Abstract

Qualitative and quantitative measurements of complex flows demand for fast single-shot fluorescence lifetime imaging (FLI) technology with high precision. A method, single-shot time-gated fluorescence lifetime imaging using three-frame images (TFI-TGFLI), is presented. To our knowledge, it is the first work to combine a three-gate rapid lifetime determination (RLD) scheme and a four-channel framing camera to achieve this goal. Different from previously proposed two-gate RLD schemes, TFI-TGFLI can provide a wider lifetime range 0.6 ~ 13ns with reasonable precision. The performances of the proposed approach have been examined by both Monte-Carlo simulations and toluene seeded gas mixing jet diagnosis experiments. The measured average lifetimes of the whole excited areas agree well with the results obtained by the streak camera, and they are 7.6ns (N2 = 7L/min; O2 < 0.1L/min) and 2.6ns (N2 = 19L/min; O2 = 1L/min) with the standard deviations of 1.7ns and 0.8ns among the lifetime image pixels, respectively. The concentration distributions of the quenchers and fluorescent species were further analyzed, and they are consistent with the experimental settings.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Single-laser shot fluorescence lifetime imaging on the nanosecond timescale using a Dual Image and Modeling Evaluation algorithm

Andreas Ehn, Olof Johansson, Andreas Arvidsson, Marcus Aldén, and Joakim Bood
Opt. Express 20(3) 3043-3056 (2012)

Krypton tagging velocimetry of an underexpanded jet

N. J. Parziale, M. S. Smith, and E. C. Marineau
Appl. Opt. 54(16) 5094-5101 (2015)

Temperature measurements in gases by use of planar laser-induced fluorescence imaging of NO

Michael P. Lee, Brian K. McMillin, and Ronald K. Hanson
Appl. Opt. 32(27) 5379-5396 (1993)

References

  • View by:
  • |
  • |
  • |

  1. S. D. Hammack, C. D. Carter, J. R. Gord, and T. Lee, “Nitric-oxide planar laser-induced fluorescence at 10 kHz in a seeded flow, a plasma discharge, and a flame,” Appl. Opt. 51(36), 8817–8824 (2012).
    [Crossref] [PubMed]
  2. M. P. Lee, P. H. Paul, and R. K. Hanson, “Quantitative imaging of temperature fields in air using planar laser-induced fluorescence of O2,” Opt. Lett.  12(2), 75–77 (1987).
    [Crossref] [PubMed]
  3. Z. K. Wang, P. Stamatoglou, Z. M. Li, M. Aldén, and M. Richter, “Ultra-high-speed PLIF imaging for simultaneous visualization of multiple species in turbulent flames,” Opt. Express 25(24), 30214–30228 (2017).
    [Crossref] [PubMed]
  4. A. Ehn, J. J. Zhu, X. S. Li, and J. Kiefer, “Advanced laser-based techniques for gas-phase diagnostics in combustion and aerospace engineering,” Appl. Spectrosc. 71(5), 1–26 (2017).
    [Crossref]
  5. C. Brackmann, J. Bood, J. D. Nauclér, A. A. Konnov, and M. Aldén, “Quantitative picosecond laser-induced fluorescence measurements of nitric oxide in flames,” Proc. Combust. Inst. 36, 4541–4548 (2016).
  6. B. Zhou, C. Brackmann, Q. Li, Z. K. Wang, P. Petersson, Z. S. Li, M. Aldén, and X. S. Bai, “Distributed reactions in highly turbulent premixed methane/air flames. Part I. Flame structure characterization,” Combust. Flame 162, 2937–2953 (2015).
    [Crossref]
  7. J. Philip and K. Carlsson, “Theoretical investigation of the signal-to noise ratio in fluorescence lifetime imaging,” J. Opt. Soc. Am. A 20(2), 368–379 (2003).
    [Crossref]
  8. H. C. Gerritsen, A. V. Agronskaia, A. N. Bader, and A. Esposito, “Time domain FLIM: Theory, instrumentation, and data analysis,” in Laboratory Techniques in Biochemistry and Molecular Biology, T. W. J. Gadella, ed. (Elsevier, 2009), pp. 95–132.
    [Crossref]
  9. W. Becker, Advanced Time-Correlated Single Photon Counting Techniques, (Springer, 2005).
    [Crossref]
  10. G. O. Fruhwirth, S. A. Beg, R. Cook, T. Watson, T. Ng, and F. Festy, “Fluorescence lifetime endoscopy using TCSPC for the measurement of FRET in live cells,” Opt. Express 18(11), 11148–11158 (2010).
    [Crossref] [PubMed]
  11. S. Isbaner, N. Karedla, D. Ruhlandt, S. C. Stein, A. Chizhik, I. Gregor, and J. Enderlein, “Dead-time correction of fluorescence lifetime measurements and fluorescence lifetime imaging,” Opt. Express 24(9), 9429–9445 (2016).
    [Crossref] [PubMed]
  12. J. McGinty, J. R. Isidro, I. Munro, C. B. Talbot, P. A. Kellett, J. D. Hares, C. Dunsby, M. A. A. Neil, and P. M. W. French, “Signal-to-noise characterization of time-gated intensifiers used for wide-field time-domain FLIM,” J. Phys. D: Appl. Phys.  42, 135103 (2009).
    [Crossref]
  13. X. F. Wang, T. Uchida, D. M. Coleman, and S. Minami, “A two-dimensional fluorescence lifetime imaging system using a gated image intensifier,” Appl. Spectrosc. 45(3), 360–366 (1991).
    [Crossref]
  14. D. D. U. Li, S. Ameer-Beg, J. Arlt, D. Tyndall, R. Walker, D. R. Matthews, V. Visitkul, J. Richardson, and R. K. Henderson, “Time-domain fluorescence lifetime imaging techniques suitable for solid-state imaging sensor arrays,” Sensors 12, 5650–5669 (2012).
    [Crossref] [PubMed]
  15. E. Gratton, M. Limkeman, J. R. Lakowicz, B. P. Maliwal, H. Cherek, and G. Laczko, “Resolution of mixtures of fluorophores using variable-frequency phase and modulation data,” Biophys. J. 46, 479–486 (1984).
    [Crossref] [PubMed]
  16. M. A. Digman, V. R. Caiolfa, M. Zamai, and E. Gratton, “The phasor approach to fluorescence lifetime imaging analysis,” Biophys. J. 94, L14–L16 (2008).
    [Crossref]
  17. M. Jonsson, A. Ehn, M. Christensen, M. Aldén, and J. Bood, “Simultaneous one-dimensional fluorescence lifetime measurements of OH and CO in premixed flames,” Appl. Phys. B Lasers Opt. 115, 35–43 (2014).
    [Crossref]
  18. A. Omrane, F. Ossler, and M. Aldén, “Two-dimensional surface temperature measurements of burning materials,” Proc. Combust. Inst. 29(2), 2653–2659 (2002).
    [Crossref]
  19. A. Ehn, O. Johansson, J. Bood, A. Arvidsson, B. Li, and M. Aldén, “Fluorescence lifetime imaging in a flame,” Proc. Combust. Inst. 33(1), 807–813 (2011).
    [Crossref]
  20. S. P. Chan, Z. J. fuller, J. N. Demas, and B. A. DeGraff, “Optimized gating scheme for rapid lifetime imaging,” Anal. Chem. 73(18), 4486–4490 (2001).
    [Crossref] [PubMed]
  21. A. Ehn, O. Johansson, A. Arvidsson, M. Aldén, and J. Bood, “Single-laser shot fluorescence lifetime imaging on the nanosecond timescale using a Daul Image and Modeling Evaluation algorithm,” Opt. Express 20(3), 3044–3056 (2012).
    [Crossref]
  22. A. Ehn, M. Jonsson, O. Johansson, M. Aldén, and J. Bood, “Quantitative oxygen concentration imaging in toluene atmospheres using Dual Imaging with Modeling Evaluation,” Exp. Fluids 54, 1433 (2013).
    [Crossref]
  23. R. K. Hanson, R. M. Spearrin, and C. S. Goldenstein, Spectroscopy and Optical Diagnostics for Gases (Springer, 2016), Chap. 11.
    [Crossref]
  24. D. U. Li, E. Bonnist, D. Renshaw, and R. Henderson, “On-chip, time-correlated, fluorescence lifetime extraction algorithms and error analysis,” J. Opt. Soc. Am. A 25(5), 1190–1198 (2008).
    [Crossref]
  25. A. Draaijer, R. Sanders, and H. C. Gerritsen, “Fluorescence lifetime imaging, a new tool in confocal microscopy,” in Handbook of Biological Confocal Microscopy, J. B. Pawley, ed. (Plenum, 1995), pp. 491–505.
    [Crossref]
  26. S. Faust, T. Dreier, and C. Schulz, “Quantitative oxygen concentration imaging in toluene atmospheres using Dual Imaging with Modeling Evaluation,” Chem. Phys. 383, 6–11 (2011).
    [Crossref]

