Abstract

We experimentally demonstrate 50 Gb/s transmission below an uncorrected bit error rate (BER) of 10−3 in the C band over a transmission reach that extends from 0 to 20 km using combined amplitude and phase shift (CAPS) codes. The CAPS signal, which is not required to be specifically dispersion compensated for each reach within the 20 km operating range, is amenable for simple direct detection using a single photodetector without any subsequent digital signal processing (DSP). Hence, the presented solution constitutes a potentially attractive low cost solution for mobile Xhaul applications employing single mode fiber interconnects with reaches extending to 20 km. Furthermore, the CAPS signaling is compared to other modulation schemes all delivering 50 Gb/s and is found to outperform on-off-keying (OOK), 4-level pulse amplitude modulation (PAM4) and dispersion precompensated OOK in terms of dispersion tolerance. At a lower reach of 10 km, the maximum bit rate that can be achieved using CAPS coding at a BER below 10−3 is found to increase to 67 Gb/s. In addition, using the same testbed, we experimentally tested the IQ duobinary modulation format, which is an alternative format that approximates the CAPS transmitted waveforms in order to omit the need for a power consuming digital-to-analog converter (DAC) to generate the transmitted waveforms at the expense of slightly worse dispersion tolerance. Though the IQ duobinary format can be in principle generated using a simple DAC-less analog transmitter, our proof-of-concept experiment used a DAC to emulate the analog transmitter by generating the corresponding transmitted waveforms due to unavailability of all required analog parts. The IQ duobinary format was found experimentally to enable 50 Gb/s over a reach of ~17 km; that is slightly less than a CAPS signal at the same bit rate. Finally, we verified the excellent performance of the CAPS signaling in an ASE-limited regime where the CAPS signal achieved very low OSNR penalty after 10 km relative to OOK in back-to-back.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Cisco Visual Networking Index: Forecast and Methodology, 2016–2021 June 6,2017, https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/complete-white-paper-c11-481360.pdf
  2. Ericsson Mobility Report, June2017, https://www.ericsson.com/assets/local/mobility-report/documents/2017/ericsson-mobility-report-june-2017.pdf
  3. A. de la Oliva, X. C. Perez, A. Azcorra, A. Di Giglio, F. Cavaliere, D. Tiegelbekkersk, J. Lessmann, T. Haustein, A. Mourad, and P. Iovanna, “Xhaul: Towards an Integrated Fronthaul/Backhaul Architecture in 5G Networks,” IEEE Wirel. Commun. 22(5), 32–40 (2015).
    [Crossref]
  4. F. Fresi, M. Imran, A. Malacarne, G. Meloni, V. Sorianello, E. Forestieri, and L. Poti, “Advances in optical technologies and techniques for high capacity communications,” J. Opt. Commun. Netw. 9(4), C54–C64 (2017).
    [Crossref]
  5. G. Bottari, P. Iovanna, F. Cavaliere, F. Testa, S. Stracca, F. Ponzini, A. Bianchi, and R. Sabella, “A Future Proof Optical Network Infrastructure for 5G Transport,” IEEE J Opt. Commun. Netw. 8(12), B80–B92 (2016).
    [Crossref]
  6. E. Forestieri, M. Secondini, F. Fresi, G. Meloni, L. Poti, and F. Cavaliere, “Extending the reach of short-reach optical interconnects with DSP-Free direct-detection,” J. Lightwave Technol. 35(15), 3174–3181 (2017).
    [Crossref]
  7. A. D’Errico and G. Contestabile, “Next Generation Terabit Transponder,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2016), paper W4B.4.
    [Crossref]
  8. N. Nambath, R. K. Raveendranath, D. Banerjee, A. Sharma, A. Sankar, and S. Gupta, “Analog Domain Signal Processing-Based Low-Power 100-Gb/s DP-QPSK Receiver,” J. Lightwave Technol. 33(15), 3189–3197 (2015).
    [Crossref]
  9. E. Westerberg, “4G/5G Architecture - How split can make the difference,” Ericsson Technology Review 93, 1-16 (2016).
  10. 5G Systems, Ericsson White paper UEN 284 23–3251 rev B | January 2017.
  11. A. Ghiasi and B. Welch, “Investigation of 100GbE based on PAM-4 and PAM-8,” in IEEE P802.3bm 40 Gb/s and 100 Gb/s Fiber Optic Task Force Interim Meeting (2012).
  12. K. Zhong, X. Zhou, T. Gui, L. Tao, Y. Gao, W. Chen, J. Man, L. Zeng, A. P. T. Lau, and C. Lu, “Experimental study of PAM-4, CAP-16, and DMT for 100 Gb/s Short Reach Optical Transmission Systems,” Opt. Express 23(2), 1176–1189 (2015).
    [Crossref] [PubMed]
  13. E. Forestieri and G. Prati, “Novel optical line codes tolerant to fiber chromatic dispersion,” J. Lightwave Technol. 19(11), 1675–1684 (2001).
    [Crossref]
  14. F. Fresi, G. Meloni, M. Secondini, F. Cavaliere, L. Potì, and E. Forestieri, “Short-reach distance extension through CAPS coding and DSP-free direct detection receiver,” in Proc. Europ. Conf. Optical Commun. (ECOC), (2016), paper Th.2.P.2.
  15. G. W. Agrawal, Nonlinear Fiber Optics (Academic Press, 1989).
  16. E. Forestieri and G. Prati, “Narrow filtered DPSK implements order-1 CAPS optical line coding,” IEEE Photonics Technol. Lett. 16(2), 662–664 (2004).
    [Crossref]

