Abstract

Here, a non-volatile optically controllable metasurface is theoretically investigated at the operating wavelength of 1.55 μm by utilizing low loss phase-change Ge2Sb2Se4Te1 (GSST) as the constituent material of high-index resonant element. The GSST nanobar as the proposed building block supports both the magnetic and electric resonances whose strength and spectral positions can be governed by varying the GSST crystallization level. The possibility of operating at off-resonance regime (middle of geometrical resonances) and preventing from the concurrence of high field confinement and large dissipative loss provide the opportunity to obtain high reflection level (varying between 0.6 and 0.8) and wide phase agility (≈270°). The phase distribution at the interface of an array of GSST nanobars can be tailored by selective modification of the crystallization level of nanobars leading to active control over the wave-front of reflected beam with numerically calculated reflection efficiency higher than 45%.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Reconfigurable all-dielectric antenna-based metasurface driven by multipolar resonances

Jingyi Tian, Qiang Li, Jun Lu, and Min Qiu
Opt. Express 26(18) 23918-23925 (2018)

All-optical tuning of EIT-like dielectric metasurfaces by means of chalcogenide phase change materials

E. Petronijevic and C. Sibilia
Opt. Express 24(26) 30411-30420 (2016)

Reconfigurable near-IR metasurface based on Ge2Sb2Te5 phase-change material

Alexej V. Pogrebnyakov, Jeremy A. Bossard, Jeremiah P. Turpin, J. David Musgraves, Hee Jung Shin, Clara Rivero-Baleine, Nikolas Podraza, Kathleen A. Richardson, Douglas H. Werner, and Theresa S. Mayer
Opt. Mater. Express 8(8) 2264-2275 (2018)

References

  • View by:
  • |
  • |
  • |

  1. N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
    [Crossref] [PubMed]
  2. P. Genevet, F. Capasso, F. Aieta, M. Khorasaninejad, and R. Devlin, “Recent advances in planar optics: from plasmonic to dielectric metasurfaces,” Optica 4(1), 139 (2017).
    [Crossref]
  3. A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science 339(6125), 1232009 (2013).
    [Crossref] [PubMed]
  4. N. I. Zheludev and E. Plum, “Reconfigurable nanomechanical photonic metamaterials,” Nat. Nanotechnol. 11(1), 16–22 (2016).
    [Crossref] [PubMed]
  5. S. M. Kamali, E. Arbabi, A. Arbabi, Y. Horie, and A. Faraon, “Highly tunable elastic dielectric metasurface lenses,” Laser Photonics Rev. 10(6), 1002–1008 (2016).
    [Crossref]
  6. P. Guo, R. D. Schaller, L. E. Ocola, B. T. Diroll, J. B. Ketterson, and R. P. Chang, “Large optical nonlinearity of ITO nanorods for sub-picosecond all-optical modulation of the full-visible spectrum,” Nat. Commun. 7, 12892 (2016).
    [Crossref] [PubMed]
  7. M. C. Sherrott, P. W. C. Hon, K. T. Fountaine, J. C. Garcia, S. M. Ponti, V. W. Brar, L. A. Sweatlock, and H. A. Atwater, “Experimental demonstration of >230° phase modulation in gate-tunable graphene–gold reconfigurable mid-infrared metasurfaces,” Nano Lett. 17(5), 3027–3034 (2017).
    [Crossref] [PubMed]
  8. Y. Yao, R. Shankar, M. A. Kats, Y. Song, J. Kong, M. Loncar, and F. Capasso, “Electrically tunable metasurface perfect absorbers for ultrathin mid-infrared optical modulators,” Nano Lett. 14(11), 6526–6532 (2014).
    [Crossref] [PubMed]
  9. P. Iyer, M. Pendharkar, and J. Schuller, “Electrically reconfigurable metasurfaces using heterojunction resonators,” Adv. Opt. Mater. 4(10), 1582–1588 (2016).
    [Crossref]
  10. X. Su, C. Ouyang, N. Xu, W. Cao, X. Wei, G. Song, J. Gu, Z. Tian, J. F. O’Hara, J. Han, and W. Zhang, “Active metasurface terahertz deflector with phase discontinuities,” Opt. Express 23(21), 27152–27158 (2015).
    [Crossref] [PubMed]
  11. J. Park, J. H. Kang, S. J. Kim, X. Liu, and M. L. Brongersma, “Dynamic reflection phase and polarization control in metasurfaces,” Nano Lett. 17(1), 407–413 (2017).
    [Crossref] [PubMed]
  12. Y. W. Huang, H. W. Lee, R. Sokhoyan, R. A. Pala, K. Thyagarajan, S. Han, D. P. Tsai, and H. A. Atwater, “Gate-tunable conducting oxide metasurfaces,” Nano Lett. 16(9), 5319–5325 (2016).
    [Crossref] [PubMed]
  13. G. Kafaie Shirmanesh, R. Sokhoyan, R. A. Pala, and H. A. Atwater, “Dual-gated active metasurface at 1550 nm with wide (> 300°) phase tunability,” Nano Lett. 18(5), 2957–2963 (2018), doi:.
    [Crossref] [PubMed]
  14. Z. Zhu, P. G. Evans, R. F. Haglund, and J. G. Valentine, “Dynamically reconfigurable metadevice employing nanostructured phase-change materials,” Nano Lett. 17(8), 4881–4885 (2017).
    [Crossref] [PubMed]
  15. M. Kim, J. Jeong, J. Poon, and G. Eleftheriades, “Vanadium-dioxide-assisted digital optical metasurfaces for dynamic wavefront engineering,” J. Opt. Soc. Am. B 33(5), 980 (2016).
    [Crossref]
  16. A. Joushaghani, B. A. Kruger, S. Paradis, D. Alain, J. Stewart Aitchison, and J. K. Poon, “Sub-volt broadband hybrid plasmonic-vanadium dioxide switches,” Appl. Phys. Lett. 102(6), 061101 (2013).
    [Crossref]
  17. A. Komar, R. Paniagua-Domínguez, A. Miroshnichenko, Y. F. Yu, Y. S. Kivshar, A. I. Kuznetsov, and D. Neshev, “Dynamic beam switching by liquid crystal tunable dielectric metasurfaces,” ACS Photon. (2018).
  18. N. Raeis-Hosseini and J. Rho, “Metasurfaces based on phase-change material as a reconfigurable platform for multifunctional devices,” Materials (Basel) 10(9), 1046 (2017).
    [Crossref] [PubMed]
  19. M. Wuttig, H. Bhaskaran, and T. Taubner, “Phase-change materials for non-volatile photonic applications,” Nat. Photonics 11(8), 465–476 (2017).
    [Crossref]
  20. M. Abb, P. Albella, J. Aizpurua, and O. L. Muskens, “All-optical control of a single plasmonic nanoantenna-ITO hybrid,” Nano Lett. 11(6), 2457–2463 (2011).
    [Crossref] [PubMed]
  21. M. Taghinejad, H. Taghinejad, Z. Xu, Y. Liu, S. P. Rodrigues, K. T. Lee, T. Lian, A. Adibi, and W. Cai, “Hot-Electron-Assisted Femtosecond All-Optical Modulation in Plasmonics,” Adv. Mater. 30(9), 1704915 (2018).
    [Crossref] [PubMed]
  22. N. Zheludev, “All change, please,” Nat. Photonics 1(10), 551–553 (2007).
    [Crossref]
  23. W. H. Pernice and H. Bhaskaran, “Photonic non-volatile memories using phase change materials,” Appl. Phys. Lett. 101(17), 171101 (2012).
    [Crossref]
  24. A. K. Michel, D. N. Chigrin, T. W. Maß, K. Schönauer, M. Salinga, M. Wuttig, and T. Taubner, “Using low-loss phase-change materials for mid-infrared antenna resonance tuning,” Nano Lett. 13(8), 3470–3475 (2013).
    [Crossref] [PubMed]
  25. T. Cao, C. W. Wei, R. E. Simpson, L. Zhang, and M. J. Cryan, “Broadband polarization-independent perfect absorber using a phase-change metamaterial at visible frequencies,” Sci. Rep. 4(1), 3955 (2014).
    [Crossref] [PubMed]
  26. A. Tittl, A. K. Michel, M. Schäferling, X. Yin, B. Gholipour, L. Cui, M. Wuttig, T. Taubner, F. Neubrech, and H. Giessen, “A switchable mid‐infrared plasmonic perfect absorber with multispectral thermal imaging capability,” Adv. Mater. 27(31), 4597–4603 (2015).
    [Crossref] [PubMed]
  27. S. G. Carrillo, G. R. Nash, H. Hayat, M. J. Cryan, M. Klemm, H. Bhaskaran, and C. D. Wright, “Design of practicable phase-change metadevices for near-infrared absorber and modulator applications,” Opt. Express 24(12), 13563–13573 (2016).
    [Crossref] [PubMed]
  28. B. Gholipour, J. Zhang, K. F. MacDonald, D. W. Hewak, and N. I. Zheludev, “An all-optical, non-volatile, bidirectional, phase-change meta-switch,” Adv. Mater. 25(22), 3050–3054 (2013).
    [Crossref] [PubMed]
  29. X. Yin, T. Steinle, L. Huang, T. Taubner, M. Wuttig, T. Zentgraf, and H. Giessen, “Beam switching and bifocal zoom lensing using active plasmonic metasurfaces,” Light Sci. Appl. 7(7), e17016 (2017).
    [Crossref]
  30. Y. G. Chen, T. S. Kao, B. Ng, X. Li, X. G. Luo, B. Luk’yanchuk, S. A. Maier, and M. H. Hong, “Hybrid phase-change plasmonic crystals for active tuning of lattice resonances,” Opt. Express 21(11), 13691–13698 (2013).
    [Crossref] [PubMed]
  31. C. Ríos, M. Stegmaier, P. Hosseini, D. Wang, T. Scherer, C. D. Wright, H. Bhaskaran, and W. H. Pernice, “Integrated all-photonic non-volatile multi-level memory,” Nat. Photonics 9(11), 725–732 (2015).
    [Crossref]
  32. Q. Wang, J. Maddock, E. T. Rogers, T. Roy, C. Craig, K. F. Macdonald, D. W. Hewak, and N. I. Zheludev, “1.7 Gbit/in. 2 gray-scale continuous-phase-change femtosecond image storage,” Appl. Phys. Lett. 104(12), 121105 (2014).
    [Crossref]
  33. Q. Wang, E. T. Rogers, B. Gholipour, C. M. Wang, G. Yuan, J. Teng, and N. I. Zheludev, “Optically reconfigurable metasurfaces and photonic devices based on phase change materials,” Nat. Photonics 10(1), 60–65 (2016).
    [Crossref]
  34. K. Lei, Y. Wang, M. Jiang, and Y. Wu, “Refractive index modulation of Sb70Te30 phase-change thin films by multiple femtosecond laser pulses,” J. Appl. Phys. 119(17), 173105 (2016).
    [Crossref]
  35. C. D. Wright, Y. Liu, K. I. Kohary, M. M. Aziz, and R. J. Hicken, “Arithmetic and biologically-inspired computing using phase-change materials,” Adv. Mater. 23(30), 3408–3413 (2011).
    [Crossref] [PubMed]
  36. S. Wen, Y. Meng, M. Jiang, and Y. Wang, “Multi-level coding-recoding by ultrafast phase transition on Ge2Sb2Te5 thin films,” Sci. Rep. 8(1), 4979 (2018).
    [Crossref] [PubMed]
  37. X. Sun, A. Lotnyk, M. Ehrhardt, J. W. Gerlach, and B. Rauschenbach, “Realization of multilevel states in phase‐change thin films by fast laser pulse irradiation,” Adv. Opt. Mater. 5(12), 1700169 (2017).
    [Crossref]
  38. Y. Chen, X. Li, Y. Sonnefraud, A. I. Fernández-Domínguez, X. Luo, M. Hong, and S. A. Maier, “Engineering the phase front of light with phase-change material based planar lenses,” Sci. Rep. 5(1), 8660 (2015).
    [Crossref] [PubMed]
  39. C. Chu, M. Tseng, J. Chen, P. Wu, Y. Chen, H. Wang, T. Chen, W. Hsieh, H. Wu, G. Sun, and D. Tsai, “Active dielectric metasurface based on phase-change medium,” Laser Photonics Rev. 10(6), 986–994 (2016).
    [Crossref]
  40. A. Karvounis, B. Gholipour, K. MacDonald, and N. Zheludev, “All-dielectric phase-change reconfigurable metasurface,” Appl. Phys. Lett. 109(5), 051103 (2016).
    [Crossref]
  41. S. Colburn, A. Zhan, S. Deshmukh, J. Myers, J. Frantz, E. Pop, and A. Majumdar, “Metasurfaces based on nano-patterned phase-change memory materials,” In Lasers and Electro-Optics (CLEO), pp. 1–2 (2017).
  42. Y. Zhang, J. Li, J. Chou, Z. Fang, A. Yadav, H. Lin, Q. Du, J. Michon, Z. Han, Y. Huang, H. Zheng, T. Gu, V. Liberman, K. Richardson, and J. J. Hu, “Broadband transparent optical phase change materials,” in Conference on Lasers and Electrooptics, paper JTh5C.4 (2017).
    [Crossref]
  43. Q. Zhang, Y. Zhang, J. Li, R. Soref, T. Gu, and J. Hu, “Broadband nonvolatile photonic switching based on optical phase change materials: beyond the classical figure-of-merit,” Opt. Lett. 43(1), 94–97 (2018).
    [Crossref] [PubMed]
  44. P. Hosseini, C. D. Wright, and H. Bhaskaran, “An optoelectronic framework enabled by low-dimensional phase-change films,” Nature 511(7508), 206–211 (2014).
    [Crossref] [PubMed]
  45. C. R. de Galarreta, A. M. Alexeev, Y. Y. Au, M. Lopez‐Garcia, M. Klemm, M. Cryan, J. Bertolotti, and C. D. Wright, “Nonvolatile Reconfigurable Phase‐Change Metadevices for Beam Steering in the Near Infrared,” Adv. Funct. Mater. 28(10), 1704993 (2018).
    [Crossref]
  46. T. Li, L. Huang, J. Liu, Y. Wang, and T. Zentgraf, “Tunable wave plate based on active plasmonic metasurfaces,” Opt. Express 25(4), 4216–4226 (2017).
    [Crossref] [PubMed]
  47. T. Cao, G. Zheng, S. Wang, and C. Wei, “Ultrafast beam steering using gradient Au-Ge2Sb2Te5-Au plasmonic resonators,” Opt. Express 23(14), 18029–18039 (2015).
    [Crossref] [PubMed]
  48. D. Loke, T. H. Lee, W. J. Wang, L. P. Shi, R. Zhao, Y. C. Yeo, T. C. Chong, and S. R. Elliott, “Breaking the speed limits of phase-change memory,” Science 336(6088), 1566–1569 (2012).
    [Crossref] [PubMed]
  49. A. K. Michel, P. Zalden, D. N. Chigrin, M. Wuttig, A. M. Lindenberg, and T. Taubner, “Reversible optical switching of infrared antenna resonances with ultrathin phase-change layers using femtosecond laser pulses,” ACS Photonics 1(9), 833–839 (2014).
    [Crossref]
  50. A.-K. U. Michel, M. Wuttig, and T. Taubner, “Design parameters for phase-change materials for nanostructure resonance tuning,” Adv. Opt. Mater. 5(18), 1700261 (2017).
    [Crossref]
  51. C. R. de Galarreta, A. Alexeev, J. Bertolotti, and C. D. Wright, “Phase-change metasurfaces for dyamic beam steering and beam shaping in the infrared,” In Circuits and Systems (ISCAS), pp. 1–5 (2018).
  52. G. Dolling, M. Wegener, C. M. Soukoulis, and S. Linden, “Design-related losses of double-fishnet negative-index photonic metamaterials,” Opt. Express 15(18), 11536–11541 (2007).
    [Crossref] [PubMed]
  53. M. Moharam and T. Gaylord, “Rigorous coupled-wave analysis of planar-grating diffraction,” J. Opt. Soc. Am. 71(7), 811 (1981).
    [Crossref]
  54. C. M. Roberts, S. Inampudi, and V. A. Podolskiy, “Diffractive interface theory: nonlocal susceptibility approach to the optics of metasurfaces,” Opt. Express 23(3), 2764–2776 (2015).
    [Crossref] [PubMed]
  55. A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nat. Nanotechnol. 10(11), 937–943 (2015).
    [Crossref] [PubMed]
  56. J. Cheng, S. Inampudi, and H. Mosallaei, “Optimization-based dielectric metasurfaces for angle-selective multifunctional beam deflection,” Sci. Rep. 7(1), 12228 (2017).
    [Crossref] [PubMed]
  57. A. L. Holsteen, S. Raza, P. Fan, P. G. Kik, and M. L. Brongersma, “Purcell effect for active tuning of light scattering from semiconductor optical antennas,” Science 358(6369), 1407–1410 (2017).
    [Crossref] [PubMed]
  58. A. Forouzmand and H. Mosallaei, “Real-time controllable and multifunctional metasurfaces utilizing indium tin oxide materials: A phased array perspective,” IEEE Trans. NanoTechnol. 16(2), 296–306 (2017).
    [Crossref]
  59. X. Ni, N. K. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Broadband light bending with plasmonic nanoantennas,” Science 335(6067), 427 (2012).
    [Crossref] [PubMed]
  60. R. Thielsch, T. Böhme, and H. Böttcher, “Optical and Structural Properties of Nanocrystalline ZnS‐SiO2 Composite Films,” Phys. Status Solidi, A Appl. Res. 155(1), 157–170 (1996).
    [Crossref]

