Tsubaki, and H. Hirayama, “Deep-ultraviolet light-emitting diodes with external quantum efficiency higher than 20% at 275 nm achieved by improving light-extraction efficiency,” Appl. Phys. Express 10(3), 031002 (2017).
[Crossref]

Morkoc, H.

X. Ni, X. Li, J. Lee, S. Liu, V. Avrutin, U. Ozgur, H. Morkoc, A. Matulionis, T. Paskova, G. Mulholland, and K. R. Evans, “InGaN staircase electron injector for reduction of electron overflow in InGaN light emitting diodes,” Appl. Phys. Lett. 97(3), 031110 (2010).
[Crossref]

X. Ni, X. Li, J. Lee, S. Liu, V. Avrutin, U. Ozgur, H. Morkoc, and A. Matulionis, “Hot electron effects on efficiency degradation in InGaN light emitting diodes and designs to mitigate them,” J. Appl. Phys. 108(3), 033112 (2010).
[Crossref]

Mulholland, G.

X. Ni, X. Li, J. Lee, S. Liu, V. Avrutin, U. Ozgur, H. Morkoc, A. Matulionis, T. Paskova, G. Mulholland, and K. R. Evans, “InGaN staircase electron injector for reduction of electron overflow in InGaN light emitting diodes,” Appl. Phys. Lett. 97(3), 031110 (2010).
[Crossref]

Ni, X.

X. Ni, X. Li, J. Lee, S. Liu, V. Avrutin, U. Ozgur, H. Morkoc, A. Matulionis, T. Paskova, G. Mulholland, and K. R. Evans, “InGaN staircase electron injector for reduction of electron overflow in InGaN light emitting diodes,” Appl. Phys. Lett. 97(3), 031110 (2010).
[Crossref]

X. Ni, X. Li, J. Lee, S. Liu, V. Avrutin, U. Ozgur, H. Morkoc, and A. Matulionis, “Hot electron effects on efficiency degradation in InGaN light emitting diodes and designs to mitigate them,” J. Appl. Phys. 108(3), 033112 (2010).
[Crossref]

Noguchi, N.

T. Takano, T. Mino, J. Sakai, N. Noguchi, K. Tsubaki, and H. Hirayama, “Deep-ultraviolet light-emitting diodes with external quantum efficiency higher than 20% at 275 nm achieved by improving light-extraction efficiency,” Appl. Phys. Express 10(3), 031002 (2017).
[Crossref]

Norihiko, K.

H. Hideki, T. Yusuke, M. Tetsutoshi, and K. Norihiko, “Marked enhancement in the efficiency of deep-ultraviolet AlGaN light-emitting diodes by using a multiquantum-barrier electron blocking layer,” Appl. Phys. Express 3(3), 031002 (2010).
[Crossref]

Ozgur, U.

X. Ni, X. Li, J. Lee, S. Liu, V. Avrutin, U. Ozgur, H. Morkoc, and A. Matulionis, “Hot electron effects on efficiency degradation in InGaN light emitting diodes and designs to mitigate them,” J. Appl. Phys. 108(3), 033112 (2010).
[Crossref]

X. Ni, X. Li, J. Lee, S. Liu, V. Avrutin, U. Ozgur, H. Morkoc, A. Matulionis, T. Paskova, G. Mulholland, and K. R. Evans, “InGaN staircase electron injector for reduction of electron overflow in InGaN light emitting diodes,” Appl. Phys. Lett. 97(3), 031110 (2010).
[Crossref]

Paskova, T.

X. Ni, X. Li, J. Lee, S. Liu, V. Avrutin, U. Ozgur, H. Morkoc, A. Matulionis, T. Paskova, G. Mulholland, and K. R. Evans, “InGaN staircase electron injector for reduction of electron overflow in InGaN light emitting diodes,” Appl. Phys. Lett. 97(3), 031110 (2010).
[Crossref]

Rass, J.

F. Mehnke, C. Kuhn, M. Guttmann, C. Reich, T. Kolbe, V. Kueller, A. Knauer, M. Lapeyrade, S. Einfeldt, J. Rass, T. Wernicke, M. Weyers, and M. Kneissl, “Efficient charge carrier injection into sub-250 nm AlGaN multiple quantum well light emitting diodes,” Appl. Phys. Lett. 105(5), 051113 (2014).
[Crossref]

Reich, C.