2017 (2)

2016 (2)

G. Bottari, P. Iovanna, F. Cavaliere, F. Testa, S. Stracca, F. Ponzini, A. Bianchi, and R. Sabella, “A Future Proof Optical Network Infrastructure for 5G Transport,” IEEE J Opt. Commun. Netw. 8(12), B80–B92 (2016).
[Crossref]

E. Westerberg, “4G/5G Architecture - How split can make the difference,” Ericsson Technology Review 93, 1-16 (2016).

2015 (3)

2004 (1)

E. Forestieri and G. Prati, “Narrow filtered DPSK implements order-1 CAPS optical line coding,” IEEE Photonics Technol. Lett. 16(2), 662–664 (2004).
[Crossref]

2001 (1)

Azcorra, A.

A. de la Oliva, X. C. Perez, A. Azcorra, A. Di Giglio, F. Cavaliere, D. Tiegelbekkersk, J. Lessmann, T. Haustein, A. Mourad, and P. Iovanna, “Xhaul: Towards an Integrated Fronthaul/Backhaul Architecture in 5G Networks,” IEEE Wirel. Commun. 22(5), 32–40 (2015).
[Crossref]

Banerjee, D.

Bianchi, A.

G. Bottari, P. Iovanna, F. Cavaliere, F. Testa, S. Stracca, F. Ponzini, A. Bianchi, and R. Sabella, “A Future Proof Optical Network Infrastructure for 5G Transport,” IEEE J Opt. Commun. Netw. 8(12), B80–B92 (2016).
[Crossref]

Bottari, G.

G. Bottari, P. Iovanna, F. Cavaliere, F. Testa, S. Stracca, F. Ponzini, A. Bianchi, and R. Sabella, “A Future Proof Optical Network Infrastructure for 5G Transport,” IEEE J Opt. Commun. Netw. 8(12), B80–B92 (2016).
[Crossref]

Cavaliere, F.

E. Forestieri, M. Secondini, F. Fresi, G. Meloni, L. Poti, and F. Cavaliere, “Extending the reach of short-reach optical interconnects with DSP-Free direct-detection,” J. Lightwave Technol. 35(15), 3174–3181 (2017).
[Crossref]

G. Bottari, P. Iovanna, F. Cavaliere, F. Testa, S. Stracca, F. Ponzini, A. Bianchi, and R. Sabella, “A Future Proof Optical Network Infrastructure for 5G Transport,” IEEE J Opt. Commun. Netw. 8(12), B80–B92 (2016).
[Crossref]

A. de la Oliva, X. C. Perez, A. Azcorra, A. Di Giglio, F. Cavaliere, D. Tiegelbekkersk, J. Lessmann, T. Haustein, A. Mourad, and P. Iovanna, “Xhaul: Towards an Integrated Fronthaul/Backhaul Architecture in 5G Networks,” IEEE Wirel. Commun. 22(5), 32–40 (2015).
[Crossref]

F. Fresi, G. Meloni, M. Secondini, F. Cavaliere, L. Potì, and E. Forestieri, “Short-reach distance extension through CAPS coding and DSP-free direct detection receiver,” in Proc. Europ. Conf. Optical Commun. (ECOC), (2016), paper Th.2.P.2.