2017 (2)

2016 (2)

C. Brackmann, J. Bood, J. D. Nauclér, A. A. Konnov, and M. Aldén, “Quantitative picosecond laser-induced fluorescence measurements of nitric oxide in flames,” Proc. Combust. Inst. 36, 4541–4548 (2016).

S. Isbaner, N. Karedla, D. Ruhlandt, S. C. Stein, A. Chizhik, I. Gregor, and J. Enderlein, “Dead-time correction of fluorescence lifetime measurements and fluorescence lifetime imaging,” Opt. Express 24(9), 9429–9445 (2016).
[Crossref] [PubMed]

2015 (1)

B. Zhou, C. Brackmann, Q. Li, Z. K. Wang, P. Petersson, Z. S. Li, M. Aldén, and X. S. Bai, “Distributed reactions in highly turbulent premixed methane/air flames. Part I. Flame structure characterization,” Combust. Flame 162, 2937–2953 (2015).
[Crossref]

2014 (1)

M. Jonsson, A. Ehn, M. Christensen, M. Aldén, and J. Bood, “Simultaneous one-dimensional fluorescence lifetime measurements of OH and CO in premixed flames,” Appl. Phys. B Lasers Opt. 115, 35–43 (2014).
[Crossref]

2013 (1)

A. Ehn, M. Jonsson, O. Johansson, M. Aldén, and J. Bood, “Quantitative oxygen concentration imaging in toluene atmospheres using Dual Imaging with Modeling Evaluation,” Exp. Fluids 54, 1433 (2013).
[Crossref]

2012 (3)

A. Ehn, O. Johansson, A. Arvidsson, M. Aldén, and J. Bood, “Single-laser shot fluorescence lifetime imaging on the nanosecond timescale using a Daul Image and Modeling Evaluation algorithm,” Opt. Express 20(3), 3044–3056 (2012).
[Crossref]

D. D. U. Li, S. Ameer-Beg, J. Arlt, D. Tyndall, R. Walker, D. R. Matthews, V. Visitkul, J. Richardson, and R. K. Henderson, “Time-domain fluorescence lifetime imaging techniques suitable for solid-state imaging sensor arrays,” Sensors 12, 5650–5669 (2012).
[Crossref] [PubMed]

S. D. Hammack, C. D. Carter, J. R. Gord, and T. Lee, “Nitric-oxide planar laser-induced fluorescence at 10 kHz in a seeded flow, a plasma discharge, and a flame,” Appl. Opt. 51(36), 8817–8824 (2012).
[Crossref] [PubMed]

2011 (2)

A. Ehn, O. Johansson, J. Bood, A. Arvidsson, B. Li, and M. Aldén, “Fluorescence lifetime imaging in a flame,” Proc. Combust. Inst. 33(1), 807–813 (2011).
[Crossref]

S. Faust, T. Dreier, and C. Schulz, “Quantitative oxygen concentration imaging in toluene atmospheres using Dual Imaging with Modeling Evaluation,” Chem. Phys. 383, 6–11 (2011).
[Crossref]

2010 (1)

2009 (1)

J. McGinty, J. R. Isidro, I. Munro, C. B. Talbot, P. A. Kellett, J. D. Hares, C. Dunsby, M. A. A. Neil, and P. M. W. French, “Signal-to-noise characterization of time-gated intensifiers used for wide-field time-domain FLIM,” J. Phys. D: Appl. Phys.  42, 135103 (2009).
[Crossref]