F. Mehnke, C. Kuhn, M. Guttmann, C. Reich, T. Kolbe, V. Kueller, A. Knauer, M. Lapeyrade, S. Einfeldt, J. Rass, T. Wernicke, M. Weyers, and M. Kneissl, “Efficient charge carrier injection into sub-250 nm AlGaN multiple quantum well light emitting diodes,” Appl. Phys. Lett. 105(5), 051113 (2014).
[Crossref]

Ryu, H.-Y.

H.-Y. Ryu, I.-G. Choi, H.-S. Choi, and J.-I. Shim, “Investigation of light extraction efficiency in AlGaN deep-ultraviolet light-emitting diodes,” Appl. Phys. Express 6(6), 062101 (2013).
[Crossref]

Sakai, H.

M. Katsuragawa, S. Sota, M. Komori, C. Anbe, T. Takeuchi, H. Sakai, H. Amano, and I. Akasaki, “Thermal ionization energy of Si and Mg in AlGaN,” J. Cryst. Growth 189–190, 528–531 (1998).
[Crossref]

Sakai, J.

T. Takano, T. Mino, J. Sakai, N. Noguchi, K. Tsubaki, and H. Hirayama, “Deep-ultraviolet light-emitting diodes with external quantum efficiency higher than 20% at 275 nm achieved by improving light-extraction efficiency,” Appl. Phys. Express 10(3), 031002 (2017).
[Crossref]

Shen, B.

Shi, Q.

Z.-H. Zhang, L. Li, Y. Zhang, F. Xu, Q. Shi, B. Shen, and W. Bi, “On the electric-field reservoir for III-nitride based deep ultraviolet light-emitting diodes,” Opt. Express 25(14), 16550–16559 (2017).
[Crossref] [PubMed]

L. Li, Q. Shi, K. Tian, C. Chu, M. Fang, R. Meng, Y. Zhang, Z.-H. Zhang, and W. Bi, “Numerical investigations on the n+-GaN/AlGaN/p+-GaN tunnel junction for III-nitride UV light-emitting diodes,” Phys. Status Solidi., A Appl. Mater. Sci. 214(12), 1700624 (2017).
[Crossref]

L. Li, Q. Shi, K. Tian, C. Chu, M. Fang, R. Meng, Y. Zhang, Z.-H. Zhang, and W. Bi, “A dielectric-constant-controlled tunnel junction for III-nitride light-emitting diodes,” Phys. Status Solidi., A Appl. Mater. Sci. 214(6), 1600937 (2017).
[Crossref]

Shih, Y. H.

J. Y. Chang, H. T. Chang, Y. H. Shih, F. M. Chen, M. F. Huang, and Y. K. Kuo, ““Efficient carrier confinement in deep-ultraviolet light-emitting diodes with composition-graded configuration,” IEEE Trans. Electron Dev. 64(12), 4980–4984 (2017).
[Crossref]

Shim, J.-I.

H.-Y. Ryu, I.-G. Choi, H.-S. Choi, and J.-I. Shim, “Investigation of light extraction efficiency in AlGaN deep-ultraviolet light-emitting diodes,” Appl. Phys. Express 6(6), 062101 (2013).
[Crossref]

Song, W.

Sota, S.

M. Katsuragawa, S. Sota, M. Komori, C. Anbe, T. Takeuchi, H. Sakai, H. Amano, and I. Akasaki, “Thermal ionization energy of Si and Mg in AlGaN,” J. Cryst. Growth 189–190, 528–531 (1998).
[Crossref]

Su, C.-Y.

Su, M.-Y.

Sun, X.

D. Li, K. Jiang, X. Sun, and C. Guo, “AlGaN phtonics: advances in materials and ultraviolet devices,” Adv. Opt. Photonics 10(1), 43–109 (2018).
[Crossref]

Sun, X. W.

Takano, T.

T. Takano, T. Mino, J. Sakai, N. Noguchi, K. Tsubaki, and H. Hirayama, “Deep-ultraviolet light-emitting diodes with external quantum efficiency higher than 20% at 275 nm achieved by improving light-extraction efficiency,” Appl. Phys. Express 10(3), 031002 (2017).
[Crossref]

Takeuchi, T.