Chen, W.

de la Oliva, A.

A. de la Oliva, X. C. Perez, A. Azcorra, A. Di Giglio, F. Cavaliere, D. Tiegelbekkersk, J. Lessmann, T. Haustein, A. Mourad, and P. Iovanna, “Xhaul: Towards an Integrated Fronthaul/Backhaul Architecture in 5G Networks,” IEEE Wirel. Commun. 22(5), 32–40 (2015).
[Crossref]

Di Giglio, A.

A. de la Oliva, X. C. Perez, A. Azcorra, A. Di Giglio, F. Cavaliere, D. Tiegelbekkersk, J. Lessmann, T. Haustein, A. Mourad, and P. Iovanna, “Xhaul: Towards an Integrated Fronthaul/Backhaul Architecture in 5G Networks,” IEEE Wirel. Commun. 22(5), 32–40 (2015).
[Crossref]

Forestieri, E.

Fresi, F.

Gao, Y.

Ghiasi, A.

A. Ghiasi and B. Welch, “Investigation of 100GbE based on PAM-4 and PAM-8,” in IEEE P802.3bm 40 Gb/s and 100 Gb/s Fiber Optic Task Force Interim Meeting (2012).

Gui, T.

Gupta, S.

Haustein, T.

A. de la Oliva, X. C. Perez, A. Azcorra, A. Di Giglio, F. Cavaliere, D. Tiegelbekkersk, J. Lessmann, T. Haustein, A. Mourad, and P. Iovanna, “Xhaul: Towards an Integrated Fronthaul/Backhaul Architecture in 5G Networks,” IEEE Wirel. Commun. 22(5), 32–40 (2015).
[Crossref]

Imran, M.

Iovanna, P.

G. Bottari, P. Iovanna, F. Cavaliere, F. Testa, S. Stracca, F. Ponzini, A. Bianchi, and R. Sabella, “A Future Proof Optical Network Infrastructure for 5G Transport,” IEEE J Opt. Commun. Netw. 8(12), B80–B92 (2016).
[Crossref]

A. de la Oliva, X. C. Perez, A. Azcorra, A. Di Giglio, F. Cavaliere, D. Tiegelbekkersk, J. Lessmann, T. Haustein, A. Mourad, and P. Iovanna, “Xhaul: Towards an Integrated Fronthaul/Backhaul Architecture in 5G Networks,” IEEE Wirel. Commun. 22(5), 32–40 (2015).
[Crossref]

Lau, A. P. T.

Lessmann, J.

A. de la Oliva, X. C. Perez, A. Azcorra, A. Di Giglio, F. Cavaliere, D. Tiegelbekkersk, J. Lessmann, T. Haustein, A. Mourad, and P. Iovanna, “Xhaul: Towards an Integrated Fronthaul/Backhaul Architecture in 5G Networks,” IEEE Wirel. Commun. 22(5), 32–40 (2015).
[Crossref]

Lu, C.

Malacarne, A.

Man, J.

Meloni, G.

Mourad, A.

A. de la Oliva, X. C. Perez, A. Azcorra, A. Di Giglio, F. Cavaliere, D. Tiegelbekkersk, J. Lessmann, T. Haustein, A. Mourad, and P. Iovanna, “Xhaul: Towards an Integrated Fronthaul/Backhaul Architecture in 5G Networks,” IEEE Wirel. Commun. 22(5), 32–40 (2015).
[Crossref]

Nambath, N.

Perez, X. C.

