Abstract

In this paper, we present bridged-bowtie nanohole arrays and cross bridged-bowtie nanohole arrays in a gold thin film as surface enhanced Raman scattering (SERS) substrates. These SERS substrates not only exhibit large electromagnetic enhancement of SERS but also have the SERS enhancement spread over a much larger area than what could be present in SERS substrates consisting of nanopillar arrays or nanopillar plasmonic nanoantennas. Numerical simulations based on the finite difference time domain (FDTD) method are employed to determine electric field enhancement factors (EFs) and therefore the electromagnetic SERS enhancement factor for these SERS substrates. It was observed that bridged-bowtie nanohole arrays and cross bridge-bowtie nanohole arrays exhibit a highest electromagnetic SERS enhancement factor (EF) of ~109, which is orders of magnitude higher than what has been previously reported for nanohole arrays as SERS substrates. This electromagnetic SERS EF (of ~109) is spread over a hotspot region of ~100 nm2 (in each periodic unit of the array), which is larger than the case of nanopillar arrays. In addition, it was observed that an electromagnetic SERS enhancement factor of at least 108 is spread over a large area (500 nm2 in each periodic unit of the array), thus increasing the average enhancement factor. It was observed that the bridged-bowtie nanohole arrays and the cross bridged-bowtie nanohole arrays can be employed as effective SERS substrates in both the transmission mode and the reflection mode. The resonance wavelength of these arrays of nanoholes can be tuned by altering the size of the nanoholes. The effects of varying the gold film thickness and the diameter of the bridged-bowtie nanoholes forming the arrays were also analyzed. The bridged-bowtie nanohole arrays and cross bridged-bowtie nanohole arrays exhibit very high electric field enhancement factors (EFs) at more than one wavelength, and can therefore be used to obtain a multi-wavelength SERS response. Moreover, the cross bridged-bowtie nanohole array allows the tunability of the position of the hotspot with the rotation of the direction of the polarization of incident field.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Highly reproducible and stable surface-enhanced Raman scattering substrates of graphene-Ag nanohole arrays fabricated by sub-diffraction plasmonic lithography

Tiancheng Gong, Yunfei Luo, Chengwei Zhao, Weisheng Yue, Jie Zhang, Yong Zhu, Mingbo Pu, Zuojun Zhang, Changtao Wang, and Xiangang Luo
OSA Continuum 2(3) 582-594 (2019)

Grating-like SERS substrate with tunable gaps based on nanorough Ag nanoislands/moth wing scale arrays for quantitative detection of cypermethrin

Yuhong Wang, Mingli Wang, Xin Sun, Guochao Shi, Jinzan Zhang, Wanli Ma, and Lijian Ren
Opt. Express 26(17) 22168-22181 (2018)

Surface plasmon resonance and field enhancement in #-shaped gold wires metamaterial

W. Q. Hu, E. J. Liang, P. Ding, G. W. Cai, and Q. Z. Xue
Opt. Express 17(24) 21843-21849 (2009)

References

  • View by:
  • |
  • |
  • |

  1. J. Kneipp, H. Kneipp, and K. Kneipp, “SERS-a single-molecule and nanoscale tool for bioanalytics,” Chem. Soc. Rev. 37(5), 1052–1060 (2008).
    [Crossref] [PubMed]
  2. W. E. Doering and S. Nie, “Single-molecule and single-nanoparticle SERS: Examining the roles of surface active sites and chemical enhancement,” J. Phys. Chem. B 106(2), 311–317 (2002).
    [Crossref]
  3. A. Campion, J. E. Ivanecky, C. M. Child, and M. Foster, “On the Mechanism of Chemical Enhancement in Surface-Enhanced Raman Scattering,” J. Am. Chem. Soc. 117(47), 11807–11808 (1995).
    [Crossref]
  4. M. Kerker, “Electromagnetic Model for Surface-Enhanced Raman Scattering (SERS) on Metal Colloids,” Acc. Chem. Res. 17(8), 271–277 (1984).
    [Crossref]
  5. S. Schlucker, Surface Enhanced Raman Spectroscopy Analytical, Biophysical and Life Science Applications (Wiley-VCH Verlag, 2011).
  6. P. F. Liao, J. G. Bergman, D. S. Chemla, J Melngailis, A.M. Hawryluk, N.P Economou, and A. Wokaun, “Surface-enhanced raman scattering from microlithographic silver particle surfaces,” Chem. Phys. Lett.  82(2), 1–5 (1981).
  7. D. A. Weitz, S. Garoff, and T. J. Gramila, “Excitation spectra of surface-enhanced Raman scattering on silver-island films,” Opt. Lett. 7(4), 168–170 (1982).
    [Crossref] [PubMed]
  8. T. Vo-Dinh, A. Dhawan, S. J. Norton, C. G. Khoury, H. N. Wang, V. Misra, and M. D. Gerhold, “Plasmonic nanoparticles and nanowires: Design, fabrication and application in sensing,” J Phys Chem C Nanomater Interfaces 114(16), 7480–7488 (2010).
    [Crossref] [PubMed]
  9. S. J. Lee, A. R. Morrill, and M. Moskovits, “Hot spots in silver nanowire bundles for surface-enhanced Raman spectroscopy,” J. Am. Chem. Soc. 128(7), 2200–2201 (2006).
    [Crossref] [PubMed]
  10. Y. Sharma and A. Dhawan, “Plasmonic “nano-fingers on nanowires” as SERS substrates,” Opt. Lett. 41(9), 2085–2088 (2016).
    [Crossref] [PubMed]
  11. C. J. Orendorff, A. Gole, T. K. Sau, and C. J. Murphy, “Surface-enhanced Raman spectroscopy of self-assembled monolayers: Sandwich architecture and nanoparticle shape dependence,” Anal. Chem. 77(10), 3261–3266 (2005).
    [Crossref] [PubMed]
  12. A. M. Jubb, Y. Jiao, G. Eres, S. T. Retterer, and B. Gu, “Elevated gold ellipse nanoantenna dimers as sensitive and tunable surface enhanced Raman spectroscopy substrates,” Nanoscale 8(10), 5641–5648 (2016).
    [Crossref] [PubMed]
  13. M. G. Banaee and K. B. Crozier, “Gold nanorings as substrates for surface-enhanced Raman scattering,” Opt. Lett. 35(5), 760–762 (2010).
    [Crossref] [PubMed]
  14. Y. Sharma and A. Dhawan, “Hybrid nanoparticle-nanoline plasmonic cavities as SERS substrates with gap-controlled enhancements and resonances,” Nanotechnology 25(8), 085202 (2014).
    [Crossref] [PubMed]
  15. T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 86(6), 1114–1117 (1998).
  16. L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86(6), 1114–1117 (2001).
    [Crossref] [PubMed]
  17. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
    [Crossref] [PubMed]
  18. K. L. Van Der Molen, K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. Van Hulst, and L. Kuipers, “Role of shape and localized resonances in extraordinary transmission through periodic arrays of subwavelength holes: Experiment and theory,” Phys. Rev. B – Condens. Matter Mater. Phys. 72(4), 1–9 (2005).
    [Crossref]
  19. A. Degiron and T. W. Ebbesen, “The role of localized surface plasmon modes in the enhanced transmission of periodic subwavelength apertures,” J. Opt. A, Pure Appl. Opt. 7(2), S90–S96 (2005).
    [Crossref]
  20. Z. Ruan and M. Qiu, “Enhanced transmission through periodic arrays of subwavelength holes: The role of localized waveguide resonances,” Phys. Rev. Lett. 96(23), 233901 (2006).
    [Crossref] [PubMed]
  21. A. G. Brolo, E. Arctander, R. Gordon, B. Leathem, and K. L. Kavanagh, “Nanohole-enhanced raman scattering,” Nano Lett. 4(10), 2015–2018 (2004).
    [Crossref]
  22. A. Lesuffleur, L. K. S. Kumar, A. G. Brolo, K. L. Kavanagh, and R. Gordon, “Apex-enhanced Raman spectroscopy using double-hole arrays in a gold film,” J. Phys. Chem. C 111(6), 2347–2350 (2007).
    [Crossref]
  23. G. F. S. Andrade, J. G. Hayashi, M. M. Rahman, W. J. Salcedo, C. M. B. Cordeiro, and A. G. Brolo, “Surface-Enhanced Resonance Raman Scattering (SERRS) Using Au Nanohole Arrays on Optical Fiber Tips,” Plasmonics 8(2), 1113–1121 (2013).
    [Crossref]
  24. A. Mahigir, T. W. Chang, A. Behnam, G. L. Liu, M. R. Gartia, and G. Veronis, “Plasmonic nanohole array for enhancing the SERS signal of a single layer of graphene in water,” Sci. Rep. 7(1), 14044 (2017).
    [Crossref] [PubMed]
  25. S. Lal, N. K. Grady, J. Kundu, C. S. Levin, J. B. Lassiter, and N. J. Halas, “Tailoring plasmonic substrates for surface enhanced spectroscopies,” Chem. Soc. Rev. 37(5), 898–911 (2008).
    [Crossref] [PubMed]
  26. S. Nikitin, S. Prokes, H. Qi, O. Glembocki, and J. Grun, “Multi-wavelength surface-enhanced Raman scattering from molecules adsorbed on plasmonic nanowires,” in Quantum Electronics and Laser Science Conference, 2012 OSA Technical Digest Series (Optical Society of America, 2012), paper QTh4F.8.
    [Crossref]
  27. M. Khanafer, I. Izquierdo-Lorenzo, S. Akil, G. Louarn, J. Toufaily, T. Hamieh, P.-M. Adam, and S. Jradi, “Silver Nanoparticle Rings of Controllable Size: Multi-Wavelength SERS Response and High Enhancement of Three Pyridine Derivatives,” ChemistrySelect 1(6), 1201–1206 (2016).
    [Crossref]
  28. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).
  29. Q. Li, Z. Yang, B. Ren, H. Xu, and Z. Tian, “The Relationship Between Extraordinary Optical Transmission and Surface-Enhanced Raman Scattering in Subwavelength Metallic Nanohole Arrays,” J. Nanosci. Nanotechnol. 10(11), 7188–7191 (2010).
    [Crossref] [PubMed]
  30. Z.-L. Yang, Q.-H. Li, B. Ren, and Z.-Q. Tian, “Tunable SERS from aluminium nanohole arrays in the ultraviolet region,” Chem. Commun. (Camb.) 47(13), 3909–3911 (2011).
    [Crossref] [PubMed]
  31. K. L. Van der Molen, F. B. Segerink, N. F. Van Hulst, and L. Kuipers, “Influence of hole size on the extraordinary transmission through subwavelength hole arrays,” Appl. Phys. Lett. 85(19), 4316–4318 (2004).
    [Crossref]
  32. T. Thio, H. F. Ghaemi, H. J. Lezec, P. A. Wolff, and T. W. Ebbesen, “Surface-plasmon-enhanced transmission through hole arrays in Cr films,” J. Opt. Soc. Am. B 16(10), 1743 (1999).
    [Crossref]
  33. Q. Fu, Z. Zhan, J. Dou, X. Zheng, R. Xu, M. Wu, and Y. Lei, “Highly Reproducible and Sensitive SERS Substrates with Ag Inter-Nanoparticle Gaps of 5 nm Fabricated by Ultrathin Aluminum Mask Technique,” ACS Appl. Mater. Interfaces 7(24), 13322–13328 (2015).
    [Crossref] [PubMed]
  34. S. Jiang, J. Guo, C. Zhang, C. Li, M. Wang, Z. Li, S. Gao, P. Chen, H. Si, and S. Xu, “A sensitive, uniform, reproducible and stable SERS substrate has been presented based on MoS 2 @Ag nanoparticles@pyramidal silicon,” RSC Advances 7(10), 5764–5773 (2017).
    [Crossref]
  35. A. Degiron, H. J. Lezec, W. L. Barnes, and T. W. Ebbesen, “Effects of hole depth on enhanced light transmission through subwavelength hole arrays,” Appl. Phys. Lett. 81(23), 4327–4329 (2002).
    [Crossref]
  36. M. G. Stanford, B. B. Lewis, K. Mahady, J. D. Fowlkes, and P. D. Rack, “Review Article: Advanced nanoscale patterning and material synthesis with gas field helium and neon ion beams,” J. Vac. Sci. Technol. B, Nanotechnol. and Microelectron. Mater. Process. Meas. Phenom. 35(3), 30802 (2017).
  37. M. Melli, A. Polyakov, D. Gargas, C. Huynh, L. Scipioni, W. Bao, D. F. Ogletree, P. J. Schuck, S. Cabrini, and A. Weber-Bargioni, “Reaching the theoretical resonance quality factor limit in coaxial plasmonic nanoresonators fabricated by helium ion lithography,” Nano Lett. 13(6), 2687–2691 (2013).
    [Crossref] [PubMed]
  38. A. Dhawan, M. D. Gerhold, and J. F. Muth, “Plasmonic Structures Based on Subwavelength Apertures for Chemical and Biological Sensing Applications,” IEEE Sens. J. 8(6), 942–950 (2008).
    [Crossref]
  39. M. Najiminaini, F. Vasefi, B. Kaminska, and J. J. L. Carson, “Nanohole-array-based device for 2D snapshot multispectral imaging,” Sci. Rep. 3(1), 2589 (2013).
    [Crossref] [PubMed]
  40. M. D. Fischbein and M. Drndić, “Sub-10 nm device fabrication in a transmission electron microscope,” Nano Lett. 7(5), 1329–1337 (2007).
    [Crossref] [PubMed]