2008 (2)

M. A. Digman, V. R. Caiolfa, M. Zamai, and E. Gratton, “The phasor approach to fluorescence lifetime imaging analysis,” Biophys. J. 94, L14–L16 (2008).
[Crossref]

D. U. Li, E. Bonnist, D. Renshaw, and R. Henderson, “On-chip, time-correlated, fluorescence lifetime extraction algorithms and error analysis,” J. Opt. Soc. Am. A 25(5), 1190–1198 (2008).
[Crossref]

2003 (1)

2002 (1)

A. Omrane, F. Ossler, and M. Aldén, “Two-dimensional surface temperature measurements of burning materials,” Proc. Combust. Inst. 29(2), 2653–2659 (2002).
[Crossref]

2001 (1)

S. P. Chan, Z. J. fuller, J. N. Demas, and B. A. DeGraff, “Optimized gating scheme for rapid lifetime imaging,” Anal. Chem. 73(18), 4486–4490 (2001).
[Crossref] [PubMed]

1991 (1)

1987 (1)

M. P. Lee, P. H. Paul, and R. K. Hanson, “Quantitative imaging of temperature fields in air using planar laser-induced fluorescence of O2,” Opt. Lett.  12(2), 75–77 (1987).
[Crossref] [PubMed]

1984 (1)

E. Gratton, M. Limkeman, J. R. Lakowicz, B. P. Maliwal, H. Cherek, and G. Laczko, “Resolution of mixtures of fluorophores using variable-frequency phase and modulation data,” Biophys. J. 46, 479–486 (1984).
[Crossref] [PubMed]

Agronskaia, A. V.

H. C. Gerritsen, A. V. Agronskaia, A. N. Bader, and A. Esposito, “Time domain FLIM: Theory, instrumentation, and data analysis,” in Laboratory Techniques in Biochemistry and Molecular Biology, T. W. J. Gadella, ed. (Elsevier, 2009), pp. 95–132.
[Crossref]

Aldén, M.

Z. K. Wang, P. Stamatoglou, Z. M. Li, M. Aldén, and M. Richter, “Ultra-high-speed PLIF imaging for simultaneous visualization of multiple species in turbulent flames,” Opt. Express 25(24), 30214–30228 (2017).
[Crossref] [PubMed]

C. Brackmann, J. Bood, J. D. Nauclér, A. A. Konnov, and M. Aldén, “Quantitative picosecond laser-induced fluorescence measurements of nitric oxide in flames,” Proc. Combust. Inst. 36, 4541–4548 (2016).

B. Zhou, C. Brackmann, Q. Li, Z. K. Wang, P. Petersson, Z. S. Li, M. Aldén, and X. S. Bai, “Distributed reactions in highly turbulent premixed methane/air flames. Part I. Flame structure characterization,” Combust. Flame 162, 2937–2953 (2015).
[Crossref]

M. Jonsson, A. Ehn, M. Christensen, M. Aldén, and J. Bood, “Simultaneous one-dimensional fluorescence lifetime measurements of OH and CO in premixed flames,” Appl. Phys. B Lasers Opt. 115, 35–43 (2014).
[Crossref]

A. Ehn, M. Jonsson, O. Johansson, M. Aldén, and J. Bood, “Quantitative oxygen concentration imaging in toluene atmospheres using Dual Imaging with Modeling Evaluation,” Exp. Fluids 54, 1433 (2013).
[Crossref]

A. Ehn, O. Johansson, A. Arvidsson, M. Aldén, and J. Bood, “Single-laser shot fluorescence lifetime imaging on the nanosecond timescale using a Daul Image and Modeling Evaluation algorithm,” Opt. Express 20(3), 3044–3056 (2012).
[Crossref]

A. Ehn, O. Johansson, J. Bood, A. Arvidsson, B. Li, and M. Aldén, “Fluorescence lifetime imaging in a flame,” Proc. Combust. Inst. 33(1), 807–813 (2011).
[Crossref]

A. Omrane, F. Ossler, and M. Aldén, “Two-dimensional surface temperature measurements of burning materials,” Proc. Combust. Inst. 29(2), 2653–2659 (2002).
[Crossref]

Ameer-Beg, S.

D. D. U. Li, S. Ameer-Beg, J. Arlt, D. Tyndall, R. Walker, D. R. Matthews, V. Visitkul, J. Richardson, and R. K. Henderson, “Time-domain fluorescence lifetime imaging techniques suitable for solid-state imaging sensor arrays,” Sensors 12, 5650–5669 (2012).
[Crossref] [PubMed]

Arlt, J.

D. D. U. Li, S. Ameer-Beg, J. Arlt, D. Tyndall, R. Walker, D. R. Matthews, V. Visitkul, J. Richardson, and R. K. Henderson, “Time-domain fluorescence lifetime imaging techniques suitable for solid-state imaging sensor arrays,” Sensors 12, 5650–5669 (2012).
[Crossref] [PubMed]

Arvidsson, A.

A. Ehn, O. Johansson, A. Arvidsson, M. Aldén, and J. Bood, “Single-laser shot fluorescence lifetime imaging on the nanosecond timescale using a Daul Image and Modeling Evaluation algorithm,” Opt. Express 20(3), 3044–3056 (2012).
[Crossref]

A. Ehn, O. Johansson, J. Bood, A. Arvidsson, B. Li, and M. Aldén, “Fluorescence lifetime imaging in a flame,” Proc. Combust. Inst. 33(1), 807–813 (2011).
[Crossref]

Bader, A. N.

H. C. Gerritsen, A. V. Agronskaia, A. N. Bader, and A. Esposito, “Time domain FLIM: Theory, instrumentation, and data analysis,” in Laboratory Techniques in Biochemistry and Molecular Biology, T. W. J. Gadella, ed. (Elsevier, 2009), pp. 95–132.
[Crossref]

Bai, X. S.

B. Zhou, C. Brackmann, Q. Li, Z. K. Wang, P. Petersson, Z. S. Li, M. Aldén, and X. S. Bai, “Distributed reactions in highly turbulent premixed methane/air flames. Part I. Flame structure characterization,” Combust. Flame 162, 2937–2953 (2015).
[Crossref]

Becker, W.