M. Katsuragawa, S. Sota, M. Komori, C. Anbe, T. Takeuchi, H. Sakai, H. Amano, and I. Akasaki, “Thermal ionization energy of Si and Mg in AlGaN,” J. Cryst. Growth 189–190, 528–531 (1998).
[Crossref]

Tan, S. T.

Tasi, C. T.

T.-Y. Wang, C. T. Tasi, C.-F. Lin, and D.-S. Wuu, “85% internal quantum efficiency of 280-nm AlGaN multiple quantum wells by defect engineering,” Sci. Rep. 7(1), 14422 (2017).
[Crossref] [PubMed]

Tetsutoshi, M.

H. Hideki, T. Yusuke, M. Tetsutoshi, and K. Norihiko, “Marked enhancement in the efficiency of deep-ultraviolet AlGaN light-emitting diodes by using a multiquantum-barrier electron blocking layer,” Appl. Phys. Express 3(3), 031002 (2010).
[Crossref]

Tian, K.

Z.-H. Zhang, S.-W. H. Chen, Y. Zhang, L. Li, S.-W. Wang, K. Tian, C. Chu, M. Fang, H.-C. Kuo, and W. Bi, “Hole transport manipulation to improve the hole injection for deep ultraviolet light-emitting diodes,” ACS Photonics 4(7), 1846–1850 (2017).
[Crossref]

L. Li, Q. Shi, K. Tian, C. Chu, M. Fang, R. Meng, Y. Zhang, Z.-H. Zhang, and W. Bi, “A dielectric-constant-controlled tunnel junction for III-nitride light-emitting diodes,” Phys. Status Solidi., A Appl. Mater. Sci. 214(6), 1600937 (2017).
[Crossref]

L. Li, Q. Shi, K. Tian, C. Chu, M. Fang, R. Meng, Y. Zhang, Z.-H. Zhang, and W. Bi, “Numerical investigations on the n+-GaN/AlGaN/p+-GaN tunnel junction for III-nitride UV light-emitting diodes,” Phys. Status Solidi., A Appl. Mater. Sci. 214(12), 1700624 (2017).
[Crossref]

Tsai, M.-C.

Tsubaki, K.

T. Takano, T. Mino, J. Sakai, N. Noguchi, K. Tsubaki, and H. Hirayama, “Deep-ultraviolet light-emitting diodes with external quantum efficiency higher than 20% at 275 nm achieved by improving light-extraction efficiency,” Appl. Phys. Express 10(3), 031002 (2017).
[Crossref]

Wang, S.-W.

Z.-H. Zhang, S.-W. H. Chen, Y. Zhang, L. Li, S.-W. Wang, K. Tian, C. Chu, M. Fang, H.-C. Kuo, and W. Bi, “Hole transport manipulation to improve the hole injection for deep ultraviolet light-emitting diodes,” ACS Photonics 4(7), 1846–1850 (2017).
[Crossref]

Wang, T.-Y.

T.-Y. Wang, C. T. Tasi, C.-F. Lin, and D.-S. Wuu, “85% internal quantum efficiency of 280-nm AlGaN multiple quantum wells by defect engineering,” Sci. Rep. 7(1), 14422 (2017).
[Crossref] [PubMed]

Wernicke, T.

F. Mehnke, C. Kuhn, M. Guttmann, C. Reich, T. Kolbe, V. Kueller, A. Knauer, M. Lapeyrade, S. Einfeldt, J. Rass, T. Wernicke, M. Weyers, and M. Kneissl, “Efficient charge carrier injection into sub-250 nm AlGaN multiple quantum well light emitting diodes,” Appl. Phys. Lett. 105(5), 051113 (2014).
[Crossref]

Weyers, M.

F. Mehnke, C. Kuhn, M. Guttmann, C. Reich, T. Kolbe, V. Kueller, A. Knauer, M. Lapeyrade, S. Einfeldt, J. Rass, T. Wernicke, M. Weyers, and M. Kneissl, “Efficient charge carrier injection into sub-250 nm AlGaN multiple quantum well light emitting diodes,” Appl. Phys. Lett. 105(5), 051113 (2014).
[Crossref]

Wu, H.

Wu, Y.-R.

Wuu, D.-S.

