Abstract

Optical activity is a fundamental phenomenon originating from the chiral nature of crystals and molecules. While intrinsic chiroptical responses of ordinary chiral materials to circularly polarized light are relatively weak, they can be enhanced by specially tailored nanostructures. Here, nanorod metamaterials, comprising a dense array of vertically aligned gold nanorods, is shown to provide a significant enhancement of the circular dichroism response of an embedded material. A nanorod composite, acting as an artificial uniaxial crystal, is filled with chiral mercury sulfide nanocrystals embedded in a transparent polymer. The metamaterial, being inherently achiral, enables optical activity enhancement or suppression. Unique properties of inherently achiral structures to tailor optical activities pave a way for flexible characterization of optical activity of molecules and nanocrystal-based compounds.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Full Article  |  PDF Article
OSA Recommended Articles
Enhanced circular dichroism of crossed nanorods with nanowire

Mingyan Wang, Fei Wang, Yu Qu, Tiankun Wang, Yuyan Chen, Yu Bai, and Zhongyue Zhang
Appl. Opt. 57(23) 6721-6724 (2018)

Tunable optical chirality in a metamaterial platform with off-resonantly coupled metal–dielectric components

Pavlos Pachidis and Vivian E. Ferry
Opt. Express 26(13) 17289-17299 (2018)

Giant circular dichroism enhancement and chiroptical illusion in hybrid molecule-plasmonic nanostructures

Yineng Liu, Rongyao Wang, and Xiangdong Zhang
Opt. Express 22(4) 4357-4370 (2014)

References

  • View by:
  • |
  • |
  • |

  1. R. W. W. K. Nakanishi and N. Berova, eds., Circular Dichroism: Principles and Applications (Wiley-VCH, 2000).
  2. D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photon. 4, 83–91 (2010).
    [Crossref]
  3. P. Ginzburg, D. Arbel, and M. Orenstein, “Gap plasmon polariton structure for very efficient microscale-to-nanoscale interfacing,” Opt. Lett. 32, 3288–3290 (2006).
    [Crossref]
  4. S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275, 1102–1106 (1996).
    [Crossref]
  5. P. L. Stiles, J. A. Dieringer, N. C. Shah, and R. P. Van Duyne, “Surface-enhanced Raman spectroscopy,” Ann. Rev. Anal. Chem. 1, 601–626 (2008).
    [Crossref]
  6. A. B. Zrimsek, A. Henry, and R. P. Van Duyne, “Single molecule surface-enhanced Raman spectroscopy without nanogaps,” J. Phys. Chem. Lett. 4, 3206–3210 (2013).
    [Crossref]
  7. Y. Fu, J. Zhang, and J. R. Lakowicz, “Largely enhanced single-molecule fluorescence in plasmonic nanogaps formed by hybrid silver nanostructures,” Langmuir 29, 2731–2738 (2013).
    [Crossref] [PubMed]
  8. E. Wertz, B. P. Isaaco, J. D. Flynn, and J. S. Biteen, “Single-molecule super-resolution microscopy reveals how light couples to a plasmonic nanoantenna on the nanometer scale,” Nano Lett. 15, 2662–2670 (2015).
    [Crossref] [PubMed]
  9. S. S. Oh and O. Hess, “Chiral metamaterials: enhancement and control of optical activity and circular dichroism,” Nano Converg. 2, 24 (2015).
    [Crossref] [PubMed]
  10. M. A. Belkin and G. Shvets, “Experimental demonstration of the microscopic origin of circular dichroism in two-dimensional metamaterials,” Nat. Commun. 7, 12045 (2016).
    [Crossref] [PubMed]
  11. A. Guerrero-Martìnez, B. Auguié, J. L. Alonso-Gómez, Z. Džolić, S. Gómez-Graña, M. Žinić, M. M. Cid, and L. M. Liz-Marzán, “Intense optical activity from three-dimensional chiral ordering of plasmonic nanoantennas,” Angew. Chemie 123, 5613–5617 (2011).
    [Crossref]
  12. E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol. 5, 783–787 (2010).
    [Crossref] [PubMed]
  13. R. Tullius, A. S. Karimullah, M. Rodier, B. Fitzpatrick, N. Gadegaard, L. D. Barron, V. M. Rotello, G. Cooke, A. Lapthorn, and M. Kadodwala, “’Superchiral’ spectroscopy: detection of protein higher order hierarchical structure with chiral plasmonic nanostructures,” J. Am. Chem. Soc. 137, 8380–8383 (2015).
    [Crossref] [PubMed]
  14. Y. Tang and A. E. Cohen, “Enhanced enantioselectivity in excitation of chiral molecules by superchiral light,” Science 332, 6027 (2011).
    [Crossref]
  15. D. Melnikau, D. Savateeva, Y. K. Gun, and Y. P. Rakovich, “Strong enhancement of circular dichroism in a hybrid material consisting of J-aggregates and silver nanoparticles,” J. Phys. Chem. C 117, 13708–13712 (2013).
    [Crossref]
  16. I. Lieberman, G. Shemer, T. Fried, E. M. Kosower, and G. Markovich, “Plasmon-resonance-enhanced absorption and circular dichroism,” Angew. Chemie Int. Ed. 47, 4855–4857 (2008).
    [Crossref]
  17. A. O. Govorov, Z. Fan, P. Hernandez, J. M. Slocik, and R. R. Naik, “Theory of circular dichroism of dipole interactions and dielectric effects,” Nano Lett. 10, 1374–1382 (2010).
    [Crossref] [PubMed]
  18. T. J. Davis and D. E. Gómez, “Interaction of localized surface plasmons with chiral molecules,” Phys. Rev. B 90, 235424 (2014).
    [Crossref]
  19. J. Kumar, K. George, L. M. Liz-Marzán, and K. G. Thomas, “Nanoscale chirality in metal and semiconductor nanoparticles,” Chem. Commun. 52, 12555–12569 (2016).
    [Crossref]
  20. M. L. Nesterov, X. Yin, M. Scha, H. Giessen, and T. Weiss, “The role of plasmon-generated near fields for enhanced circular dichroism spectroscopy,” ACS Photonics 3, 578–583 (2016).
    [Crossref]
  21. A. García-Etxarri and J. Dionne, “Surface-enhanced circular dichroism spectroscopy mediated by nonchiral nanoantennas,” Phys. Rev. B 87, 235409 (2013).
    [Crossref]
  22. J. Pedersen, N. A. Mortensen, J. Pedersen, and N. A. Mortensen, “Enhanced circular dichroism via slow light in dispersive structured media,” Appl. Phys. Lett. 91, 213501 (2007).
    [Crossref]
  23. Y. Tang and A. E. Cohen, “Optical chirality and its interaction with matter,” Phys. Rev. Lett. 104, 163901 (2010).
    [Crossref] [PubMed]
  24. L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics,  5, 83–90 (2011).
    [Crossref]
  25. P. Ginzburg, “Accelerating spontaneous emission in open resonators,” Ann. Phys. 508, 571–579 (2016).
    [Crossref]
  26. D. G. Baranov, R. S. Savelev, S. V. Li, A. E. Krasnok, and A. Alù, “Modifying magnetic dipole spontaneous emission with nanophotonic structures,” Laser Photon. Rev. 11, 1600268 (2017).
    [Crossref]
  27. P. Ginzburg, D. Roth, M. E. Nasir, P. Segovia, A. V. Krasavin, J. Levitt, L. M. Hirvonen, B. Wells, K. Suhling, D. Richards, V. A. Podolskiy, and A. V. Zayats, “Spontaneous emission in nonlocal materials,” Light: Sci. Appl. 6, e16273 (2017).
    [Crossref]
  28. A. P. Slobozhanyuk, P. Ginzburg, D. A. Powell, I. Iorsh, A. S. Shalin, P. Segovia, A. V. Krasavin, G. A. Wurtz, V. A. Podolskiy, P. A. Belov, and A. V. Zayats, “Purcell effect in hyperbolic metamaterial resonators,” Phys. Rev. B 92, 195127 (2015).
    [Crossref]
  29. A. Ben-Moshe, A. O. Govorov, and G. Markovich, “Enantioselective synthesis of intrinsically chiral mercury sulfide nanocrystals,” Angew. Chem. Int. Ed. 52, 1275–1279 (2013).
    [Crossref]
  30. G. A. Wurtz, R. Pollard, W. Hendren, G. P. Wiederrecht, D. J. Gosztola, V. A. Podolskiy, and A. V Zayats, “Designed ultrafast optical nonlinearity in a plasmonic nanorod metamaterial enhanced by nonlocality,” Nat. Nanotechnol. 6, 107–111 (2011).
    [Crossref] [PubMed]
  31. P. Ginzburg, F. J. Rodríguez Fortuño, G. A. Wurtz, W. Dickson, A. Murphy, F. Morgan, R. J. Pollard, I. Iorsh, A. Atrashchenko, P. A. Belov, Y. S. Kivshar, A. Nevet, G. Ankonina, M. Orenstein, and A. V Zayats, “Manipulating polarization of light with ultrathin epsilon-near-zero metamaterials,” Opt. Express 12, 14907–14917 (2013).
    [Crossref]
  32. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1985).
  33. P. Ginzburg, A. V. Krasavin, A. N. Poddubny, P. A. Belov, Y. S. Kivshar, and A. V. Zayats, “Self-induced torque in hyperbolic metamaterials,” Phys. Rev. Lett. 111, 36804 (2013).
    [Crossref]
  34. A. A. Bogdanov, A. S. Shalin, and P. Ginzburg, “Optical forces in nanorod metamaterial,” Sci. Rep. 5, 15846 (2015).
    [Crossref] [PubMed]
  35. G. A. Wurtz, W. Dickson, D. O’Connor, R. Atkinson, W. Hendren, P. Evans, R. Pollard, and A. V. Zayats, “Guided plasmonic modes in nanorod assemblies: strong electromagnetic coupling regime,” Opt. Express 16, 7460–7470 (2008).
    [Crossref] [PubMed]
  36. A. García-Etxarri and J.A. Dionne, “Surface-enhanced circular dichroism spectroscopy mediated by nonchiral nanoantennas,” Phys. Rev. B 87, 235409 (2013).
    [Crossref]
  37. M. Schäferling, X. Yin, and H. Giessen, “Formation of chiral fields in a symmetric environment,” Opt. Express 20, 26326–26336 (2012).
    [Crossref] [PubMed]
  38. M. Schäferling, D. Dregely, M. Hentschel, and H. Giessen, “Tailoring enhanced optical chirality: design principles for chiral plasmonic nanostructures,” Phys. Rev. X 2, 31010 (2012)
  39. K.-T. Tsai, G. A. Wurtz, J.-Y. Chu, T.-Y. Cheng, H.-H. Wang, A. V. Krasavin, J.-H. He, B. M. Wells, V. A. Podolskiy, J.-K. Wang, Y.-L. Wang, and A. V. Zayats, “Looking into meta-atoms of plasmonic nanowire metamaterial,” Nano Lett. 14, 4971–4976 (2014).
    [Crossref] [PubMed]
  40. B. Wells, A. V. Zayats, and V. A. Podolskiy, “Nonlocal optics of plasmonic nanowire metamaterials,” Phys. Rev. B 89, 035111 (2014).
    [Crossref]
  41. Giovanni Pellegrini, Marco Finazzi, Michele Celebrano, Lamberto Duó, and Paolo Biagioni, “Chiral surface waves for enhanced circular dichroism,” Phys. Rev. B 95, 241402 (2017)
    [Crossref]
  42. D. J. Roth, A. V. Krasavin, A. Wade, W. Dickson, A. Murphy, S. Kéna-Cohen, R. Pollard, G. A. Wurtz, D. R. Richards, S. A. Maier, and A. V. Zayats, “Spontaneous emission inside a hyperbolic metamaterial waveguide,” ACS Photonics 4, 2513–2521 (2017).
    [Crossref]
  43. G. Marino, P. Segovia, A. V. Krasavin, P. Ginzburg, N. Olivier, G. A. Wurtz, and A. V. Zayats, “Second-harmonic generation from hyperbolic plasmonic nanorod metamaterial slab,” Laser Phot. Rev. 12, 1700189 (2018).
    [Crossref]