2017 (3)

A. Mahigir, T. W. Chang, A. Behnam, G. L. Liu, M. R. Gartia, and G. Veronis, “Plasmonic nanohole array for enhancing the SERS signal of a single layer of graphene in water,” Sci. Rep. 7(1), 14044 (2017).
[Crossref] [PubMed]

S. Jiang, J. Guo, C. Zhang, C. Li, M. Wang, Z. Li, S. Gao, P. Chen, H. Si, and S. Xu, “A sensitive, uniform, reproducible and stable SERS substrate has been presented based on MoS 2 @Ag nanoparticles@pyramidal silicon,” RSC Advances 7(10), 5764–5773 (2017).
[Crossref]

M. G. Stanford, B. B. Lewis, K. Mahady, J. D. Fowlkes, and P. D. Rack, “Review Article: Advanced nanoscale patterning and material synthesis with gas field helium and neon ion beams,” J. Vac. Sci. Technol. B, Nanotechnol. and Microelectron. Mater. Process. Meas. Phenom. 35(3), 30802 (2017).

2016 (3)

M. Khanafer, I. Izquierdo-Lorenzo, S. Akil, G. Louarn, J. Toufaily, T. Hamieh, P.-M. Adam, and S. Jradi, “Silver Nanoparticle Rings of Controllable Size: Multi-Wavelength SERS Response and High Enhancement of Three Pyridine Derivatives,” ChemistrySelect 1(6), 1201–1206 (2016).
[Crossref]

Y. Sharma and A. Dhawan, “Plasmonic “nano-fingers on nanowires” as SERS substrates,” Opt. Lett. 41(9), 2085–2088 (2016).
[Crossref] [PubMed]

A. M. Jubb, Y. Jiao, G. Eres, S. T. Retterer, and B. Gu, “Elevated gold ellipse nanoantenna dimers as sensitive and tunable surface enhanced Raman spectroscopy substrates,” Nanoscale 8(10), 5641–5648 (2016).
[Crossref] [PubMed]

2015 (1)

Q. Fu, Z. Zhan, J. Dou, X. Zheng, R. Xu, M. Wu, and Y. Lei, “Highly Reproducible and Sensitive SERS Substrates with Ag Inter-Nanoparticle Gaps of 5 nm Fabricated by Ultrathin Aluminum Mask Technique,” ACS Appl. Mater. Interfaces 7(24), 13322–13328 (2015).
[Crossref] [PubMed]

2014 (1)

Y. Sharma and A. Dhawan, “Hybrid nanoparticle-nanoline plasmonic cavities as SERS substrates with gap-controlled enhancements and resonances,” Nanotechnology 25(8), 085202 (2014).
[Crossref] [PubMed]

2013 (3)

G. F. S. Andrade, J. G. Hayashi, M. M. Rahman, W. J. Salcedo, C. M. B. Cordeiro, and A. G. Brolo, “Surface-Enhanced Resonance Raman Scattering (SERRS) Using Au Nanohole Arrays on Optical Fiber Tips,” Plasmonics 8(2), 1113–1121 (2013).
[Crossref]

M. Melli, A. Polyakov, D. Gargas, C. Huynh, L. Scipioni, W. Bao, D. F. Ogletree, P. J. Schuck, S. Cabrini, and A. Weber-Bargioni, “Reaching the theoretical resonance quality factor limit in coaxial plasmonic nanoresonators fabricated by helium ion lithography,” Nano Lett. 13(6), 2687–2691 (2013).
[Crossref] [PubMed]

M. Najiminaini, F. Vasefi, B. Kaminska, and J. J. L. Carson, “Nanohole-array-based device for 2D snapshot multispectral imaging,” Sci. Rep. 3(1), 2589 (2013).
[Crossref] [PubMed]

2011 (1)

Z.-L. Yang, Q.-H. Li, B. Ren, and Z.-Q. Tian, “Tunable SERS from aluminium nanohole arrays in the ultraviolet region,” Chem. Commun. (Camb.) 47(13), 3909–3911 (2011).
[Crossref] [PubMed]

2010 (3)

Q. Li, Z. Yang, B. Ren, H. Xu, and Z. Tian, “The Relationship Between Extraordinary Optical Transmission and Surface-Enhanced Raman Scattering in Subwavelength Metallic Nanohole Arrays,” J. Nanosci. Nanotechnol. 10(11), 7188–7191 (2010).
[Crossref] [PubMed]

M. G. Banaee and K. B. Crozier, “Gold nanorings as substrates for surface-enhanced Raman scattering,” Opt. Lett. 35(5), 760–762 (2010).
[Crossref] [PubMed]

T. Vo-Dinh, A. Dhawan, S. J. Norton, C. G. Khoury, H. N. Wang, V. Misra, and M. D. Gerhold, “Plasmonic nanoparticles and nanowires: Design, fabrication and application in sensing,” J Phys Chem C Nanomater Interfaces 114(16), 7480–7488 (2010).
[Crossref] [PubMed]

2008 (3)

J. Kneipp, H. Kneipp, and K. Kneipp, “SERS-a single-molecule and nanoscale tool for bioanalytics,” Chem. Soc. Rev. 37(5), 1052–1060 (2008).
[Crossref] [PubMed]

S. Lal, N. K. Grady, J. Kundu, C. S. Levin, J. B. Lassiter, and N. J. Halas, “Tailoring plasmonic substrates for surface enhanced spectroscopies,” Chem. Soc. Rev. 37(5), 898–911 (2008).
[Crossref] [PubMed]

A. Dhawan, M. D. Gerhold, and J. F. Muth, “Plasmonic Structures Based on Subwavelength Apertures for Chemical and Biological Sensing Applications,” IEEE Sens. J. 8(6), 942–950 (2008).
[Crossref]

2007 (2)

A. Lesuffleur, L. K. S. Kumar, A. G. Brolo, K. L. Kavanagh, and R. Gordon, “Apex-enhanced Raman spectroscopy using double-hole arrays in a gold film,” J. Phys. Chem. C 111(6), 2347–2350 (2007).
[Crossref]

M. D. Fischbein and M. Drndić, “Sub-10 nm device fabrication in a transmission electron microscope,” Nano Lett. 7(5), 1329–1337 (2007).
[Crossref] [PubMed]

2006 (2)

Z. Ruan and M. Qiu, “Enhanced transmission through periodic arrays of subwavelength holes: The role of localized waveguide resonances,” Phys. Rev. Lett. 96(23), 233901 (2006).
[Crossref] [PubMed]

S. J. Lee, A. R. Morrill, and M. Moskovits, “Hot spots in silver nanowire bundles for surface-enhanced Raman spectroscopy,” J. Am. Chem. Soc. 128(7), 2200–2201 (2006).
[Crossref] [PubMed]

2005 (3)

C. J. Orendorff, A. Gole, T. K. Sau, and C. J. Murphy, “Surface-enhanced Raman spectroscopy of self-assembled monolayers: Sandwich architecture and nanoparticle shape dependence,” Anal. Chem. 77(10), 3261–3266 (2005).
[Crossref] [PubMed]

K. L. Van Der Molen, K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. Van Hulst, and L. Kuipers, “Role of shape and localized resonances in extraordinary transmission through periodic arrays of subwavelength holes: Experiment and theory,” Phys. Rev. B – Condens. Matter Mater. Phys. 72(4), 1–9 (2005).
[Crossref]

A. Degiron and T. W. Ebbesen, “The role of localized surface plasmon modes in the enhanced transmission of periodic subwavelength apertures,” J. Opt. A, Pure Appl. Opt. 7(2), S90–S96 (2005).
[Crossref]

2004 (2)

A. G. Brolo, E. Arctander, R. Gordon, B. Leathem, and K. L. Kavanagh, “Nanohole-enhanced raman scattering,” Nano Lett. 4(10), 2015–2018 (2004).
[Crossref]

K. L. Van der Molen, F. B. Segerink, N. F. Van Hulst, and L. Kuipers, “Influence of hole size on the extraordinary transmission through subwavelength hole arrays,” Appl. Phys. Lett. 85(19), 4316–4318 (2004).
[Crossref]

2003 (1)

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

2002 (2)

A. Degiron, H. J. Lezec, W. L. Barnes, and T. W. Ebbesen, “Effects of hole depth on enhanced light transmission through subwavelength hole arrays,” Appl. Phys. Lett. 81(23), 4327–4329 (2002).
[Crossref]

W. E. Doering and S. Nie, “Single-molecule and single-nanoparticle SERS: Examining the roles of surface active sites and chemical enhancement,” J. Phys. Chem. B 106(2), 311–317 (2002).
[Crossref]

2001 (1)

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86(6), 1114–1117 (2001).
[Crossref] [PubMed]

1999 (1)

1998 (1)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 86(6), 1114–1117 (1998).

1995 (1)

A. Campion, J. E. Ivanecky, C. M. Child, and M. Foster, “On the Mechanism of Chemical Enhancement in Surface-Enhanced Raman Scattering,” J. Am. Chem. Soc. 117(47), 11807–11808 (1995).
[Crossref]

1984 (1)

M. Kerker, “Electromagnetic Model for Surface-Enhanced Raman Scattering (SERS) on Metal Colloids,” Acc. Chem. Res. 17(8), 271–277 (1984).
[Crossref]

1982 (1)

1981 (1)

P. F. Liao, J. G. Bergman, D. S. Chemla, J Melngailis, A.M. Hawryluk, N.P Economou, and A. Wokaun, “Surface-enhanced raman scattering from microlithographic silver particle surfaces,” Chem. Phys. Lett.  82(2), 1–5 (1981).