2018 (5)

G. Kafaie Shirmanesh, R. Sokhoyan, R. A. Pala, and H. A. Atwater, “Dual-gated active metasurface at 1550 nm with wide (> 300°) phase tunability,” Nano Lett. 18(5), 2957–2963 (2018), doi:.
[Crossref] [PubMed]

M. Taghinejad, H. Taghinejad, Z. Xu, Y. Liu, S. P. Rodrigues, K. T. Lee, T. Lian, A. Adibi, and W. Cai, “Hot-Electron-Assisted Femtosecond All-Optical Modulation in Plasmonics,” Adv. Mater. 30(9), 1704915 (2018).
[Crossref] [PubMed]

S. Wen, Y. Meng, M. Jiang, and Y. Wang, “Multi-level coding-recoding by ultrafast phase transition on Ge2Sb2Te5 thin films,” Sci. Rep. 8(1), 4979 (2018).
[Crossref] [PubMed]

Q. Zhang, Y. Zhang, J. Li, R. Soref, T. Gu, and J. Hu, “Broadband nonvolatile photonic switching based on optical phase change materials: beyond the classical figure-of-merit,” Opt. Lett. 43(1), 94–97 (2018).
[Crossref] [PubMed]

C. R. de Galarreta, A. M. Alexeev, Y. Y. Au, M. Lopez‐Garcia, M. Klemm, M. Cryan, J. Bertolotti, and C. D. Wright, “Nonvolatile Reconfigurable Phase‐Change Metadevices for Beam Steering in the Near Infrared,” Adv. Funct. Mater. 28(10), 1704993 (2018).
[Crossref]

2017 (13)

T. Li, L. Huang, J. Liu, Y. Wang, and T. Zentgraf, “Tunable wave plate based on active plasmonic metasurfaces,” Opt. Express 25(4), 4216–4226 (2017).
[Crossref] [PubMed]

A.-K. U. Michel, M. Wuttig, and T. Taubner, “Design parameters for phase-change materials for nanostructure resonance tuning,” Adv. Opt. Mater. 5(18), 1700261 (2017).
[Crossref]

J. Cheng, S. Inampudi, and H. Mosallaei, “Optimization-based dielectric metasurfaces for angle-selective multifunctional beam deflection,” Sci. Rep. 7(1), 12228 (2017).
[Crossref] [PubMed]

A. L. Holsteen, S. Raza, P. Fan, P. G. Kik, and M. L. Brongersma, “Purcell effect for active tuning of light scattering from semiconductor optical antennas,” Science 358(6369), 1407–1410 (2017).
[Crossref] [PubMed]

A. Forouzmand and H. Mosallaei, “Real-time controllable and multifunctional metasurfaces utilizing indium tin oxide materials: A phased array perspective,” IEEE Trans. NanoTechnol. 16(2), 296–306 (2017).
[Crossref]

X. Sun, A. Lotnyk, M. Ehrhardt, J. W. Gerlach, and B. Rauschenbach, “Realization of multilevel states in phase‐change thin films by fast laser pulse irradiation,” Adv. Opt. Mater. 5(12), 1700169 (2017).
[Crossref]

X. Yin, T. Steinle, L. Huang, T. Taubner, M. Wuttig, T. Zentgraf, and H. Giessen, “Beam switching and bifocal zoom lensing using active plasmonic metasurfaces,” Light Sci. Appl. 7(7), e17016 (2017).
[Crossref]

Z. Zhu, P. G. Evans, R. F. Haglund, and J. G. Valentine, “Dynamically reconfigurable metadevice employing nanostructured phase-change materials,” Nano Lett. 17(8), 4881–4885 (2017).
[Crossref] [PubMed]

J. Park, J. H. Kang, S. J. Kim, X. Liu, and M. L. Brongersma, “Dynamic reflection phase and polarization control in metasurfaces,” Nano Lett. 17(1), 407–413 (2017).
[Crossref] [PubMed]

N. Raeis-Hosseini and J. Rho, “Metasurfaces based on phase-change material as a reconfigurable platform for multifunctional devices,” Materials (Basel) 10(9), 1046 (2017).
[Crossref] [PubMed]

M. Wuttig, H. Bhaskaran, and T. Taubner, “Phase-change materials for non-volatile photonic applications,” Nat. Photonics 11(8), 465–476 (2017).
[Crossref]

P. Genevet, F. Capasso, F. Aieta, M. Khorasaninejad, and R. Devlin, “Recent advances in planar optics: from plasmonic to dielectric metasurfaces,” Optica 4(1), 139 (2017).
[Crossref]

M. C. Sherrott, P. W. C. Hon, K. T. Fountaine, J. C. Garcia, S. M. Ponti, V. W. Brar, L. A. Sweatlock, and H. A. Atwater, “Experimental demonstration of >230° phase modulation in gate-tunable graphene–gold reconfigurable mid-infrared metasurfaces,” Nano Lett. 17(5), 3027–3034 (2017).
[Crossref] [PubMed]

2016 (11)

P. Iyer, M. Pendharkar, and J. Schuller, “Electrically reconfigurable metasurfaces using heterojunction resonators,” Adv. Opt. Mater. 4(10), 1582–1588 (2016).
[Crossref]

N. I. Zheludev and E. Plum, “Reconfigurable nanomechanical photonic metamaterials,” Nat. Nanotechnol. 11(1), 16–22 (2016).
[Crossref] [PubMed]

S. M. Kamali, E. Arbabi, A. Arbabi, Y. Horie, and A. Faraon, “Highly tunable elastic dielectric metasurface lenses,” Laser Photonics Rev. 10(6), 1002–1008 (2016).
[Crossref]

P. Guo, R. D. Schaller, L. E. Ocola, B. T. Diroll, J. B. Ketterson, and R. P. Chang, “Large optical nonlinearity of ITO nanorods for sub-picosecond all-optical modulation of the full-visible spectrum,” Nat. Commun. 7, 12892 (2016).
[Crossref] [PubMed]

Y. W. Huang, H. W. Lee, R. Sokhoyan, R. A. Pala, K. Thyagarajan, S. Han, D. P. Tsai, and H. A. Atwater, “Gate-tunable conducting oxide metasurfaces,” Nano Lett. 16(9), 5319–5325 (2016).
[Crossref] [PubMed]

M. Kim, J. Jeong, J. Poon, and G. Eleftheriades, “Vanadium-dioxide-assisted digital optical metasurfaces for dynamic wavefront engineering,” J. Opt. Soc. Am. B 33(5), 980 (2016).
[Crossref]

Q. Wang, E. T. Rogers, B. Gholipour, C. M. Wang, G. Yuan, J. Teng, and N. I. Zheludev, “Optically reconfigurable metasurfaces and photonic devices based on phase change materials,” Nat. Photonics 10(1), 60–65 (2016).
[Crossref]

K. Lei, Y. Wang, M. Jiang, and Y. Wu, “Refractive index modulation of Sb70Te30 phase-change thin films by multiple femtosecond laser pulses,” J. Appl. Phys. 119(17), 173105 (2016).
[Crossref]

S. G. Carrillo, G. R. Nash, H. Hayat, M. J. Cryan, M. Klemm, H. Bhaskaran, and C. D. Wright, “Design of practicable phase-change metadevices for near-infrared absorber and modulator applications,” Opt. Express 24(12), 13563–13573 (2016).
[Crossref] [PubMed]

C. Chu, M. Tseng, J. Chen, P. Wu, Y. Chen, H. Wang, T. Chen, W. Hsieh, H. Wu, G. Sun, and D. Tsai, “Active dielectric metasurface based on phase-change medium,” Laser Photonics Rev. 10(6), 986–994 (2016).
[Crossref]

A. Karvounis, B. Gholipour, K. MacDonald, and N. Zheludev, “All-dielectric phase-change reconfigurable metasurface,” Appl. Phys. Lett. 109(5), 051103 (2016).
[Crossref]

2015 (7)

T. Cao, G. Zheng, S. Wang, and C. Wei, “Ultrafast beam steering using gradient Au-Ge2Sb2Te5-Au plasmonic resonators,” Opt. Express 23(14), 18029–18039 (2015).
[Crossref] [PubMed]

A. Tittl, A. K. Michel, M. Schäferling, X. Yin, B. Gholipour, L. Cui, M. Wuttig, T. Taubner, F. Neubrech, and H. Giessen, “A switchable mid‐infrared plasmonic perfect absorber with multispectral thermal imaging capability,” Adv. Mater. 27(31), 4597–4603 (2015).
[Crossref] [PubMed]

C. M. Roberts, S. Inampudi, and V. A. Podolskiy, “Diffractive interface theory: nonlocal susceptibility approach to the optics of metasurfaces,” Opt. Express 23(3), 2764–2776 (2015).
[Crossref] [PubMed]

A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nat. Nanotechnol. 10(11), 937–943 (2015).
[Crossref] [PubMed]

Y. Chen, X. Li, Y. Sonnefraud, A. I. Fernández-Domínguez, X. Luo, M. Hong, and S. A. Maier, “Engineering the phase front of light with phase-change material based planar lenses,” Sci. Rep. 5(1), 8660 (2015).
[Crossref] [PubMed]

C. Ríos, M. Stegmaier, P. Hosseini, D. Wang, T. Scherer, C. D. Wright, H. Bhaskaran, and W. H. Pernice, “Integrated all-photonic non-volatile multi-level memory,” Nat. Photonics 9(11), 725–732 (2015).
[Crossref]

X. Su, C. Ouyang, N. Xu, W. Cao, X. Wei, G. Song, J. Gu, Z. Tian, J. F. O’Hara, J. Han, and W. Zhang, “Active metasurface terahertz deflector with phase discontinuities,” Opt. Express 23(21), 27152–27158 (2015).
[Crossref] [PubMed]

2014 (6)

Y. Yao, R. Shankar, M. A. Kats, Y. Song, J. Kong, M. Loncar, and F. Capasso, “Electrically tunable metasurface perfect absorbers for ultrathin mid-infrared optical modulators,” Nano Lett. 14(11), 6526–6532 (2014).
[Crossref] [PubMed]

Q. Wang, J. Maddock, E. T. Rogers, T. Roy, C. Craig, K. F. Macdonald, D. W. Hewak, and N. I. Zheludev, “1.7 Gbit/in. 2 gray-scale continuous-phase-change femtosecond image storage,” Appl. Phys. Lett. 104(12), 121105 (2014).
[Crossref]

T. Cao, C. W. Wei, R. E. Simpson, L. Zhang, and M. J. Cryan, “Broadband polarization-independent perfect absorber using a phase-change metamaterial at visible frequencies,” Sci. Rep. 4(1), 3955 (2014).
[Crossref] [PubMed]

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
[Crossref] [PubMed]

A. K. Michel, P. Zalden, D. N. Chigrin, M. Wuttig, A. M. Lindenberg, and T. Taubner, “Reversible optical switching of infrared antenna resonances with ultrathin phase-change layers using femtosecond laser pulses,” ACS Photonics 1(9), 833–839 (2014).
[Crossref]

P. Hosseini, C. D. Wright, and H. Bhaskaran, “An optoelectronic framework enabled by low-dimensional phase-change films,” Nature 511(7508), 206–211 (2014).
[Crossref] [PubMed]

2013 (5)

A. K. Michel, D. N. Chigrin, T. W. Maß, K. Schönauer, M. Salinga, M. Wuttig, and T. Taubner, “Using low-loss phase-change materials for mid-infrared antenna resonance tuning,” Nano Lett. 13(8), 3470–3475 (2013).
[Crossref] [PubMed]

B. Gholipour, J. Zhang, K. F. MacDonald, D. W. Hewak, and N. I. Zheludev, “An all-optical, non-volatile, bidirectional, phase-change meta-switch,” Adv. Mater. 25(22), 3050–3054 (2013).
[Crossref] [PubMed]

Y. G. Chen, T. S. Kao, B. Ng, X. Li, X. G. Luo, B. Luk’yanchuk, S. A. Maier, and M. H. Hong, “Hybrid phase-change plasmonic crystals for active tuning of lattice resonances,” Opt. Express 21(11), 13691–13698 (2013).
[Crossref] [PubMed]

A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science 339(6125), 1232009 (2013).
[Crossref] [PubMed]

A. Joushaghani, B. A. Kruger, S. Paradis, D. Alain, J. Stewart Aitchison, and J. K. Poon, “Sub-volt broadband hybrid plasmonic-vanadium dioxide switches,” Appl. Phys. Lett. 102(6), 061101 (2013).
[Crossref]

2012 (3)

W. H. Pernice and H. Bhaskaran, “Photonic non-volatile memories using phase change materials,” Appl. Phys. Lett. 101(17), 171101 (2012).
[Crossref]

D. Loke, T. H. Lee, W. J. Wang, L. P. Shi, R. Zhao, Y. C. Yeo, T. C. Chong, and S. R. Elliott, “Breaking the speed limits of phase-change memory,” Science 336(6088), 1566–1569 (2012).
[Crossref] [PubMed]

X. Ni, N. K. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Broadband light bending with plasmonic nanoantennas,” Science 335(6067), 427 (2012).
[Crossref] [PubMed]

2011 (2)

C. D. Wright, Y. Liu, K. I. Kohary, M. M. Aziz, and R. J. Hicken, “Arithmetic and biologically-inspired computing using phase-change materials,” Adv. Mater. 23(30), 3408–3413 (2011).
[Crossref] [PubMed]

M. Abb, P. Albella, J. Aizpurua, and O. L. Muskens, “All-optical control of a single plasmonic nanoantenna-ITO hybrid,” Nano Lett. 11(6), 2457–2463 (2011).
[Crossref] [PubMed]

2007 (2)

1996 (1)

R. Thielsch, T. Böhme, and H. Böttcher, “Optical and Structural Properties of Nanocrystalline ZnS‐SiO2 Composite Films,” Phys. Status Solidi, A Appl. Res. 155(1), 157–170 (1996).
[Crossref]

1981 (1)

Abb, M.