2018 (1)

G. Marino, P. Segovia, A. V. Krasavin, P. Ginzburg, N. Olivier, G. A. Wurtz, and A. V. Zayats, “Second-harmonic generation from hyperbolic plasmonic nanorod metamaterial slab,” Laser Phot. Rev. 12, 1700189 (2018).
[Crossref]

2017 (4)

Giovanni Pellegrini, Marco Finazzi, Michele Celebrano, Lamberto Duó, and Paolo Biagioni, “Chiral surface waves for enhanced circular dichroism,” Phys. Rev. B 95, 241402 (2017)
[Crossref]

D. J. Roth, A. V. Krasavin, A. Wade, W. Dickson, A. Murphy, S. Kéna-Cohen, R. Pollard, G. A. Wurtz, D. R. Richards, S. A. Maier, and A. V. Zayats, “Spontaneous emission inside a hyperbolic metamaterial waveguide,” ACS Photonics 4, 2513–2521 (2017).
[Crossref]

D. G. Baranov, R. S. Savelev, S. V. Li, A. E. Krasnok, and A. Alù, “Modifying magnetic dipole spontaneous emission with nanophotonic structures,” Laser Photon. Rev. 11, 1600268 (2017).
[Crossref]

P. Ginzburg, D. Roth, M. E. Nasir, P. Segovia, A. V. Krasavin, J. Levitt, L. M. Hirvonen, B. Wells, K. Suhling, D. Richards, V. A. Podolskiy, and A. V. Zayats, “Spontaneous emission in nonlocal materials,” Light: Sci. Appl. 6, e16273 (2017).
[Crossref]

2016 (4)

P. Ginzburg, “Accelerating spontaneous emission in open resonators,” Ann. Phys. 508, 571–579 (2016).
[Crossref]

M. A. Belkin and G. Shvets, “Experimental demonstration of the microscopic origin of circular dichroism in two-dimensional metamaterials,” Nat. Commun. 7, 12045 (2016).
[Crossref] [PubMed]

J. Kumar, K. George, L. M. Liz-Marzán, and K. G. Thomas, “Nanoscale chirality in metal and semiconductor nanoparticles,” Chem. Commun. 52, 12555–12569 (2016).
[Crossref]

M. L. Nesterov, X. Yin, M. Scha, H. Giessen, and T. Weiss, “The role of plasmon-generated near fields for enhanced circular dichroism spectroscopy,” ACS Photonics 3, 578–583 (2016).
[Crossref]

2015 (5)

R. Tullius, A. S. Karimullah, M. Rodier, B. Fitzpatrick, N. Gadegaard, L. D. Barron, V. M. Rotello, G. Cooke, A. Lapthorn, and M. Kadodwala, “’Superchiral’ spectroscopy: detection of protein higher order hierarchical structure with chiral plasmonic nanostructures,” J. Am. Chem. Soc. 137, 8380–8383 (2015).
[Crossref] [PubMed]

E. Wertz, B. P. Isaaco, J. D. Flynn, and J. S. Biteen, “Single-molecule super-resolution microscopy reveals how light couples to a plasmonic nanoantenna on the nanometer scale,” Nano Lett. 15, 2662–2670 (2015).
[Crossref] [PubMed]

S. S. Oh and O. Hess, “Chiral metamaterials: enhancement and control of optical activity and circular dichroism,” Nano Converg. 2, 24 (2015).
[Crossref] [PubMed]

A. A. Bogdanov, A. S. Shalin, and P. Ginzburg, “Optical forces in nanorod metamaterial,” Sci. Rep. 5, 15846 (2015).
[Crossref] [PubMed]

A. P. Slobozhanyuk, P. Ginzburg, D. A. Powell, I. Iorsh, A. S. Shalin, P. Segovia, A. V. Krasavin, G. A. Wurtz, V. A. Podolskiy, P. A. Belov, and A. V. Zayats, “Purcell effect in hyperbolic metamaterial resonators,” Phys. Rev. B 92, 195127 (2015).
[Crossref]

2014 (3)

T. J. Davis and D. E. Gómez, “Interaction of localized surface plasmons with chiral molecules,” Phys. Rev. B 90, 235424 (2014).
[Crossref]

K.-T. Tsai, G. A. Wurtz, J.-Y. Chu, T.-Y. Cheng, H.-H. Wang, A. V. Krasavin, J.-H. He, B. M. Wells, V. A. Podolskiy, J.-K. Wang, Y.-L. Wang, and A. V. Zayats, “Looking into meta-atoms of plasmonic nanowire metamaterial,” Nano Lett. 14, 4971–4976 (2014).
[Crossref] [PubMed]

B. Wells, A. V. Zayats, and V. A. Podolskiy, “Nonlocal optics of plasmonic nanowire metamaterials,” Phys. Rev. B 89, 035111 (2014).
[Crossref]