Adam, P.-M.

M. Khanafer, I. Izquierdo-Lorenzo, S. Akil, G. Louarn, J. Toufaily, T. Hamieh, P.-M. Adam, and S. Jradi, “Silver Nanoparticle Rings of Controllable Size: Multi-Wavelength SERS Response and High Enhancement of Three Pyridine Derivatives,” ChemistrySelect 1(6), 1201–1206 (2016).
[Crossref]

Akil, S.

M. Khanafer, I. Izquierdo-Lorenzo, S. Akil, G. Louarn, J. Toufaily, T. Hamieh, P.-M. Adam, and S. Jradi, “Silver Nanoparticle Rings of Controllable Size: Multi-Wavelength SERS Response and High Enhancement of Three Pyridine Derivatives,” ChemistrySelect 1(6), 1201–1206 (2016).
[Crossref]

Andrade, G. F. S.

G. F. S. Andrade, J. G. Hayashi, M. M. Rahman, W. J. Salcedo, C. M. B. Cordeiro, and A. G. Brolo, “Surface-Enhanced Resonance Raman Scattering (SERRS) Using Au Nanohole Arrays on Optical Fiber Tips,” Plasmonics 8(2), 1113–1121 (2013).
[Crossref]

Arctander, E.

A. G. Brolo, E. Arctander, R. Gordon, B. Leathem, and K. L. Kavanagh, “Nanohole-enhanced raman scattering,” Nano Lett. 4(10), 2015–2018 (2004).
[Crossref]

Banaee, M. G.

Bao, W.

M. Melli, A. Polyakov, D. Gargas, C. Huynh, L. Scipioni, W. Bao, D. F. Ogletree, P. J. Schuck, S. Cabrini, and A. Weber-Bargioni, “Reaching the theoretical resonance quality factor limit in coaxial plasmonic nanoresonators fabricated by helium ion lithography,” Nano Lett. 13(6), 2687–2691 (2013).
[Crossref] [PubMed]

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

A. Degiron, H. J. Lezec, W. L. Barnes, and T. W. Ebbesen, “Effects of hole depth on enhanced light transmission through subwavelength hole arrays,” Appl. Phys. Lett. 81(23), 4327–4329 (2002).
[Crossref]

Behnam, A.

A. Mahigir, T. W. Chang, A. Behnam, G. L. Liu, M. R. Gartia, and G. Veronis, “Plasmonic nanohole array for enhancing the SERS signal of a single layer of graphene in water,” Sci. Rep. 7(1), 14044 (2017).
[Crossref] [PubMed]

Bergman, J. G.

P. F. Liao, J. G. Bergman, D. S. Chemla, J Melngailis, A.M. Hawryluk, N.P Economou, and A. Wokaun, “Surface-enhanced raman scattering from microlithographic silver particle surfaces,” Chem. Phys. Lett.  82(2), 1–5 (1981).

Brolo, A. G.

G. F. S. Andrade, J. G. Hayashi, M. M. Rahman, W. J. Salcedo, C. M. B. Cordeiro, and A. G. Brolo, “Surface-Enhanced Resonance Raman Scattering (SERRS) Using Au Nanohole Arrays on Optical Fiber Tips,” Plasmonics 8(2), 1113–1121 (2013).
[Crossref]

A. Lesuffleur, L. K. S. Kumar, A. G. Brolo, K. L. Kavanagh, and R. Gordon, “Apex-enhanced Raman spectroscopy using double-hole arrays in a gold film,” J. Phys. Chem. C 111(6), 2347–2350 (2007).
[Crossref]

A. G. Brolo, E. Arctander, R. Gordon, B. Leathem, and K. L. Kavanagh, “Nanohole-enhanced raman scattering,” Nano Lett. 4(10), 2015–2018 (2004).
[Crossref]

Cabrini, S.

M. Melli, A. Polyakov, D. Gargas, C. Huynh, L. Scipioni, W. Bao, D. F. Ogletree, P. J. Schuck, S. Cabrini, and A. Weber-Bargioni, “Reaching the theoretical resonance quality factor limit in coaxial plasmonic nanoresonators fabricated by helium ion lithography,” Nano Lett. 13(6), 2687–2691 (2013).
[Crossref] [PubMed]

Campion, A.

A. Campion, J. E. Ivanecky, C. M. Child, and M. Foster, “On the Mechanism of Chemical Enhancement in Surface-Enhanced Raman Scattering,” J. Am. Chem. Soc. 117(47), 11807–11808 (1995).
[Crossref]

Carson, J. J. L.

M. Najiminaini, F. Vasefi, B. Kaminska, and J. J. L. Carson, “Nanohole-array-based device for 2D snapshot multispectral imaging,” Sci. Rep. 3(1), 2589 (2013).
[Crossref] [PubMed]

Chang, T. W.

A. Mahigir, T. W. Chang, A. Behnam, G. L. Liu, M. R. Gartia, and G. Veronis, “Plasmonic nanohole array for enhancing the SERS signal of a single layer of graphene in water,” Sci. Rep. 7(1), 14044 (2017).
[Crossref] [PubMed]

Chemla, D. S.

P. F. Liao, J. G. Bergman, D. S. Chemla, J Melngailis, A.M. Hawryluk, N.P Economou, and A. Wokaun, “Surface-enhanced raman scattering from microlithographic silver particle surfaces,” Chem. Phys. Lett.  82(2), 1–5 (1981).

Chen, P.

S. Jiang, J. Guo, C. Zhang, C. Li, M. Wang, Z. Li, S. Gao, P. Chen, H. Si, and S. Xu, “A sensitive, uniform, reproducible and stable SERS substrate has been presented based on MoS 2 @Ag nanoparticles@pyramidal silicon,” RSC Advances 7(10), 5764–5773 (2017).
[Crossref]

Child, C. M.

A. Campion, J. E. Ivanecky, C. M. Child, and M. Foster, “On the Mechanism of Chemical Enhancement in Surface-Enhanced Raman Scattering,” J. Am. Chem. Soc. 117(47), 11807–11808 (1995).
[Crossref]

Cordeiro, C. M. B.

G. F. S. Andrade, J. G. Hayashi, M. M. Rahman, W. J. Salcedo, C. M. B. Cordeiro, and A. G. Brolo, “Surface-Enhanced Resonance Raman Scattering (SERRS) Using Au Nanohole Arrays on Optical Fiber Tips,” Plasmonics 8(2), 1113–1121 (2013).
[Crossref]

Crozier, K. B.

Degiron, A.

A. Degiron and T. W. Ebbesen, “The role of localized surface plasmon modes in the enhanced transmission of periodic subwavelength apertures,” J. Opt. A, Pure Appl. Opt. 7(2), S90–S96 (2005).
[Crossref]

A. Degiron, H. J. Lezec, W. L. Barnes, and T. W. Ebbesen, “Effects of hole depth on enhanced light transmission through subwavelength hole arrays,” Appl. Phys. Lett. 81(23), 4327–4329 (2002).
[Crossref]

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Dhawan, A.

Y. Sharma and A. Dhawan, “Plasmonic “nano-fingers on nanowires” as SERS substrates,” Opt. Lett. 41(9), 2085–2088 (2016).
[Crossref] [PubMed]

Y. Sharma and A. Dhawan, “Hybrid nanoparticle-nanoline plasmonic cavities as SERS substrates with gap-controlled enhancements and resonances,” Nanotechnology 25(8), 085202 (2014).
[Crossref] [PubMed]

T. Vo-Dinh, A. Dhawan, S. J. Norton, C. G. Khoury, H. N. Wang, V. Misra, and M. D. Gerhold, “Plasmonic nanoparticles and nanowires: Design, fabrication and application in sensing,” J Phys Chem C Nanomater Interfaces 114(16), 7480–7488 (2010).
[Crossref] [PubMed]

A. Dhawan, M. D. Gerhold, and J. F. Muth, “Plasmonic Structures Based on Subwavelength Apertures for Chemical and Biological Sensing Applications,” IEEE Sens. J. 8(6), 942–950 (2008).
[Crossref]

Doering, W. E.

W. E. Doering and S. Nie, “Single-molecule and single-nanoparticle SERS: Examining the roles of surface active sites and chemical enhancement,” J. Phys. Chem. B 106(2), 311–317 (2002).
[Crossref]

Dou, J.

Q. Fu, Z. Zhan, J. Dou, X. Zheng, R. Xu, M. Wu, and Y. Lei, “Highly Reproducible and Sensitive SERS Substrates with Ag Inter-Nanoparticle Gaps of 5 nm Fabricated by Ultrathin Aluminum Mask Technique,” ACS Appl. Mater. Interfaces 7(24), 13322–13328 (2015).
[Crossref] [PubMed]

Drndic, M.

M. D. Fischbein and M. Drndić, “Sub-10 nm device fabrication in a transmission electron microscope,” Nano Lett. 7(5), 1329–1337 (2007).
[Crossref] [PubMed]

Ebbesen, T. W.

A. Degiron and T. W. Ebbesen, “The role of localized surface plasmon modes in the enhanced transmission of periodic subwavelength apertures,” J. Opt. A, Pure Appl. Opt. 7(2), S90–S96 (2005).
[Crossref]

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

A. Degiron, H. J. Lezec, W. L. Barnes, and T. W. Ebbesen, “Effects of hole depth on enhanced light transmission through subwavelength hole arrays,” Appl. Phys. Lett. 81(23), 4327–4329 (2002).
[Crossref]

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86(6), 1114–1117 (2001).
[Crossref] [PubMed]

T. Thio, H. F. Ghaemi, H. J. Lezec, P. A. Wolff, and T. W. Ebbesen, “Surface-plasmon-enhanced transmission through hole arrays in Cr films,” J. Opt. Soc. Am. B 16(10), 1743 (1999).
[Crossref]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 86(6), 1114–1117 (1998).

Economou, N.P

P. F. Liao, J. G. Bergman, D. S. Chemla, J Melngailis, A.M. Hawryluk, N.P Economou, and A. Wokaun, “Surface-enhanced raman scattering from microlithographic silver particle surfaces,” Chem. Phys. Lett.  82(2), 1–5 (1981).

Enoch, S.

K. L. Van Der Molen, K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. Van Hulst, and L. Kuipers, “Role of shape and localized resonances in extraordinary transmission through periodic arrays of subwavelength holes: Experiment and theory,” Phys. Rev. B – Condens. Matter Mater. Phys. 72(4), 1–9 (2005).
[Crossref]

Eres, G.

A. M. Jubb, Y. Jiao, G. Eres, S. T. Retterer, and B. Gu, “Elevated gold ellipse nanoantenna dimers as sensitive and tunable surface enhanced Raman spectroscopy substrates,” Nanoscale 8(10), 5641–5648 (2016).
[Crossref] [PubMed]

Fischbein, M. D.

M. D. Fischbein and M. Drndić, “Sub-10 nm device fabrication in a transmission electron microscope,” Nano Lett. 7(5), 1329–1337 (2007).
[Crossref] [PubMed]

Foster, M.