M. Abb, P. Albella, J. Aizpurua, and O. L. Muskens, “All-optical control of a single plasmonic nanoantenna-ITO hybrid,” Nano Lett. 11(6), 2457–2463 (2011).
[Crossref] [PubMed]

Adibi, A.

M. Taghinejad, H. Taghinejad, Z. Xu, Y. Liu, S. P. Rodrigues, K. T. Lee, T. Lian, A. Adibi, and W. Cai, “Hot-Electron-Assisted Femtosecond All-Optical Modulation in Plasmonics,” Adv. Mater. 30(9), 1704915 (2018).
[Crossref] [PubMed]

Aieta, F.

Aizpurua, J.

M. Abb, P. Albella, J. Aizpurua, and O. L. Muskens, “All-optical control of a single plasmonic nanoantenna-ITO hybrid,” Nano Lett. 11(6), 2457–2463 (2011).
[Crossref] [PubMed]

Alain, D.

A. Joushaghani, B. A. Kruger, S. Paradis, D. Alain, J. Stewart Aitchison, and J. K. Poon, “Sub-volt broadband hybrid plasmonic-vanadium dioxide switches,” Appl. Phys. Lett. 102(6), 061101 (2013).
[Crossref]

Albella, P.

M. Abb, P. Albella, J. Aizpurua, and O. L. Muskens, “All-optical control of a single plasmonic nanoantenna-ITO hybrid,” Nano Lett. 11(6), 2457–2463 (2011).
[Crossref] [PubMed]

Alexeev, A. M.

C. R. de Galarreta, A. M. Alexeev, Y. Y. Au, M. Lopez‐Garcia, M. Klemm, M. Cryan, J. Bertolotti, and C. D. Wright, “Nonvolatile Reconfigurable Phase‐Change Metadevices for Beam Steering in the Near Infrared,” Adv. Funct. Mater. 28(10), 1704993 (2018).
[Crossref]

Arbabi, A.

S. M. Kamali, E. Arbabi, A. Arbabi, Y. Horie, and A. Faraon, “Highly tunable elastic dielectric metasurface lenses,” Laser Photonics Rev. 10(6), 1002–1008 (2016).
[Crossref]

A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nat. Nanotechnol. 10(11), 937–943 (2015).
[Crossref] [PubMed]

Arbabi, E.

S. M. Kamali, E. Arbabi, A. Arbabi, Y. Horie, and A. Faraon, “Highly tunable elastic dielectric metasurface lenses,” Laser Photonics Rev. 10(6), 1002–1008 (2016).
[Crossref]

Atwater, H. A.

G. Kafaie Shirmanesh, R. Sokhoyan, R. A. Pala, and H. A. Atwater, “Dual-gated active metasurface at 1550 nm with wide (> 300°) phase tunability,” Nano Lett. 18(5), 2957–2963 (2018), doi:.
[Crossref] [PubMed]

M. C. Sherrott, P. W. C. Hon, K. T. Fountaine, J. C. Garcia, S. M. Ponti, V. W. Brar, L. A. Sweatlock, and H. A. Atwater, “Experimental demonstration of >230° phase modulation in gate-tunable graphene–gold reconfigurable mid-infrared metasurfaces,” Nano Lett. 17(5), 3027–3034 (2017).
[Crossref] [PubMed]

Y. W. Huang, H. W. Lee, R. Sokhoyan, R. A. Pala, K. Thyagarajan, S. Han, D. P. Tsai, and H. A. Atwater, “Gate-tunable conducting oxide metasurfaces,” Nano Lett. 16(9), 5319–5325 (2016).
[Crossref] [PubMed]

Au, Y. Y.

C. R. de Galarreta, A. M. Alexeev, Y. Y. Au, M. Lopez‐Garcia, M. Klemm, M. Cryan, J. Bertolotti, and C. D. Wright, “Nonvolatile Reconfigurable Phase‐Change Metadevices for Beam Steering in the Near Infrared,” Adv. Funct. Mater. 28(10), 1704993 (2018).
[Crossref]

Aziz, M. M.

C. D. Wright, Y. Liu, K. I. Kohary, M. M. Aziz, and R. J. Hicken, “Arithmetic and biologically-inspired computing using phase-change materials,” Adv. Mater. 23(30), 3408–3413 (2011).
[Crossref] [PubMed]

Bagheri, M.

A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nat. Nanotechnol. 10(11), 937–943 (2015).
[Crossref] [PubMed]

Bertolotti, J.

C. R. de Galarreta, A. M. Alexeev, Y. Y. Au, M. Lopez‐Garcia, M. Klemm, M. Cryan, J. Bertolotti, and C. D. Wright, “Nonvolatile Reconfigurable Phase‐Change Metadevices for Beam Steering in the Near Infrared,” Adv. Funct. Mater. 28(10), 1704993 (2018).
[Crossref]

Bhaskaran, H.

M. Wuttig, H. Bhaskaran, and T. Taubner, “Phase-change materials for non-volatile photonic applications,” Nat. Photonics 11(8), 465–476 (2017).
[Crossref]

S. G. Carrillo, G. R. Nash, H. Hayat, M. J. Cryan, M. Klemm, H. Bhaskaran, and C. D. Wright, “Design of practicable phase-change metadevices for near-infrared absorber and modulator applications,” Opt. Express 24(12), 13563–13573 (2016).
[Crossref] [PubMed]

C. Ríos, M. Stegmaier, P. Hosseini, D. Wang, T. Scherer, C. D. Wright, H. Bhaskaran, and W. H. Pernice, “Integrated all-photonic non-volatile multi-level memory,” Nat. Photonics 9(11), 725–732 (2015).
[Crossref]

P. Hosseini, C. D. Wright, and H. Bhaskaran, “An optoelectronic framework enabled by low-dimensional phase-change films,” Nature 511(7508), 206–211 (2014).
[Crossref] [PubMed]

W. H. Pernice and H. Bhaskaran, “Photonic non-volatile memories using phase change materials,” Appl. Phys. Lett. 101(17), 171101 (2012).
[Crossref]

Böhme, T.

R. Thielsch, T. Böhme, and H. Böttcher, “Optical and Structural Properties of Nanocrystalline ZnS‐SiO2 Composite Films,” Phys. Status Solidi, A Appl. Res. 155(1), 157–170 (1996).
[Crossref]

Boltasseva, A.

A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science 339(6125), 1232009 (2013).
[Crossref] [PubMed]

X. Ni, N. K. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Broadband light bending with plasmonic nanoantennas,” Science 335(6067), 427 (2012).
[Crossref] [PubMed]

Böttcher, H.

R. Thielsch, T. Böhme, and H. Böttcher, “Optical and Structural Properties of Nanocrystalline ZnS‐SiO2 Composite Films,” Phys. Status Solidi, A Appl. Res. 155(1), 157–170 (1996).
[Crossref]

Brar, V. W.

M. C. Sherrott, P. W. C. Hon, K. T. Fountaine, J. C. Garcia, S. M. Ponti, V. W. Brar, L. A. Sweatlock, and H. A. Atwater, “Experimental demonstration of >230° phase modulation in gate-tunable graphene–gold reconfigurable mid-infrared metasurfaces,” Nano Lett. 17(5), 3027–3034 (2017).
[Crossref] [PubMed]

Brongersma, M. L.

A. L. Holsteen, S. Raza, P. Fan, P. G. Kik, and M. L. Brongersma, “Purcell effect for active tuning of light scattering from semiconductor optical antennas,” Science 358(6369), 1407–1410 (2017).
[Crossref] [PubMed]

J. Park, J. H. Kang, S. J. Kim, X. Liu, and M. L. Brongersma, “Dynamic reflection phase and polarization control in metasurfaces,” Nano Lett. 17(1), 407–413 (2017).
[Crossref] [PubMed]

Cai, W.

M. Taghinejad, H. Taghinejad, Z. Xu, Y. Liu, S. P. Rodrigues, K. T. Lee, T. Lian, A. Adibi, and W. Cai, “Hot-Electron-Assisted Femtosecond All-Optical Modulation in Plasmonics,” Adv. Mater. 30(9), 1704915 (2018).
[Crossref] [PubMed]

Cao, T.

T. Cao, G. Zheng, S. Wang, and C. Wei, “Ultrafast beam steering using gradient Au-Ge2Sb2Te5-Au plasmonic resonators,” Opt. Express 23(14), 18029–18039 (2015).
[Crossref] [PubMed]

T. Cao, C. W. Wei, R. E. Simpson, L. Zhang, and M. J. Cryan, “Broadband polarization-independent perfect absorber using a phase-change metamaterial at visible frequencies,” Sci. Rep. 4(1), 3955 (2014).
[Crossref] [PubMed]

Cao, W.

Capasso, F.

P. Genevet, F. Capasso, F. Aieta, M. Khorasaninejad, and R. Devlin, “Recent advances in planar optics: from plasmonic to dielectric metasurfaces,” Optica 4(1), 139 (2017).
[Crossref]

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
[Crossref] [PubMed]

Y. Yao, R. Shankar, M. A. Kats, Y. Song, J. Kong, M. Loncar, and F. Capasso, “Electrically tunable metasurface perfect absorbers for ultrathin mid-infrared optical modulators,” Nano Lett. 14(11), 6526–6532 (2014).
[Crossref] [PubMed]

Carrillo, S. G.

Chang, R. P.

P. Guo, R. D. Schaller, L. E. Ocola, B. T. Diroll, J. B. Ketterson, and R. P. Chang, “Large optical nonlinearity of ITO nanorods for sub-picosecond all-optical modulation of the full-visible spectrum,” Nat. Commun. 7, 12892 (2016).
[Crossref] [PubMed]

Chen, J.

C. Chu, M. Tseng, J. Chen, P. Wu, Y. Chen, H. Wang, T. Chen, W. Hsieh, H. Wu, G. Sun, and D. Tsai, “Active dielectric metasurface based on phase-change medium,” Laser Photonics Rev. 10(6), 986–994 (2016).
[Crossref]

Chen, T.

C. Chu, M. Tseng, J. Chen, P. Wu, Y. Chen, H. Wang, T. Chen, W. Hsieh, H. Wu, G. Sun, and D. Tsai, “Active dielectric metasurface based on phase-change medium,” Laser Photonics Rev. 10(6), 986–994 (2016).
[Crossref]

Chen, Y.

C. Chu, M. Tseng, J. Chen, P. Wu, Y. Chen, H. Wang, T. Chen, W. Hsieh, H. Wu, G. Sun, and D. Tsai, “Active dielectric metasurface based on phase-change medium,” Laser Photonics Rev. 10(6), 986–994 (2016).
[Crossref]

Y. Chen, X. Li, Y. Sonnefraud, A. I. Fernández-Domínguez, X. Luo, M. Hong, and S. A. Maier, “Engineering the phase front of light with phase-change material based planar lenses,” Sci. Rep. 5(1), 8660 (2015).
[Crossref] [PubMed]

Chen, Y. G.

Cheng, J.

J. Cheng, S. Inampudi, and H. Mosallaei, “Optimization-based dielectric metasurfaces for angle-selective multifunctional beam deflection,” Sci. Rep. 7(1), 12228 (2017).
[Crossref] [PubMed]

Chigrin, D. N.

A. K. Michel, P. Zalden, D. N. Chigrin, M. Wuttig, A. M. Lindenberg, and T. Taubner, “Reversible optical switching of infrared antenna resonances with ultrathin phase-change layers using femtosecond laser pulses,” ACS Photonics 1(9), 833–839 (2014).
[Crossref]

A. K. Michel, D. N. Chigrin, T. W. Maß, K. Schönauer, M. Salinga, M. Wuttig, and T. Taubner, “Using low-loss phase-change materials for mid-infrared antenna resonance tuning,” Nano Lett. 13(8), 3470–3475 (2013).
[Crossref] [PubMed]

Chong, T. C.

D. Loke, T. H. Lee, W. J. Wang, L. P. Shi, R. Zhao, Y. C. Yeo, T. C. Chong, and S. R. Elliott, “Breaking the speed limits of phase-change memory,” Science 336(6088), 1566–1569 (2012).
[Crossref] [PubMed]

Chu, C.

C. Chu, M. Tseng, J. Chen, P. Wu, Y. Chen, H. Wang, T. Chen, W. Hsieh, H. Wu, G. Sun, and D. Tsai, “Active dielectric metasurface based on phase-change medium,” Laser Photonics Rev. 10(6), 986–994 (2016).
[Crossref]

Craig, C.

Q. Wang, J. Maddock, E. T. Rogers, T. Roy, C. Craig, K. F. Macdonald, D. W. Hewak, and N. I. Zheludev, “1.7 Gbit/in. 2 gray-scale continuous-phase-change femtosecond image storage,” Appl. Phys. Lett. 104(12), 121105 (2014).
[Crossref]

Cryan, M.

C. R. de Galarreta, A. M. Alexeev, Y. Y. Au, M. Lopez‐Garcia, M. Klemm, M. Cryan, J. Bertolotti, and C. D. Wright, “Nonvolatile Reconfigurable Phase‐Change Metadevices for Beam Steering in the Near Infrared,” Adv. Funct. Mater. 28(10), 1704993 (2018).
[Crossref]

Cryan, M. J.

S. G. Carrillo, G. R. Nash, H. Hayat, M. J. Cryan, M. Klemm, H. Bhaskaran, and C. D. Wright, “Design of practicable phase-change metadevices for near-infrared absorber and modulator applications,” Opt. Express 24(12), 13563–13573 (2016).
[Crossref] [PubMed]

T. Cao, C. W. Wei, R. E. Simpson, L. Zhang, and M. J. Cryan, “Broadband polarization-independent perfect absorber using a phase-change metamaterial at visible frequencies,” Sci. Rep. 4(1), 3955 (2014).
[Crossref] [PubMed]

Cui, L.

A. Tittl, A. K. Michel, M. Schäferling, X. Yin, B. Gholipour, L. Cui, M. Wuttig, T. Taubner, F. Neubrech, and H. Giessen, “A switchable mid‐infrared plasmonic perfect absorber with multispectral thermal imaging capability,” Adv. Mater. 27(31), 4597–4603 (2015).
[Crossref] [PubMed]

de Galarreta, C. R.

C. R. de Galarreta, A. M. Alexeev, Y. Y. Au, M. Lopez‐Garcia, M. Klemm, M. Cryan, J. Bertolotti, and C. D. Wright, “Nonvolatile Reconfigurable Phase‐Change Metadevices for Beam Steering in the Near Infrared,” Adv. Funct. Mater. 28(10), 1704993 (2018).
[Crossref]

Devlin, R.

Diroll, B. T.

P. Guo, R. D. Schaller, L. E. Ocola, B. T. Diroll, J. B. Ketterson, and R. P. Chang, “Large optical nonlinearity of ITO nanorods for sub-picosecond all-optical modulation of the full-visible spectrum,” Nat. Commun. 7, 12892 (2016).
[Crossref] [PubMed]

Dolling, G.

Ehrhardt, M.

X. Sun, A. Lotnyk, M. Ehrhardt, J. W. Gerlach, and B. Rauschenbach, “Realization of multilevel states in phase‐change thin films by fast laser pulse irradiation,” Adv. Opt. Mater. 5(12), 1700169 (2017).
[Crossref]

Eleftheriades, G.