2013 (8)

A. Ben-Moshe, A. O. Govorov, and G. Markovich, “Enantioselective synthesis of intrinsically chiral mercury sulfide nanocrystals,” Angew. Chem. Int. Ed. 52, 1275–1279 (2013).
[Crossref]

A. García-Etxarri and J.A. Dionne, “Surface-enhanced circular dichroism spectroscopy mediated by nonchiral nanoantennas,” Phys. Rev. B 87, 235409 (2013).
[Crossref]

P. Ginzburg, F. J. Rodríguez Fortuño, G. A. Wurtz, W. Dickson, A. Murphy, F. Morgan, R. J. Pollard, I. Iorsh, A. Atrashchenko, P. A. Belov, Y. S. Kivshar, A. Nevet, G. Ankonina, M. Orenstein, and A. V Zayats, “Manipulating polarization of light with ultrathin epsilon-near-zero metamaterials,” Opt. Express 12, 14907–14917 (2013).
[Crossref]

P. Ginzburg, A. V. Krasavin, A. N. Poddubny, P. A. Belov, Y. S. Kivshar, and A. V. Zayats, “Self-induced torque in hyperbolic metamaterials,” Phys. Rev. Lett. 111, 36804 (2013).
[Crossref]

A. B. Zrimsek, A. Henry, and R. P. Van Duyne, “Single molecule surface-enhanced Raman spectroscopy without nanogaps,” J. Phys. Chem. Lett. 4, 3206–3210 (2013).
[Crossref]

Y. Fu, J. Zhang, and J. R. Lakowicz, “Largely enhanced single-molecule fluorescence in plasmonic nanogaps formed by hybrid silver nanostructures,” Langmuir 29, 2731–2738 (2013).
[Crossref] [PubMed]

D. Melnikau, D. Savateeva, Y. K. Gun, and Y. P. Rakovich, “Strong enhancement of circular dichroism in a hybrid material consisting of J-aggregates and silver nanoparticles,” J. Phys. Chem. C 117, 13708–13712 (2013).
[Crossref]

A. García-Etxarri and J. Dionne, “Surface-enhanced circular dichroism spectroscopy mediated by nonchiral nanoantennas,” Phys. Rev. B 87, 235409 (2013).
[Crossref]

2012 (2)

M. Schäferling, X. Yin, and H. Giessen, “Formation of chiral fields in a symmetric environment,” Opt. Express 20, 26326–26336 (2012).
[Crossref] [PubMed]

M. Schäferling, D. Dregely, M. Hentschel, and H. Giessen, “Tailoring enhanced optical chirality: design principles for chiral plasmonic nanostructures,” Phys. Rev. X 2, 31010 (2012)

2011 (4)

L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics,  5, 83–90 (2011).
[Crossref]

G. A. Wurtz, R. Pollard, W. Hendren, G. P. Wiederrecht, D. J. Gosztola, V. A. Podolskiy, and A. V Zayats, “Designed ultrafast optical nonlinearity in a plasmonic nanorod metamaterial enhanced by nonlocality,” Nat. Nanotechnol. 6, 107–111 (2011).
[Crossref] [PubMed]

Y. Tang and A. E. Cohen, “Enhanced enantioselectivity in excitation of chiral molecules by superchiral light,” Science 332, 6027 (2011).
[Crossref]

A. Guerrero-Martìnez, B. Auguié, J. L. Alonso-Gómez, Z. Džolić, S. Gómez-Graña, M. Žinić, M. M. Cid, and L. M. Liz-Marzán, “Intense optical activity from three-dimensional chiral ordering of plasmonic nanoantennas,” Angew. Chemie 123, 5613–5617 (2011).
[Crossref]

2010 (4)

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol. 5, 783–787 (2010).
[Crossref] [PubMed]

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photon. 4, 83–91 (2010).
[Crossref]

Y. Tang and A. E. Cohen, “Optical chirality and its interaction with matter,” Phys. Rev. Lett. 104, 163901 (2010).
[Crossref] [PubMed]

A. O. Govorov, Z. Fan, P. Hernandez, J. M. Slocik, and R. R. Naik, “Theory of circular dichroism of dipole interactions and dielectric effects,” Nano Lett. 10, 1374–1382 (2010).
[Crossref] [PubMed]

2008 (3)

P. L. Stiles, J. A. Dieringer, N. C. Shah, and R. P. Van Duyne, “Surface-enhanced Raman spectroscopy,” Ann. Rev. Anal. Chem. 1, 601–626 (2008).
[Crossref]

G. A. Wurtz, W. Dickson, D. O’Connor, R. Atkinson, W. Hendren, P. Evans, R. Pollard, and A. V. Zayats, “Guided plasmonic modes in nanorod assemblies: strong electromagnetic coupling regime,” Opt. Express 16, 7460–7470 (2008).
[Crossref] [PubMed]

I. Lieberman, G. Shemer, T. Fried, E. M. Kosower, and G. Markovich, “Plasmon-resonance-enhanced absorption and circular dichroism,” Angew. Chemie Int. Ed. 47, 4855–4857 (2008).
[Crossref]

2007 (1)

J. Pedersen, N. A. Mortensen, J. Pedersen, and N. A. Mortensen, “Enhanced circular dichroism via slow light in dispersive structured media,” Appl. Phys. Lett. 91, 213501 (2007).
[Crossref]

2006 (1)

P. Ginzburg, D. Arbel, and M. Orenstein, “Gap plasmon polariton structure for very efficient microscale-to-nanoscale interfacing,” Opt. Lett. 32, 3288–3290 (2006).
[Crossref]

1996 (1)

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275, 1102–1106 (1996).
[Crossref]

Alonso-Gómez, J. L.

A. Guerrero-Martìnez, B. Auguié, J. L. Alonso-Gómez, Z. Džolić, S. Gómez-Graña, M. Žinić, M. M. Cid, and L. M. Liz-Marzán, “Intense optical activity from three-dimensional chiral ordering of plasmonic nanoantennas,” Angew. Chemie 123, 5613–5617 (2011).
[Crossref]

Alù, A.

D. G. Baranov, R. S. Savelev, S. V. Li, A. E. Krasnok, and A. Alù, “Modifying magnetic dipole spontaneous emission with nanophotonic structures,” Laser Photon. Rev. 11, 1600268 (2017).
[Crossref]

Ankonina, G.

P. Ginzburg, F. J. Rodríguez Fortuño, G. A. Wurtz, W. Dickson, A. Murphy, F. Morgan, R. J. Pollard, I. Iorsh, A. Atrashchenko, P. A. Belov, Y. S. Kivshar, A. Nevet, G. Ankonina, M. Orenstein, and A. V Zayats, “Manipulating polarization of light with ultrathin epsilon-near-zero metamaterials,” Opt. Express 12, 14907–14917 (2013).
[Crossref]

Arbel, D.

P. Ginzburg, D. Arbel, and M. Orenstein, “Gap plasmon polariton structure for very efficient microscale-to-nanoscale interfacing,” Opt. Lett. 32, 3288–3290 (2006).
[Crossref]

Atkinson, R.

Atrashchenko, A.

P. Ginzburg, F. J. Rodríguez Fortuño, G. A. Wurtz, W. Dickson, A. Murphy, F. Morgan, R. J. Pollard, I. Iorsh, A. Atrashchenko, P. A. Belov, Y. S. Kivshar, A. Nevet, G. Ankonina, M. Orenstein, and A. V Zayats, “Manipulating polarization of light with ultrathin epsilon-near-zero metamaterials,” Opt. Express 12, 14907–14917 (2013).
[Crossref]

Auguié, B.

A. Guerrero-Martìnez, B. Auguié, J. L. Alonso-Gómez, Z. Džolić, S. Gómez-Graña, M. Žinić, M. M. Cid, and L. M. Liz-Marzán, “Intense optical activity from three-dimensional chiral ordering of plasmonic nanoantennas,” Angew. Chemie 123, 5613–5617 (2011).
[Crossref]

Baranov, D. G.

D. G. Baranov, R. S. Savelev, S. V. Li, A. E. Krasnok, and A. Alù, “Modifying magnetic dipole spontaneous emission with nanophotonic structures,” Laser Photon. Rev. 11, 1600268 (2017).
[Crossref]

Barron, L. D.

R. Tullius, A. S. Karimullah, M. Rodier, B. Fitzpatrick, N. Gadegaard, L. D. Barron, V. M. Rotello, G. Cooke, A. Lapthorn, and M. Kadodwala, “’Superchiral’ spectroscopy: detection of protein higher order hierarchical structure with chiral plasmonic nanostructures,” J. Am. Chem. Soc. 137, 8380–8383 (2015).
[Crossref] [PubMed]

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol. 5, 783–787 (2010).
[Crossref] [PubMed]

Belkin, M. A.