A. Campion, J. E. Ivanecky, C. M. Child, and M. Foster, “On the Mechanism of Chemical Enhancement in Surface-Enhanced Raman Scattering,” J. Am. Chem. Soc. 117(47), 11807–11808 (1995).
[Crossref]

Fowlkes, J. D.

M. G. Stanford, B. B. Lewis, K. Mahady, J. D. Fowlkes, and P. D. Rack, “Review Article: Advanced nanoscale patterning and material synthesis with gas field helium and neon ion beams,” J. Vac. Sci. Technol. B, Nanotechnol. and Microelectron. Mater. Process. Meas. Phenom. 35(3), 30802 (2017).

Fu, Q.

Q. Fu, Z. Zhan, J. Dou, X. Zheng, R. Xu, M. Wu, and Y. Lei, “Highly Reproducible and Sensitive SERS Substrates with Ag Inter-Nanoparticle Gaps of 5 nm Fabricated by Ultrathin Aluminum Mask Technique,” ACS Appl. Mater. Interfaces 7(24), 13322–13328 (2015).
[Crossref] [PubMed]

Gao, S.

S. Jiang, J. Guo, C. Zhang, C. Li, M. Wang, Z. Li, S. Gao, P. Chen, H. Si, and S. Xu, “A sensitive, uniform, reproducible and stable SERS substrate has been presented based on MoS 2 @Ag nanoparticles@pyramidal silicon,” RSC Advances 7(10), 5764–5773 (2017).
[Crossref]

García-Vidal, F. J.

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86(6), 1114–1117 (2001).
[Crossref] [PubMed]

Gargas, D.

M. Melli, A. Polyakov, D. Gargas, C. Huynh, L. Scipioni, W. Bao, D. F. Ogletree, P. J. Schuck, S. Cabrini, and A. Weber-Bargioni, “Reaching the theoretical resonance quality factor limit in coaxial plasmonic nanoresonators fabricated by helium ion lithography,” Nano Lett. 13(6), 2687–2691 (2013).
[Crossref] [PubMed]

Garoff, S.

Gartia, M. R.

A. Mahigir, T. W. Chang, A. Behnam, G. L. Liu, M. R. Gartia, and G. Veronis, “Plasmonic nanohole array for enhancing the SERS signal of a single layer of graphene in water,” Sci. Rep. 7(1), 14044 (2017).
[Crossref] [PubMed]

Gerhold, M. D.

T. Vo-Dinh, A. Dhawan, S. J. Norton, C. G. Khoury, H. N. Wang, V. Misra, and M. D. Gerhold, “Plasmonic nanoparticles and nanowires: Design, fabrication and application in sensing,” J Phys Chem C Nanomater Interfaces 114(16), 7480–7488 (2010).
[Crossref] [PubMed]

A. Dhawan, M. D. Gerhold, and J. F. Muth, “Plasmonic Structures Based on Subwavelength Apertures for Chemical and Biological Sensing Applications,” IEEE Sens. J. 8(6), 942–950 (2008).
[Crossref]

Ghaemi, H. F.

T. Thio, H. F. Ghaemi, H. J. Lezec, P. A. Wolff, and T. W. Ebbesen, “Surface-plasmon-enhanced transmission through hole arrays in Cr films,” J. Opt. Soc. Am. B 16(10), 1743 (1999).
[Crossref]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 86(6), 1114–1117 (1998).

Gole, A.

C. J. Orendorff, A. Gole, T. K. Sau, and C. J. Murphy, “Surface-enhanced Raman spectroscopy of self-assembled monolayers: Sandwich architecture and nanoparticle shape dependence,” Anal. Chem. 77(10), 3261–3266 (2005).
[Crossref] [PubMed]

Gordon, R.

A. Lesuffleur, L. K. S. Kumar, A. G. Brolo, K. L. Kavanagh, and R. Gordon, “Apex-enhanced Raman spectroscopy using double-hole arrays in a gold film,” J. Phys. Chem. C 111(6), 2347–2350 (2007).
[Crossref]

A. G. Brolo, E. Arctander, R. Gordon, B. Leathem, and K. L. Kavanagh, “Nanohole-enhanced raman scattering,” Nano Lett. 4(10), 2015–2018 (2004).
[Crossref]

Grady, N. K.

S. Lal, N. K. Grady, J. Kundu, C. S. Levin, J. B. Lassiter, and N. J. Halas, “Tailoring plasmonic substrates for surface enhanced spectroscopies,” Chem. Soc. Rev. 37(5), 898–911 (2008).
[Crossref] [PubMed]

Gramila, T. J.

Gu, B.

A. M. Jubb, Y. Jiao, G. Eres, S. T. Retterer, and B. Gu, “Elevated gold ellipse nanoantenna dimers as sensitive and tunable surface enhanced Raman spectroscopy substrates,” Nanoscale 8(10), 5641–5648 (2016).
[Crossref] [PubMed]

Guo, J.

S. Jiang, J. Guo, C. Zhang, C. Li, M. Wang, Z. Li, S. Gao, P. Chen, H. Si, and S. Xu, “A sensitive, uniform, reproducible and stable SERS substrate has been presented based on MoS 2 @Ag nanoparticles@pyramidal silicon,” RSC Advances 7(10), 5764–5773 (2017).
[Crossref]

Halas, N. J.

S. Lal, N. K. Grady, J. Kundu, C. S. Levin, J. B. Lassiter, and N. J. Halas, “Tailoring plasmonic substrates for surface enhanced spectroscopies,” Chem. Soc. Rev. 37(5), 898–911 (2008).
[Crossref] [PubMed]

Hamieh, T.

M. Khanafer, I. Izquierdo-Lorenzo, S. Akil, G. Louarn, J. Toufaily, T. Hamieh, P.-M. Adam, and S. Jradi, “Silver Nanoparticle Rings of Controllable Size: Multi-Wavelength SERS Response and High Enhancement of Three Pyridine Derivatives,” ChemistrySelect 1(6), 1201–1206 (2016).
[Crossref]

Hawryluk, A.M.

P. F. Liao, J. G. Bergman, D. S. Chemla, J Melngailis, A.M. Hawryluk, N.P Economou, and A. Wokaun, “Surface-enhanced raman scattering from microlithographic silver particle surfaces,” Chem. Phys. Lett.  82(2), 1–5 (1981).

Hayashi, J. G.

G. F. S. Andrade, J. G. Hayashi, M. M. Rahman, W. J. Salcedo, C. M. B. Cordeiro, and A. G. Brolo, “Surface-Enhanced Resonance Raman Scattering (SERRS) Using Au Nanohole Arrays on Optical Fiber Tips,” Plasmonics 8(2), 1113–1121 (2013).
[Crossref]

Huynh, C.

M. Melli, A. Polyakov, D. Gargas, C. Huynh, L. Scipioni, W. Bao, D. F. Ogletree, P. J. Schuck, S. Cabrini, and A. Weber-Bargioni, “Reaching the theoretical resonance quality factor limit in coaxial plasmonic nanoresonators fabricated by helium ion lithography,” Nano Lett. 13(6), 2687–2691 (2013).
[Crossref] [PubMed]

Ivanecky, J. E.

A. Campion, J. E. Ivanecky, C. M. Child, and M. Foster, “On the Mechanism of Chemical Enhancement in Surface-Enhanced Raman Scattering,” J. Am. Chem. Soc. 117(47), 11807–11808 (1995).
[Crossref]

Izquierdo-Lorenzo, I.

M. Khanafer, I. Izquierdo-Lorenzo, S. Akil, G. Louarn, J. Toufaily, T. Hamieh, P.-M. Adam, and S. Jradi, “Silver Nanoparticle Rings of Controllable Size: Multi-Wavelength SERS Response and High Enhancement of Three Pyridine Derivatives,” ChemistrySelect 1(6), 1201–1206 (2016).
[Crossref]

Jiang, S.

S. Jiang, J. Guo, C. Zhang, C. Li, M. Wang, Z. Li, S. Gao, P. Chen, H. Si, and S. Xu, “A sensitive, uniform, reproducible and stable SERS substrate has been presented based on MoS 2 @Ag nanoparticles@pyramidal silicon,” RSC Advances 7(10), 5764–5773 (2017).
[Crossref]

Jiao, Y.

A. M. Jubb, Y. Jiao, G. Eres, S. T. Retterer, and B. Gu, “Elevated gold ellipse nanoantenna dimers as sensitive and tunable surface enhanced Raman spectroscopy substrates,” Nanoscale 8(10), 5641–5648 (2016).
[Crossref] [PubMed]

Jradi, S.

M. Khanafer, I. Izquierdo-Lorenzo, S. Akil, G. Louarn, J. Toufaily, T. Hamieh, P.-M. Adam, and S. Jradi, “Silver Nanoparticle Rings of Controllable Size: Multi-Wavelength SERS Response and High Enhancement of Three Pyridine Derivatives,” ChemistrySelect 1(6), 1201–1206 (2016).
[Crossref]

Jubb, A. M.

A. M. Jubb, Y. Jiao, G. Eres, S. T. Retterer, and B. Gu, “Elevated gold ellipse nanoantenna dimers as sensitive and tunable surface enhanced Raman spectroscopy substrates,” Nanoscale 8(10), 5641–5648 (2016).
[Crossref] [PubMed]

Kaminska, B.

M. Najiminaini, F. Vasefi, B. Kaminska, and J. J. L. Carson, “Nanohole-array-based device for 2D snapshot multispectral imaging,” Sci. Rep. 3(1), 2589 (2013).
[Crossref] [PubMed]

Kavanagh, K. L.

A. Lesuffleur, L. K. S. Kumar, A. G. Brolo, K. L. Kavanagh, and R. Gordon, “Apex-enhanced Raman spectroscopy using double-hole arrays in a gold film,” J. Phys. Chem. C 111(6), 2347–2350 (2007).
[Crossref]

A. G. Brolo, E. Arctander, R. Gordon, B. Leathem, and K. L. Kavanagh, “Nanohole-enhanced raman scattering,” Nano Lett. 4(10), 2015–2018 (2004).
[Crossref]

Kerker, M.

M. Kerker, “Electromagnetic Model for Surface-Enhanced Raman Scattering (SERS) on Metal Colloids,” Acc. Chem. Res. 17(8), 271–277 (1984).
[Crossref]

Khanafer, M.

M. Khanafer, I. Izquierdo-Lorenzo, S. Akil, G. Louarn, J. Toufaily, T. Hamieh, P.-M. Adam, and S. Jradi, “Silver Nanoparticle Rings of Controllable Size: Multi-Wavelength SERS Response and High Enhancement of Three Pyridine Derivatives,” ChemistrySelect 1(6), 1201–1206 (2016).
[Crossref]

Khoury, C. G.

T. Vo-Dinh, A. Dhawan, S. J. Norton, C. G. Khoury, H. N. Wang, V. Misra, and M. D. Gerhold, “Plasmonic nanoparticles and nanowires: Design, fabrication and application in sensing,” J Phys Chem C Nanomater Interfaces 114(16), 7480–7488 (2010).
[Crossref] [PubMed]

Klein Koerkamp, K. J.

K. L. Van Der Molen, K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. Van Hulst, and L. Kuipers, “Role of shape and localized resonances in extraordinary transmission through periodic arrays of subwavelength holes: Experiment and theory,” Phys. Rev. B – Condens. Matter Mater. Phys. 72(4), 1–9 (2005).
[Crossref]

Kneipp, H.