A. de la Oliva, X. C. Perez, A. Azcorra, A. Di Giglio, F. Cavaliere, D. Tiegelbekkersk, J. Lessmann, T. Haustein, A. Mourad, and P. Iovanna, “Xhaul: Towards an Integrated Fronthaul/Backhaul Architecture in 5G Networks,” IEEE Wirel. Commun. 22(5), 32–40 (2015).
[Crossref]

Ponzini, F.

G. Bottari, P. Iovanna, F. Cavaliere, F. Testa, S. Stracca, F. Ponzini, A. Bianchi, and R. Sabella, “A Future Proof Optical Network Infrastructure for 5G Transport,” IEEE J Opt. Commun. Netw. 8(12), B80–B92 (2016).
[Crossref]

Poti, L.

Potì, L.

F. Fresi, G. Meloni, M. Secondini, F. Cavaliere, L. Potì, and E. Forestieri, “Short-reach distance extension through CAPS coding and DSP-free direct detection receiver,” in Proc. Europ. Conf. Optical Commun. (ECOC), (2016), paper Th.2.P.2.

Prati, G.

E. Forestieri and G. Prati, “Narrow filtered DPSK implements order-1 CAPS optical line coding,” IEEE Photonics Technol. Lett. 16(2), 662–664 (2004).
[Crossref]

E. Forestieri and G. Prati, “Novel optical line codes tolerant to fiber chromatic dispersion,” J. Lightwave Technol. 19(11), 1675–1684 (2001).
[Crossref]

Raveendranath, R. K.

Sabella, R.

G. Bottari, P. Iovanna, F. Cavaliere, F. Testa, S. Stracca, F. Ponzini, A. Bianchi, and R. Sabella, “A Future Proof Optical Network Infrastructure for 5G Transport,” IEEE J Opt. Commun. Netw. 8(12), B80–B92 (2016).
[Crossref]

Sankar, A.

Secondini, M.

E. Forestieri, M. Secondini, F. Fresi, G. Meloni, L. Poti, and F. Cavaliere, “Extending the reach of short-reach optical interconnects with DSP-Free direct-detection,” J. Lightwave Technol. 35(15), 3174–3181 (2017).
[Crossref]

F. Fresi, G. Meloni, M. Secondini, F. Cavaliere, L. Potì, and E. Forestieri, “Short-reach distance extension through CAPS coding and DSP-free direct detection receiver,” in Proc. Europ. Conf. Optical Commun. (ECOC), (2016), paper Th.2.P.2.

Sharma, A.

Sorianello, V.

Stracca, S.

G. Bottari, P. Iovanna, F. Cavaliere, F. Testa, S. Stracca, F. Ponzini, A. Bianchi, and R. Sabella, “A Future Proof Optical Network Infrastructure for 5G Transport,” IEEE J Opt. Commun. Netw. 8(12), B80–B92 (2016).
[Crossref]

Tao, L.

Testa, F.

G. Bottari, P. Iovanna, F. Cavaliere, F. Testa, S. Stracca, F. Ponzini, A. Bianchi, and R. Sabella, “A Future Proof Optical Network Infrastructure for 5G Transport,” IEEE J Opt. Commun. Netw. 8(12), B80–B92 (2016).
[Crossref]

Tiegelbekkersk, D.

A. de la Oliva, X. C. Perez, A. Azcorra, A. Di Giglio, F. Cavaliere, D. Tiegelbekkersk, J. Lessmann, T. Haustein, A. Mourad, and P. Iovanna, “Xhaul: Towards an Integrated Fronthaul/Backhaul Architecture in 5G Networks,” IEEE Wirel. Commun. 22(5), 32–40 (2015).
[Crossref]

Welch, B.

A. Ghiasi and B. Welch, “Investigation of 100GbE based on PAM-4 and PAM-8,” in IEEE P802.3bm 40 Gb/s and 100 Gb/s Fiber Optic Task Force Interim Meeting (2012).

Westerberg, E.

E. Westerberg, “4G/5G Architecture - How split can make the difference,” Ericsson Technology Review 93, 1-16 (2016).

Zeng, L.

Zhong, K.

Zhou, X.