M. A. Belkin and G. Shvets, “Experimental demonstration of the microscopic origin of circular dichroism in two-dimensional metamaterials,” Nat. Commun. 7, 12045 (2016).
[Crossref] [PubMed]

Belov, P. A.

A. P. Slobozhanyuk, P. Ginzburg, D. A. Powell, I. Iorsh, A. S. Shalin, P. Segovia, A. V. Krasavin, G. A. Wurtz, V. A. Podolskiy, P. A. Belov, and A. V. Zayats, “Purcell effect in hyperbolic metamaterial resonators,” Phys. Rev. B 92, 195127 (2015).
[Crossref]

P. Ginzburg, F. J. Rodríguez Fortuño, G. A. Wurtz, W. Dickson, A. Murphy, F. Morgan, R. J. Pollard, I. Iorsh, A. Atrashchenko, P. A. Belov, Y. S. Kivshar, A. Nevet, G. Ankonina, M. Orenstein, and A. V Zayats, “Manipulating polarization of light with ultrathin epsilon-near-zero metamaterials,” Opt. Express 12, 14907–14917 (2013).
[Crossref]

P. Ginzburg, A. V. Krasavin, A. N. Poddubny, P. A. Belov, Y. S. Kivshar, and A. V. Zayats, “Self-induced torque in hyperbolic metamaterials,” Phys. Rev. Lett. 111, 36804 (2013).
[Crossref]

Ben-Moshe, A.

A. Ben-Moshe, A. O. Govorov, and G. Markovich, “Enantioselective synthesis of intrinsically chiral mercury sulfide nanocrystals,” Angew. Chem. Int. Ed. 52, 1275–1279 (2013).
[Crossref]

Biagioni, Paolo

Giovanni Pellegrini, Marco Finazzi, Michele Celebrano, Lamberto Duó, and Paolo Biagioni, “Chiral surface waves for enhanced circular dichroism,” Phys. Rev. B 95, 241402 (2017)
[Crossref]

Biteen, J. S.

E. Wertz, B. P. Isaaco, J. D. Flynn, and J. S. Biteen, “Single-molecule super-resolution microscopy reveals how light couples to a plasmonic nanoantenna on the nanometer scale,” Nano Lett. 15, 2662–2670 (2015).
[Crossref] [PubMed]

Bogdanov, A. A.

A. A. Bogdanov, A. S. Shalin, and P. Ginzburg, “Optical forces in nanorod metamaterial,” Sci. Rep. 5, 15846 (2015).
[Crossref] [PubMed]

Bozhevolnyi, S. I.

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photon. 4, 83–91 (2010).
[Crossref]

Carpy, T.

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol. 5, 783–787 (2010).
[Crossref] [PubMed]

Celebrano, Michele

Giovanni Pellegrini, Marco Finazzi, Michele Celebrano, Lamberto Duó, and Paolo Biagioni, “Chiral surface waves for enhanced circular dichroism,” Phys. Rev. B 95, 241402 (2017)
[Crossref]

Cheng, T.-Y.

K.-T. Tsai, G. A. Wurtz, J.-Y. Chu, T.-Y. Cheng, H.-H. Wang, A. V. Krasavin, J.-H. He, B. M. Wells, V. A. Podolskiy, J.-K. Wang, Y.-L. Wang, and A. V. Zayats, “Looking into meta-atoms of plasmonic nanowire metamaterial,” Nano Lett. 14, 4971–4976 (2014).
[Crossref] [PubMed]

Chu, J.-Y.

K.-T. Tsai, G. A. Wurtz, J.-Y. Chu, T.-Y. Cheng, H.-H. Wang, A. V. Krasavin, J.-H. He, B. M. Wells, V. A. Podolskiy, J.-K. Wang, Y.-L. Wang, and A. V. Zayats, “Looking into meta-atoms of plasmonic nanowire metamaterial,” Nano Lett. 14, 4971–4976 (2014).
[Crossref] [PubMed]

Cid, M. M.

A. Guerrero-Martìnez, B. Auguié, J. L. Alonso-Gómez, Z. Džolić, S. Gómez-Graña, M. Žinić, M. M. Cid, and L. M. Liz-Marzán, “Intense optical activity from three-dimensional chiral ordering of plasmonic nanoantennas,” Angew. Chemie 123, 5613–5617 (2011).
[Crossref]

Cohen, A. E.

Y. Tang and A. E. Cohen, “Enhanced enantioselectivity in excitation of chiral molecules by superchiral light,” Science 332, 6027 (2011).
[Crossref]

Y. Tang and A. E. Cohen, “Optical chirality and its interaction with matter,” Phys. Rev. Lett. 104, 163901 (2010).
[Crossref] [PubMed]

Cooke, G.

R. Tullius, A. S. Karimullah, M. Rodier, B. Fitzpatrick, N. Gadegaard, L. D. Barron, V. M. Rotello, G. Cooke, A. Lapthorn, and M. Kadodwala, “’Superchiral’ spectroscopy: detection of protein higher order hierarchical structure with chiral plasmonic nanostructures,” J. Am. Chem. Soc. 137, 8380–8383 (2015).
[Crossref] [PubMed]

Davis, T. J.

T. J. Davis and D. E. Gómez, “Interaction of localized surface plasmons with chiral molecules,” Phys. Rev. B 90, 235424 (2014).
[Crossref]

Dickson, W.

D. J. Roth, A. V. Krasavin, A. Wade, W. Dickson, A. Murphy, S. Kéna-Cohen, R. Pollard, G. A. Wurtz, D. R. Richards, S. A. Maier, and A. V. Zayats, “Spontaneous emission inside a hyperbolic metamaterial waveguide,” ACS Photonics 4, 2513–2521 (2017).
[Crossref]

P. Ginzburg, F. J. Rodríguez Fortuño, G. A. Wurtz, W. Dickson, A. Murphy, F. Morgan, R. J. Pollard, I. Iorsh, A. Atrashchenko, P. A. Belov, Y. S. Kivshar, A. Nevet, G. Ankonina, M. Orenstein, and A. V Zayats, “Manipulating polarization of light with ultrathin epsilon-near-zero metamaterials,” Opt. Express 12, 14907–14917 (2013).
[Crossref]

G. A. Wurtz, W. Dickson, D. O’Connor, R. Atkinson, W. Hendren, P. Evans, R. Pollard, and A. V. Zayats, “Guided plasmonic modes in nanorod assemblies: strong electromagnetic coupling regime,” Opt. Express 16, 7460–7470 (2008).
[Crossref] [PubMed]

Dieringer, J. A.

P. L. Stiles, J. A. Dieringer, N. C. Shah, and R. P. Van Duyne, “Surface-enhanced Raman spectroscopy,” Ann. Rev. Anal. Chem. 1, 601–626 (2008).
[Crossref]

Dionne, J.

A. García-Etxarri and J. Dionne, “Surface-enhanced circular dichroism spectroscopy mediated by nonchiral nanoantennas,” Phys. Rev. B 87, 235409 (2013).
[Crossref]

Dionne, J.A.

A. García-Etxarri and J.A. Dionne, “Surface-enhanced circular dichroism spectroscopy mediated by nonchiral nanoantennas,” Phys. Rev. B 87, 235409 (2013).
[Crossref]

Dregely, D.

M. Schäferling, D. Dregely, M. Hentschel, and H. Giessen, “Tailoring enhanced optical chirality: design principles for chiral plasmonic nanostructures,” Phys. Rev. X 2, 31010 (2012)

Duó, Lamberto

Giovanni Pellegrini, Marco Finazzi, Michele Celebrano, Lamberto Duó, and Paolo Biagioni, “Chiral surface waves for enhanced circular dichroism,” Phys. Rev. B 95, 241402 (2017)
[Crossref]

Džolic, Z.

A. Guerrero-Martìnez, B. Auguié, J. L. Alonso-Gómez, Z. Džolić, S. Gómez-Graña, M. Žinić, M. M. Cid, and L. M. Liz-Marzán, “Intense optical activity from three-dimensional chiral ordering of plasmonic nanoantennas,” Angew. Chemie 123, 5613–5617 (2011).
[Crossref]

Emory, S. R.

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275, 1102–1106 (1996).
[Crossref]

Evans, P.

Fan, Z.