J. Kneipp, H. Kneipp, and K. Kneipp, “SERS-a single-molecule and nanoscale tool for bioanalytics,” Chem. Soc. Rev. 37(5), 1052–1060 (2008).
[Crossref] [PubMed]

Kneipp, J.

J. Kneipp, H. Kneipp, and K. Kneipp, “SERS-a single-molecule and nanoscale tool for bioanalytics,” Chem. Soc. Rev. 37(5), 1052–1060 (2008).
[Crossref] [PubMed]

Kneipp, K.

J. Kneipp, H. Kneipp, and K. Kneipp, “SERS-a single-molecule and nanoscale tool for bioanalytics,” Chem. Soc. Rev. 37(5), 1052–1060 (2008).
[Crossref] [PubMed]

Kuipers, L.

K. L. Van Der Molen, K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. Van Hulst, and L. Kuipers, “Role of shape and localized resonances in extraordinary transmission through periodic arrays of subwavelength holes: Experiment and theory,” Phys. Rev. B – Condens. Matter Mater. Phys. 72(4), 1–9 (2005).
[Crossref]

K. L. Van der Molen, F. B. Segerink, N. F. Van Hulst, and L. Kuipers, “Influence of hole size on the extraordinary transmission through subwavelength hole arrays,” Appl. Phys. Lett. 85(19), 4316–4318 (2004).
[Crossref]

Kumar, L. K. S.

A. Lesuffleur, L. K. S. Kumar, A. G. Brolo, K. L. Kavanagh, and R. Gordon, “Apex-enhanced Raman spectroscopy using double-hole arrays in a gold film,” J. Phys. Chem. C 111(6), 2347–2350 (2007).
[Crossref]

Kundu, J.

S. Lal, N. K. Grady, J. Kundu, C. S. Levin, J. B. Lassiter, and N. J. Halas, “Tailoring plasmonic substrates for surface enhanced spectroscopies,” Chem. Soc. Rev. 37(5), 898–911 (2008).
[Crossref] [PubMed]

Lal, S.

S. Lal, N. K. Grady, J. Kundu, C. S. Levin, J. B. Lassiter, and N. J. Halas, “Tailoring plasmonic substrates for surface enhanced spectroscopies,” Chem. Soc. Rev. 37(5), 898–911 (2008).
[Crossref] [PubMed]

Lassiter, J. B.

S. Lal, N. K. Grady, J. Kundu, C. S. Levin, J. B. Lassiter, and N. J. Halas, “Tailoring plasmonic substrates for surface enhanced spectroscopies,” Chem. Soc. Rev. 37(5), 898–911 (2008).
[Crossref] [PubMed]

Leathem, B.

A. G. Brolo, E. Arctander, R. Gordon, B. Leathem, and K. L. Kavanagh, “Nanohole-enhanced raman scattering,” Nano Lett. 4(10), 2015–2018 (2004).
[Crossref]

Lee, S. J.

S. J. Lee, A. R. Morrill, and M. Moskovits, “Hot spots in silver nanowire bundles for surface-enhanced Raman spectroscopy,” J. Am. Chem. Soc. 128(7), 2200–2201 (2006).
[Crossref] [PubMed]

Lei, Y.

Q. Fu, Z. Zhan, J. Dou, X. Zheng, R. Xu, M. Wu, and Y. Lei, “Highly Reproducible and Sensitive SERS Substrates with Ag Inter-Nanoparticle Gaps of 5 nm Fabricated by Ultrathin Aluminum Mask Technique,” ACS Appl. Mater. Interfaces 7(24), 13322–13328 (2015).
[Crossref] [PubMed]

Lesuffleur, A.

A. Lesuffleur, L. K. S. Kumar, A. G. Brolo, K. L. Kavanagh, and R. Gordon, “Apex-enhanced Raman spectroscopy using double-hole arrays in a gold film,” J. Phys. Chem. C 111(6), 2347–2350 (2007).
[Crossref]

Levin, C. S.

S. Lal, N. K. Grady, J. Kundu, C. S. Levin, J. B. Lassiter, and N. J. Halas, “Tailoring plasmonic substrates for surface enhanced spectroscopies,” Chem. Soc. Rev. 37(5), 898–911 (2008).
[Crossref] [PubMed]

Lewis, B. B.

M. G. Stanford, B. B. Lewis, K. Mahady, J. D. Fowlkes, and P. D. Rack, “Review Article: Advanced nanoscale patterning and material synthesis with gas field helium and neon ion beams,” J. Vac. Sci. Technol. B, Nanotechnol. and Microelectron. Mater. Process. Meas. Phenom. 35(3), 30802 (2017).

Lezec, H. J.

A. Degiron, H. J. Lezec, W. L. Barnes, and T. W. Ebbesen, “Effects of hole depth on enhanced light transmission through subwavelength hole arrays,” Appl. Phys. Lett. 81(23), 4327–4329 (2002).
[Crossref]

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86(6), 1114–1117 (2001).
[Crossref] [PubMed]

T. Thio, H. F. Ghaemi, H. J. Lezec, P. A. Wolff, and T. W. Ebbesen, “Surface-plasmon-enhanced transmission through hole arrays in Cr films,” J. Opt. Soc. Am. B 16(10), 1743 (1999).
[Crossref]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 86(6), 1114–1117 (1998).

Li, C.

S. Jiang, J. Guo, C. Zhang, C. Li, M. Wang, Z. Li, S. Gao, P. Chen, H. Si, and S. Xu, “A sensitive, uniform, reproducible and stable SERS substrate has been presented based on MoS 2 @Ag nanoparticles@pyramidal silicon,” RSC Advances 7(10), 5764–5773 (2017).
[Crossref]

Li, Q.

Q. Li, Z. Yang, B. Ren, H. Xu, and Z. Tian, “The Relationship Between Extraordinary Optical Transmission and Surface-Enhanced Raman Scattering in Subwavelength Metallic Nanohole Arrays,” J. Nanosci. Nanotechnol. 10(11), 7188–7191 (2010).
[Crossref] [PubMed]

Li, Q.-H.

Z.-L. Yang, Q.-H. Li, B. Ren, and Z.-Q. Tian, “Tunable SERS from aluminium nanohole arrays in the ultraviolet region,” Chem. Commun. (Camb.) 47(13), 3909–3911 (2011).
[Crossref] [PubMed]

Li, Z.

S. Jiang, J. Guo, C. Zhang, C. Li, M. Wang, Z. Li, S. Gao, P. Chen, H. Si, and S. Xu, “A sensitive, uniform, reproducible and stable SERS substrate has been presented based on MoS 2 @Ag nanoparticles@pyramidal silicon,” RSC Advances 7(10), 5764–5773 (2017).
[Crossref]

Liao, P. F.

P. F. Liao, J. G. Bergman, D. S. Chemla, J Melngailis, A.M. Hawryluk, N.P Economou, and A. Wokaun, “Surface-enhanced raman scattering from microlithographic silver particle surfaces,” Chem. Phys. Lett.  82(2), 1–5 (1981).

Liu, G. L.

A. Mahigir, T. W. Chang, A. Behnam, G. L. Liu, M. R. Gartia, and G. Veronis, “Plasmonic nanohole array for enhancing the SERS signal of a single layer of graphene in water,” Sci. Rep. 7(1), 14044 (2017).
[Crossref] [PubMed]

Louarn, G.

M. Khanafer, I. Izquierdo-Lorenzo, S. Akil, G. Louarn, J. Toufaily, T. Hamieh, P.-M. Adam, and S. Jradi, “Silver Nanoparticle Rings of Controllable Size: Multi-Wavelength SERS Response and High Enhancement of Three Pyridine Derivatives,” ChemistrySelect 1(6), 1201–1206 (2016).
[Crossref]

Mahady, K.

M. G. Stanford, B. B. Lewis, K. Mahady, J. D. Fowlkes, and P. D. Rack, “Review Article: Advanced nanoscale patterning and material synthesis with gas field helium and neon ion beams,” J. Vac. Sci. Technol. B, Nanotechnol. and Microelectron. Mater. Process. Meas. Phenom. 35(3), 30802 (2017).

Mahigir, A.

A. Mahigir, T. W. Chang, A. Behnam, G. L. Liu, M. R. Gartia, and G. Veronis, “Plasmonic nanohole array for enhancing the SERS signal of a single layer of graphene in water,” Sci. Rep. 7(1), 14044 (2017).
[Crossref] [PubMed]

Martín-Moreno, L.

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86(6), 1114–1117 (2001).
[Crossref] [PubMed]

Melli, M.

M. Melli, A. Polyakov, D. Gargas, C. Huynh, L. Scipioni, W. Bao, D. F. Ogletree, P. J. Schuck, S. Cabrini, and A. Weber-Bargioni, “Reaching the theoretical resonance quality factor limit in coaxial plasmonic nanoresonators fabricated by helium ion lithography,” Nano Lett. 13(6), 2687–2691 (2013).
[Crossref] [PubMed]

Melngailis, J

P. F. Liao, J. G. Bergman, D. S. Chemla, J Melngailis, A.M. Hawryluk, N.P Economou, and A. Wokaun, “Surface-enhanced raman scattering from microlithographic silver particle surfaces,” Chem. Phys. Lett.  82(2), 1–5 (1981).

Misra, V.

T. Vo-Dinh, A. Dhawan, S. J. Norton, C. G. Khoury, H. N. Wang, V. Misra, and M. D. Gerhold, “Plasmonic nanoparticles and nanowires: Design, fabrication and application in sensing,” J Phys Chem C Nanomater Interfaces 114(16), 7480–7488 (2010).
[Crossref] [PubMed]

Morrill, A. R.

S. J. Lee, A. R. Morrill, and M. Moskovits, “Hot spots in silver nanowire bundles for surface-enhanced Raman spectroscopy,” J. Am. Chem. Soc. 128(7), 2200–2201 (2006).
[Crossref] [PubMed]

Moskovits, M.

S. J. Lee, A. R. Morrill, and M. Moskovits, “Hot spots in silver nanowire bundles for surface-enhanced Raman spectroscopy,” J. Am. Chem. Soc. 128(7), 2200–2201 (2006).
[Crossref] [PubMed]

Murphy, C. J.

C. J. Orendorff, A. Gole, T. K. Sau, and C. J. Murphy, “Surface-enhanced Raman spectroscopy of self-assembled monolayers: Sandwich architecture and nanoparticle shape dependence,” Anal. Chem. 77(10), 3261–3266 (2005).
[Crossref] [PubMed]

Muth, J. F.

A. Dhawan, M. D. Gerhold, and J. F. Muth, “Plasmonic Structures Based on Subwavelength Apertures for Chemical and Biological Sensing Applications,” IEEE Sens. J. 8(6), 942–950 (2008).
[Crossref]

Najiminaini, M.

M. Najiminaini, F. Vasefi, B. Kaminska, and J. J. L. Carson, “Nanohole-array-based device for 2D snapshot multispectral imaging,” Sci. Rep. 3(1), 2589 (2013).
[Crossref] [PubMed]

Nie, S.

W. E. Doering and S. Nie, “Single-molecule and single-nanoparticle SERS: Examining the roles of surface active sites and chemical enhancement,” J. Phys. Chem. B 106(2), 311–317 (2002).
[Crossref]

Norton, S. J.

T. Vo-Dinh, A. Dhawan, S. J. Norton, C. G. Khoury, H. N. Wang, V. Misra, and M. D. Gerhold, “Plasmonic nanoparticles and nanowires: Design, fabrication and application in sensing,” J Phys Chem C Nanomater Interfaces 114(16), 7480–7488 (2010).
[Crossref] [PubMed]

Ogletree, D. F.