W. Becker, Advanced Time-Correlated Single Photon Counting Techniques, (Springer, 2005).
[Crossref]

Beg, S. A.

Bonnist, E.

Bood, J.

C. Brackmann, J. Bood, J. D. Nauclér, A. A. Konnov, and M. Aldén, “Quantitative picosecond laser-induced fluorescence measurements of nitric oxide in flames,” Proc. Combust. Inst. 36, 4541–4548 (2016).

M. Jonsson, A. Ehn, M. Christensen, M. Aldén, and J. Bood, “Simultaneous one-dimensional fluorescence lifetime measurements of OH and CO in premixed flames,” Appl. Phys. B Lasers Opt. 115, 35–43 (2014).
[Crossref]

A. Ehn, M. Jonsson, O. Johansson, M. Aldén, and J. Bood, “Quantitative oxygen concentration imaging in toluene atmospheres using Dual Imaging with Modeling Evaluation,” Exp. Fluids 54, 1433 (2013).
[Crossref]

A. Ehn, O. Johansson, A. Arvidsson, M. Aldén, and J. Bood, “Single-laser shot fluorescence lifetime imaging on the nanosecond timescale using a Daul Image and Modeling Evaluation algorithm,” Opt. Express 20(3), 3044–3056 (2012).
[Crossref]

A. Ehn, O. Johansson, J. Bood, A. Arvidsson, B. Li, and M. Aldén, “Fluorescence lifetime imaging in a flame,” Proc. Combust. Inst. 33(1), 807–813 (2011).
[Crossref]

Brackmann, C.

C. Brackmann, J. Bood, J. D. Nauclér, A. A. Konnov, and M. Aldén, “Quantitative picosecond laser-induced fluorescence measurements of nitric oxide in flames,” Proc. Combust. Inst. 36, 4541–4548 (2016).

B. Zhou, C. Brackmann, Q. Li, Z. K. Wang, P. Petersson, Z. S. Li, M. Aldén, and X. S. Bai, “Distributed reactions in highly turbulent premixed methane/air flames. Part I. Flame structure characterization,” Combust. Flame 162, 2937–2953 (2015).
[Crossref]

Caiolfa, V. R.

M. A. Digman, V. R. Caiolfa, M. Zamai, and E. Gratton, “The phasor approach to fluorescence lifetime imaging analysis,” Biophys. J. 94, L14–L16 (2008).
[Crossref]

Carlsson, K.

Carter, C. D.

Chan, S. P.

S. P. Chan, Z. J. fuller, J. N. Demas, and B. A. DeGraff, “Optimized gating scheme for rapid lifetime imaging,” Anal. Chem. 73(18), 4486–4490 (2001).
[Crossref] [PubMed]

Cherek, H.

E. Gratton, M. Limkeman, J. R. Lakowicz, B. P. Maliwal, H. Cherek, and G. Laczko, “Resolution of mixtures of fluorophores using variable-frequency phase and modulation data,” Biophys. J. 46, 479–486 (1984).
[Crossref] [PubMed]

Chizhik, A.

Christensen, M.

M. Jonsson, A. Ehn, M. Christensen, M. Aldén, and J. Bood, “Simultaneous one-dimensional fluorescence lifetime measurements of OH and CO in premixed flames,” Appl. Phys. B Lasers Opt. 115, 35–43 (2014).
[Crossref]

Coleman, D. M.

Cook, R.

Digman, M. A.

M. A. Digman, V. R. Caiolfa, M. Zamai, and E. Gratton, “The phasor approach to fluorescence lifetime imaging analysis,” Biophys. J. 94, L14–L16 (2008).
[Crossref]

Draaijer, A.

A. Draaijer, R. Sanders, and H. C. Gerritsen, “Fluorescence lifetime imaging, a new tool in confocal microscopy,” in Handbook of Biological Confocal Microscopy, J. B. Pawley, ed. (Plenum, 1995), pp. 491–505.
[Crossref]

Dreier, T.

S. Faust, T. Dreier, and C. Schulz, “Quantitative oxygen concentration imaging in toluene atmospheres using Dual Imaging with Modeling Evaluation,” Chem. Phys. 383, 6–11 (2011).
[Crossref]

Dunsby, C.

J. McGinty, J. R. Isidro, I. Munro, C. B. Talbot, P. A. Kellett, J. D. Hares, C. Dunsby, M. A. A. Neil, and P. M. W. French, “Signal-to-noise characterization of time-gated intensifiers used for wide-field time-domain FLIM,” J. Phys. D: Appl. Phys.  42, 135103 (2009).
[Crossref]

Ehn, A.

A. Ehn, J. J. Zhu, X. S. Li, and J. Kiefer, “Advanced laser-based techniques for gas-phase diagnostics in combustion and aerospace engineering,” Appl. Spectrosc. 71(5), 1–26 (2017).
[Crossref]

M. Jonsson, A. Ehn, M. Christensen, M. Aldén, and J. Bood, “Simultaneous one-dimensional fluorescence lifetime measurements of OH and CO in premixed flames,” Appl. Phys. B Lasers Opt. 115, 35–43 (2014).
[Crossref]

A. Ehn, M. Jonsson, O. Johansson, M. Aldén, and J. Bood, “Quantitative oxygen concentration imaging in toluene atmospheres using Dual Imaging with Modeling Evaluation,” Exp. Fluids 54, 1433 (2013).
[Crossref]

A. Ehn, O. Johansson, A. Arvidsson, M. Aldén, and J. Bood, “Single-laser shot fluorescence lifetime imaging on the nanosecond timescale using a Daul Image and Modeling Evaluation algorithm,” Opt. Express 20(3), 3044–3056 (2012).
[Crossref]

A. Ehn, O. Johansson, J. Bood, A. Arvidsson, B. Li, and M. Aldén, “Fluorescence lifetime imaging in a flame,” Proc. Combust. Inst. 33(1), 807–813 (2011).
[Crossref]

Enderlein, J.

Esposito, A.