A. O. Govorov, Z. Fan, P. Hernandez, J. M. Slocik, and R. R. Naik, “Theory of circular dichroism of dipole interactions and dielectric effects,” Nano Lett. 10, 1374–1382 (2010).
[Crossref] [PubMed]

Finazzi, Marco

Giovanni Pellegrini, Marco Finazzi, Michele Celebrano, Lamberto Duó, and Paolo Biagioni, “Chiral surface waves for enhanced circular dichroism,” Phys. Rev. B 95, 241402 (2017)
[Crossref]

Fitzpatrick, B.

R. Tullius, A. S. Karimullah, M. Rodier, B. Fitzpatrick, N. Gadegaard, L. D. Barron, V. M. Rotello, G. Cooke, A. Lapthorn, and M. Kadodwala, “’Superchiral’ spectroscopy: detection of protein higher order hierarchical structure with chiral plasmonic nanostructures,” J. Am. Chem. Soc. 137, 8380–8383 (2015).
[Crossref] [PubMed]

Flynn, J. D.

E. Wertz, B. P. Isaaco, J. D. Flynn, and J. S. Biteen, “Single-molecule super-resolution microscopy reveals how light couples to a plasmonic nanoantenna on the nanometer scale,” Nano Lett. 15, 2662–2670 (2015).
[Crossref] [PubMed]

Fried, T.

I. Lieberman, G. Shemer, T. Fried, E. M. Kosower, and G. Markovich, “Plasmon-resonance-enhanced absorption and circular dichroism,” Angew. Chemie Int. Ed. 47, 4855–4857 (2008).
[Crossref]

Fu, Y.

Y. Fu, J. Zhang, and J. R. Lakowicz, “Largely enhanced single-molecule fluorescence in plasmonic nanogaps formed by hybrid silver nanostructures,” Langmuir 29, 2731–2738 (2013).
[Crossref] [PubMed]

Gadegaard, N.

R. Tullius, A. S. Karimullah, M. Rodier, B. Fitzpatrick, N. Gadegaard, L. D. Barron, V. M. Rotello, G. Cooke, A. Lapthorn, and M. Kadodwala, “’Superchiral’ spectroscopy: detection of protein higher order hierarchical structure with chiral plasmonic nanostructures,” J. Am. Chem. Soc. 137, 8380–8383 (2015).
[Crossref] [PubMed]

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol. 5, 783–787 (2010).
[Crossref] [PubMed]

García-Etxarri, A.

A. García-Etxarri and J. Dionne, “Surface-enhanced circular dichroism spectroscopy mediated by nonchiral nanoantennas,” Phys. Rev. B 87, 235409 (2013).
[Crossref]

A. García-Etxarri and J.A. Dionne, “Surface-enhanced circular dichroism spectroscopy mediated by nonchiral nanoantennas,” Phys. Rev. B 87, 235409 (2013).
[Crossref]

George, K.

J. Kumar, K. George, L. M. Liz-Marzán, and K. G. Thomas, “Nanoscale chirality in metal and semiconductor nanoparticles,” Chem. Commun. 52, 12555–12569 (2016).
[Crossref]

Giessen, H.

M. L. Nesterov, X. Yin, M. Scha, H. Giessen, and T. Weiss, “The role of plasmon-generated near fields for enhanced circular dichroism spectroscopy,” ACS Photonics 3, 578–583 (2016).
[Crossref]

M. Schäferling, D. Dregely, M. Hentschel, and H. Giessen, “Tailoring enhanced optical chirality: design principles for chiral plasmonic nanostructures,” Phys. Rev. X 2, 31010 (2012)

M. Schäferling, X. Yin, and H. Giessen, “Formation of chiral fields in a symmetric environment,” Opt. Express 20, 26326–26336 (2012).
[Crossref] [PubMed]

Ginzburg, P.

G. Marino, P. Segovia, A. V. Krasavin, P. Ginzburg, N. Olivier, G. A. Wurtz, and A. V. Zayats, “Second-harmonic generation from hyperbolic plasmonic nanorod metamaterial slab,” Laser Phot. Rev. 12, 1700189 (2018).
[Crossref]

P. Ginzburg, D. Roth, M. E. Nasir, P. Segovia, A. V. Krasavin, J. Levitt, L. M. Hirvonen, B. Wells, K. Suhling, D. Richards, V. A. Podolskiy, and A. V. Zayats, “Spontaneous emission in nonlocal materials,” Light: Sci. Appl. 6, e16273 (2017).
[Crossref]

P. Ginzburg, “Accelerating spontaneous emission in open resonators,” Ann. Phys. 508, 571–579 (2016).
[Crossref]

A. P. Slobozhanyuk, P. Ginzburg, D. A. Powell, I. Iorsh, A. S. Shalin, P. Segovia, A. V. Krasavin, G. A. Wurtz, V. A. Podolskiy, P. A. Belov, and A. V. Zayats, “Purcell effect in hyperbolic metamaterial resonators,” Phys. Rev. B 92, 195127 (2015).
[Crossref]

A. A. Bogdanov, A. S. Shalin, and P. Ginzburg, “Optical forces in nanorod metamaterial,” Sci. Rep. 5, 15846 (2015).
[Crossref] [PubMed]

P. Ginzburg, A. V. Krasavin, A. N. Poddubny, P. A. Belov, Y. S. Kivshar, and A. V. Zayats, “Self-induced torque in hyperbolic metamaterials,” Phys. Rev. Lett. 111, 36804 (2013).
[Crossref]

P. Ginzburg, F. J. Rodríguez Fortuño, G. A. Wurtz, W. Dickson, A. Murphy, F. Morgan, R. J. Pollard, I. Iorsh, A. Atrashchenko, P. A. Belov, Y. S. Kivshar, A. Nevet, G. Ankonina, M. Orenstein, and A. V Zayats, “Manipulating polarization of light with ultrathin epsilon-near-zero metamaterials,” Opt. Express 12, 14907–14917 (2013).
[Crossref]

P. Ginzburg, D. Arbel, and M. Orenstein, “Gap plasmon polariton structure for very efficient microscale-to-nanoscale interfacing,” Opt. Lett. 32, 3288–3290 (2006).
[Crossref]

Gómez, D. E.

T. J. Davis and D. E. Gómez, “Interaction of localized surface plasmons with chiral molecules,” Phys. Rev. B 90, 235424 (2014).
[Crossref]

Gómez-Graña, S.

A. Guerrero-Martìnez, B. Auguié, J. L. Alonso-Gómez, Z. Džolić, S. Gómez-Graña, M. Žinić, M. M. Cid, and L. M. Liz-Marzán, “Intense optical activity from three-dimensional chiral ordering of plasmonic nanoantennas,” Angew. Chemie 123, 5613–5617 (2011).
[Crossref]

Gosztola, D. J.

G. A. Wurtz, R. Pollard, W. Hendren, G. P. Wiederrecht, D. J. Gosztola, V. A. Podolskiy, and A. V Zayats, “Designed ultrafast optical nonlinearity in a plasmonic nanorod metamaterial enhanced by nonlocality,” Nat. Nanotechnol. 6, 107–111 (2011).
[Crossref] [PubMed]

Govorov, A. O.

A. Ben-Moshe, A. O. Govorov, and G. Markovich, “Enantioselective synthesis of intrinsically chiral mercury sulfide nanocrystals,” Angew. Chem. Int. Ed. 52, 1275–1279 (2013).
[Crossref]

A. O. Govorov, Z. Fan, P. Hernandez, J. M. Slocik, and R. R. Naik, “Theory of circular dichroism of dipole interactions and dielectric effects,” Nano Lett. 10, 1374–1382 (2010).
[Crossref] [PubMed]

Gramotnev, D. K.

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photon. 4, 83–91 (2010).
[Crossref]

Guerrero-Martìnez, A.

A. Guerrero-Martìnez, B. Auguié, J. L. Alonso-Gómez, Z. Džolić, S. Gómez-Graña, M. Žinić, M. M. Cid, and L. M. Liz-Marzán, “Intense optical activity from three-dimensional chiral ordering of plasmonic nanoantennas,” Angew. Chemie 123, 5613–5617 (2011).
[Crossref]

Gun, Y. K.

D. Melnikau, D. Savateeva, Y. K. Gun, and Y. P. Rakovich, “Strong enhancement of circular dichroism in a hybrid material consisting of J-aggregates and silver nanoparticles,” J. Phys. Chem. C 117, 13708–13712 (2013).
[Crossref]

He, J.-H.