M. Melli, A. Polyakov, D. Gargas, C. Huynh, L. Scipioni, W. Bao, D. F. Ogletree, P. J. Schuck, S. Cabrini, and A. Weber-Bargioni, “Reaching the theoretical resonance quality factor limit in coaxial plasmonic nanoresonators fabricated by helium ion lithography,” Nano Lett. 13(6), 2687–2691 (2013).
[Crossref] [PubMed]

Orendorff, C. J.

C. J. Orendorff, A. Gole, T. K. Sau, and C. J. Murphy, “Surface-enhanced Raman spectroscopy of self-assembled monolayers: Sandwich architecture and nanoparticle shape dependence,” Anal. Chem. 77(10), 3261–3266 (2005).
[Crossref] [PubMed]

Pellerin, K. M.

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86(6), 1114–1117 (2001).
[Crossref] [PubMed]

Pendry, J. B.

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86(6), 1114–1117 (2001).
[Crossref] [PubMed]

Polyakov, A.

M. Melli, A. Polyakov, D. Gargas, C. Huynh, L. Scipioni, W. Bao, D. F. Ogletree, P. J. Schuck, S. Cabrini, and A. Weber-Bargioni, “Reaching the theoretical resonance quality factor limit in coaxial plasmonic nanoresonators fabricated by helium ion lithography,” Nano Lett. 13(6), 2687–2691 (2013).
[Crossref] [PubMed]

Qiu, M.

Z. Ruan and M. Qiu, “Enhanced transmission through periodic arrays of subwavelength holes: The role of localized waveguide resonances,” Phys. Rev. Lett. 96(23), 233901 (2006).
[Crossref] [PubMed]

Rack, P. D.

M. G. Stanford, B. B. Lewis, K. Mahady, J. D. Fowlkes, and P. D. Rack, “Review Article: Advanced nanoscale patterning and material synthesis with gas field helium and neon ion beams,” J. Vac. Sci. Technol. B, Nanotechnol. and Microelectron. Mater. Process. Meas. Phenom. 35(3), 30802 (2017).

Rahman, M. M.

G. F. S. Andrade, J. G. Hayashi, M. M. Rahman, W. J. Salcedo, C. M. B. Cordeiro, and A. G. Brolo, “Surface-Enhanced Resonance Raman Scattering (SERRS) Using Au Nanohole Arrays on Optical Fiber Tips,” Plasmonics 8(2), 1113–1121 (2013).
[Crossref]

Ren, B.

Z.-L. Yang, Q.-H. Li, B. Ren, and Z.-Q. Tian, “Tunable SERS from aluminium nanohole arrays in the ultraviolet region,” Chem. Commun. (Camb.) 47(13), 3909–3911 (2011).
[Crossref] [PubMed]

Q. Li, Z. Yang, B. Ren, H. Xu, and Z. Tian, “The Relationship Between Extraordinary Optical Transmission and Surface-Enhanced Raman Scattering in Subwavelength Metallic Nanohole Arrays,” J. Nanosci. Nanotechnol. 10(11), 7188–7191 (2010).
[Crossref] [PubMed]

Retterer, S. T.

A. M. Jubb, Y. Jiao, G. Eres, S. T. Retterer, and B. Gu, “Elevated gold ellipse nanoantenna dimers as sensitive and tunable surface enhanced Raman spectroscopy substrates,” Nanoscale 8(10), 5641–5648 (2016).
[Crossref] [PubMed]

Ruan, Z.

Z. Ruan and M. Qiu, “Enhanced transmission through periodic arrays of subwavelength holes: The role of localized waveguide resonances,” Phys. Rev. Lett. 96(23), 233901 (2006).
[Crossref] [PubMed]

Salcedo, W. J.

G. F. S. Andrade, J. G. Hayashi, M. M. Rahman, W. J. Salcedo, C. M. B. Cordeiro, and A. G. Brolo, “Surface-Enhanced Resonance Raman Scattering (SERRS) Using Au Nanohole Arrays on Optical Fiber Tips,” Plasmonics 8(2), 1113–1121 (2013).
[Crossref]

Sau, T. K.

C. J. Orendorff, A. Gole, T. K. Sau, and C. J. Murphy, “Surface-enhanced Raman spectroscopy of self-assembled monolayers: Sandwich architecture and nanoparticle shape dependence,” Anal. Chem. 77(10), 3261–3266 (2005).
[Crossref] [PubMed]

Schuck, P. J.

M. Melli, A. Polyakov, D. Gargas, C. Huynh, L. Scipioni, W. Bao, D. F. Ogletree, P. J. Schuck, S. Cabrini, and A. Weber-Bargioni, “Reaching the theoretical resonance quality factor limit in coaxial plasmonic nanoresonators fabricated by helium ion lithography,” Nano Lett. 13(6), 2687–2691 (2013).
[Crossref] [PubMed]

Scipioni, L.

M. Melli, A. Polyakov, D. Gargas, C. Huynh, L. Scipioni, W. Bao, D. F. Ogletree, P. J. Schuck, S. Cabrini, and A. Weber-Bargioni, “Reaching the theoretical resonance quality factor limit in coaxial plasmonic nanoresonators fabricated by helium ion lithography,” Nano Lett. 13(6), 2687–2691 (2013).
[Crossref] [PubMed]

Segerink, F. B.

K. L. Van Der Molen, K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. Van Hulst, and L. Kuipers, “Role of shape and localized resonances in extraordinary transmission through periodic arrays of subwavelength holes: Experiment and theory,” Phys. Rev. B – Condens. Matter Mater. Phys. 72(4), 1–9 (2005).
[Crossref]

K. L. Van der Molen, F. B. Segerink, N. F. Van Hulst, and L. Kuipers, “Influence of hole size on the extraordinary transmission through subwavelength hole arrays,” Appl. Phys. Lett. 85(19), 4316–4318 (2004).
[Crossref]

Sharma, Y.

Y. Sharma and A. Dhawan, “Plasmonic “nano-fingers on nanowires” as SERS substrates,” Opt. Lett. 41(9), 2085–2088 (2016).
[Crossref] [PubMed]

Y. Sharma and A. Dhawan, “Hybrid nanoparticle-nanoline plasmonic cavities as SERS substrates with gap-controlled enhancements and resonances,” Nanotechnology 25(8), 085202 (2014).
[Crossref] [PubMed]

Si, H.

S. Jiang, J. Guo, C. Zhang, C. Li, M. Wang, Z. Li, S. Gao, P. Chen, H. Si, and S. Xu, “A sensitive, uniform, reproducible and stable SERS substrate has been presented based on MoS 2 @Ag nanoparticles@pyramidal silicon,” RSC Advances 7(10), 5764–5773 (2017).
[Crossref]

Stanford, M. G.

M. G. Stanford, B. B. Lewis, K. Mahady, J. D. Fowlkes, and P. D. Rack, “Review Article: Advanced nanoscale patterning and material synthesis with gas field helium and neon ion beams,” J. Vac. Sci. Technol. B, Nanotechnol. and Microelectron. Mater. Process. Meas. Phenom. 35(3), 30802 (2017).

Thio, T.

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86(6), 1114–1117 (2001).
[Crossref] [PubMed]

T. Thio, H. F. Ghaemi, H. J. Lezec, P. A. Wolff, and T. W. Ebbesen, “Surface-plasmon-enhanced transmission through hole arrays in Cr films,” J. Opt. Soc. Am. B 16(10), 1743 (1999).
[Crossref]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 86(6), 1114–1117 (1998).

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 86(6), 1114–1117 (1998).

Tian, Z.

Q. Li, Z. Yang, B. Ren, H. Xu, and Z. Tian, “The Relationship Between Extraordinary Optical Transmission and Surface-Enhanced Raman Scattering in Subwavelength Metallic Nanohole Arrays,” J. Nanosci. Nanotechnol. 10(11), 7188–7191 (2010).
[Crossref] [PubMed]

Tian, Z.-Q.

Z.-L. Yang, Q.-H. Li, B. Ren, and Z.-Q. Tian, “Tunable SERS from aluminium nanohole arrays in the ultraviolet region,” Chem. Commun. (Camb.) 47(13), 3909–3911 (2011).
[Crossref] [PubMed]

Toufaily, J.

M. Khanafer, I. Izquierdo-Lorenzo, S. Akil, G. Louarn, J. Toufaily, T. Hamieh, P.-M. Adam, and S. Jradi, “Silver Nanoparticle Rings of Controllable Size: Multi-Wavelength SERS Response and High Enhancement of Three Pyridine Derivatives,” ChemistrySelect 1(6), 1201–1206 (2016).
[Crossref]

Van Der Molen, K. L.

K. L. Van Der Molen, K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. Van Hulst, and L. Kuipers, “Role of shape and localized resonances in extraordinary transmission through periodic arrays of subwavelength holes: Experiment and theory,” Phys. Rev. B – Condens. Matter Mater. Phys. 72(4), 1–9 (2005).
[Crossref]

K. L. Van der Molen, F. B. Segerink, N. F. Van Hulst, and L. Kuipers, “Influence of hole size on the extraordinary transmission through subwavelength hole arrays,” Appl. Phys. Lett. 85(19), 4316–4318 (2004).
[Crossref]

Van Hulst, N. F.

K. L. Van Der Molen, K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. Van Hulst, and L. Kuipers, “Role of shape and localized resonances in extraordinary transmission through periodic arrays of subwavelength holes: Experiment and theory,” Phys. Rev. B – Condens. Matter Mater. Phys. 72(4), 1–9 (2005).
[Crossref]

K. L. Van der Molen, F. B. Segerink, N. F. Van Hulst, and L. Kuipers, “Influence of hole size on the extraordinary transmission through subwavelength hole arrays,” Appl. Phys. Lett. 85(19), 4316–4318 (2004).
[Crossref]

Vasefi, F.

M. Najiminaini, F. Vasefi, B. Kaminska, and J. J. L. Carson, “Nanohole-array-based device for 2D snapshot multispectral imaging,” Sci. Rep. 3(1), 2589 (2013).
[Crossref] [PubMed]

Veronis, G.

A. Mahigir, T. W. Chang, A. Behnam, G. L. Liu, M. R. Gartia, and G. Veronis, “Plasmonic nanohole array for enhancing the SERS signal of a single layer of graphene in water,” Sci. Rep. 7(1), 14044 (2017).
[Crossref] [PubMed]

Vo-Dinh, T.

T. Vo-Dinh, A. Dhawan, S. J. Norton, C. G. Khoury, H. N. Wang, V. Misra, and M. D. Gerhold, “Plasmonic nanoparticles and nanowires: Design, fabrication and application in sensing,” J Phys Chem C Nanomater Interfaces 114(16), 7480–7488 (2010).
[Crossref] [PubMed]

Wang, H. N.

T. Vo-Dinh, A. Dhawan, S. J. Norton, C. G. Khoury, H. N. Wang, V. Misra, and M. D. Gerhold, “Plasmonic nanoparticles and nanowires: Design, fabrication and application in sensing,” J Phys Chem C Nanomater Interfaces 114(16), 7480–7488 (2010).
[Crossref] [PubMed]

Wang, M.