Elliott, S. R.

D. Loke, T. H. Lee, W. J. Wang, L. P. Shi, R. Zhao, Y. C. Yeo, T. C. Chong, and S. R. Elliott, “Breaking the speed limits of phase-change memory,” Science 336(6088), 1566–1569 (2012).
[Crossref] [PubMed]

Emani, N. K.

X. Ni, N. K. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Broadband light bending with plasmonic nanoantennas,” Science 335(6067), 427 (2012).
[Crossref] [PubMed]

Evans, P. G.

Z. Zhu, P. G. Evans, R. F. Haglund, and J. G. Valentine, “Dynamically reconfigurable metadevice employing nanostructured phase-change materials,” Nano Lett. 17(8), 4881–4885 (2017).
[Crossref] [PubMed]

Fan, P.

A. L. Holsteen, S. Raza, P. Fan, P. G. Kik, and M. L. Brongersma, “Purcell effect for active tuning of light scattering from semiconductor optical antennas,” Science 358(6369), 1407–1410 (2017).
[Crossref] [PubMed]

Faraon, A.

S. M. Kamali, E. Arbabi, A. Arbabi, Y. Horie, and A. Faraon, “Highly tunable elastic dielectric metasurface lenses,” Laser Photonics Rev. 10(6), 1002–1008 (2016).
[Crossref]

A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nat. Nanotechnol. 10(11), 937–943 (2015).
[Crossref] [PubMed]

Fernández-Domínguez, A. I.

Y. Chen, X. Li, Y. Sonnefraud, A. I. Fernández-Domínguez, X. Luo, M. Hong, and S. A. Maier, “Engineering the phase front of light with phase-change material based planar lenses,” Sci. Rep. 5(1), 8660 (2015).
[Crossref] [PubMed]

Forouzmand, A.

A. Forouzmand and H. Mosallaei, “Real-time controllable and multifunctional metasurfaces utilizing indium tin oxide materials: A phased array perspective,” IEEE Trans. NanoTechnol. 16(2), 296–306 (2017).
[Crossref]

Fountaine, K. T.

M. C. Sherrott, P. W. C. Hon, K. T. Fountaine, J. C. Garcia, S. M. Ponti, V. W. Brar, L. A. Sweatlock, and H. A. Atwater, “Experimental demonstration of >230° phase modulation in gate-tunable graphene–gold reconfigurable mid-infrared metasurfaces,” Nano Lett. 17(5), 3027–3034 (2017).
[Crossref] [PubMed]

Garcia, J. C.

M. C. Sherrott, P. W. C. Hon, K. T. Fountaine, J. C. Garcia, S. M. Ponti, V. W. Brar, L. A. Sweatlock, and H. A. Atwater, “Experimental demonstration of >230° phase modulation in gate-tunable graphene–gold reconfigurable mid-infrared metasurfaces,” Nano Lett. 17(5), 3027–3034 (2017).
[Crossref] [PubMed]

Gaylord, T.

Genevet, P.

Gerlach, J. W.

X. Sun, A. Lotnyk, M. Ehrhardt, J. W. Gerlach, and B. Rauschenbach, “Realization of multilevel states in phase‐change thin films by fast laser pulse irradiation,” Adv. Opt. Mater. 5(12), 1700169 (2017).
[Crossref]

Gholipour, B.

A. Karvounis, B. Gholipour, K. MacDonald, and N. Zheludev, “All-dielectric phase-change reconfigurable metasurface,” Appl. Phys. Lett. 109(5), 051103 (2016).
[Crossref]

Q. Wang, E. T. Rogers, B. Gholipour, C. M. Wang, G. Yuan, J. Teng, and N. I. Zheludev, “Optically reconfigurable metasurfaces and photonic devices based on phase change materials,” Nat. Photonics 10(1), 60–65 (2016).
[Crossref]

A. Tittl, A. K. Michel, M. Schäferling, X. Yin, B. Gholipour, L. Cui, M. Wuttig, T. Taubner, F. Neubrech, and H. Giessen, “A switchable mid‐infrared plasmonic perfect absorber with multispectral thermal imaging capability,” Adv. Mater. 27(31), 4597–4603 (2015).
[Crossref] [PubMed]

B. Gholipour, J. Zhang, K. F. MacDonald, D. W. Hewak, and N. I. Zheludev, “An all-optical, non-volatile, bidirectional, phase-change meta-switch,” Adv. Mater. 25(22), 3050–3054 (2013).
[Crossref] [PubMed]

Giessen, H.

X. Yin, T. Steinle, L. Huang, T. Taubner, M. Wuttig, T. Zentgraf, and H. Giessen, “Beam switching and bifocal zoom lensing using active plasmonic metasurfaces,” Light Sci. Appl. 7(7), e17016 (2017).
[Crossref]

A. Tittl, A. K. Michel, M. Schäferling, X. Yin, B. Gholipour, L. Cui, M. Wuttig, T. Taubner, F. Neubrech, and H. Giessen, “A switchable mid‐infrared plasmonic perfect absorber with multispectral thermal imaging capability,” Adv. Mater. 27(31), 4597–4603 (2015).
[Crossref] [PubMed]

Gu, J.

Gu, T.

Guo, P.

P. Guo, R. D. Schaller, L. E. Ocola, B. T. Diroll, J. B. Ketterson, and R. P. Chang, “Large optical nonlinearity of ITO nanorods for sub-picosecond all-optical modulation of the full-visible spectrum,” Nat. Commun. 7, 12892 (2016).
[Crossref] [PubMed]

Haglund, R. F.

Z. Zhu, P. G. Evans, R. F. Haglund, and J. G. Valentine, “Dynamically reconfigurable metadevice employing nanostructured phase-change materials,” Nano Lett. 17(8), 4881–4885 (2017).
[Crossref] [PubMed]

Han, J.

Han, S.

Y. W. Huang, H. W. Lee, R. Sokhoyan, R. A. Pala, K. Thyagarajan, S. Han, D. P. Tsai, and H. A. Atwater, “Gate-tunable conducting oxide metasurfaces,” Nano Lett. 16(9), 5319–5325 (2016).
[Crossref] [PubMed]

Hayat, H.

Hewak, D. W.

Q. Wang, J. Maddock, E. T. Rogers, T. Roy, C. Craig, K. F. Macdonald, D. W. Hewak, and N. I. Zheludev, “1.7 Gbit/in. 2 gray-scale continuous-phase-change femtosecond image storage,” Appl. Phys. Lett. 104(12), 121105 (2014).
[Crossref]

B. Gholipour, J. Zhang, K. F. MacDonald, D. W. Hewak, and N. I. Zheludev, “An all-optical, non-volatile, bidirectional, phase-change meta-switch,” Adv. Mater. 25(22), 3050–3054 (2013).
[Crossref] [PubMed]

Hicken, R. J.

C. D. Wright, Y. Liu, K. I. Kohary, M. M. Aziz, and R. J. Hicken, “Arithmetic and biologically-inspired computing using phase-change materials,” Adv. Mater. 23(30), 3408–3413 (2011).
[Crossref] [PubMed]

Holsteen, A. L.

A. L. Holsteen, S. Raza, P. Fan, P. G. Kik, and M. L. Brongersma, “Purcell effect for active tuning of light scattering from semiconductor optical antennas,” Science 358(6369), 1407–1410 (2017).
[Crossref] [PubMed]

Hon, P. W. C.

M. C. Sherrott, P. W. C. Hon, K. T. Fountaine, J. C. Garcia, S. M. Ponti, V. W. Brar, L. A. Sweatlock, and H. A. Atwater, “Experimental demonstration of >230° phase modulation in gate-tunable graphene–gold reconfigurable mid-infrared metasurfaces,” Nano Lett. 17(5), 3027–3034 (2017).
[Crossref] [PubMed]

Hong, M.

Y. Chen, X. Li, Y. Sonnefraud, A. I. Fernández-Domínguez, X. Luo, M. Hong, and S. A. Maier, “Engineering the phase front of light with phase-change material based planar lenses,” Sci. Rep. 5(1), 8660 (2015).
[Crossref] [PubMed]

Hong, M. H.

Horie, Y.

S. M. Kamali, E. Arbabi, A. Arbabi, Y. Horie, and A. Faraon, “Highly tunable elastic dielectric metasurface lenses,” Laser Photonics Rev. 10(6), 1002–1008 (2016).
[Crossref]

A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nat. Nanotechnol. 10(11), 937–943 (2015).
[Crossref] [PubMed]

Hosseini, P.

C. Ríos, M. Stegmaier, P. Hosseini, D. Wang, T. Scherer, C. D. Wright, H. Bhaskaran, and W. H. Pernice, “Integrated all-photonic non-volatile multi-level memory,” Nat. Photonics 9(11), 725–732 (2015).
[Crossref]

P. Hosseini, C. D. Wright, and H. Bhaskaran, “An optoelectronic framework enabled by low-dimensional phase-change films,” Nature 511(7508), 206–211 (2014).
[Crossref] [PubMed]

Hsieh, W.

C. Chu, M. Tseng, J. Chen, P. Wu, Y. Chen, H. Wang, T. Chen, W. Hsieh, H. Wu, G. Sun, and D. Tsai, “Active dielectric metasurface based on phase-change medium,” Laser Photonics Rev. 10(6), 986–994 (2016).
[Crossref]

Hu, J.

Huang, L.

X. Yin, T. Steinle, L. Huang, T. Taubner, M. Wuttig, T. Zentgraf, and H. Giessen, “Beam switching and bifocal zoom lensing using active plasmonic metasurfaces,” Light Sci. Appl. 7(7), e17016 (2017).
[Crossref]

T. Li, L. Huang, J. Liu, Y. Wang, and T. Zentgraf, “Tunable wave plate based on active plasmonic metasurfaces,” Opt. Express 25(4), 4216–4226 (2017).
[Crossref] [PubMed]

Huang, Y. W.

Y. W. Huang, H. W. Lee, R. Sokhoyan, R. A. Pala, K. Thyagarajan, S. Han, D. P. Tsai, and H. A. Atwater, “Gate-tunable conducting oxide metasurfaces,” Nano Lett. 16(9), 5319–5325 (2016).
[Crossref] [PubMed]

Inampudi, S.

J. Cheng, S. Inampudi, and H. Mosallaei, “Optimization-based dielectric metasurfaces for angle-selective multifunctional beam deflection,” Sci. Rep. 7(1), 12228 (2017).
[Crossref] [PubMed]

C. M. Roberts, S. Inampudi, and V. A. Podolskiy, “Diffractive interface theory: nonlocal susceptibility approach to the optics of metasurfaces,” Opt. Express 23(3), 2764–2776 (2015).
[Crossref] [PubMed]

Iyer, P.

P. Iyer, M. Pendharkar, and J. Schuller, “Electrically reconfigurable metasurfaces using heterojunction resonators,” Adv. Opt. Mater. 4(10), 1582–1588 (2016).
[Crossref]

Jeong, J.

Jiang, M.

S. Wen, Y. Meng, M. Jiang, and Y. Wang, “Multi-level coding-recoding by ultrafast phase transition on Ge2Sb2Te5 thin films,” Sci. Rep. 8(1), 4979 (2018).
[Crossref] [PubMed]

K. Lei, Y. Wang, M. Jiang, and Y. Wu, “Refractive index modulation of Sb70Te30 phase-change thin films by multiple femtosecond laser pulses,” J. Appl. Phys. 119(17), 173105 (2016).
[Crossref]

Joushaghani, A.

A. Joushaghani, B. A. Kruger, S. Paradis, D. Alain, J. Stewart Aitchison, and J. K. Poon, “Sub-volt broadband hybrid plasmonic-vanadium dioxide switches,” Appl. Phys. Lett. 102(6), 061101 (2013).
[Crossref]

Kafaie Shirmanesh, G.

G. Kafaie Shirmanesh, R. Sokhoyan, R. A. Pala, and H. A. Atwater, “Dual-gated active metasurface at 1550 nm with wide (> 300°) phase tunability,” Nano Lett. 18(5), 2957–2963 (2018), doi:.
[Crossref] [PubMed]

Kamali, S. M.

S. M. Kamali, E. Arbabi, A. Arbabi, Y. Horie, and A. Faraon, “Highly tunable elastic dielectric metasurface lenses,” Laser Photonics Rev. 10(6), 1002–1008 (2016).
[Crossref]

Kang, J. H.

J. Park, J. H. Kang, S. J. Kim, X. Liu, and M. L. Brongersma, “Dynamic reflection phase and polarization control in metasurfaces,” Nano Lett. 17(1), 407–413 (2017).
[Crossref] [PubMed]

Kao, T. S.

Karvounis, A.

A. Karvounis, B. Gholipour, K. MacDonald, and N. Zheludev, “All-dielectric phase-change reconfigurable metasurface,” Appl. Phys. Lett. 109(5), 051103 (2016).
[Crossref]

Kats, M. A.

Y. Yao, R. Shankar, M. A. Kats, Y. Song, J. Kong, M. Loncar, and F. Capasso, “Electrically tunable metasurface perfect absorbers for ultrathin mid-infrared optical modulators,” Nano Lett. 14(11), 6526–6532 (2014).
[Crossref] [PubMed]

Ketterson, J. B.

P. Guo, R. D. Schaller, L. E. Ocola, B. T. Diroll, J. B. Ketterson, and R. P. Chang, “Large optical nonlinearity of ITO nanorods for sub-picosecond all-optical modulation of the full-visible spectrum,” Nat. Commun. 7, 12892 (2016).
[Crossref] [PubMed]

Khorasaninejad, M.

Kik, P. G.

A. L. Holsteen, S. Raza, P. Fan, P. G. Kik, and M. L. Brongersma, “Purcell effect for active tuning of light scattering from semiconductor optical antennas,” Science 358(6369), 1407–1410 (2017).
[Crossref] [PubMed]

Kildishev, A. V.

A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science 339(6125), 1232009 (2013).
[Crossref] [PubMed]

X. Ni, N. K. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Broadband light bending with plasmonic nanoantennas,” Science 335(6067), 427 (2012).
[Crossref] [PubMed]

Kim, M.

Kim, S. J.

J. Park, J. H. Kang, S. J. Kim, X. Liu, and M. L. Brongersma, “Dynamic reflection phase and polarization control in metasurfaces,” Nano Lett. 17(1), 407–413 (2017).
[Crossref] [PubMed]

Klemm, M.

C. R. de Galarreta, A. M. Alexeev, Y. Y. Au, M. Lopez‐Garcia, M. Klemm, M. Cryan, J. Bertolotti, and C. D. Wright, “Nonvolatile Reconfigurable Phase‐Change Metadevices for Beam Steering in the Near Infrared,” Adv. Funct. Mater. 28(10), 1704993 (2018).
[Crossref]

S. G. Carrillo, G. R. Nash, H. Hayat, M. J. Cryan, M. Klemm, H. Bhaskaran, and C. D. Wright, “Design of practicable phase-change metadevices for near-infrared absorber and modulator applications,” Opt. Express 24(12), 13563–13573 (2016).
[Crossref] [PubMed]

Kohary, K. I.

C. D. Wright, Y. Liu, K. I. Kohary, M. M. Aziz, and R. J. Hicken, “Arithmetic and biologically-inspired computing using phase-change materials,” Adv. Mater. 23(30), 3408–3413 (2011).
[Crossref] [PubMed]

Kong, J.

Y. Yao, R. Shankar, M. A. Kats, Y. Song, J. Kong, M. Loncar, and F. Capasso, “Electrically tunable metasurface perfect absorbers for ultrathin mid-infrared optical modulators,” Nano Lett. 14(11), 6526–6532 (2014).
[Crossref] [PubMed]

Kruger, B. A.