K.-T. Tsai, G. A. Wurtz, J.-Y. Chu, T.-Y. Cheng, H.-H. Wang, A. V. Krasavin, J.-H. He, B. M. Wells, V. A. Podolskiy, J.-K. Wang, Y.-L. Wang, and A. V. Zayats, “Looking into meta-atoms of plasmonic nanowire metamaterial,” Nano Lett. 14, 4971–4976 (2014).
[Crossref] [PubMed]

Hendren, W.

G. A. Wurtz, R. Pollard, W. Hendren, G. P. Wiederrecht, D. J. Gosztola, V. A. Podolskiy, and A. V Zayats, “Designed ultrafast optical nonlinearity in a plasmonic nanorod metamaterial enhanced by nonlocality,” Nat. Nanotechnol. 6, 107–111 (2011).
[Crossref] [PubMed]

G. A. Wurtz, W. Dickson, D. O’Connor, R. Atkinson, W. Hendren, P. Evans, R. Pollard, and A. V. Zayats, “Guided plasmonic modes in nanorod assemblies: strong electromagnetic coupling regime,” Opt. Express 16, 7460–7470 (2008).
[Crossref] [PubMed]

Hendry, E.

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol. 5, 783–787 (2010).
[Crossref] [PubMed]

Henry, A.

A. B. Zrimsek, A. Henry, and R. P. Van Duyne, “Single molecule surface-enhanced Raman spectroscopy without nanogaps,” J. Phys. Chem. Lett. 4, 3206–3210 (2013).
[Crossref]

Hentschel, M.

M. Schäferling, D. Dregely, M. Hentschel, and H. Giessen, “Tailoring enhanced optical chirality: design principles for chiral plasmonic nanostructures,” Phys. Rev. X 2, 31010 (2012)

Hernandez, P.

A. O. Govorov, Z. Fan, P. Hernandez, J. M. Slocik, and R. R. Naik, “Theory of circular dichroism of dipole interactions and dielectric effects,” Nano Lett. 10, 1374–1382 (2010).
[Crossref] [PubMed]

Hess, O.

S. S. Oh and O. Hess, “Chiral metamaterials: enhancement and control of optical activity and circular dichroism,” Nano Converg. 2, 24 (2015).
[Crossref] [PubMed]

Hirvonen, L. M.

P. Ginzburg, D. Roth, M. E. Nasir, P. Segovia, A. V. Krasavin, J. Levitt, L. M. Hirvonen, B. Wells, K. Suhling, D. Richards, V. A. Podolskiy, and A. V. Zayats, “Spontaneous emission in nonlocal materials,” Light: Sci. Appl. 6, e16273 (2017).
[Crossref]

Iorsh, I.

A. P. Slobozhanyuk, P. Ginzburg, D. A. Powell, I. Iorsh, A. S. Shalin, P. Segovia, A. V. Krasavin, G. A. Wurtz, V. A. Podolskiy, P. A. Belov, and A. V. Zayats, “Purcell effect in hyperbolic metamaterial resonators,” Phys. Rev. B 92, 195127 (2015).
[Crossref]

P. Ginzburg, F. J. Rodríguez Fortuño, G. A. Wurtz, W. Dickson, A. Murphy, F. Morgan, R. J. Pollard, I. Iorsh, A. Atrashchenko, P. A. Belov, Y. S. Kivshar, A. Nevet, G. Ankonina, M. Orenstein, and A. V Zayats, “Manipulating polarization of light with ultrathin epsilon-near-zero metamaterials,” Opt. Express 12, 14907–14917 (2013).
[Crossref]

Isaaco, B. P.

E. Wertz, B. P. Isaaco, J. D. Flynn, and J. S. Biteen, “Single-molecule super-resolution microscopy reveals how light couples to a plasmonic nanoantenna on the nanometer scale,” Nano Lett. 15, 2662–2670 (2015).
[Crossref] [PubMed]

Johnston, J.

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol. 5, 783–787 (2010).
[Crossref] [PubMed]

Kadodwala, M.

R. Tullius, A. S. Karimullah, M. Rodier, B. Fitzpatrick, N. Gadegaard, L. D. Barron, V. M. Rotello, G. Cooke, A. Lapthorn, and M. Kadodwala, “’Superchiral’ spectroscopy: detection of protein higher order hierarchical structure with chiral plasmonic nanostructures,” J. Am. Chem. Soc. 137, 8380–8383 (2015).
[Crossref] [PubMed]

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol. 5, 783–787 (2010).
[Crossref] [PubMed]

Karimullah, A. S.

R. Tullius, A. S. Karimullah, M. Rodier, B. Fitzpatrick, N. Gadegaard, L. D. Barron, V. M. Rotello, G. Cooke, A. Lapthorn, and M. Kadodwala, “’Superchiral’ spectroscopy: detection of protein higher order hierarchical structure with chiral plasmonic nanostructures,” J. Am. Chem. Soc. 137, 8380–8383 (2015).
[Crossref] [PubMed]

Kelly, S. M.

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol. 5, 783–787 (2010).
[Crossref] [PubMed]

Kéna-Cohen, S.

D. J. Roth, A. V. Krasavin, A. Wade, W. Dickson, A. Murphy, S. Kéna-Cohen, R. Pollard, G. A. Wurtz, D. R. Richards, S. A. Maier, and A. V. Zayats, “Spontaneous emission inside a hyperbolic metamaterial waveguide,” ACS Photonics 4, 2513–2521 (2017).
[Crossref]

Kivshar, Y. S.

P. Ginzburg, A. V. Krasavin, A. N. Poddubny, P. A. Belov, Y. S. Kivshar, and A. V. Zayats, “Self-induced torque in hyperbolic metamaterials,” Phys. Rev. Lett. 111, 36804 (2013).
[Crossref]

P. Ginzburg, F. J. Rodríguez Fortuño, G. A. Wurtz, W. Dickson, A. Murphy, F. Morgan, R. J. Pollard, I. Iorsh, A. Atrashchenko, P. A. Belov, Y. S. Kivshar, A. Nevet, G. Ankonina, M. Orenstein, and A. V Zayats, “Manipulating polarization of light with ultrathin epsilon-near-zero metamaterials,” Opt. Express 12, 14907–14917 (2013).
[Crossref]

Kosower, E. M.

I. Lieberman, G. Shemer, T. Fried, E. M. Kosower, and G. Markovich, “Plasmon-resonance-enhanced absorption and circular dichroism,” Angew. Chemie Int. Ed. 47, 4855–4857 (2008).
[Crossref]

Krasavin, A. V.

G. Marino, P. Segovia, A. V. Krasavin, P. Ginzburg, N. Olivier, G. A. Wurtz, and A. V. Zayats, “Second-harmonic generation from hyperbolic plasmonic nanorod metamaterial slab,” Laser Phot. Rev. 12, 1700189 (2018).
[Crossref]

D. J. Roth, A. V. Krasavin, A. Wade, W. Dickson, A. Murphy, S. Kéna-Cohen, R. Pollard, G. A. Wurtz, D. R. Richards, S. A. Maier, and A. V. Zayats, “Spontaneous emission inside a hyperbolic metamaterial waveguide,” ACS Photonics 4, 2513–2521 (2017).
[Crossref]

P. Ginzburg, D. Roth, M. E. Nasir, P. Segovia, A. V. Krasavin, J. Levitt, L. M. Hirvonen, B. Wells, K. Suhling, D. Richards, V. A. Podolskiy, and A. V. Zayats, “Spontaneous emission in nonlocal materials,” Light: Sci. Appl. 6, e16273 (2017).
[Crossref]

A. P. Slobozhanyuk, P. Ginzburg, D. A. Powell, I. Iorsh, A. S. Shalin, P. Segovia, A. V. Krasavin, G. A. Wurtz, V. A. Podolskiy, P. A. Belov, and A. V. Zayats, “Purcell effect in hyperbolic metamaterial resonators,” Phys. Rev. B 92, 195127 (2015).
[Crossref]

K.-T. Tsai, G. A. Wurtz, J.-Y. Chu, T.-Y. Cheng, H.-H. Wang, A. V. Krasavin, J.-H. He, B. M. Wells, V. A. Podolskiy, J.-K. Wang, Y.-L. Wang, and A. V. Zayats, “Looking into meta-atoms of plasmonic nanowire metamaterial,” Nano Lett. 14, 4971–4976 (2014).
[Crossref] [PubMed]

P. Ginzburg, A. V. Krasavin, A. N. Poddubny, P. A. Belov, Y. S. Kivshar, and A. V. Zayats, “Self-induced torque in hyperbolic metamaterials,” Phys. Rev. Lett. 111, 36804 (2013).
[Crossref]

Krasnok, A. E.