S. Jiang, J. Guo, C. Zhang, C. Li, M. Wang, Z. Li, S. Gao, P. Chen, H. Si, and S. Xu, “A sensitive, uniform, reproducible and stable SERS substrate has been presented based on MoS 2 @Ag nanoparticles@pyramidal silicon,” RSC Advances 7(10), 5764–5773 (2017).
[Crossref]

Weber-Bargioni, A.

M. Melli, A. Polyakov, D. Gargas, C. Huynh, L. Scipioni, W. Bao, D. F. Ogletree, P. J. Schuck, S. Cabrini, and A. Weber-Bargioni, “Reaching the theoretical resonance quality factor limit in coaxial plasmonic nanoresonators fabricated by helium ion lithography,” Nano Lett. 13(6), 2687–2691 (2013).
[Crossref] [PubMed]

Weitz, D. A.

Wokaun, A.

P. F. Liao, J. G. Bergman, D. S. Chemla, J Melngailis, A.M. Hawryluk, N.P Economou, and A. Wokaun, “Surface-enhanced raman scattering from microlithographic silver particle surfaces,” Chem. Phys. Lett.  82(2), 1–5 (1981).

Wolff, P. A.

T. Thio, H. F. Ghaemi, H. J. Lezec, P. A. Wolff, and T. W. Ebbesen, “Surface-plasmon-enhanced transmission through hole arrays in Cr films,” J. Opt. Soc. Am. B 16(10), 1743 (1999).
[Crossref]

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 86(6), 1114–1117 (1998).

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 86(6), 1114–1117 (1998).

Wu, M.

Q. Fu, Z. Zhan, J. Dou, X. Zheng, R. Xu, M. Wu, and Y. Lei, “Highly Reproducible and Sensitive SERS Substrates with Ag Inter-Nanoparticle Gaps of 5 nm Fabricated by Ultrathin Aluminum Mask Technique,” ACS Appl. Mater. Interfaces 7(24), 13322–13328 (2015).
[Crossref] [PubMed]

Xu, H.

Q. Li, Z. Yang, B. Ren, H. Xu, and Z. Tian, “The Relationship Between Extraordinary Optical Transmission and Surface-Enhanced Raman Scattering in Subwavelength Metallic Nanohole Arrays,” J. Nanosci. Nanotechnol. 10(11), 7188–7191 (2010).
[Crossref] [PubMed]

Xu, R.

Q. Fu, Z. Zhan, J. Dou, X. Zheng, R. Xu, M. Wu, and Y. Lei, “Highly Reproducible and Sensitive SERS Substrates with Ag Inter-Nanoparticle Gaps of 5 nm Fabricated by Ultrathin Aluminum Mask Technique,” ACS Appl. Mater. Interfaces 7(24), 13322–13328 (2015).
[Crossref] [PubMed]

Xu, S.

S. Jiang, J. Guo, C. Zhang, C. Li, M. Wang, Z. Li, S. Gao, P. Chen, H. Si, and S. Xu, “A sensitive, uniform, reproducible and stable SERS substrate has been presented based on MoS 2 @Ag nanoparticles@pyramidal silicon,” RSC Advances 7(10), 5764–5773 (2017).
[Crossref]

Yang, Z.

Q. Li, Z. Yang, B. Ren, H. Xu, and Z. Tian, “The Relationship Between Extraordinary Optical Transmission and Surface-Enhanced Raman Scattering in Subwavelength Metallic Nanohole Arrays,” J. Nanosci. Nanotechnol. 10(11), 7188–7191 (2010).
[Crossref] [PubMed]

Yang, Z.-L.

Z.-L. Yang, Q.-H. Li, B. Ren, and Z.-Q. Tian, “Tunable SERS from aluminium nanohole arrays in the ultraviolet region,” Chem. Commun. (Camb.) 47(13), 3909–3911 (2011).
[Crossref] [PubMed]

Zhan, Z.

Q. Fu, Z. Zhan, J. Dou, X. Zheng, R. Xu, M. Wu, and Y. Lei, “Highly Reproducible and Sensitive SERS Substrates with Ag Inter-Nanoparticle Gaps of 5 nm Fabricated by Ultrathin Aluminum Mask Technique,” ACS Appl. Mater. Interfaces 7(24), 13322–13328 (2015).
[Crossref] [PubMed]

Zhang, C.

S. Jiang, J. Guo, C. Zhang, C. Li, M. Wang, Z. Li, S. Gao, P. Chen, H. Si, and S. Xu, “A sensitive, uniform, reproducible and stable SERS substrate has been presented based on MoS 2 @Ag nanoparticles@pyramidal silicon,” RSC Advances 7(10), 5764–5773 (2017).
[Crossref]

Zheng, X.

Q. Fu, Z. Zhan, J. Dou, X. Zheng, R. Xu, M. Wu, and Y. Lei, “Highly Reproducible and Sensitive SERS Substrates with Ag Inter-Nanoparticle Gaps of 5 nm Fabricated by Ultrathin Aluminum Mask Technique,” ACS Appl. Mater. Interfaces 7(24), 13322–13328 (2015).
[Crossref] [PubMed]

Acc. Chem. Res. (1)

M. Kerker, “Electromagnetic Model for Surface-Enhanced Raman Scattering (SERS) on Metal Colloids,” Acc. Chem. Res. 17(8), 271–277 (1984).
[Crossref]

ACS Appl. Mater. Interfaces (1)

Q. Fu, Z. Zhan, J. Dou, X. Zheng, R. Xu, M. Wu, and Y. Lei, “Highly Reproducible and Sensitive SERS Substrates with Ag Inter-Nanoparticle Gaps of 5 nm Fabricated by Ultrathin Aluminum Mask Technique,” ACS Appl. Mater. Interfaces 7(24), 13322–13328 (2015).
[Crossref] [PubMed]

Anal. Chem. (1)

C. J. Orendorff, A. Gole, T. K. Sau, and C. J. Murphy, “Surface-enhanced Raman spectroscopy of self-assembled monolayers: Sandwich architecture and nanoparticle shape dependence,” Anal. Chem. 77(10), 3261–3266 (2005).
[Crossref] [PubMed]

Appl. Phys. Lett. (2)

A. Degiron, H. J. Lezec, W. L. Barnes, and T. W. Ebbesen, “Effects of hole depth on enhanced light transmission through subwavelength hole arrays,” Appl. Phys. Lett. 81(23), 4327–4329 (2002).
[Crossref]

K. L. Van der Molen, F. B. Segerink, N. F. Van Hulst, and L. Kuipers, “Influence of hole size on the extraordinary transmission through subwavelength hole arrays,” Appl. Phys. Lett. 85(19), 4316–4318 (2004).
[Crossref]

Chem. Commun. (Camb.) (1)

Z.-L. Yang, Q.-H. Li, B. Ren, and Z.-Q. Tian, “Tunable SERS from aluminium nanohole arrays in the ultraviolet region,” Chem. Commun. (Camb.) 47(13), 3909–3911 (2011).
[Crossref] [PubMed]

Chem. Phys. Lett (1)

P. F. Liao, J. G. Bergman, D. S. Chemla, J Melngailis, A.M. Hawryluk, N.P Economou, and A. Wokaun, “Surface-enhanced raman scattering from microlithographic silver particle surfaces,” Chem. Phys. Lett.  82(2), 1–5 (1981).

Chem. Soc. Rev. (2)

J. Kneipp, H. Kneipp, and K. Kneipp, “SERS-a single-molecule and nanoscale tool for bioanalytics,” Chem. Soc. Rev. 37(5), 1052–1060 (2008).
[Crossref] [PubMed]

S. Lal, N. K. Grady, J. Kundu, C. S. Levin, J. B. Lassiter, and N. J. Halas, “Tailoring plasmonic substrates for surface enhanced spectroscopies,” Chem. Soc. Rev. 37(5), 898–911 (2008).
[Crossref] [PubMed]

ChemistrySelect (1)

M. Khanafer, I. Izquierdo-Lorenzo, S. Akil, G. Louarn, J. Toufaily, T. Hamieh, P.-M. Adam, and S. Jradi, “Silver Nanoparticle Rings of Controllable Size: Multi-Wavelength SERS Response and High Enhancement of Three Pyridine Derivatives,” ChemistrySelect 1(6), 1201–1206 (2016).
[Crossref]

IEEE Sens. J. (1)

A. Dhawan, M. D. Gerhold, and J. F. Muth, “Plasmonic Structures Based on Subwavelength Apertures for Chemical and Biological Sensing Applications,” IEEE Sens. J. 8(6), 942–950 (2008).
[Crossref]

J Phys Chem C Nanomater Interfaces (1)

T. Vo-Dinh, A. Dhawan, S. J. Norton, C. G. Khoury, H. N. Wang, V. Misra, and M. D. Gerhold, “Plasmonic nanoparticles and nanowires: Design, fabrication and application in sensing,” J Phys Chem C Nanomater Interfaces 114(16), 7480–7488 (2010).
[Crossref] [PubMed]

J. Am. Chem. Soc. (2)

S. J. Lee, A. R. Morrill, and M. Moskovits, “Hot spots in silver nanowire bundles for surface-enhanced Raman spectroscopy,” J. Am. Chem. Soc. 128(7), 2200–2201 (2006).
[Crossref] [PubMed]

A. Campion, J. E. Ivanecky, C. M. Child, and M. Foster, “On the Mechanism of Chemical Enhancement in Surface-Enhanced Raman Scattering,” J. Am. Chem. Soc. 117(47), 11807–11808 (1995).
[Crossref]

J. Nanosci. Nanotechnol. (1)

Q. Li, Z. Yang, B. Ren, H. Xu, and Z. Tian, “The Relationship Between Extraordinary Optical Transmission and Surface-Enhanced Raman Scattering in Subwavelength Metallic Nanohole Arrays,” J. Nanosci. Nanotechnol. 10(11), 7188–7191 (2010).
[Crossref] [PubMed]

J. Opt. A, Pure Appl. Opt. (1)

A. Degiron and T. W. Ebbesen, “The role of localized surface plasmon modes in the enhanced transmission of periodic subwavelength apertures,” J. Opt. A, Pure Appl. Opt. 7(2), S90–S96 (2005).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. B (1)

W. E. Doering and S. Nie, “Single-molecule and single-nanoparticle SERS: Examining the roles of surface active sites and chemical enhancement,” J. Phys. Chem. B 106(2), 311–317 (2002).
[Crossref]

J. Phys. Chem. C (1)

A. Lesuffleur, L. K. S. Kumar, A. G. Brolo, K. L. Kavanagh, and R. Gordon, “Apex-enhanced Raman spectroscopy using double-hole arrays in a gold film,” J. Phys. Chem. C 111(6), 2347–2350 (2007).
[Crossref]

J. Vac. Sci. Technol. B, Nanotechnol. and Microelectron. Mater. Process. Meas. Phenom. (1)

M. G. Stanford, B. B. Lewis, K. Mahady, J. D. Fowlkes, and P. D. Rack, “Review Article: Advanced nanoscale patterning and material synthesis with gas field helium and neon ion beams,” J. Vac. Sci. Technol. B, Nanotechnol. and Microelectron. Mater. Process. Meas. Phenom. 35(3), 30802 (2017).