T.-Y. Wang, C. T. Tasi, C.-F. Lin, and D.-S. Wuu, “85% internal quantum efficiency of 280-nm AlGaN multiple quantum wells by defect engineering,” Sci. Rep. 7(1), 14422 (2017).
[Crossref] [PubMed]

Xu, F.

Xu, S.

L. Li, Y. Zhang, S. Xu, W. Bi, Z.-H. Zhang, and H.-C. Kuo, “On the hole injection for III-nitride based deep ultraviolet light-emitting diodes,” Materials (Basel) 10(10), 1221 (2017).
[Crossref] [PubMed]

Yang, C. C.

Yen, S.-H.

M.-C. Tsai, S.-H. Yen, and Y.-K. Kuo, “Deep-ultraviolet light-emitting diodes with gradually increased thicknesses from n-layers to p-layers,” Appl. Phys. Lett. 98(11), 111114 (2011).
[Crossref]

Yusuke, T.

H. Hideki, T. Yusuke, M. Tetsutoshi, and K. Norihiko, “Marked enhancement in the efficiency of deep-ultraviolet AlGaN light-emitting diodes by using a multiquantum-barrier electron blocking layer,” Appl. Phys. Express 3(3), 031002 (2010).
[Crossref]

Zhang, K.

Zhang, X.

Z.-H. Zhang, W. Liu, S. T. Tan, Z. Ju, Y. Ji, Z. Kyaw, X. Zhang, N. Hasanov, B. Zhu, S. Lu, Y. Zhang, X. W. Sun, and H. V. Demir, “On the mechanisms of InGaN electron cooler in InGaN/GaN light-emitting diodes,” Opt. Express 25(14), 16550–16559 (2017).
[Crossref] [PubMed]

Z.-H. Zhang, Y. Ji, W. Liu, S. T. Tan, Z. Kyaw, Z. Ju, X. Zhang, N. Hasanov, S. Lu, Y. Zhang, B. Zhu, X. W. Sun, and H. V. Demir, “On the origin of the electron blocking effect by an n-type AlGaN electron blocking layer,” Appl. Phys. Lett. 104(7), 073511 (2014).
[Crossref]

Zhang, X. L.

Zhang, Y.

L. Li, Q. Shi, K. Tian, C. Chu, M. Fang, R. Meng, Y. Zhang, Z.-H. Zhang, and W. Bi, “Numerical investigations on the n+-GaN/AlGaN/p+-GaN tunnel junction for III-nitride UV light-emitting diodes,” Phys. Status Solidi., A Appl. Mater. Sci. 214(12), 1700624 (2017).
[Crossref]

L. Li, Q. Shi, K. Tian, C. Chu, M. Fang, R. Meng, Y. Zhang, Z.-H. Zhang, and W. Bi, “A dielectric-constant-controlled tunnel junction for III-nitride light-emitting diodes,” Phys. Status Solidi., A Appl. Mater. Sci. 214(6), 1600937 (2017).
[Crossref]

Z.-H. Zhang, W. Liu, S. T. Tan, Z. Ju, Y. Ji, Z. Kyaw, X. Zhang, N. Hasanov, B. Zhu, S. Lu, Y. Zhang, X. W. Sun, and H. V. Demir, “On the mechanisms of InGaN electron cooler in InGaN/GaN light-emitting diodes,” Opt. Express 25(14), 16550–16559 (2017).
[Crossref] [PubMed]

Z.-H. Zhang, S.-W. H. Chen, Y. Zhang, L. Li, S.-W. Wang, K. Tian, C. Chu, M. Fang, H.-C. Kuo, and W. Bi, “Hole transport manipulation to improve the hole injection for deep ultraviolet light-emitting diodes,” ACS Photonics 4(7), 1846–1850 (2017).
[Crossref]

Z.-H. Zhang, L. Li, Y. Zhang, F. Xu, Q. Shi, B. Shen, and W. Bi, “On the electric-field reservoir for III-nitride based deep ultraviolet light-emitting diodes,” Opt. Express 25(14), 16550–16559 (2017).
[Crossref] [PubMed]

L. Li, Y. Zhang, S. Xu, W. Bi, Z.-H. Zhang, and H.-C. Kuo, “On the hole injection for III-nitride based deep ultraviolet light-emitting diodes,” Materials (Basel) 10(10), 1221 (2017).
[Crossref] [PubMed]