D. G. Baranov, R. S. Savelev, S. V. Li, A. E. Krasnok, and A. Alù, “Modifying magnetic dipole spontaneous emission with nanophotonic structures,” Laser Photon. Rev. 11, 1600268 (2017).
[Crossref]

Kumar, J.

J. Kumar, K. George, L. M. Liz-Marzán, and K. G. Thomas, “Nanoscale chirality in metal and semiconductor nanoparticles,” Chem. Commun. 52, 12555–12569 (2016).
[Crossref]

Lakowicz, J. R.

Y. Fu, J. Zhang, and J. R. Lakowicz, “Largely enhanced single-molecule fluorescence in plasmonic nanogaps formed by hybrid silver nanostructures,” Langmuir 29, 2731–2738 (2013).
[Crossref] [PubMed]

Lapthorn, A.

R. Tullius, A. S. Karimullah, M. Rodier, B. Fitzpatrick, N. Gadegaard, L. D. Barron, V. M. Rotello, G. Cooke, A. Lapthorn, and M. Kadodwala, “’Superchiral’ spectroscopy: detection of protein higher order hierarchical structure with chiral plasmonic nanostructures,” J. Am. Chem. Soc. 137, 8380–8383 (2015).
[Crossref] [PubMed]

Lapthorn, A. J.

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol. 5, 783–787 (2010).
[Crossref] [PubMed]

Levitt, J.

P. Ginzburg, D. Roth, M. E. Nasir, P. Segovia, A. V. Krasavin, J. Levitt, L. M. Hirvonen, B. Wells, K. Suhling, D. Richards, V. A. Podolskiy, and A. V. Zayats, “Spontaneous emission in nonlocal materials,” Light: Sci. Appl. 6, e16273 (2017).
[Crossref]

Li, S. V.

D. G. Baranov, R. S. Savelev, S. V. Li, A. E. Krasnok, and A. Alù, “Modifying magnetic dipole spontaneous emission with nanophotonic structures,” Laser Photon. Rev. 11, 1600268 (2017).
[Crossref]

Lieberman, I.

I. Lieberman, G. Shemer, T. Fried, E. M. Kosower, and G. Markovich, “Plasmon-resonance-enhanced absorption and circular dichroism,” Angew. Chemie Int. Ed. 47, 4855–4857 (2008).
[Crossref]

Liz-Marzán, L. M.

J. Kumar, K. George, L. M. Liz-Marzán, and K. G. Thomas, “Nanoscale chirality in metal and semiconductor nanoparticles,” Chem. Commun. 52, 12555–12569 (2016).
[Crossref]

A. Guerrero-Martìnez, B. Auguié, J. L. Alonso-Gómez, Z. Džolić, S. Gómez-Graña, M. Žinić, M. M. Cid, and L. M. Liz-Marzán, “Intense optical activity from three-dimensional chiral ordering of plasmonic nanoantennas,” Angew. Chemie 123, 5613–5617 (2011).
[Crossref]

Maier, S. A.

D. J. Roth, A. V. Krasavin, A. Wade, W. Dickson, A. Murphy, S. Kéna-Cohen, R. Pollard, G. A. Wurtz, D. R. Richards, S. A. Maier, and A. V. Zayats, “Spontaneous emission inside a hyperbolic metamaterial waveguide,” ACS Photonics 4, 2513–2521 (2017).
[Crossref]

Marino, G.

G. Marino, P. Segovia, A. V. Krasavin, P. Ginzburg, N. Olivier, G. A. Wurtz, and A. V. Zayats, “Second-harmonic generation from hyperbolic plasmonic nanorod metamaterial slab,” Laser Phot. Rev. 12, 1700189 (2018).
[Crossref]

Markovich, G.

A. Ben-Moshe, A. O. Govorov, and G. Markovich, “Enantioselective synthesis of intrinsically chiral mercury sulfide nanocrystals,” Angew. Chem. Int. Ed. 52, 1275–1279 (2013).
[Crossref]

I. Lieberman, G. Shemer, T. Fried, E. M. Kosower, and G. Markovich, “Plasmon-resonance-enhanced absorption and circular dichroism,” Angew. Chemie Int. Ed. 47, 4855–4857 (2008).
[Crossref]

Melnikau, D.

D. Melnikau, D. Savateeva, Y. K. Gun, and Y. P. Rakovich, “Strong enhancement of circular dichroism in a hybrid material consisting of J-aggregates and silver nanoparticles,” J. Phys. Chem. C 117, 13708–13712 (2013).
[Crossref]

Mikhaylovskiy, R. V

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol. 5, 783–787 (2010).
[Crossref] [PubMed]

Morgan, F.

P. Ginzburg, F. J. Rodríguez Fortuño, G. A. Wurtz, W. Dickson, A. Murphy, F. Morgan, R. J. Pollard, I. Iorsh, A. Atrashchenko, P. A. Belov, Y. S. Kivshar, A. Nevet, G. Ankonina, M. Orenstein, and A. V Zayats, “Manipulating polarization of light with ultrathin epsilon-near-zero metamaterials,” Opt. Express 12, 14907–14917 (2013).
[Crossref]

Mortensen, N. A.

J. Pedersen, N. A. Mortensen, J. Pedersen, and N. A. Mortensen, “Enhanced circular dichroism via slow light in dispersive structured media,” Appl. Phys. Lett. 91, 213501 (2007).
[Crossref]

J. Pedersen, N. A. Mortensen, J. Pedersen, and N. A. Mortensen, “Enhanced circular dichroism via slow light in dispersive structured media,” Appl. Phys. Lett. 91, 213501 (2007).
[Crossref]

Murphy, A.

D. J. Roth, A. V. Krasavin, A. Wade, W. Dickson, A. Murphy, S. Kéna-Cohen, R. Pollard, G. A. Wurtz, D. R. Richards, S. A. Maier, and A. V. Zayats, “Spontaneous emission inside a hyperbolic metamaterial waveguide,” ACS Photonics 4, 2513–2521 (2017).
[Crossref]

P. Ginzburg, F. J. Rodríguez Fortuño, G. A. Wurtz, W. Dickson, A. Murphy, F. Morgan, R. J. Pollard, I. Iorsh, A. Atrashchenko, P. A. Belov, Y. S. Kivshar, A. Nevet, G. Ankonina, M. Orenstein, and A. V Zayats, “Manipulating polarization of light with ultrathin epsilon-near-zero metamaterials,” Opt. Express 12, 14907–14917 (2013).
[Crossref]

Naik, R. R.

A. O. Govorov, Z. Fan, P. Hernandez, J. M. Slocik, and R. R. Naik, “Theory of circular dichroism of dipole interactions and dielectric effects,” Nano Lett. 10, 1374–1382 (2010).
[Crossref] [PubMed]

Nasir, M. E.

P. Ginzburg, D. Roth, M. E. Nasir, P. Segovia, A. V. Krasavin, J. Levitt, L. M. Hirvonen, B. Wells, K. Suhling, D. Richards, V. A. Podolskiy, and A. V. Zayats, “Spontaneous emission in nonlocal materials,” Light: Sci. Appl. 6, e16273 (2017).
[Crossref]

Nesterov, M. L.

M. L. Nesterov, X. Yin, M. Scha, H. Giessen, and T. Weiss, “The role of plasmon-generated near fields for enhanced circular dichroism spectroscopy,” ACS Photonics 3, 578–583 (2016).
[Crossref]

Nevet, A.

P. Ginzburg, F. J. Rodríguez Fortuño, G. A. Wurtz, W. Dickson, A. Murphy, F. Morgan, R. J. Pollard, I. Iorsh, A. Atrashchenko, P. A. Belov, Y. S. Kivshar, A. Nevet, G. Ankonina, M. Orenstein, and A. V Zayats, “Manipulating polarization of light with ultrathin epsilon-near-zero metamaterials,” Opt. Express 12, 14907–14917 (2013).
[Crossref]

Nie, S.

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275, 1102–1106 (1996).
[Crossref]

Novotny, L.

L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics,  5, 83–90 (2011).
[Crossref]

O’Connor, D.

Oh, S. S.

S. S. Oh and O. Hess, “Chiral metamaterials: enhancement and control of optical activity and circular dichroism,” Nano Converg. 2, 24 (2015).
[Crossref] [PubMed]

Olivier, N.