A. Joushaghani, B. A. Kruger, S. Paradis, D. Alain, J. Stewart Aitchison, and J. K. Poon, “Sub-volt broadband hybrid plasmonic-vanadium dioxide switches,” Appl. Phys. Lett. 102(6), 061101 (2013).
[Crossref]

Lee, H. W.

Y. W. Huang, H. W. Lee, R. Sokhoyan, R. A. Pala, K. Thyagarajan, S. Han, D. P. Tsai, and H. A. Atwater, “Gate-tunable conducting oxide metasurfaces,” Nano Lett. 16(9), 5319–5325 (2016).
[Crossref] [PubMed]

Lee, K. T.

M. Taghinejad, H. Taghinejad, Z. Xu, Y. Liu, S. P. Rodrigues, K. T. Lee, T. Lian, A. Adibi, and W. Cai, “Hot-Electron-Assisted Femtosecond All-Optical Modulation in Plasmonics,” Adv. Mater. 30(9), 1704915 (2018).
[Crossref] [PubMed]

Lee, T. H.

D. Loke, T. H. Lee, W. J. Wang, L. P. Shi, R. Zhao, Y. C. Yeo, T. C. Chong, and S. R. Elliott, “Breaking the speed limits of phase-change memory,” Science 336(6088), 1566–1569 (2012).
[Crossref] [PubMed]

Lei, K.

K. Lei, Y. Wang, M. Jiang, and Y. Wu, “Refractive index modulation of Sb70Te30 phase-change thin films by multiple femtosecond laser pulses,” J. Appl. Phys. 119(17), 173105 (2016).
[Crossref]

Li, J.

Li, T.

Li, X.

Y. Chen, X. Li, Y. Sonnefraud, A. I. Fernández-Domínguez, X. Luo, M. Hong, and S. A. Maier, “Engineering the phase front of light with phase-change material based planar lenses,” Sci. Rep. 5(1), 8660 (2015).
[Crossref] [PubMed]

Y. G. Chen, T. S. Kao, B. Ng, X. Li, X. G. Luo, B. Luk’yanchuk, S. A. Maier, and M. H. Hong, “Hybrid phase-change plasmonic crystals for active tuning of lattice resonances,” Opt. Express 21(11), 13691–13698 (2013).
[Crossref] [PubMed]

Lian, T.

M. Taghinejad, H. Taghinejad, Z. Xu, Y. Liu, S. P. Rodrigues, K. T. Lee, T. Lian, A. Adibi, and W. Cai, “Hot-Electron-Assisted Femtosecond All-Optical Modulation in Plasmonics,” Adv. Mater. 30(9), 1704915 (2018).
[Crossref] [PubMed]

Linden, S.

Lindenberg, A. M.

A. K. Michel, P. Zalden, D. N. Chigrin, M. Wuttig, A. M. Lindenberg, and T. Taubner, “Reversible optical switching of infrared antenna resonances with ultrathin phase-change layers using femtosecond laser pulses,” ACS Photonics 1(9), 833–839 (2014).
[Crossref]

Liu, J.

Liu, X.

J. Park, J. H. Kang, S. J. Kim, X. Liu, and M. L. Brongersma, “Dynamic reflection phase and polarization control in metasurfaces,” Nano Lett. 17(1), 407–413 (2017).
[Crossref] [PubMed]

Liu, Y.

M. Taghinejad, H. Taghinejad, Z. Xu, Y. Liu, S. P. Rodrigues, K. T. Lee, T. Lian, A. Adibi, and W. Cai, “Hot-Electron-Assisted Femtosecond All-Optical Modulation in Plasmonics,” Adv. Mater. 30(9), 1704915 (2018).
[Crossref] [PubMed]

C. D. Wright, Y. Liu, K. I. Kohary, M. M. Aziz, and R. J. Hicken, “Arithmetic and biologically-inspired computing using phase-change materials,” Adv. Mater. 23(30), 3408–3413 (2011).
[Crossref] [PubMed]

Loke, D.

D. Loke, T. H. Lee, W. J. Wang, L. P. Shi, R. Zhao, Y. C. Yeo, T. C. Chong, and S. R. Elliott, “Breaking the speed limits of phase-change memory,” Science 336(6088), 1566–1569 (2012).
[Crossref] [PubMed]

Loncar, M.

Y. Yao, R. Shankar, M. A. Kats, Y. Song, J. Kong, M. Loncar, and F. Capasso, “Electrically tunable metasurface perfect absorbers for ultrathin mid-infrared optical modulators,” Nano Lett. 14(11), 6526–6532 (2014).
[Crossref] [PubMed]

Lopez-Garcia, M.

C. R. de Galarreta, A. M. Alexeev, Y. Y. Au, M. Lopez‐Garcia, M. Klemm, M. Cryan, J. Bertolotti, and C. D. Wright, “Nonvolatile Reconfigurable Phase‐Change Metadevices for Beam Steering in the Near Infrared,” Adv. Funct. Mater. 28(10), 1704993 (2018).
[Crossref]

Lotnyk, A.

X. Sun, A. Lotnyk, M. Ehrhardt, J. W. Gerlach, and B. Rauschenbach, “Realization of multilevel states in phase‐change thin films by fast laser pulse irradiation,” Adv. Opt. Mater. 5(12), 1700169 (2017).
[Crossref]

Luk’yanchuk, B.

Luo, X.

Y. Chen, X. Li, Y. Sonnefraud, A. I. Fernández-Domínguez, X. Luo, M. Hong, and S. A. Maier, “Engineering the phase front of light with phase-change material based planar lenses,” Sci. Rep. 5(1), 8660 (2015).
[Crossref] [PubMed]

Luo, X. G.

MacDonald, K.

A. Karvounis, B. Gholipour, K. MacDonald, and N. Zheludev, “All-dielectric phase-change reconfigurable metasurface,” Appl. Phys. Lett. 109(5), 051103 (2016).
[Crossref]

Macdonald, K. F.

Q. Wang, J. Maddock, E. T. Rogers, T. Roy, C. Craig, K. F. Macdonald, D. W. Hewak, and N. I. Zheludev, “1.7 Gbit/in. 2 gray-scale continuous-phase-change femtosecond image storage,” Appl. Phys. Lett. 104(12), 121105 (2014).
[Crossref]

B. Gholipour, J. Zhang, K. F. MacDonald, D. W. Hewak, and N. I. Zheludev, “An all-optical, non-volatile, bidirectional, phase-change meta-switch,” Adv. Mater. 25(22), 3050–3054 (2013).
[Crossref] [PubMed]

Maddock, J.

Q. Wang, J. Maddock, E. T. Rogers, T. Roy, C. Craig, K. F. Macdonald, D. W. Hewak, and N. I. Zheludev, “1.7 Gbit/in. 2 gray-scale continuous-phase-change femtosecond image storage,” Appl. Phys. Lett. 104(12), 121105 (2014).
[Crossref]

Maier, S. A.

Y. Chen, X. Li, Y. Sonnefraud, A. I. Fernández-Domínguez, X. Luo, M. Hong, and S. A. Maier, “Engineering the phase front of light with phase-change material based planar lenses,” Sci. Rep. 5(1), 8660 (2015).
[Crossref] [PubMed]

Y. G. Chen, T. S. Kao, B. Ng, X. Li, X. G. Luo, B. Luk’yanchuk, S. A. Maier, and M. H. Hong, “Hybrid phase-change plasmonic crystals for active tuning of lattice resonances,” Opt. Express 21(11), 13691–13698 (2013).
[Crossref] [PubMed]

Maß, T. W.

A. K. Michel, D. N. Chigrin, T. W. Maß, K. Schönauer, M. Salinga, M. Wuttig, and T. Taubner, “Using low-loss phase-change materials for mid-infrared antenna resonance tuning,” Nano Lett. 13(8), 3470–3475 (2013).
[Crossref] [PubMed]

Meng, Y.

S. Wen, Y. Meng, M. Jiang, and Y. Wang, “Multi-level coding-recoding by ultrafast phase transition on Ge2Sb2Te5 thin films,” Sci. Rep. 8(1), 4979 (2018).
[Crossref] [PubMed]

Michel, A. K.

A. Tittl, A. K. Michel, M. Schäferling, X. Yin, B. Gholipour, L. Cui, M. Wuttig, T. Taubner, F. Neubrech, and H. Giessen, “A switchable mid‐infrared plasmonic perfect absorber with multispectral thermal imaging capability,” Adv. Mater. 27(31), 4597–4603 (2015).
[Crossref] [PubMed]

A. K. Michel, P. Zalden, D. N. Chigrin, M. Wuttig, A. M. Lindenberg, and T. Taubner, “Reversible optical switching of infrared antenna resonances with ultrathin phase-change layers using femtosecond laser pulses,” ACS Photonics 1(9), 833–839 (2014).
[Crossref]

A. K. Michel, D. N. Chigrin, T. W. Maß, K. Schönauer, M. Salinga, M. Wuttig, and T. Taubner, “Using low-loss phase-change materials for mid-infrared antenna resonance tuning,” Nano Lett. 13(8), 3470–3475 (2013).
[Crossref] [PubMed]

Michel, A.-K. U.

A.-K. U. Michel, M. Wuttig, and T. Taubner, “Design parameters for phase-change materials for nanostructure resonance tuning,” Adv. Opt. Mater. 5(18), 1700261 (2017).
[Crossref]

Moharam, M.

Mosallaei, H.

A. Forouzmand and H. Mosallaei, “Real-time controllable and multifunctional metasurfaces utilizing indium tin oxide materials: A phased array perspective,” IEEE Trans. NanoTechnol. 16(2), 296–306 (2017).
[Crossref]

J. Cheng, S. Inampudi, and H. Mosallaei, “Optimization-based dielectric metasurfaces for angle-selective multifunctional beam deflection,” Sci. Rep. 7(1), 12228 (2017).
[Crossref] [PubMed]

Muskens, O. L.

M. Abb, P. Albella, J. Aizpurua, and O. L. Muskens, “All-optical control of a single plasmonic nanoantenna-ITO hybrid,” Nano Lett. 11(6), 2457–2463 (2011).
[Crossref] [PubMed]

Nash, G. R.

Neubrech, F.

A. Tittl, A. K. Michel, M. Schäferling, X. Yin, B. Gholipour, L. Cui, M. Wuttig, T. Taubner, F. Neubrech, and H. Giessen, “A switchable mid‐infrared plasmonic perfect absorber with multispectral thermal imaging capability,” Adv. Mater. 27(31), 4597–4603 (2015).
[Crossref] [PubMed]

Ng, B.

Ni, X.

X. Ni, N. K. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Broadband light bending with plasmonic nanoantennas,” Science 335(6067), 427 (2012).
[Crossref] [PubMed]

O’Hara, J. F.

Ocola, L. E.

P. Guo, R. D. Schaller, L. E. Ocola, B. T. Diroll, J. B. Ketterson, and R. P. Chang, “Large optical nonlinearity of ITO nanorods for sub-picosecond all-optical modulation of the full-visible spectrum,” Nat. Commun. 7, 12892 (2016).
[Crossref] [PubMed]

Ouyang, C.

Pala, R. A.

G. Kafaie Shirmanesh, R. Sokhoyan, R. A. Pala, and H. A. Atwater, “Dual-gated active metasurface at 1550 nm with wide (> 300°) phase tunability,” Nano Lett. 18(5), 2957–2963 (2018), doi:.
[Crossref] [PubMed]

Y. W. Huang, H. W. Lee, R. Sokhoyan, R. A. Pala, K. Thyagarajan, S. Han, D. P. Tsai, and H. A. Atwater, “Gate-tunable conducting oxide metasurfaces,” Nano Lett. 16(9), 5319–5325 (2016).
[Crossref] [PubMed]

Paradis, S.

A. Joushaghani, B. A. Kruger, S. Paradis, D. Alain, J. Stewart Aitchison, and J. K. Poon, “Sub-volt broadband hybrid plasmonic-vanadium dioxide switches,” Appl. Phys. Lett. 102(6), 061101 (2013).
[Crossref]

Park, J.

J. Park, J. H. Kang, S. J. Kim, X. Liu, and M. L. Brongersma, “Dynamic reflection phase and polarization control in metasurfaces,” Nano Lett. 17(1), 407–413 (2017).
[Crossref] [PubMed]

Pendharkar, M.

P. Iyer, M. Pendharkar, and J. Schuller, “Electrically reconfigurable metasurfaces using heterojunction resonators,” Adv. Opt. Mater. 4(10), 1582–1588 (2016).
[Crossref]

Pernice, W. H.

C. Ríos, M. Stegmaier, P. Hosseini, D. Wang, T. Scherer, C. D. Wright, H. Bhaskaran, and W. H. Pernice, “Integrated all-photonic non-volatile multi-level memory,” Nat. Photonics 9(11), 725–732 (2015).
[Crossref]

W. H. Pernice and H. Bhaskaran, “Photonic non-volatile memories using phase change materials,” Appl. Phys. Lett. 101(17), 171101 (2012).
[Crossref]

Plum, E.

N. I. Zheludev and E. Plum, “Reconfigurable nanomechanical photonic metamaterials,” Nat. Nanotechnol. 11(1), 16–22 (2016).
[Crossref] [PubMed]

Podolskiy, V. A.

Ponti, S. M.

M. C. Sherrott, P. W. C. Hon, K. T. Fountaine, J. C. Garcia, S. M. Ponti, V. W. Brar, L. A. Sweatlock, and H. A. Atwater, “Experimental demonstration of >230° phase modulation in gate-tunable graphene–gold reconfigurable mid-infrared metasurfaces,” Nano Lett. 17(5), 3027–3034 (2017).
[Crossref] [PubMed]

Poon, J.

Poon, J. K.

A. Joushaghani, B. A. Kruger, S. Paradis, D. Alain, J. Stewart Aitchison, and J. K. Poon, “Sub-volt broadband hybrid plasmonic-vanadium dioxide switches,” Appl. Phys. Lett. 102(6), 061101 (2013).
[Crossref]

Raeis-Hosseini, N.

N. Raeis-Hosseini and J. Rho, “Metasurfaces based on phase-change material as a reconfigurable platform for multifunctional devices,” Materials (Basel) 10(9), 1046 (2017).
[Crossref] [PubMed]

Rauschenbach, B.

X. Sun, A. Lotnyk, M. Ehrhardt, J. W. Gerlach, and B. Rauschenbach, “Realization of multilevel states in phase‐change thin films by fast laser pulse irradiation,” Adv. Opt. Mater. 5(12), 1700169 (2017).
[Crossref]

Raza, S.

A. L. Holsteen, S. Raza, P. Fan, P. G. Kik, and M. L. Brongersma, “Purcell effect for active tuning of light scattering from semiconductor optical antennas,” Science 358(6369), 1407–1410 (2017).
[Crossref] [PubMed]

Rho, J.

N. Raeis-Hosseini and J. Rho, “Metasurfaces based on phase-change material as a reconfigurable platform for multifunctional devices,” Materials (Basel) 10(9), 1046 (2017).
[Crossref] [PubMed]

Ríos, C.

C. Ríos, M. Stegmaier, P. Hosseini, D. Wang, T. Scherer, C. D. Wright, H. Bhaskaran, and W. H. Pernice, “Integrated all-photonic non-volatile multi-level memory,” Nat. Photonics 9(11), 725–732 (2015).
[Crossref]

Roberts, C. M.

Rodrigues, S. P.