Z.-H. Zhang, Y. Ji, W. Liu, S. T. Tan, Z. Kyaw, Z. Ju, X. Zhang, N. Hasanov, S. Lu, Y. Zhang, B. Zhu, X. W. Sun, and H. V. Demir, “On the origin of the electron blocking effect by an n-type AlGaN electron blocking layer,” Appl. Phys. Lett. 104(7), 073511 (2014).
[Crossref]

Z. Kyaw, Z.-H. Zhang, W. Liu, S. T. Tan, Z. G. Ju, X. L. Zhang, Y. Ji, N. Hasanov, B. Zhu, S. Lu, Y. Zhang, X. W. Sun, and H. V. Demir, “On the effect of N-GaN/P-GaN/N-GaN/P-GaN/N-GaN built-in junctions in the n-GaN layer for InGaN/GaN light-emitting diodes,” Opt. Express 22(1), 809–816 (2014).
[PubMed]

Zhang, Z.-H.

L. Li, Q. Shi, K. Tian, C. Chu, M. Fang, R. Meng, Y. Zhang, Z.-H. Zhang, and W. Bi, “A dielectric-constant-controlled tunnel junction for III-nitride light-emitting diodes,” Phys. Status Solidi., A Appl. Mater. Sci. 214(6), 1600937 (2017).
[Crossref]

L. Li, Q. Shi, K. Tian, C. Chu, M. Fang, R. Meng, Y. Zhang, Z.-H. Zhang, and W. Bi, “Numerical investigations on the n+-GaN/AlGaN/p+-GaN tunnel junction for III-nitride UV light-emitting diodes,” Phys. Status Solidi., A Appl. Mater. Sci. 214(12), 1700624 (2017).
[Crossref]

Z.-H. Zhang, W. Liu, S. T. Tan, Z. Ju, Y. Ji, Z. Kyaw, X. Zhang, N. Hasanov, B. Zhu, S. Lu, Y. Zhang, X. W. Sun, and H. V. Demir, “On the mechanisms of InGaN electron cooler in InGaN/GaN light-emitting diodes,” Opt. Express 25(14), 16550–16559 (2017).
[Crossref] [PubMed]

L. Li, Y. Zhang, S. Xu, W. Bi, Z.-H. Zhang, and H.-C. Kuo, “On the hole injection for III-nitride based deep ultraviolet light-emitting diodes,” Materials (Basel) 10(10), 1221 (2017).
[Crossref] [PubMed]

Z.-H. Zhang, L. Li, Y. Zhang, F. Xu, Q. Shi, B. Shen, and W. Bi, “On the electric-field reservoir for III-nitride based deep ultraviolet light-emitting diodes,” Opt. Express 25(14), 16550–16559 (2017).
[Crossref] [PubMed]

Z.-H. Zhang, S.-W. H. Chen, Y. Zhang, L. Li, S.-W. Wang, K. Tian, C. Chu, M. Fang, H.-C. Kuo, and W. Bi, “Hole transport manipulation to improve the hole injection for deep ultraviolet light-emitting diodes,” ACS Photonics 4(7), 1846–1850 (2017).
[Crossref]

Z.-H. Zhang, Y. Ji, W. Liu, S. T. Tan, Z. Kyaw, Z. Ju, X. Zhang, N. Hasanov, S. Lu, Y. Zhang, B. Zhu, X. W. Sun, and H. V. Demir, “On the origin of the electron blocking effect by an n-type AlGaN electron blocking layer,” Appl. Phys. Lett. 104(7), 073511 (2014).
[Crossref]

Z. Kyaw, Z.-H. Zhang, W. Liu, S. T. Tan, Z. G. Ju, X. L. Zhang, Y. Ji, N. Hasanov, B. Zhu, S. Lu, Y. Zhang, X. W. Sun, and H. V. Demir, “On the effect of N-GaN/P-GaN/N-GaN/P-GaN/N-GaN built-in junctions in the n-GaN layer for InGaN/GaN light-emitting diodes,” Opt. Express 22(1), 809–816 (2014).
[PubMed]

Zhao, W.

Zhu, B.