Ericsson Technology Review (1)

E. Westerberg, “4G/5G Architecture - How split can make the difference,” Ericsson Technology Review 93, 1-16 (2016).

IEEE J Opt. Commun. Netw. (1)

G. Bottari, P. Iovanna, F. Cavaliere, F. Testa, S. Stracca, F. Ponzini, A. Bianchi, and R. Sabella, “A Future Proof Optical Network Infrastructure for 5G Transport,” IEEE J Opt. Commun. Netw. 8(12), B80–B92 (2016).
[Crossref]

IEEE Photonics Technol. Lett. (1)

E. Forestieri and G. Prati, “Narrow filtered DPSK implements order-1 CAPS optical line coding,” IEEE Photonics Technol. Lett. 16(2), 662–664 (2004).
[Crossref]

IEEE Wirel. Commun. (1)

A. de la Oliva, X. C. Perez, A. Azcorra, A. Di Giglio, F. Cavaliere, D. Tiegelbekkersk, J. Lessmann, T. Haustein, A. Mourad, and P. Iovanna, “Xhaul: Towards an Integrated Fronthaul/Backhaul Architecture in 5G Networks,” IEEE Wirel. Commun. 22(5), 32–40 (2015).
[Crossref]

J. Lightwave Technol. (3)

J. Opt. Commun. Netw. (1)

Opt. Express (1)

Other (7)

F. Fresi, G. Meloni, M. Secondini, F. Cavaliere, L. Potì, and E. Forestieri, “Short-reach distance extension through CAPS coding and DSP-free direct detection receiver,” in Proc. Europ. Conf. Optical Commun. (ECOC), (2016), paper Th.2.P.2.

G. W. Agrawal, Nonlinear Fiber Optics (Academic Press, 1989).

Cisco Visual Networking Index: Forecast and Methodology, 2016–2021 June 6,2017, https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/complete-white-paper-c11-481360.pdf

Ericsson Mobility Report, June2017, https://www.ericsson.com/assets/local/mobility-report/documents/2017/ericsson-mobility-report-june-2017.pdf

A. D’Errico and G. Contestabile, “Next Generation Terabit Transponder,” in Optical Fiber Communication Conference, OSA Technical Digest (online) (Optical Society of America, 2016), paper W4B.4.
[Crossref]

5G Systems, Ericsson White paper UEN 284 23–3251 rev B | January 2017.

A. Ghiasi and B. Welch, “Investigation of 100GbE based on PAM-4 and PAM-8,” in IEEE P802.3bm 40 Gb/s and 100 Gb/s Fiber Optic Task Force Interim Meeting (2012).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1 CAPS-3 supporting pulse.
Fig. 2
Fig. 2 IQ-duobinary transmitter.
Fig. 3
Fig. 3 MZM’s electrical drive signals for the given binary information sequence. The amplitudes are relative to the bias voltage and are normalized to the MZM V π .
Fig. 4
Fig. 4 Experimental setup.
Fig. 5
Fig. 5 Optical power penalty at BER = 10-3 for various modulation schemes all delivering a bit rate of 50 Gb/s. The optical power penalty is calculated relative to a reference required received optical power of OOK in back-to-back to achieve BER of 10-3.
Fig. 6
Fig. 6 BER versus bit rate for CAPS-3 signals with two different (α,β) parameters at reaches of 10, 15 and 20 km.
Fig. 7
Fig. 7 BER versus OSNR of various modulation schemes when the received signal power is set to 2 dBm, i.e. the system is operated in ASE noise limited regime rather than a thermal noise limited scenario.

Tables (1)

Tables Icon

Table 1 Received eye diagrams of different modulation schemes all delivering 50 Gb/s at different reaches.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

H( f )= e j α d f 2
α d =πDL λ 2 /c
s in ( t )=x(t) e ja t 2
s out ( t )= π | α d | e j( π 2 α d t 2 π 4 sgn α d ) X( π α d t ) for  a α d = π 2
s in ( t )=rect( t T ) e ja t 2 ,
γ α d π 2 T 2  ,
s out ( t )= | γ | π e j( 1 γ ( t T ) 2 π 4 sgnγ ) sinc( t πγT ) .