M. Taghinejad, H. Taghinejad, Z. Xu, Y. Liu, S. P. Rodrigues, K. T. Lee, T. Lian, A. Adibi, and W. Cai, “Hot-Electron-Assisted Femtosecond All-Optical Modulation in Plasmonics,” Adv. Mater. 30(9), 1704915 (2018).
[Crossref] [PubMed]

Rogers, E. T.

Q. Wang, E. T. Rogers, B. Gholipour, C. M. Wang, G. Yuan, J. Teng, and N. I. Zheludev, “Optically reconfigurable metasurfaces and photonic devices based on phase change materials,” Nat. Photonics 10(1), 60–65 (2016).
[Crossref]

Q. Wang, J. Maddock, E. T. Rogers, T. Roy, C. Craig, K. F. Macdonald, D. W. Hewak, and N. I. Zheludev, “1.7 Gbit/in. 2 gray-scale continuous-phase-change femtosecond image storage,” Appl. Phys. Lett. 104(12), 121105 (2014).
[Crossref]

Roy, T.

Q. Wang, J. Maddock, E. T. Rogers, T. Roy, C. Craig, K. F. Macdonald, D. W. Hewak, and N. I. Zheludev, “1.7 Gbit/in. 2 gray-scale continuous-phase-change femtosecond image storage,” Appl. Phys. Lett. 104(12), 121105 (2014).
[Crossref]

Salinga, M.

A. K. Michel, D. N. Chigrin, T. W. Maß, K. Schönauer, M. Salinga, M. Wuttig, and T. Taubner, “Using low-loss phase-change materials for mid-infrared antenna resonance tuning,” Nano Lett. 13(8), 3470–3475 (2013).
[Crossref] [PubMed]

Schäferling, M.

A. Tittl, A. K. Michel, M. Schäferling, X. Yin, B. Gholipour, L. Cui, M. Wuttig, T. Taubner, F. Neubrech, and H. Giessen, “A switchable mid‐infrared plasmonic perfect absorber with multispectral thermal imaging capability,” Adv. Mater. 27(31), 4597–4603 (2015).
[Crossref] [PubMed]

Schaller, R. D.

P. Guo, R. D. Schaller, L. E. Ocola, B. T. Diroll, J. B. Ketterson, and R. P. Chang, “Large optical nonlinearity of ITO nanorods for sub-picosecond all-optical modulation of the full-visible spectrum,” Nat. Commun. 7, 12892 (2016).
[Crossref] [PubMed]

Scherer, T.

C. Ríos, M. Stegmaier, P. Hosseini, D. Wang, T. Scherer, C. D. Wright, H. Bhaskaran, and W. H. Pernice, “Integrated all-photonic non-volatile multi-level memory,” Nat. Photonics 9(11), 725–732 (2015).
[Crossref]

Schönauer, K.

A. K. Michel, D. N. Chigrin, T. W. Maß, K. Schönauer, M. Salinga, M. Wuttig, and T. Taubner, “Using low-loss phase-change materials for mid-infrared antenna resonance tuning,” Nano Lett. 13(8), 3470–3475 (2013).
[Crossref] [PubMed]

Schuller, J.

P. Iyer, M. Pendharkar, and J. Schuller, “Electrically reconfigurable metasurfaces using heterojunction resonators,” Adv. Opt. Mater. 4(10), 1582–1588 (2016).
[Crossref]

Shalaev, V. M.

A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science 339(6125), 1232009 (2013).
[Crossref] [PubMed]

X. Ni, N. K. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Broadband light bending with plasmonic nanoantennas,” Science 335(6067), 427 (2012).
[Crossref] [PubMed]

Shankar, R.

Y. Yao, R. Shankar, M. A. Kats, Y. Song, J. Kong, M. Loncar, and F. Capasso, “Electrically tunable metasurface perfect absorbers for ultrathin mid-infrared optical modulators,” Nano Lett. 14(11), 6526–6532 (2014).
[Crossref] [PubMed]

Sherrott, M. C.

M. C. Sherrott, P. W. C. Hon, K. T. Fountaine, J. C. Garcia, S. M. Ponti, V. W. Brar, L. A. Sweatlock, and H. A. Atwater, “Experimental demonstration of >230° phase modulation in gate-tunable graphene–gold reconfigurable mid-infrared metasurfaces,” Nano Lett. 17(5), 3027–3034 (2017).
[Crossref] [PubMed]

Shi, L. P.

D. Loke, T. H. Lee, W. J. Wang, L. P. Shi, R. Zhao, Y. C. Yeo, T. C. Chong, and S. R. Elliott, “Breaking the speed limits of phase-change memory,” Science 336(6088), 1566–1569 (2012).
[Crossref] [PubMed]

Simpson, R. E.

T. Cao, C. W. Wei, R. E. Simpson, L. Zhang, and M. J. Cryan, “Broadband polarization-independent perfect absorber using a phase-change metamaterial at visible frequencies,” Sci. Rep. 4(1), 3955 (2014).
[Crossref] [PubMed]

Sokhoyan, R.

G. Kafaie Shirmanesh, R. Sokhoyan, R. A. Pala, and H. A. Atwater, “Dual-gated active metasurface at 1550 nm with wide (> 300°) phase tunability,” Nano Lett. 18(5), 2957–2963 (2018), doi:.
[Crossref] [PubMed]

Y. W. Huang, H. W. Lee, R. Sokhoyan, R. A. Pala, K. Thyagarajan, S. Han, D. P. Tsai, and H. A. Atwater, “Gate-tunable conducting oxide metasurfaces,” Nano Lett. 16(9), 5319–5325 (2016).
[Crossref] [PubMed]

Song, G.

Song, Y.

Y. Yao, R. Shankar, M. A. Kats, Y. Song, J. Kong, M. Loncar, and F. Capasso, “Electrically tunable metasurface perfect absorbers for ultrathin mid-infrared optical modulators,” Nano Lett. 14(11), 6526–6532 (2014).
[Crossref] [PubMed]

Sonnefraud, Y.

Y. Chen, X. Li, Y. Sonnefraud, A. I. Fernández-Domínguez, X. Luo, M. Hong, and S. A. Maier, “Engineering the phase front of light with phase-change material based planar lenses,” Sci. Rep. 5(1), 8660 (2015).
[Crossref] [PubMed]

Soref, R.

Soukoulis, C. M.

Stegmaier, M.

C. Ríos, M. Stegmaier, P. Hosseini, D. Wang, T. Scherer, C. D. Wright, H. Bhaskaran, and W. H. Pernice, “Integrated all-photonic non-volatile multi-level memory,” Nat. Photonics 9(11), 725–732 (2015).
[Crossref]

Steinle, T.

X. Yin, T. Steinle, L. Huang, T. Taubner, M. Wuttig, T. Zentgraf, and H. Giessen, “Beam switching and bifocal zoom lensing using active plasmonic metasurfaces,” Light Sci. Appl. 7(7), e17016 (2017).
[Crossref]

Stewart Aitchison, J.

A. Joushaghani, B. A. Kruger, S. Paradis, D. Alain, J. Stewart Aitchison, and J. K. Poon, “Sub-volt broadband hybrid plasmonic-vanadium dioxide switches,” Appl. Phys. Lett. 102(6), 061101 (2013).
[Crossref]

Su, X.

Sun, G.

C. Chu, M. Tseng, J. Chen, P. Wu, Y. Chen, H. Wang, T. Chen, W. Hsieh, H. Wu, G. Sun, and D. Tsai, “Active dielectric metasurface based on phase-change medium,” Laser Photonics Rev. 10(6), 986–994 (2016).
[Crossref]

Sun, X.

X. Sun, A. Lotnyk, M. Ehrhardt, J. W. Gerlach, and B. Rauschenbach, “Realization of multilevel states in phase‐change thin films by fast laser pulse irradiation,” Adv. Opt. Mater. 5(12), 1700169 (2017).
[Crossref]

Sweatlock, L. A.

M. C. Sherrott, P. W. C. Hon, K. T. Fountaine, J. C. Garcia, S. M. Ponti, V. W. Brar, L. A. Sweatlock, and H. A. Atwater, “Experimental demonstration of >230° phase modulation in gate-tunable graphene–gold reconfigurable mid-infrared metasurfaces,” Nano Lett. 17(5), 3027–3034 (2017).
[Crossref] [PubMed]

Taghinejad, H.

M. Taghinejad, H. Taghinejad, Z. Xu, Y. Liu, S. P. Rodrigues, K. T. Lee, T. Lian, A. Adibi, and W. Cai, “Hot-Electron-Assisted Femtosecond All-Optical Modulation in Plasmonics,” Adv. Mater. 30(9), 1704915 (2018).
[Crossref] [PubMed]

Taghinejad, M.

M. Taghinejad, H. Taghinejad, Z. Xu, Y. Liu, S. P. Rodrigues, K. T. Lee, T. Lian, A. Adibi, and W. Cai, “Hot-Electron-Assisted Femtosecond All-Optical Modulation in Plasmonics,” Adv. Mater. 30(9), 1704915 (2018).
[Crossref] [PubMed]

Taubner, T.

M. Wuttig, H. Bhaskaran, and T. Taubner, “Phase-change materials for non-volatile photonic applications,” Nat. Photonics 11(8), 465–476 (2017).
[Crossref]

A.-K. U. Michel, M. Wuttig, and T. Taubner, “Design parameters for phase-change materials for nanostructure resonance tuning,” Adv. Opt. Mater. 5(18), 1700261 (2017).
[Crossref]

X. Yin, T. Steinle, L. Huang, T. Taubner, M. Wuttig, T. Zentgraf, and H. Giessen, “Beam switching and bifocal zoom lensing using active plasmonic metasurfaces,” Light Sci. Appl. 7(7), e17016 (2017).
[Crossref]

A. Tittl, A. K. Michel, M. Schäferling, X. Yin, B. Gholipour, L. Cui, M. Wuttig, T. Taubner, F. Neubrech, and H. Giessen, “A switchable mid‐infrared plasmonic perfect absorber with multispectral thermal imaging capability,” Adv. Mater. 27(31), 4597–4603 (2015).
[Crossref] [PubMed]

A. K. Michel, P. Zalden, D. N. Chigrin, M. Wuttig, A. M. Lindenberg, and T. Taubner, “Reversible optical switching of infrared antenna resonances with ultrathin phase-change layers using femtosecond laser pulses,” ACS Photonics 1(9), 833–839 (2014).
[Crossref]

A. K. Michel, D. N. Chigrin, T. W. Maß, K. Schönauer, M. Salinga, M. Wuttig, and T. Taubner, “Using low-loss phase-change materials for mid-infrared antenna resonance tuning,” Nano Lett. 13(8), 3470–3475 (2013).
[Crossref] [PubMed]

Teng, J.

Q. Wang, E. T. Rogers, B. Gholipour, C. M. Wang, G. Yuan, J. Teng, and N. I. Zheludev, “Optically reconfigurable metasurfaces and photonic devices based on phase change materials,” Nat. Photonics 10(1), 60–65 (2016).
[Crossref]

Thielsch, R.

R. Thielsch, T. Böhme, and H. Böttcher, “Optical and Structural Properties of Nanocrystalline ZnS‐SiO2 Composite Films,” Phys. Status Solidi, A Appl. Res. 155(1), 157–170 (1996).
[Crossref]

Thyagarajan, K.

Y. W. Huang, H. W. Lee, R. Sokhoyan, R. A. Pala, K. Thyagarajan, S. Han, D. P. Tsai, and H. A. Atwater, “Gate-tunable conducting oxide metasurfaces,” Nano Lett. 16(9), 5319–5325 (2016).
[Crossref] [PubMed]

Tian, Z.

Tittl, A.

A. Tittl, A. K. Michel, M. Schäferling, X. Yin, B. Gholipour, L. Cui, M. Wuttig, T. Taubner, F. Neubrech, and H. Giessen, “A switchable mid‐infrared plasmonic perfect absorber with multispectral thermal imaging capability,” Adv. Mater. 27(31), 4597–4603 (2015).
[Crossref] [PubMed]

Tsai, D.

C. Chu, M. Tseng, J. Chen, P. Wu, Y. Chen, H. Wang, T. Chen, W. Hsieh, H. Wu, G. Sun, and D. Tsai, “Active dielectric metasurface based on phase-change medium,” Laser Photonics Rev. 10(6), 986–994 (2016).
[Crossref]

Tsai, D. P.

Y. W. Huang, H. W. Lee, R. Sokhoyan, R. A. Pala, K. Thyagarajan, S. Han, D. P. Tsai, and H. A. Atwater, “Gate-tunable conducting oxide metasurfaces,” Nano Lett. 16(9), 5319–5325 (2016).
[Crossref] [PubMed]

Tseng, M.

C. Chu, M. Tseng, J. Chen, P. Wu, Y. Chen, H. Wang, T. Chen, W. Hsieh, H. Wu, G. Sun, and D. Tsai, “Active dielectric metasurface based on phase-change medium,” Laser Photonics Rev. 10(6), 986–994 (2016).
[Crossref]

Valentine, J. G.

Z. Zhu, P. G. Evans, R. F. Haglund, and J. G. Valentine, “Dynamically reconfigurable metadevice employing nanostructured phase-change materials,” Nano Lett. 17(8), 4881–4885 (2017).
[Crossref] [PubMed]

Wang, C. M.

Q. Wang, E. T. Rogers, B. Gholipour, C. M. Wang, G. Yuan, J. Teng, and N. I. Zheludev, “Optically reconfigurable metasurfaces and photonic devices based on phase change materials,” Nat. Photonics 10(1), 60–65 (2016).
[Crossref]

Wang, D.

C. Ríos, M. Stegmaier, P. Hosseini, D. Wang, T. Scherer, C. D. Wright, H. Bhaskaran, and W. H. Pernice, “Integrated all-photonic non-volatile multi-level memory,” Nat. Photonics 9(11), 725–732 (2015).
[Crossref]

Wang, H.

C. Chu, M. Tseng, J. Chen, P. Wu, Y. Chen, H. Wang, T. Chen, W. Hsieh, H. Wu, G. Sun, and D. Tsai, “Active dielectric metasurface based on phase-change medium,” Laser Photonics Rev. 10(6), 986–994 (2016).
[Crossref]

Wang, Q.

Q. Wang, E. T. Rogers, B. Gholipour, C. M. Wang, G. Yuan, J. Teng, and N. I. Zheludev, “Optically reconfigurable metasurfaces and photonic devices based on phase change materials,” Nat. Photonics 10(1), 60–65 (2016).
[Crossref]

Q. Wang, J. Maddock, E. T. Rogers, T. Roy, C. Craig, K. F. Macdonald, D. W. Hewak, and N. I. Zheludev, “1.7 Gbit/in. 2 gray-scale continuous-phase-change femtosecond image storage,” Appl. Phys. Lett. 104(12), 121105 (2014).
[Crossref]

Wang, S.

Wang, W. J.

D. Loke, T. H. Lee, W. J. Wang, L. P. Shi, R. Zhao, Y. C. Yeo, T. C. Chong, and S. R. Elliott, “Breaking the speed limits of phase-change memory,” Science 336(6088), 1566–1569 (2012).
[Crossref] [PubMed]

Wang, Y.

S. Wen, Y. Meng, M. Jiang, and Y. Wang, “Multi-level coding-recoding by ultrafast phase transition on Ge2Sb2Te5 thin films,” Sci. Rep. 8(1), 4979 (2018).
[Crossref] [PubMed]

T. Li, L. Huang, J. Liu, Y. Wang, and T. Zentgraf, “Tunable wave plate based on active plasmonic metasurfaces,” Opt. Express 25(4), 4216–4226 (2017).
[Crossref] [PubMed]

K. Lei, Y. Wang, M. Jiang, and Y. Wu, “Refractive index modulation of Sb70Te30 phase-change thin films by multiple femtosecond laser pulses,” J. Appl. Phys. 119(17), 173105 (2016).
[Crossref]

Wegener, M.