ACS Photonics (1)

Z.-H. Zhang, S.-W. H. Chen, Y. Zhang, L. Li, S.-W. Wang, K. Tian, C. Chu, M. Fang, H.-C. Kuo, and W. Bi, “Hole transport manipulation to improve the hole injection for deep ultraviolet light-emitting diodes,” ACS Photonics 4(7), 1846–1850 (2017).
[Crossref]

Adv. Opt. Photonics (1)

D. Li, K. Jiang, X. Sun, and C. Guo, “AlGaN phtonics: advances in materials and ultraviolet devices,” Adv. Opt. Photonics 10(1), 43–109 (2018).
[Crossref]

Appl. Phys. Express (3)

T. Takano, T. Mino, J. Sakai, N. Noguchi, K. Tsubaki, and H. Hirayama, “Deep-ultraviolet light-emitting diodes with external quantum efficiency higher than 20% at 275 nm achieved by improving light-extraction efficiency,” Appl. Phys. Express 10(3), 031002 (2017).
[Crossref]

H. Hideki, T. Yusuke, M. Tetsutoshi, and K. Norihiko, “Marked enhancement in the efficiency of deep-ultraviolet AlGaN light-emitting diodes by using a multiquantum-barrier electron blocking layer,” Appl. Phys. Express 3(3), 031002 (2010).
[Crossref]

H.-Y. Ryu, I.-G. Choi, H.-S. Choi, and J.-I. Shim, “Investigation of light extraction efficiency in AlGaN deep-ultraviolet light-emitting diodes,” Appl. Phys. Express 6(6), 062101 (2013).
[Crossref]

Appl. Phys. Lett. (4)

X. Ni, X. Li, J. Lee, S. Liu, V. Avrutin, U. Ozgur, H. Morkoc, A. Matulionis, T. Paskova, G. Mulholland, and K. R. Evans, “InGaN staircase electron injector for reduction of electron overflow in InGaN light emitting diodes,” Appl. Phys. Lett. 97(3), 031110 (2010).
[Crossref]

M.-C. Tsai, S.-H. Yen, and Y.-K. Kuo, “Deep-ultraviolet light-emitting diodes with gradually increased thicknesses from n-layers to p-layers,” Appl. Phys. Lett. 98(11), 111114 (2011).
[Crossref]

F. Mehnke, C. Kuhn, M. Guttmann, C. Reich, T. Kolbe, V. Kueller, A. Knauer, M. Lapeyrade, S. Einfeldt, J. Rass, T. Wernicke, M. Weyers, and M. Kneissl, “Efficient charge carrier injection into sub-250 nm AlGaN multiple quantum well light emitting diodes,” Appl. Phys. Lett. 105(5), 051113 (2014).
[Crossref]

Z.-H. Zhang, Y. Ji, W. Liu, S. T. Tan, Z. Kyaw, Z. Ju, X. Zhang, N. Hasanov, S. Lu, Y. Zhang, B. Zhu, X. W. Sun, and H. V. Demir, “On the origin of the electron blocking effect by an n-type AlGaN electron blocking layer,” Appl. Phys. Lett. 104(7), 073511 (2014).
[Crossref]

IEEE Trans. Electron Dev. (1)

J. Y. Chang, H. T. Chang, Y. H. Shih, F. M. Chen, M. F. Huang, and Y. K. Kuo, ““Efficient carrier confinement in deep-ultraviolet light-emitting diodes with composition-graded configuration,” IEEE Trans. Electron Dev. 64(12), 4980–4984 (2017).
[Crossref]

J. Appl. Phys. (1)

X. Ni, X. Li, J. Lee, S. Liu, V. Avrutin, U. Ozgur, H. Morkoc, and A. Matulionis, “Hot electron effects on efficiency degradation in InGaN light emitting diodes and designs to mitigate them,” J. Appl. Phys. 108(3), 033112 (2010).
[Crossref]

J. Cryst. Growth (1)

M. Katsuragawa, S. Sota, M. Komori, C. Anbe, T. Takeuchi, H. Sakai, H. Amano, and I. Akasaki, “Thermal ionization energy of Si and Mg in AlGaN,” J. Cryst. Growth 189–190, 528–531 (1998).
[Crossref]

Materials (Basel) (1)

L. Li, Y. Zhang, S. Xu, W. Bi, Z.-H. Zhang, and H.-C. Kuo, “On the hole injection for III-nitride based deep ultraviolet light-emitting diodes,” Materials (Basel) 10(10), 1221 (2017).
[Crossref] [PubMed]

Nat. Photonics (1)