H. C. Gerritsen, A. V. Agronskaia, A. N. Bader, and A. Esposito, “Time domain FLIM: Theory, instrumentation, and data analysis,” in Laboratory Techniques in Biochemistry and Molecular Biology, T. W. J. Gadella, ed. (Elsevier, 2009), pp. 95–132.
[Crossref]

Faust, S.

S. Faust, T. Dreier, and C. Schulz, “Quantitative oxygen concentration imaging in toluene atmospheres using Dual Imaging with Modeling Evaluation,” Chem. Phys. 383, 6–11 (2011).
[Crossref]

Festy, F.

French, P. M. W.

J. McGinty, J. R. Isidro, I. Munro, C. B. Talbot, P. A. Kellett, J. D. Hares, C. Dunsby, M. A. A. Neil, and P. M. W. French, “Signal-to-noise characterization of time-gated intensifiers used for wide-field time-domain FLIM,” J. Phys. D: Appl. Phys.  42, 135103 (2009).
[Crossref]

Fruhwirth, G. O.

Gerritsen, H. C.

A. Draaijer, R. Sanders, and H. C. Gerritsen, “Fluorescence lifetime imaging, a new tool in confocal microscopy,” in Handbook of Biological Confocal Microscopy, J. B. Pawley, ed. (Plenum, 1995), pp. 491–505.
[Crossref]

H. C. Gerritsen, A. V. Agronskaia, A. N. Bader, and A. Esposito, “Time domain FLIM: Theory, instrumentation, and data analysis,” in Laboratory Techniques in Biochemistry and Molecular Biology, T. W. J. Gadella, ed. (Elsevier, 2009), pp. 95–132.
[Crossref]

Goldenstein, C. S.

R. K. Hanson, R. M. Spearrin, and C. S. Goldenstein, Spectroscopy and Optical Diagnostics for Gases (Springer, 2016), Chap. 11.
[Crossref]

Gord, J. R.

Gratton, E.

M. A. Digman, V. R. Caiolfa, M. Zamai, and E. Gratton, “The phasor approach to fluorescence lifetime imaging analysis,” Biophys. J. 94, L14–L16 (2008).
[Crossref]

E. Gratton, M. Limkeman, J. R. Lakowicz, B. P. Maliwal, H. Cherek, and G. Laczko, “Resolution of mixtures of fluorophores using variable-frequency phase and modulation data,” Biophys. J. 46, 479–486 (1984).
[Crossref] [PubMed]

Gregor, I.

Hammack, S. D.

Hanson, R. K.

M. P. Lee, P. H. Paul, and R. K. Hanson, “Quantitative imaging of temperature fields in air using planar laser-induced fluorescence of O2,” Opt. Lett.  12(2), 75–77 (1987).
[Crossref] [PubMed]

R. K. Hanson, R. M. Spearrin, and C. S. Goldenstein, Spectroscopy and Optical Diagnostics for Gases (Springer, 2016), Chap. 11.
[Crossref]

Hares, J. D.

J. McGinty, J. R. Isidro, I. Munro, C. B. Talbot, P. A. Kellett, J. D. Hares, C. Dunsby, M. A. A. Neil, and P. M. W. French, “Signal-to-noise characterization of time-gated intensifiers used for wide-field time-domain FLIM,” J. Phys. D: Appl. Phys.  42, 135103 (2009).
[Crossref]

Henderson, R.

Henderson, R. K.

D. D. U. Li, S. Ameer-Beg, J. Arlt, D. Tyndall, R. Walker, D. R. Matthews, V. Visitkul, J. Richardson, and R. K. Henderson, “Time-domain fluorescence lifetime imaging techniques suitable for solid-state imaging sensor arrays,” Sensors 12, 5650–5669 (2012).
[Crossref] [PubMed]

Isbaner, S.

Isidro, J. R.

J. McGinty, J. R. Isidro, I. Munro, C. B. Talbot, P. A. Kellett, J. D. Hares, C. Dunsby, M. A. A. Neil, and P. M. W. French, “Signal-to-noise characterization of time-gated intensifiers used for wide-field time-domain FLIM,” J. Phys. D: Appl. Phys.  42, 135103 (2009).
[Crossref]

Johansson, O.

A. Ehn, M. Jonsson, O. Johansson, M. Aldén, and J. Bood, “Quantitative oxygen concentration imaging in toluene atmospheres using Dual Imaging with Modeling Evaluation,” Exp. Fluids 54, 1433 (2013).
[Crossref]

A. Ehn, O. Johansson, A. Arvidsson, M. Aldén, and J. Bood, “Single-laser shot fluorescence lifetime imaging on the nanosecond timescale using a Daul Image and Modeling Evaluation algorithm,” Opt. Express 20(3), 3044–3056 (2012).
[Crossref]

A. Ehn, O. Johansson, J. Bood, A. Arvidsson, B. Li, and M. Aldén, “Fluorescence lifetime imaging in a flame,” Proc. Combust. Inst. 33(1), 807–813 (2011).
[Crossref]

Jonsson, M.

M. Jonsson, A. Ehn, M. Christensen, M. Aldén, and J. Bood, “Simultaneous one-dimensional fluorescence lifetime measurements of OH and CO in premixed flames,” Appl. Phys. B Lasers Opt. 115, 35–43 (2014).
[Crossref]

A. Ehn, M. Jonsson, O. Johansson, M. Aldén, and J. Bood, “Quantitative oxygen concentration imaging in toluene atmospheres using Dual Imaging with Modeling Evaluation,” Exp. Fluids 54, 1433 (2013).
[Crossref]

Karedla, N.

Kellett, P. A.

J. McGinty, J. R. Isidro, I. Munro, C. B. Talbot, P. A. Kellett, J. D. Hares, C. Dunsby, M. A. A. Neil, and P. M. W. French, “Signal-to-noise characterization of time-gated intensifiers used for wide-field time-domain FLIM,” J. Phys. D: Appl. Phys.  42, 135103 (2009).
[Crossref]

Kiefer, J.

Konnov, A. A.

C. Brackmann, J. Bood, J. D. Nauclér, A. A. Konnov, and M. Aldén, “Quantitative picosecond laser-induced fluorescence measurements of nitric oxide in flames,” Proc. Combust. Inst. 36, 4541–4548 (2016).

Laczko, G.