Wei, C.

Wei, C. W.

T. Cao, C. W. Wei, R. E. Simpson, L. Zhang, and M. J. Cryan, “Broadband polarization-independent perfect absorber using a phase-change metamaterial at visible frequencies,” Sci. Rep. 4(1), 3955 (2014).
[Crossref] [PubMed]

Wei, X.

Wen, S.

S. Wen, Y. Meng, M. Jiang, and Y. Wang, “Multi-level coding-recoding by ultrafast phase transition on Ge2Sb2Te5 thin films,” Sci. Rep. 8(1), 4979 (2018).
[Crossref] [PubMed]

Wright, C. D.

C. R. de Galarreta, A. M. Alexeev, Y. Y. Au, M. Lopez‐Garcia, M. Klemm, M. Cryan, J. Bertolotti, and C. D. Wright, “Nonvolatile Reconfigurable Phase‐Change Metadevices for Beam Steering in the Near Infrared,” Adv. Funct. Mater. 28(10), 1704993 (2018).
[Crossref]

S. G. Carrillo, G. R. Nash, H. Hayat, M. J. Cryan, M. Klemm, H. Bhaskaran, and C. D. Wright, “Design of practicable phase-change metadevices for near-infrared absorber and modulator applications,” Opt. Express 24(12), 13563–13573 (2016).
[Crossref] [PubMed]

C. Ríos, M. Stegmaier, P. Hosseini, D. Wang, T. Scherer, C. D. Wright, H. Bhaskaran, and W. H. Pernice, “Integrated all-photonic non-volatile multi-level memory,” Nat. Photonics 9(11), 725–732 (2015).
[Crossref]

P. Hosseini, C. D. Wright, and H. Bhaskaran, “An optoelectronic framework enabled by low-dimensional phase-change films,” Nature 511(7508), 206–211 (2014).
[Crossref] [PubMed]

C. D. Wright, Y. Liu, K. I. Kohary, M. M. Aziz, and R. J. Hicken, “Arithmetic and biologically-inspired computing using phase-change materials,” Adv. Mater. 23(30), 3408–3413 (2011).
[Crossref] [PubMed]

Wu, H.

C. Chu, M. Tseng, J. Chen, P. Wu, Y. Chen, H. Wang, T. Chen, W. Hsieh, H. Wu, G. Sun, and D. Tsai, “Active dielectric metasurface based on phase-change medium,” Laser Photonics Rev. 10(6), 986–994 (2016).
[Crossref]

Wu, P.

C. Chu, M. Tseng, J. Chen, P. Wu, Y. Chen, H. Wang, T. Chen, W. Hsieh, H. Wu, G. Sun, and D. Tsai, “Active dielectric metasurface based on phase-change medium,” Laser Photonics Rev. 10(6), 986–994 (2016).
[Crossref]

Wu, Y.

K. Lei, Y. Wang, M. Jiang, and Y. Wu, “Refractive index modulation of Sb70Te30 phase-change thin films by multiple femtosecond laser pulses,” J. Appl. Phys. 119(17), 173105 (2016).
[Crossref]

Wuttig, M.

M. Wuttig, H. Bhaskaran, and T. Taubner, “Phase-change materials for non-volatile photonic applications,” Nat. Photonics 11(8), 465–476 (2017).
[Crossref]

X. Yin, T. Steinle, L. Huang, T. Taubner, M. Wuttig, T. Zentgraf, and H. Giessen, “Beam switching and bifocal zoom lensing using active plasmonic metasurfaces,” Light Sci. Appl. 7(7), e17016 (2017).
[Crossref]

A.-K. U. Michel, M. Wuttig, and T. Taubner, “Design parameters for phase-change materials for nanostructure resonance tuning,” Adv. Opt. Mater. 5(18), 1700261 (2017).
[Crossref]

A. Tittl, A. K. Michel, M. Schäferling, X. Yin, B. Gholipour, L. Cui, M. Wuttig, T. Taubner, F. Neubrech, and H. Giessen, “A switchable mid‐infrared plasmonic perfect absorber with multispectral thermal imaging capability,” Adv. Mater. 27(31), 4597–4603 (2015).
[Crossref] [PubMed]

A. K. Michel, P. Zalden, D. N. Chigrin, M. Wuttig, A. M. Lindenberg, and T. Taubner, “Reversible optical switching of infrared antenna resonances with ultrathin phase-change layers using femtosecond laser pulses,” ACS Photonics 1(9), 833–839 (2014).
[Crossref]

A. K. Michel, D. N. Chigrin, T. W. Maß, K. Schönauer, M. Salinga, M. Wuttig, and T. Taubner, “Using low-loss phase-change materials for mid-infrared antenna resonance tuning,” Nano Lett. 13(8), 3470–3475 (2013).
[Crossref] [PubMed]

Xu, N.

Xu, Z.

M. Taghinejad, H. Taghinejad, Z. Xu, Y. Liu, S. P. Rodrigues, K. T. Lee, T. Lian, A. Adibi, and W. Cai, “Hot-Electron-Assisted Femtosecond All-Optical Modulation in Plasmonics,” Adv. Mater. 30(9), 1704915 (2018).
[Crossref] [PubMed]

Yao, Y.

Y. Yao, R. Shankar, M. A. Kats, Y. Song, J. Kong, M. Loncar, and F. Capasso, “Electrically tunable metasurface perfect absorbers for ultrathin mid-infrared optical modulators,” Nano Lett. 14(11), 6526–6532 (2014).
[Crossref] [PubMed]

Yeo, Y. C.

D. Loke, T. H. Lee, W. J. Wang, L. P. Shi, R. Zhao, Y. C. Yeo, T. C. Chong, and S. R. Elliott, “Breaking the speed limits of phase-change memory,” Science 336(6088), 1566–1569 (2012).
[Crossref] [PubMed]

Yin, X.

X. Yin, T. Steinle, L. Huang, T. Taubner, M. Wuttig, T. Zentgraf, and H. Giessen, “Beam switching and bifocal zoom lensing using active plasmonic metasurfaces,” Light Sci. Appl. 7(7), e17016 (2017).
[Crossref]

A. Tittl, A. K. Michel, M. Schäferling, X. Yin, B. Gholipour, L. Cui, M. Wuttig, T. Taubner, F. Neubrech, and H. Giessen, “A switchable mid‐infrared plasmonic perfect absorber with multispectral thermal imaging capability,” Adv. Mater. 27(31), 4597–4603 (2015).
[Crossref] [PubMed]

Yu, N.

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
[Crossref] [PubMed]

Yuan, G.

Q. Wang, E. T. Rogers, B. Gholipour, C. M. Wang, G. Yuan, J. Teng, and N. I. Zheludev, “Optically reconfigurable metasurfaces and photonic devices based on phase change materials,” Nat. Photonics 10(1), 60–65 (2016).
[Crossref]

Zalden, P.

A. K. Michel, P. Zalden, D. N. Chigrin, M. Wuttig, A. M. Lindenberg, and T. Taubner, “Reversible optical switching of infrared antenna resonances with ultrathin phase-change layers using femtosecond laser pulses,” ACS Photonics 1(9), 833–839 (2014).
[Crossref]

Zentgraf, T.

X. Yin, T. Steinle, L. Huang, T. Taubner, M. Wuttig, T. Zentgraf, and H. Giessen, “Beam switching and bifocal zoom lensing using active plasmonic metasurfaces,” Light Sci. Appl. 7(7), e17016 (2017).
[Crossref]

T. Li, L. Huang, J. Liu, Y. Wang, and T. Zentgraf, “Tunable wave plate based on active plasmonic metasurfaces,” Opt. Express 25(4), 4216–4226 (2017).
[Crossref] [PubMed]

Zhang, J.

B. Gholipour, J. Zhang, K. F. MacDonald, D. W. Hewak, and N. I. Zheludev, “An all-optical, non-volatile, bidirectional, phase-change meta-switch,” Adv. Mater. 25(22), 3050–3054 (2013).
[Crossref] [PubMed]

Zhang, L.

T. Cao, C. W. Wei, R. E. Simpson, L. Zhang, and M. J. Cryan, “Broadband polarization-independent perfect absorber using a phase-change metamaterial at visible frequencies,” Sci. Rep. 4(1), 3955 (2014).
[Crossref] [PubMed]

Zhang, Q.

Zhang, W.

Zhang, Y.

Zhao, R.

D. Loke, T. H. Lee, W. J. Wang, L. P. Shi, R. Zhao, Y. C. Yeo, T. C. Chong, and S. R. Elliott, “Breaking the speed limits of phase-change memory,” Science 336(6088), 1566–1569 (2012).
[Crossref] [PubMed]

Zheludev, N.

A. Karvounis, B. Gholipour, K. MacDonald, and N. Zheludev, “All-dielectric phase-change reconfigurable metasurface,” Appl. Phys. Lett. 109(5), 051103 (2016).
[Crossref]

N. Zheludev, “All change, please,” Nat. Photonics 1(10), 551–553 (2007).
[Crossref]

Zheludev, N. I.

N. I. Zheludev and E. Plum, “Reconfigurable nanomechanical photonic metamaterials,” Nat. Nanotechnol. 11(1), 16–22 (2016).
[Crossref] [PubMed]

Q. Wang, E. T. Rogers, B. Gholipour, C. M. Wang, G. Yuan, J. Teng, and N. I. Zheludev, “Optically reconfigurable metasurfaces and photonic devices based on phase change materials,” Nat. Photonics 10(1), 60–65 (2016).
[Crossref]

Q. Wang, J. Maddock, E. T. Rogers, T. Roy, C. Craig, K. F. Macdonald, D. W. Hewak, and N. I. Zheludev, “1.7 Gbit/in. 2 gray-scale continuous-phase-change femtosecond image storage,” Appl. Phys. Lett. 104(12), 121105 (2014).
[Crossref]

B. Gholipour, J. Zhang, K. F. MacDonald, D. W. Hewak, and N. I. Zheludev, “An all-optical, non-volatile, bidirectional, phase-change meta-switch,” Adv. Mater. 25(22), 3050–3054 (2013).
[Crossref] [PubMed]

Zheng, G.

Zhu, Z.

Z. Zhu, P. G. Evans, R. F. Haglund, and J. G. Valentine, “Dynamically reconfigurable metadevice employing nanostructured phase-change materials,” Nano Lett. 17(8), 4881–4885 (2017).
[Crossref] [PubMed]

ACS Photonics (1)

A. K. Michel, P. Zalden, D. N. Chigrin, M. Wuttig, A. M. Lindenberg, and T. Taubner, “Reversible optical switching of infrared antenna resonances with ultrathin phase-change layers using femtosecond laser pulses,” ACS Photonics 1(9), 833–839 (2014).
[Crossref]

Adv. Funct. Mater. (1)

C. R. de Galarreta, A. M. Alexeev, Y. Y. Au, M. Lopez‐Garcia, M. Klemm, M. Cryan, J. Bertolotti, and C. D. Wright, “Nonvolatile Reconfigurable Phase‐Change Metadevices for Beam Steering in the Near Infrared,” Adv. Funct. Mater. 28(10), 1704993 (2018).
[Crossref]

Adv. Mater. (4)

M. Taghinejad, H. Taghinejad, Z. Xu, Y. Liu, S. P. Rodrigues, K. T. Lee, T. Lian, A. Adibi, and W. Cai, “Hot-Electron-Assisted Femtosecond All-Optical Modulation in Plasmonics,” Adv. Mater. 30(9), 1704915 (2018).
[Crossref] [PubMed]

A. Tittl, A. K. Michel, M. Schäferling, X. Yin, B. Gholipour, L. Cui, M. Wuttig, T. Taubner, F. Neubrech, and H. Giessen, “A switchable mid‐infrared plasmonic perfect absorber with multispectral thermal imaging capability,” Adv. Mater. 27(31), 4597–4603 (2015).
[Crossref] [PubMed]

B. Gholipour, J. Zhang, K. F. MacDonald, D. W. Hewak, and N. I. Zheludev, “An all-optical, non-volatile, bidirectional, phase-change meta-switch,” Adv. Mater. 25(22), 3050–3054 (2013).
[Crossref] [PubMed]

C. D. Wright, Y. Liu, K. I. Kohary, M. M. Aziz, and R. J. Hicken, “Arithmetic and biologically-inspired computing using phase-change materials,” Adv. Mater. 23(30), 3408–3413 (2011).
[Crossref] [PubMed]

Adv. Opt. Mater. (3)

X. Sun, A. Lotnyk, M. Ehrhardt, J. W. Gerlach, and B. Rauschenbach, “Realization of multilevel states in phase‐change thin films by fast laser pulse irradiation,” Adv. Opt. Mater. 5(12), 1700169 (2017).
[Crossref]

P. Iyer, M. Pendharkar, and J. Schuller, “Electrically reconfigurable metasurfaces using heterojunction resonators,” Adv. Opt. Mater. 4(10), 1582–1588 (2016).
[Crossref]

A.-K. U. Michel, M. Wuttig, and T. Taubner, “Design parameters for phase-change materials for nanostructure resonance tuning,” Adv. Opt. Mater. 5(18), 1700261 (2017).
[Crossref]

Appl. Phys. Lett. (4)

A. Joushaghani, B. A. Kruger, S. Paradis, D. Alain, J. Stewart Aitchison, and J. K. Poon, “Sub-volt broadband hybrid plasmonic-vanadium dioxide switches,” Appl. Phys. Lett. 102(6), 061101 (2013).
[Crossref]

A. Karvounis, B. Gholipour, K. MacDonald, and N. Zheludev, “All-dielectric phase-change reconfigurable metasurface,” Appl. Phys. Lett. 109(5), 051103 (2016).
[Crossref]

W. H. Pernice and H. Bhaskaran, “Photonic non-volatile memories using phase change materials,” Appl. Phys. Lett. 101(17), 171101 (2012).
[Crossref]

Q. Wang, J. Maddock, E. T. Rogers, T. Roy, C. Craig, K. F. Macdonald, D. W. Hewak, and N. I. Zheludev, “1.7 Gbit/in. 2 gray-scale continuous-phase-change femtosecond image storage,” Appl. Phys. Lett. 104(12), 121105 (2014).
[Crossref]

IEEE Trans. NanoTechnol. (1)

A. Forouzmand and H. Mosallaei, “Real-time controllable and multifunctional metasurfaces utilizing indium tin oxide materials: A phased array perspective,” IEEE Trans. NanoTechnol. 16(2), 296–306 (2017).
[Crossref]

J. Appl. Phys. (1)

K. Lei, Y. Wang, M. Jiang, and Y. Wu, “Refractive index modulation of Sb70Te30 phase-change thin films by multiple femtosecond laser pulses,” J. Appl. Phys. 119(17), 173105 (2016).
[Crossref]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. B (1)

Laser Photonics Rev. (2)

C. Chu, M. Tseng, J. Chen, P. Wu, Y. Chen, H. Wang, T. Chen, W. Hsieh, H. Wu, G. Sun, and D. Tsai, “Active dielectric metasurface based on phase-change medium,” Laser Photonics Rev. 10(6), 986–994 (2016).
[Crossref]

S. M. Kamali, E. Arbabi, A. Arbabi, Y. Horie, and A. Faraon, “Highly tunable elastic dielectric metasurface lenses,” Laser Photonics Rev. 10(6), 1002–1008 (2016).
[Crossref]

Light Sci. Appl. (1)