A. Khan, K. Balakrishnan, and T. Katona, “Ultraviolet light-emitting diodes based on group three nitrides,” Nat. Photonics 2(2), 77–84 (2008).
[Crossref]

Opt. Express (4)

Opt. Lett. (1)

Phys. Status Solidi., A Appl. Mater. Sci. (2)

L. Li, Q. Shi, K. Tian, C. Chu, M. Fang, R. Meng, Y. Zhang, Z.-H. Zhang, and W. Bi, “A dielectric-constant-controlled tunnel junction for III-nitride light-emitting diodes,” Phys. Status Solidi., A Appl. Mater. Sci. 214(6), 1600937 (2017).
[Crossref]

L. Li, Q. Shi, K. Tian, C. Chu, M. Fang, R. Meng, Y. Zhang, Z.-H. Zhang, and W. Bi, “Numerical investigations on the n+-GaN/AlGaN/p+-GaN tunnel junction for III-nitride UV light-emitting diodes,” Phys. Status Solidi., A Appl. Mater. Sci. 214(12), 1700624 (2017).
[Crossref]

Sci. Rep. (1)

T.-Y. Wang, C. T. Tasi, C.-F. Lin, and D.-S. Wuu, “85% internal quantum efficiency of 280-nm AlGaN multiple quantum wells by defect engineering,” Sci. Rep. 7(1), 14422 (2017).
[Crossref] [PubMed]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1 (a) Schematic structure for the [0001] oriented DUV LEDs studied in this work, (b) schematic energy band diagram when the electron concentration and the alloy in the n-AlGaN layer are modulated (i.e., the electron concentration in the L2 region is lower than that in the L1 region; the AlN composition in the L3 region is lower than that in the L2 region). The positive direction of the electric field is along the [0001] orientation. The L1/L2 interface possesses the electric field along the [0001] orientation as shown in Fig. (b1). The sketched electric field profiles at the L2/L3 interface are presented in Figs. (b2) and (b3), such that the electric field on the L2 side and on the L3 side are along and opposed to the [0001] orientation, respectively. Ec, Ev, Efe and Efh denote the conduction band, the valence band, quasi-Fermi levels for electrons and holes, respectively.
Fig. 2
Fig. 2 (a) Experimentally measured and numerically calculated optical power density and EQE as the function of the injection current density for Device 1 (the LEE is set to 9%), (b) experimentally measured and numerically calculated current density in terms of the applied voltage for Device 1.
Fig. 3
Fig. 3 Energy band and electric field profiles in the n-AlGaN layers for (a) Device 1 in the range of 0.2 μm and 0.8 μm, (b) Device 1 in the range of 0.74 μm and 0.8 μm, (c) Device 2 in the range of 0.2 μm and 0.8 μm, (d) Device 3 in the range of 0.2 μm and 0.8 μm and (e) Device 7 in the range of 0.2 μm and 0.8 μm. Data are calculated at the current density of 160 A/cm2. Ec, Ev, Efe and Efh denote the conduction band, the valence band, the quasi-Fermi levels for electrons and hole, respectively. Energy band structures of the MQW regions for Devices 1, 2, 3, and 7 are shown in Fig. 6 in the supplementary material.
Fig. 4
Fig. 4 (a) Optical power density and net work (ΔE) made on the electrons, (b) forward voltage and wall plug efficiency for Devices 1 to 7. Data are calculated at the current density of 160 A/cm2.
Fig. 5
Fig. 5 (a) Electron concentration profiles in the n-AlGaN electron injection layers, (b) electron concentration profiles in the MQWs, and (c) radiative recombination rates in the MQWs for selectively chosen Devices 1 and 5, respectively. Data are calculated at the current density of 160 A/cm2.
Fig. 6
Fig. 6 Energy bands in the MQW regions for (a) Device 1, (b) Device 2, (c) Device 3 and (d) Device 7. Data are calculated at the current density of 160 A/cm2. Ec, Ev, Efe and Efh denote the conduction band, the valence band, the quasi-Fermi levels for electrons and hole, respectively.

Tables (1)

Tables Icon

Table 1 Structure information of the thickness, the electron concentration and the alloy composition in the n-AlGaN layers for Devices 1 to 7. We stepwisely decrease the AlN composition along the [0001] orientation for Devices 2, 3, 4, 5 and 6.