E. Gratton, M. Limkeman, J. R. Lakowicz, B. P. Maliwal, H. Cherek, and G. Laczko, “Resolution of mixtures of fluorophores using variable-frequency phase and modulation data,” Biophys. J. 46, 479–486 (1984).
[Crossref] [PubMed]

Lakowicz, J. R.

E. Gratton, M. Limkeman, J. R. Lakowicz, B. P. Maliwal, H. Cherek, and G. Laczko, “Resolution of mixtures of fluorophores using variable-frequency phase and modulation data,” Biophys. J. 46, 479–486 (1984).
[Crossref] [PubMed]

Lee, M. P.

M. P. Lee, P. H. Paul, and R. K. Hanson, “Quantitative imaging of temperature fields in air using planar laser-induced fluorescence of O2,” Opt. Lett.  12(2), 75–77 (1987).
[Crossref] [PubMed]

Lee, T.

Li, B.

A. Ehn, O. Johansson, J. Bood, A. Arvidsson, B. Li, and M. Aldén, “Fluorescence lifetime imaging in a flame,” Proc. Combust. Inst. 33(1), 807–813 (2011).
[Crossref]

Li, D. D. U.

D. D. U. Li, S. Ameer-Beg, J. Arlt, D. Tyndall, R. Walker, D. R. Matthews, V. Visitkul, J. Richardson, and R. K. Henderson, “Time-domain fluorescence lifetime imaging techniques suitable for solid-state imaging sensor arrays,” Sensors 12, 5650–5669 (2012).
[Crossref] [PubMed]

Li, D. U.

Li, Q.

B. Zhou, C. Brackmann, Q. Li, Z. K. Wang, P. Petersson, Z. S. Li, M. Aldén, and X. S. Bai, “Distributed reactions in highly turbulent premixed methane/air flames. Part I. Flame structure characterization,” Combust. Flame 162, 2937–2953 (2015).
[Crossref]

Li, X. S.

Li, Z. M.

Li, Z. S.

B. Zhou, C. Brackmann, Q. Li, Z. K. Wang, P. Petersson, Z. S. Li, M. Aldén, and X. S. Bai, “Distributed reactions in highly turbulent premixed methane/air flames. Part I. Flame structure characterization,” Combust. Flame 162, 2937–2953 (2015).
[Crossref]

Limkeman, M.

E. Gratton, M. Limkeman, J. R. Lakowicz, B. P. Maliwal, H. Cherek, and G. Laczko, “Resolution of mixtures of fluorophores using variable-frequency phase and modulation data,” Biophys. J. 46, 479–486 (1984).
[Crossref] [PubMed]

Maliwal, B. P.

E. Gratton, M. Limkeman, J. R. Lakowicz, B. P. Maliwal, H. Cherek, and G. Laczko, “Resolution of mixtures of fluorophores using variable-frequency phase and modulation data,” Biophys. J. 46, 479–486 (1984).
[Crossref] [PubMed]

Matthews, D. R.

D. D. U. Li, S. Ameer-Beg, J. Arlt, D. Tyndall, R. Walker, D. R. Matthews, V. Visitkul, J. Richardson, and R. K. Henderson, “Time-domain fluorescence lifetime imaging techniques suitable for solid-state imaging sensor arrays,” Sensors 12, 5650–5669 (2012).
[Crossref] [PubMed]

McGinty, J.

J. McGinty, J. R. Isidro, I. Munro, C. B. Talbot, P. A. Kellett, J. D. Hares, C. Dunsby, M. A. A. Neil, and P. M. W. French, “Signal-to-noise characterization of time-gated intensifiers used for wide-field time-domain FLIM,” J. Phys. D: Appl. Phys.  42, 135103 (2009).
[Crossref]

Minami, S.

Munro, I.

J. McGinty, J. R. Isidro, I. Munro, C. B. Talbot, P. A. Kellett, J. D. Hares, C. Dunsby, M. A. A. Neil, and P. M. W. French, “Signal-to-noise characterization of time-gated intensifiers used for wide-field time-domain FLIM,” J. Phys. D: Appl. Phys.  42, 135103 (2009).
[Crossref]

Nauclér, J. D.

C. Brackmann, J. Bood, J. D. Nauclér, A. A. Konnov, and M. Aldén, “Quantitative picosecond laser-induced fluorescence measurements of nitric oxide in flames,” Proc. Combust. Inst. 36, 4541–4548 (2016).

Neil, M. A. A.

J. McGinty, J. R. Isidro, I. Munro, C. B. Talbot, P. A. Kellett, J. D. Hares, C. Dunsby, M. A. A. Neil, and P. M. W. French, “Signal-to-noise characterization of time-gated intensifiers used for wide-field time-domain FLIM,” J. Phys. D: Appl. Phys.  42, 135103 (2009).
[Crossref]

Ng, T.

Omrane, A.

A. Omrane, F. Ossler, and M. Aldén, “Two-dimensional surface temperature measurements of burning materials,” Proc. Combust. Inst. 29(2), 2653–2659 (2002).
[Crossref]

Ossler, F.

A. Omrane, F. Ossler, and M. Aldén, “Two-dimensional surface temperature measurements of burning materials,” Proc. Combust. Inst. 29(2), 2653–2659 (2002).
[Crossref]

Paul, P. H.

M. P. Lee, P. H. Paul, and R. K. Hanson, “Quantitative imaging of temperature fields in air using planar laser-induced fluorescence of O2,” Opt. Lett.  12(2), 75–77 (1987).
[Crossref] [PubMed]

Petersson, P.

B. Zhou, C. Brackmann, Q. Li, Z. K. Wang, P. Petersson, Z. S. Li, M. Aldén, and X. S. Bai, “Distributed reactions in highly turbulent premixed methane/air flames. Part I. Flame structure characterization,” Combust. Flame 162, 2937–2953 (2015).
[Crossref]

Philip, J.

Renshaw, D.

Richardson, J.

D. D. U. Li, S. Ameer-Beg, J. Arlt, D. Tyndall, R. Walker, D. R. Matthews, V. Visitkul, J. Richardson, and R. K. Henderson, “Time-domain fluorescence lifetime imaging techniques suitable for solid-state imaging sensor arrays,” Sensors 12, 5650–5669 (2012).
[Crossref] [PubMed]

Richter, M.