Nano Lett. (3)

M. Melli, A. Polyakov, D. Gargas, C. Huynh, L. Scipioni, W. Bao, D. F. Ogletree, P. J. Schuck, S. Cabrini, and A. Weber-Bargioni, “Reaching the theoretical resonance quality factor limit in coaxial plasmonic nanoresonators fabricated by helium ion lithography,” Nano Lett. 13(6), 2687–2691 (2013).
[Crossref] [PubMed]

M. D. Fischbein and M. Drndić, “Sub-10 nm device fabrication in a transmission electron microscope,” Nano Lett. 7(5), 1329–1337 (2007).
[Crossref] [PubMed]

A. G. Brolo, E. Arctander, R. Gordon, B. Leathem, and K. L. Kavanagh, “Nanohole-enhanced raman scattering,” Nano Lett. 4(10), 2015–2018 (2004).
[Crossref]

Nanoscale (1)

A. M. Jubb, Y. Jiao, G. Eres, S. T. Retterer, and B. Gu, “Elevated gold ellipse nanoantenna dimers as sensitive and tunable surface enhanced Raman spectroscopy substrates,” Nanoscale 8(10), 5641–5648 (2016).
[Crossref] [PubMed]

Nanotechnology (1)

Y. Sharma and A. Dhawan, “Hybrid nanoparticle-nanoline plasmonic cavities as SERS substrates with gap-controlled enhancements and resonances,” Nanotechnology 25(8), 085202 (2014).
[Crossref] [PubMed]

Nature (2)

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, P. A. Wolff, T. Thio, and P. A. Wolff, “Extraordinary optical transmission through sub-wavelength hole arrays,” Nature 86(6), 1114–1117 (1998).

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424(6950), 824–830 (2003).
[Crossref] [PubMed]

Opt. Lett. (3)

Phys. Rev. B – Condens. Matter Mater. Phys. (1)

K. L. Van Der Molen, K. J. Klein Koerkamp, S. Enoch, F. B. Segerink, N. F. Van Hulst, and L. Kuipers, “Role of shape and localized resonances in extraordinary transmission through periodic arrays of subwavelength holes: Experiment and theory,” Phys. Rev. B – Condens. Matter Mater. Phys. 72(4), 1–9 (2005).
[Crossref]

Phys. Rev. Lett. (2)

L. Martín-Moreno, F. J. García-Vidal, H. J. Lezec, K. M. Pellerin, T. Thio, J. B. Pendry, and T. W. Ebbesen, “Theory of extraordinary optical transmission through subwavelength hole arrays,” Phys. Rev. Lett. 86(6), 1114–1117 (2001).
[Crossref] [PubMed]

Z. Ruan and M. Qiu, “Enhanced transmission through periodic arrays of subwavelength holes: The role of localized waveguide resonances,” Phys. Rev. Lett. 96(23), 233901 (2006).
[Crossref] [PubMed]

Plasmonics (1)

G. F. S. Andrade, J. G. Hayashi, M. M. Rahman, W. J. Salcedo, C. M. B. Cordeiro, and A. G. Brolo, “Surface-Enhanced Resonance Raman Scattering (SERRS) Using Au Nanohole Arrays on Optical Fiber Tips,” Plasmonics 8(2), 1113–1121 (2013).
[Crossref]

RSC Advances (1)

S. Jiang, J. Guo, C. Zhang, C. Li, M. Wang, Z. Li, S. Gao, P. Chen, H. Si, and S. Xu, “A sensitive, uniform, reproducible and stable SERS substrate has been presented based on MoS 2 @Ag nanoparticles@pyramidal silicon,” RSC Advances 7(10), 5764–5773 (2017).
[Crossref]

Sci. Rep. (2)

M. Najiminaini, F. Vasefi, B. Kaminska, and J. J. L. Carson, “Nanohole-array-based device for 2D snapshot multispectral imaging,” Sci. Rep. 3(1), 2589 (2013).
[Crossref] [PubMed]

A. Mahigir, T. W. Chang, A. Behnam, G. L. Liu, M. R. Gartia, and G. Veronis, “Plasmonic nanohole array for enhancing the SERS signal of a single layer of graphene in water,” Sci. Rep. 7(1), 14044 (2017).
[Crossref] [PubMed]

Other (3)

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).

S. Nikitin, S. Prokes, H. Qi, O. Glembocki, and J. Grun, “Multi-wavelength surface-enhanced Raman scattering from molecules adsorbed on plasmonic nanowires,” in Quantum Electronics and Laser Science Conference, 2012 OSA Technical Digest Series (Optical Society of America, 2012), paper QTh4F.8.
[Crossref]

S. Schlucker, Surface Enhanced Raman Spectroscopy Analytical, Biophysical and Life Science Applications (Wiley-VCH Verlag, 2011).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1 Schematics of a periodic arrays of nanoholes in a gold film for the different geometries of the nanoholes: (a) bowtie nanoholes, (b) bridged-bowtie nanoholes and (c) cross bridged-bowtie nanoholes. The different parameters described in the schematics are the period 'P' of nanoholes in the nanohole array, gold film thickness 't', nanohole side dimension 'a', circular bridge hole diameter 'D', and gap between the tips of the bowtie nanoholes 'g'. A circular nanohole of diameter 'D' is employed to bridge the bowtie nanoholes and cross bowtie nanoholes to form the bridged-bowtie nanoholes and cross bridged-bowtie nanoholes, respectively. Light can be incident either from the substrate side or from the air side, and the electric field enhancement factor (EF) and SERS enhancement factor (EF) is measured at the top metal-air interface. Spatial distribution of electric field enhancement on the surface of the metal-air interface when the light is incident from the air side for: (d) a bowtie nanohole array, (e) a bridged-bowtie nanohole array, and (f) a cross bridged-bowtie nanohole array. (g) Maximum electric field enhancement factor (EF) and (h) Maximum electromagnetic enhancement of SERS (SERS EF) on the surface of the metal-air interface in nanohole arrays having three different nanohole geometries (bowtie nanoholes, bridged-bowtie nanoholes and cross bridged-bowtie nanoholes). The period (P) of nanoholes in the nanohole array was kept constant at 600 nm in (g) and (h).
Fig. 2
Fig. 2 Electromagnetic SERS enhancement factor in transmission mode configuration (left column) for (a) bowtie nanoholes, (b) bridged-bowtie nanoholes and (c) cross bridged-bowtie nanoholes arrays. The light is incident from the substrate side and electromagnetic enhancement factor was measured at surface of the metal-air interface. Electromagnetic SERS enhancement factor in reflection mode measurement for (d) bowtie nanoholes, (e) bridged-bowtie nanoholes and (f) Cross bridged-bowtie nanoholes array. In reflection mode configuration, light is incident from the substrate side and electromagnetic SERS EF factor was measured at surface of the metal-air interface. The side dimension 'a' of the nanoholes was varied from 150 nm to 250 nm, while the nanohole period 'P', the gap between the tips of the bowtie nanoholes 'g' and the thickness of the gold film 't' were kept constant at 600 nm and 10 nm, and 200 nm respectively. Figures in the inset are not to the actual scale.
Fig. 3
Fig. 3 Spatial distribution of electric field enhancement on the surface of a metal-dielectric interface (in the XY plane) in a periodic array of (a) bowtie nanoholes, (b) bridged-bowtie nanoholes, and (c) cross bridged-bowtie nanoholes present in a gold film of thickness 't' = 200 nm in reflection mode configuration. (a) Nanohole side dimension 'a' = 200 nm at 705 nm wavelength of the incident light, (b) 'a' = 200 nm at 960 nm wavelength, and (c) 'a' = 300 nm at 1030 nm wavelength. The nanohole period 'P' and the circular bridge hole diameter 'D' were kept constant at 600 nm and 20 nm, respectively. (d-f) Spatial distribution of the electric field enhancements in the XZ plane for the three different geometries of nanohole array: (d) bowtie nanohole array (e) bridged-bowtie nanohole array (f) crossed bridged-bowtie nanohole array. The incident field was polarized along Y axis. Light was incident from the air side, and the electric field enhancement was measured at the top metal-air interface.
Fig. 4
Fig. 4 (a) Comparison of the electromagnetic SERS enhancement factor when the incident electric field is polarized along the Y direction (blue curve) and X direction (red curve) in a bridged-bowtie nanohole array. Comparison of the spatial distribution of the electric field enhancement when the incident electric field is polarized along the (b) X axis and (c) Y axis in bridged-bowtie nanohole array. Comparison of the spatial distribution of the electric field enhancement when the incident electric field is polarized along the (d) Y axis and (e) X axis in a cross bridged-bowtie nanohole array. Light was incident from the air side, and the electric field enhancement was measured at the top metal-air interface in a periodic array of bridged-bowtie nanoholes of side ‘a’ = 300 nm present in a gold film of thickness 't' = 200 nm. The nanohole period 'P' and the circular bridge hole diameter 'D' were kept constant at 600 nm and 20 nm, respectively.
Fig. 5
Fig. 5 The effect of (a) Gold film thickness 't' and (b) Diameter 'D' of circular bridge nanohole on the electric field enhancement factor (EF) spectra for a cross bridged-bowtie nanohole array. In (a) the diameter of circular bridge hole was taken as 20 nm and in (b) the thickness of the gold film was taken as 200 nm. The nanohole period 'P' was kept constant at 600 nm. Light was incident from the substrate side and the electric field enhancement factor was measured at the top metal-air interface. The incident electric field was polarized along Y axis.
Fig. 6
Fig. 6 Electromagnetic SERS EF in the periodic array of gold bowtie nanoantennas as a function of gap ‘g’ between the nanotriangles forming the bowtie nanoantenna. The length ‘L’ of each nanotriangle forming the bowtie nanoantenna was taken as 200 nm and the apex angle of the nanotriangle was taken to be 60 degrees. The period of bowtie nanoantenna array was taken 600 nm. The Electromagnetic SERS EF is shown for (a) Gaps ‘g’ ranging from 10 nm to 30 nm and for (b) Gaps ‘g’ ranging from 5 nm to 10 nm.
Fig. 7
Fig. 7 The extraordinary transmission spectra for (a) bowtie nanoholes, (b) bridged-bowtie nanoholes and (c) cross bridged-bowtie nanoholes arrays. The light is incident from the substrate side. The side dimension 'a' of the nanoholes was varied from 150 nm to 250 nm, while the nanohole period 'P', the gap between the tips of the bowtie nanoholes 'g' and the thickness of the gold film 't' were kept constant at 600 nm and 10 nm, and 200 nm respectively.
Fig. 8
Fig. 8 Electromagnetic SERS EF in the periodic array of gold nanorod antennas as a function of gap ‘g’. The length ‘L’ and width ‘W’ was chosen as 150 nm and 50 nm respectively. The Period of nanorod antenna array was taken to be 600nm. The Electromagnetic SERS EF is shown for (a) Gaps ‘g’ ranging from 10 nm to 30 nm and for (b) Gaps ‘g’ ranging from 5 nm to 10 nm. (c) Electromagnetic SERS EF in the periodic array of gold nanorod as a function of gap ‘g’. The length ‘L’ and width ‘W’ was chosen as 150 nm and 50 nm respectively. The height of the nanorod was taken as 80nm.
Fig. 9
Fig. 9 Electromagnetic SERS EF in a periodic array of circular nanoholes, calculated as a function of nanohole diameter ‘D’. The Period of nanohole array was taken to be 600 nm. The thickness of the gold film ‘t’ and the period of the nanohole array was taken to be 200 nm and 600 nm, respectively. The light was incident from the top surface of the metal-air interface and the Electromagnetic SERS EF was calculated in reflection mode (i.e. on the top surface of the metal-air interface itself).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

λ = P i 2 + j 2 ε m ε d ε m + ε d

Metrics