X. Yin, T. Steinle, L. Huang, T. Taubner, M. Wuttig, T. Zentgraf, and H. Giessen, “Beam switching and bifocal zoom lensing using active plasmonic metasurfaces,” Light Sci. Appl. 7(7), e17016 (2017).
[Crossref]

Materials (Basel) (1)

N. Raeis-Hosseini and J. Rho, “Metasurfaces based on phase-change material as a reconfigurable platform for multifunctional devices,” Materials (Basel) 10(9), 1046 (2017).
[Crossref] [PubMed]

Nano Lett. (8)

J. Park, J. H. Kang, S. J. Kim, X. Liu, and M. L. Brongersma, “Dynamic reflection phase and polarization control in metasurfaces,” Nano Lett. 17(1), 407–413 (2017).
[Crossref] [PubMed]

Y. W. Huang, H. W. Lee, R. Sokhoyan, R. A. Pala, K. Thyagarajan, S. Han, D. P. Tsai, and H. A. Atwater, “Gate-tunable conducting oxide metasurfaces,” Nano Lett. 16(9), 5319–5325 (2016).
[Crossref] [PubMed]

G. Kafaie Shirmanesh, R. Sokhoyan, R. A. Pala, and H. A. Atwater, “Dual-gated active metasurface at 1550 nm with wide (> 300°) phase tunability,” Nano Lett. 18(5), 2957–2963 (2018), doi:.
[Crossref] [PubMed]

Z. Zhu, P. G. Evans, R. F. Haglund, and J. G. Valentine, “Dynamically reconfigurable metadevice employing nanostructured phase-change materials,” Nano Lett. 17(8), 4881–4885 (2017).
[Crossref] [PubMed]

M. C. Sherrott, P. W. C. Hon, K. T. Fountaine, J. C. Garcia, S. M. Ponti, V. W. Brar, L. A. Sweatlock, and H. A. Atwater, “Experimental demonstration of >230° phase modulation in gate-tunable graphene–gold reconfigurable mid-infrared metasurfaces,” Nano Lett. 17(5), 3027–3034 (2017).
[Crossref] [PubMed]

Y. Yao, R. Shankar, M. A. Kats, Y. Song, J. Kong, M. Loncar, and F. Capasso, “Electrically tunable metasurface perfect absorbers for ultrathin mid-infrared optical modulators,” Nano Lett. 14(11), 6526–6532 (2014).
[Crossref] [PubMed]

A. K. Michel, D. N. Chigrin, T. W. Maß, K. Schönauer, M. Salinga, M. Wuttig, and T. Taubner, “Using low-loss phase-change materials for mid-infrared antenna resonance tuning,” Nano Lett. 13(8), 3470–3475 (2013).
[Crossref] [PubMed]

M. Abb, P. Albella, J. Aizpurua, and O. L. Muskens, “All-optical control of a single plasmonic nanoantenna-ITO hybrid,” Nano Lett. 11(6), 2457–2463 (2011).
[Crossref] [PubMed]

Nat. Commun. (1)

P. Guo, R. D. Schaller, L. E. Ocola, B. T. Diroll, J. B. Ketterson, and R. P. Chang, “Large optical nonlinearity of ITO nanorods for sub-picosecond all-optical modulation of the full-visible spectrum,” Nat. Commun. 7, 12892 (2016).
[Crossref] [PubMed]

Nat. Mater. (1)

N. Yu and F. Capasso, “Flat optics with designer metasurfaces,” Nat. Mater. 13(2), 139–150 (2014).
[Crossref] [PubMed]

Nat. Nanotechnol. (2)

N. I. Zheludev and E. Plum, “Reconfigurable nanomechanical photonic metamaterials,” Nat. Nanotechnol. 11(1), 16–22 (2016).
[Crossref] [PubMed]

A. Arbabi, Y. Horie, M. Bagheri, and A. Faraon, “Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission,” Nat. Nanotechnol. 10(11), 937–943 (2015).
[Crossref] [PubMed]

Nat. Photonics (4)

M. Wuttig, H. Bhaskaran, and T. Taubner, “Phase-change materials for non-volatile photonic applications,” Nat. Photonics 11(8), 465–476 (2017).
[Crossref]

N. Zheludev, “All change, please,” Nat. Photonics 1(10), 551–553 (2007).
[Crossref]

Q. Wang, E. T. Rogers, B. Gholipour, C. M. Wang, G. Yuan, J. Teng, and N. I. Zheludev, “Optically reconfigurable metasurfaces and photonic devices based on phase change materials,” Nat. Photonics 10(1), 60–65 (2016).
[Crossref]

C. Ríos, M. Stegmaier, P. Hosseini, D. Wang, T. Scherer, C. D. Wright, H. Bhaskaran, and W. H. Pernice, “Integrated all-photonic non-volatile multi-level memory,” Nat. Photonics 9(11), 725–732 (2015).
[Crossref]

Nature (1)

P. Hosseini, C. D. Wright, and H. Bhaskaran, “An optoelectronic framework enabled by low-dimensional phase-change films,” Nature 511(7508), 206–211 (2014).
[Crossref] [PubMed]

Opt. Express (7)

S. G. Carrillo, G. R. Nash, H. Hayat, M. J. Cryan, M. Klemm, H. Bhaskaran, and C. D. Wright, “Design of practicable phase-change metadevices for near-infrared absorber and modulator applications,” Opt. Express 24(12), 13563–13573 (2016).
[Crossref] [PubMed]

G. Dolling, M. Wegener, C. M. Soukoulis, and S. Linden, “Design-related losses of double-fishnet negative-index photonic metamaterials,” Opt. Express 15(18), 11536–11541 (2007).
[Crossref] [PubMed]

Y. G. Chen, T. S. Kao, B. Ng, X. Li, X. G. Luo, B. Luk’yanchuk, S. A. Maier, and M. H. Hong, “Hybrid phase-change plasmonic crystals for active tuning of lattice resonances,” Opt. Express 21(11), 13691–13698 (2013).
[Crossref] [PubMed]

C. M. Roberts, S. Inampudi, and V. A. Podolskiy, “Diffractive interface theory: nonlocal susceptibility approach to the optics of metasurfaces,” Opt. Express 23(3), 2764–2776 (2015).
[Crossref] [PubMed]

T. Cao, G. Zheng, S. Wang, and C. Wei, “Ultrafast beam steering using gradient Au-Ge2Sb2Te5-Au plasmonic resonators,” Opt. Express 23(14), 18029–18039 (2015).
[Crossref] [PubMed]

X. Su, C. Ouyang, N. Xu, W. Cao, X. Wei, G. Song, J. Gu, Z. Tian, J. F. O’Hara, J. Han, and W. Zhang, “Active metasurface terahertz deflector with phase discontinuities,” Opt. Express 23(21), 27152–27158 (2015).
[Crossref] [PubMed]

T. Li, L. Huang, J. Liu, Y. Wang, and T. Zentgraf, “Tunable wave plate based on active plasmonic metasurfaces,” Opt. Express 25(4), 4216–4226 (2017).
[Crossref] [PubMed]

Opt. Lett. (1)

Optica (1)

Phys. Status Solidi, A Appl. Res. (1)

R. Thielsch, T. Böhme, and H. Böttcher, “Optical and Structural Properties of Nanocrystalline ZnS‐SiO2 Composite Films,” Phys. Status Solidi, A Appl. Res. 155(1), 157–170 (1996).
[Crossref]

Sci. Rep. (4)

J. Cheng, S. Inampudi, and H. Mosallaei, “Optimization-based dielectric metasurfaces for angle-selective multifunctional beam deflection,” Sci. Rep. 7(1), 12228 (2017).
[Crossref] [PubMed]

T. Cao, C. W. Wei, R. E. Simpson, L. Zhang, and M. J. Cryan, “Broadband polarization-independent perfect absorber using a phase-change metamaterial at visible frequencies,” Sci. Rep. 4(1), 3955 (2014).
[Crossref] [PubMed]

Y. Chen, X. Li, Y. Sonnefraud, A. I. Fernández-Domínguez, X. Luo, M. Hong, and S. A. Maier, “Engineering the phase front of light with phase-change material based planar lenses,” Sci. Rep. 5(1), 8660 (2015).
[Crossref] [PubMed]

S. Wen, Y. Meng, M. Jiang, and Y. Wang, “Multi-level coding-recoding by ultrafast phase transition on Ge2Sb2Te5 thin films,” Sci. Rep. 8(1), 4979 (2018).
[Crossref] [PubMed]

Science (4)

D. Loke, T. H. Lee, W. J. Wang, L. P. Shi, R. Zhao, Y. C. Yeo, T. C. Chong, and S. R. Elliott, “Breaking the speed limits of phase-change memory,” Science 336(6088), 1566–1569 (2012).
[Crossref] [PubMed]

A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Planar photonics with metasurfaces,” Science 339(6125), 1232009 (2013).
[Crossref] [PubMed]

A. L. Holsteen, S. Raza, P. Fan, P. G. Kik, and M. L. Brongersma, “Purcell effect for active tuning of light scattering from semiconductor optical antennas,” Science 358(6369), 1407–1410 (2017).
[Crossref] [PubMed]

X. Ni, N. K. Emani, A. V. Kildishev, A. Boltasseva, and V. M. Shalaev, “Broadband light bending with plasmonic nanoantennas,” Science 335(6067), 427 (2012).
[Crossref] [PubMed]

Other (4)

C. R. de Galarreta, A. Alexeev, J. Bertolotti, and C. D. Wright, “Phase-change metasurfaces for dyamic beam steering and beam shaping in the infrared,” In Circuits and Systems (ISCAS), pp. 1–5 (2018).

A. Komar, R. Paniagua-Domínguez, A. Miroshnichenko, Y. F. Yu, Y. S. Kivshar, A. I. Kuznetsov, and D. Neshev, “Dynamic beam switching by liquid crystal tunable dielectric metasurfaces,” ACS Photon. (2018).

S. Colburn, A. Zhan, S. Deshmukh, J. Myers, J. Frantz, E. Pop, and A. Majumdar, “Metasurfaces based on nano-patterned phase-change memory materials,” In Lasers and Electro-Optics (CLEO), pp. 1–2 (2017).

Y. Zhang, J. Li, J. Chou, Z. Fang, A. Yadav, H. Lin, Q. Du, J. Michon, Z. Han, Y. Huang, H. Zheng, T. Gu, V. Liberman, K. Richardson, and J. J. Hu, “Broadband transparent optical phase change materials,” in Conference on Lasers and Electrooptics, paper JTh5C.4 (2017).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 The measured (a) refractive indices and (b) extinction coefficients of GST-225 in [19,39] and GSST in [43] for amorphous and crystalline states at 1.55 μm. (c) The ratio of refractive index and extinction coefficient changes between amorphous and crystalline states (∆n/∆k) for three studied PCMs. (d) The optical properties of GSST as a function of wavelength from visible to infrared spectra [43]. (e) Schematic overview of the proposed optically tunable reflective metasurface for beam manipulation of x-polarized incident beam. The control pulse is utilized to realize the laser-induced crystallization of GSST nanobars. The inset represents a unit-cell of GSST nanobar placed on a stack of MgF2-Au backmirror. (f) The optical properties of several partially-crystallized GSST nanobars ranging from 0 (amorphous) to 1 (crystalline) calculated via Eq. (1).
Fig. 2
Fig. 2 (a) Numerically calculated reflection amplitude and phase of a 300 nm-thick GSST nanobar with a 300 nm width backed by a stack of MgF2-Au backmirror as a function of wavelength under illumination of a normally incident TE-polarized plane wave. (b) Sketch of the MD and ED modes inside a 1D dielectric nanobar. The dips in (a) correspond to the resonant modes which are characterized based on the magnetic field profiles. The near-field distribution of the normal component of magnetic field (|Hy|, color bar) and the electric displacement current loops (arrows) at (c) λ1 = 1.416 μm (MD mode) and (d) λ2 = 0.986 μm (ED mode) in the x-z plane.
Fig. 3
Fig. 3 The reflection spectra of the proposed building block with structural parameters of wGSST = 380 nm, P = 440 nm, hGSST = 290 nm, and h MgF 2 = 145 nm when the crystallization ratio is (a) m = 0.65 and (b) m = 0 (amorphous) and 1 (crystalline). The spectral positions of the electric resonances are 1 μm, 1.219 μm, and 1.398 μm and the dips corresponding to the magnetic resonances are located at 1.492 μm, 1.808, and 2.098 μm for m = 0, 0.65, and 1, respectively.
Fig. 4
Fig. 4 (a)-(b) Maps of reflection responses as functions of wavelength and crystallization level of a periodic GSST nanobar. The dashed regions indicate the possible operating bandwidth with promising efficiency. (c) Reflection amplitude and relative phase change (the reflection phase of the crystalline state is assumed zero) at the operating wavelength of 1.55 μm. (d) Color map demonstrates the discrete phase shift of the x-polarized light scattered from seven building blocks with selectively controlled crystallization level. The tilted dashed line represents the wave-front scattered from seven tunable unit-cells. The effects of varying (e)-(f) width (wGSST) and (g)-(h) height (hGSST) on the amplitude and phase of the reflection coefficient of the proposed GSST nanobar versus the crystallization level at the wavelength of 1.55 μm. (i) Real and imaginary parts of permittivities related to the amorphous, half-crystalized, and crystalline states [43]. (j) Near-field distributions of the normal component of magnetic field (|Hy|) at x-z plane for three cases of amorphous, half-crystallized, and crystalline states.
Fig. 5
Fig. 5 (a)-(c) Illustration of laser-induced crystallization of an array of GSST nanobars when one, two, and three neighbour nanobars should be crystallized to the same level depending on the waist of used laser pulse. (d) The required phase discontinuity to bend the impinging light towards θb = 20° at the operating wavelength of λ = 1.55 μm when the waist of control pulse is wLaser = P, 2P, and 3P, respectively. (e)-(g) The simulated distribution of the real part of the x-polarized electric fields in x-z plane for a tunable array including 21 building blocks when (e) one, (f) two, and (g) three neighbour subwavelength elements are controlled similarly via laser-induced crystallization. (h) The far-field normalized intensity in dB (10log(|Ex/Emax|2)) for the cases studied in (e)-(g).
Fig. 6
Fig. 6 (a) The schematic overview of the tunable GSST-based metasurface. The inset shows the proposed building block consisting of a GSST nanobar surrounded by SiO2 and located on top of a ZnS-SiO2 spacer and gold substrate. The reflection (b) amplitude and (c) phase of the unit-cell as functions of wavelength and crystallization level. (d)-(e) the results in (b)-(c) at the operating wavelength of 1.55 μm annotated by the black dashed lines.
Fig. 7
Fig. 7 The reflection (a) amplitude and (b) phase of the PCMs nanobar for cases I, II, and III as a function of crystallization level at the operating wavelength of 1.55 μm. Reflection phase of the crystalline state (m = 1) is assumed zero. Maps of reflection responses as functions of wavelength and crystallization level for (c)-(d) case I and (e)-(f) case II. The black dashed lines correspond to the desired wavelength of 1.55 μm in (c)-(f).
Fig. 8
Fig. 8 (a)-(b) Maps of reflection responses of an ultra-thin GSST nanobar building block as functions of wavelength and crystallization level when the thickness is only 90 nm (hGSST). The other structural parameters are selected as wGSST = 680 nm, P = 800 nm, and h MgF 2 = 10 nm. (c)-(d) The reflection amplitude and relative phase shift (the reflection phase of crystalline state is assumed zero) versus crystallization level at the operating wavelength of 1.55 μm.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

ε eff (λ)1 ε eff (λ)+2 =m ε Crys (λ)1 ε Crys (λ)+2 +(1m) ε Am (λ)1 ε Am (λ)+2

Metrics