Ruhlandt, D.

Sanders, R.

A. Draaijer, R. Sanders, and H. C. Gerritsen, “Fluorescence lifetime imaging, a new tool in confocal microscopy,” in Handbook of Biological Confocal Microscopy, J. B. Pawley, ed. (Plenum, 1995), pp. 491–505.
[Crossref]

Schulz, C.

S. Faust, T. Dreier, and C. Schulz, “Quantitative oxygen concentration imaging in toluene atmospheres using Dual Imaging with Modeling Evaluation,” Chem. Phys. 383, 6–11 (2011).
[Crossref]

Spearrin, R. M.

R. K. Hanson, R. M. Spearrin, and C. S. Goldenstein, Spectroscopy and Optical Diagnostics for Gases (Springer, 2016), Chap. 11.
[Crossref]

Stamatoglou, P.

Stein, S. C.

Talbot, C. B.

J. McGinty, J. R. Isidro, I. Munro, C. B. Talbot, P. A. Kellett, J. D. Hares, C. Dunsby, M. A. A. Neil, and P. M. W. French, “Signal-to-noise characterization of time-gated intensifiers used for wide-field time-domain FLIM,” J. Phys. D: Appl. Phys.  42, 135103 (2009).
[Crossref]

Tyndall, D.

D. D. U. Li, S. Ameer-Beg, J. Arlt, D. Tyndall, R. Walker, D. R. Matthews, V. Visitkul, J. Richardson, and R. K. Henderson, “Time-domain fluorescence lifetime imaging techniques suitable for solid-state imaging sensor arrays,” Sensors 12, 5650–5669 (2012).
[Crossref] [PubMed]

Uchida, T.

Visitkul, V.

D. D. U. Li, S. Ameer-Beg, J. Arlt, D. Tyndall, R. Walker, D. R. Matthews, V. Visitkul, J. Richardson, and R. K. Henderson, “Time-domain fluorescence lifetime imaging techniques suitable for solid-state imaging sensor arrays,” Sensors 12, 5650–5669 (2012).
[Crossref] [PubMed]

Walker, R.

D. D. U. Li, S. Ameer-Beg, J. Arlt, D. Tyndall, R. Walker, D. R. Matthews, V. Visitkul, J. Richardson, and R. K. Henderson, “Time-domain fluorescence lifetime imaging techniques suitable for solid-state imaging sensor arrays,” Sensors 12, 5650–5669 (2012).
[Crossref] [PubMed]

Wang, X. F.

Wang, Z. K.

Z. K. Wang, P. Stamatoglou, Z. M. Li, M. Aldén, and M. Richter, “Ultra-high-speed PLIF imaging for simultaneous visualization of multiple species in turbulent flames,” Opt. Express 25(24), 30214–30228 (2017).
[Crossref] [PubMed]

B. Zhou, C. Brackmann, Q. Li, Z. K. Wang, P. Petersson, Z. S. Li, M. Aldén, and X. S. Bai, “Distributed reactions in highly turbulent premixed methane/air flames. Part I. Flame structure characterization,” Combust. Flame 162, 2937–2953 (2015).
[Crossref]

Watson, T.

Zamai, M.

M. A. Digman, V. R. Caiolfa, M. Zamai, and E. Gratton, “The phasor approach to fluorescence lifetime imaging analysis,” Biophys. J. 94, L14–L16 (2008).
[Crossref]

Zhou, B.

B. Zhou, C. Brackmann, Q. Li, Z. K. Wang, P. Petersson, Z. S. Li, M. Aldén, and X. S. Bai, “Distributed reactions in highly turbulent premixed methane/air flames. Part I. Flame structure characterization,” Combust. Flame 162, 2937–2953 (2015).
[Crossref]

Zhu, J. J.

Anal. Chem. (1)

S. P. Chan, Z. J. fuller, J. N. Demas, and B. A. DeGraff, “Optimized gating scheme for rapid lifetime imaging,” Anal. Chem. 73(18), 4486–4490 (2001).
[Crossref] [PubMed]

Appl. Opt. (1)

Appl. Phys. B Lasers Opt. (1)

M. Jonsson, A. Ehn, M. Christensen, M. Aldén, and J. Bood, “Simultaneous one-dimensional fluorescence lifetime measurements of OH and CO in premixed flames,” Appl. Phys. B Lasers Opt. 115, 35–43 (2014).
[Crossref]

Appl. Spectrosc. (2)

Biophys. J. (2)

E. Gratton, M. Limkeman, J. R. Lakowicz, B. P. Maliwal, H. Cherek, and G. Laczko, “Resolution of mixtures of fluorophores using variable-frequency phase and modulation data,” Biophys. J. 46, 479–486 (1984).
[Crossref] [PubMed]

M. A. Digman, V. R. Caiolfa, M. Zamai, and E. Gratton, “The phasor approach to fluorescence lifetime imaging analysis,” Biophys. J. 94, L14–L16 (2008).
[Crossref]

Chem. Phys. (1)

S. Faust, T. Dreier, and C. Schulz, “Quantitative oxygen concentration imaging in toluene atmospheres using Dual Imaging with Modeling Evaluation,” Chem. Phys. 383, 6–11 (2011).
[Crossref]

Combust. Flame (1)

B. Zhou, C. Brackmann, Q. Li, Z. K. Wang, P. Petersson, Z. S. Li, M. Aldén, and X. S. Bai, “Distributed reactions in highly turbulent premixed methane/air flames. Part I. Flame structure characterization,” Combust. Flame 162, 2937–2953 (2015).
[Crossref]

Exp. Fluids (1)

A. Ehn, M. Jonsson, O. Johansson, M. Aldén, and J. Bood, “Quantitative oxygen concentration imaging in toluene atmospheres using Dual Imaging with Modeling Evaluation,” Exp. Fluids 54, 1433 (2013).
[Crossref]

J. Opt. Soc. Am. A (2)

J. Phys. D: Appl. Phys (1)

J. McGinty, J. R. Isidro, I. Munro, C. B. Talbot, P. A. Kellett, J. D. Hares, C. Dunsby, M. A. A. Neil, and P. M. W. French, “Signal-to-noise characterization of time-gated intensifiers used for wide-field time-domain FLIM,” J. Phys. D: Appl. Phys.  42, 135103 (2009).
[Crossref]

Opt. Express (4)

Opt. Lett (1)

M. P. Lee, P. H. Paul, and R. K. Hanson, “Quantitative imaging of temperature fields in air using planar laser-induced fluorescence of O2,” Opt. Lett.  12(2), 75–77 (1987).
[Crossref] [PubMed]

Proc. Combust. Inst. (3)

C. Brackmann, J. Bood, J. D. Nauclér, A. A. Konnov, and M. Aldén, “Quantitative picosecond laser-induced fluorescence measurements of nitric oxide in flames,” Proc. Combust. Inst. 36, 4541–4548 (2016).

A. Omrane, F. Ossler, and M. Aldén, “Two-dimensional surface temperature measurements of burning materials,” Proc. Combust. Inst. 29(2), 2653–2659 (2002).
[Crossref]

A. Ehn, O. Johansson, J. Bood, A. Arvidsson, B. Li, and M. Aldén, “Fluorescence lifetime imaging in a flame,” Proc. Combust. Inst. 33(1), 807–813 (2011).
[Crossref]

Sensors (1)

D. D. U. Li, S. Ameer-Beg, J. Arlt, D. Tyndall, R. Walker, D. R. Matthews, V. Visitkul, J. Richardson, and R. K. Henderson, “Time-domain fluorescence lifetime imaging techniques suitable for solid-state imaging sensor arrays,” Sensors 12, 5650–5669 (2012).
[Crossref] [PubMed]

Other (4)

H. C. Gerritsen, A. V. Agronskaia, A. N. Bader, and A. Esposito, “Time domain FLIM: Theory, instrumentation, and data analysis,” in Laboratory Techniques in Biochemistry and Molecular Biology, T. W. J. Gadella, ed. (Elsevier, 2009), pp. 95–132.
[Crossref]

W. Becker, Advanced Time-Correlated Single Photon Counting Techniques, (Springer, 2005).
[Crossref]

A. Draaijer, R. Sanders, and H. C. Gerritsen, “Fluorescence lifetime imaging, a new tool in confocal microscopy,” in Handbook of Biological Confocal Microscopy, J. B. Pawley, ed. (Plenum, 1995), pp. 491–505.
[Crossref]

R. K. Hanson, R. M. Spearrin, and C. S. Goldenstein, Spectroscopy and Optical Diagnostics for Gases (Springer, 2016), Chap. 11.
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1 Different transitions that are included in the two-state model.
Fig. 2
Fig. 2 Schematic illustration of the experimental setup. The laser beam is expanded through a beam expander (BE) and focused to a laser sheet by a cylindrical lens (CL) in the target area above the jet tubes (JT). A triggering pulse is sent to the digital delay generator DG645 to trigger both the streak camera and the framing camera to record filtered signals. The four-channel framing camera contains an image splitter and four ICCDs.
Fig. 3
Fig. 3 Graphical illustration of the three time-gates used to estimate lifetimes.
Fig. 4
Fig. 4 (a) Fτ and (b) FA curves for Gating Scheme 1 (blue line), Gating Scheme 2 (red line), enhanced Gating Scheme 2 (dash blue line), and an ORLD scheme (Δt = 2ns, Y = 0, P = 200, black line).
Fig. 5
Fig. 5 Normalized fluorescent intensity images captured by the three channels of the framing camera for Case 1 (N2:O2 > 7:0.1), (a)–(c), and Case 2 (N2:O2 = 19:1), (d)–(f).
Fig. 6
Fig. 6 Fluorescence lifetime images for (a) N2:O2 > 7:0.1 and for (c) N2:O2 = 19:1, and n 1 0images for (b) N2:O2 > 7:0.1 and for (d) N2:O2 = 19:1. (e) Sectional view of the gas jet.
Fig. 7
Fig. 7 Lifetime curves for (a) N2:O2 > 7:0.1 and for (b) N2:O2 = 19:1 among ten repeated experiments. (c) Scatter plots and (d) lifetime histograms for Case 1 (blue) and Case 2 (red) for Experiment 1.
Fig. 8
Fig. 8 (a) Background image without scanning, and the 1D lifetime images for (b) Case 1 and (c) Case 2 captured by the streak camera. (d) Schematic diagram representing the scanning of the streak camera. Linear intensity curves for (e) Case 1 and (f) Case 2 obtained by integrating the 1D lifetime images (b) and (c) over the x axis (red solid lines). The blue open circle lines represent the calculated results obtained by TFI-TGFLI. Semi-log intensity curves for (g) Case 1 and (h) Case 2.

Tables (2)

Tables Icon

Table 1 Time-gates configuration

Tables Icon

Table 2 Two gating schemes

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

n ˙ 2 ( t ) = n 1 ( t ) ( I v B 12 ) n 2 ( t ) ( I v B 21 + Q 21 + A 21 ) .
N f ( t ) = Ω 4 π η c V A 21 n 21 ( t ) = A exp ( t τ ) ,
A = Ω 4 π η c V A 21 n 2 A E , τ = 1 Q 21 + A 21 ,
A = Ω 4 π η c V A 21 B 12 n 1 0 I v d t ,
S = A exp ( t τ ) d t ,
N i = t e n d i t e n d i k p i N f d t , ( i = 1 , 2 , 3 ) ,
f i ( τ ) = N j + 1 N j D j = 0 , j = 1 , 2 .
τ j , n + 1 = τ j , n f j ( τ j , n ) f j ( τ j , n ) , n = 0 , 1 , 2 , , j = 1 , 2 ,
F τ ( τ ) = ( N t o t ) 1 / 2 σ τ τ ,
F A ( A ) = ( N t o t ) 1 / 2 σ A A ,
τ ( x , z ) = { τ 2 ( x , z ) , τ 2 ( x , z ) < 4.3 n s τ 1 ( x , z ) , e l s e
A ( x , z ) = { A 2 ( x , z ) , τ ( x , z ) < 2.6 n s A 1 ( x , z ) , e l s e

Metrics