G. Marino, P. Segovia, A. V. Krasavin, P. Ginzburg, N. Olivier, G. A. Wurtz, and A. V. Zayats, “Second-harmonic generation from hyperbolic plasmonic nanorod metamaterial slab,” Laser Phot. Rev. 12, 1700189 (2018).
[Crossref]

Orenstein, M.

P. Ginzburg, F. J. Rodríguez Fortuño, G. A. Wurtz, W. Dickson, A. Murphy, F. Morgan, R. J. Pollard, I. Iorsh, A. Atrashchenko, P. A. Belov, Y. S. Kivshar, A. Nevet, G. Ankonina, M. Orenstein, and A. V Zayats, “Manipulating polarization of light with ultrathin epsilon-near-zero metamaterials,” Opt. Express 12, 14907–14917 (2013).
[Crossref]

P. Ginzburg, D. Arbel, and M. Orenstein, “Gap plasmon polariton structure for very efficient microscale-to-nanoscale interfacing,” Opt. Lett. 32, 3288–3290 (2006).
[Crossref]

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1985).

Pedersen, J.

J. Pedersen, N. A. Mortensen, J. Pedersen, and N. A. Mortensen, “Enhanced circular dichroism via slow light in dispersive structured media,” Appl. Phys. Lett. 91, 213501 (2007).
[Crossref]

J. Pedersen, N. A. Mortensen, J. Pedersen, and N. A. Mortensen, “Enhanced circular dichroism via slow light in dispersive structured media,” Appl. Phys. Lett. 91, 213501 (2007).
[Crossref]

Pellegrini, Giovanni

Giovanni Pellegrini, Marco Finazzi, Michele Celebrano, Lamberto Duó, and Paolo Biagioni, “Chiral surface waves for enhanced circular dichroism,” Phys. Rev. B 95, 241402 (2017)
[Crossref]

Poddubny, A. N.

P. Ginzburg, A. V. Krasavin, A. N. Poddubny, P. A. Belov, Y. S. Kivshar, and A. V. Zayats, “Self-induced torque in hyperbolic metamaterials,” Phys. Rev. Lett. 111, 36804 (2013).
[Crossref]

Podolskiy, V. A.

P. Ginzburg, D. Roth, M. E. Nasir, P. Segovia, A. V. Krasavin, J. Levitt, L. M. Hirvonen, B. Wells, K. Suhling, D. Richards, V. A. Podolskiy, and A. V. Zayats, “Spontaneous emission in nonlocal materials,” Light: Sci. Appl. 6, e16273 (2017).
[Crossref]

A. P. Slobozhanyuk, P. Ginzburg, D. A. Powell, I. Iorsh, A. S. Shalin, P. Segovia, A. V. Krasavin, G. A. Wurtz, V. A. Podolskiy, P. A. Belov, and A. V. Zayats, “Purcell effect in hyperbolic metamaterial resonators,” Phys. Rev. B 92, 195127 (2015).
[Crossref]

B. Wells, A. V. Zayats, and V. A. Podolskiy, “Nonlocal optics of plasmonic nanowire metamaterials,” Phys. Rev. B 89, 035111 (2014).
[Crossref]

K.-T. Tsai, G. A. Wurtz, J.-Y. Chu, T.-Y. Cheng, H.-H. Wang, A. V. Krasavin, J.-H. He, B. M. Wells, V. A. Podolskiy, J.-K. Wang, Y.-L. Wang, and A. V. Zayats, “Looking into meta-atoms of plasmonic nanowire metamaterial,” Nano Lett. 14, 4971–4976 (2014).
[Crossref] [PubMed]

G. A. Wurtz, R. Pollard, W. Hendren, G. P. Wiederrecht, D. J. Gosztola, V. A. Podolskiy, and A. V Zayats, “Designed ultrafast optical nonlinearity in a plasmonic nanorod metamaterial enhanced by nonlocality,” Nat. Nanotechnol. 6, 107–111 (2011).
[Crossref] [PubMed]

Pollard, R.

D. J. Roth, A. V. Krasavin, A. Wade, W. Dickson, A. Murphy, S. Kéna-Cohen, R. Pollard, G. A. Wurtz, D. R. Richards, S. A. Maier, and A. V. Zayats, “Spontaneous emission inside a hyperbolic metamaterial waveguide,” ACS Photonics 4, 2513–2521 (2017).
[Crossref]

G. A. Wurtz, R. Pollard, W. Hendren, G. P. Wiederrecht, D. J. Gosztola, V. A. Podolskiy, and A. V Zayats, “Designed ultrafast optical nonlinearity in a plasmonic nanorod metamaterial enhanced by nonlocality,” Nat. Nanotechnol. 6, 107–111 (2011).
[Crossref] [PubMed]

G. A. Wurtz, W. Dickson, D. O’Connor, R. Atkinson, W. Hendren, P. Evans, R. Pollard, and A. V. Zayats, “Guided plasmonic modes in nanorod assemblies: strong electromagnetic coupling regime,” Opt. Express 16, 7460–7470 (2008).
[Crossref] [PubMed]

Pollard, R. J.

P. Ginzburg, F. J. Rodríguez Fortuño, G. A. Wurtz, W. Dickson, A. Murphy, F. Morgan, R. J. Pollard, I. Iorsh, A. Atrashchenko, P. A. Belov, Y. S. Kivshar, A. Nevet, G. Ankonina, M. Orenstein, and A. V Zayats, “Manipulating polarization of light with ultrathin epsilon-near-zero metamaterials,” Opt. Express 12, 14907–14917 (2013).
[Crossref]

Popland, M.

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol. 5, 783–787 (2010).
[Crossref] [PubMed]

Powell, D. A.

A. P. Slobozhanyuk, P. Ginzburg, D. A. Powell, I. Iorsh, A. S. Shalin, P. Segovia, A. V. Krasavin, G. A. Wurtz, V. A. Podolskiy, P. A. Belov, and A. V. Zayats, “Purcell effect in hyperbolic metamaterial resonators,” Phys. Rev. B 92, 195127 (2015).
[Crossref]

Rakovich, Y. P.

D. Melnikau, D. Savateeva, Y. K. Gun, and Y. P. Rakovich, “Strong enhancement of circular dichroism in a hybrid material consisting of J-aggregates and silver nanoparticles,” J. Phys. Chem. C 117, 13708–13712 (2013).
[Crossref]

Richards, D.

P. Ginzburg, D. Roth, M. E. Nasir, P. Segovia, A. V. Krasavin, J. Levitt, L. M. Hirvonen, B. Wells, K. Suhling, D. Richards, V. A. Podolskiy, and A. V. Zayats, “Spontaneous emission in nonlocal materials,” Light: Sci. Appl. 6, e16273 (2017).
[Crossref]

Richards, D. R.

D. J. Roth, A. V. Krasavin, A. Wade, W. Dickson, A. Murphy, S. Kéna-Cohen, R. Pollard, G. A. Wurtz, D. R. Richards, S. A. Maier, and A. V. Zayats, “Spontaneous emission inside a hyperbolic metamaterial waveguide,” ACS Photonics 4, 2513–2521 (2017).
[Crossref]

Rodier, M.

R. Tullius, A. S. Karimullah, M. Rodier, B. Fitzpatrick, N. Gadegaard, L. D. Barron, V. M. Rotello, G. Cooke, A. Lapthorn, and M. Kadodwala, “’Superchiral’ spectroscopy: detection of protein higher order hierarchical structure with chiral plasmonic nanostructures,” J. Am. Chem. Soc. 137, 8380–8383 (2015).
[Crossref] [PubMed]

Rodríguez Fortuño, F. J.

P. Ginzburg, F. J. Rodríguez Fortuño, G. A. Wurtz, W. Dickson, A. Murphy, F. Morgan, R. J. Pollard, I. Iorsh, A. Atrashchenko, P. A. Belov, Y. S. Kivshar, A. Nevet, G. Ankonina, M. Orenstein, and A. V Zayats, “Manipulating polarization of light with ultrathin epsilon-near-zero metamaterials,” Opt. Express 12, 14907–14917 (2013).
[Crossref]

Rotello, V. M.

R. Tullius, A. S. Karimullah, M. Rodier, B. Fitzpatrick, N. Gadegaard, L. D. Barron, V. M. Rotello, G. Cooke, A. Lapthorn, and M. Kadodwala, “’Superchiral’ spectroscopy: detection of protein higher order hierarchical structure with chiral plasmonic nanostructures,” J. Am. Chem. Soc. 137, 8380–8383 (2015).
[Crossref] [PubMed]

Roth, D.

P. Ginzburg, D. Roth, M. E. Nasir, P. Segovia, A. V. Krasavin, J. Levitt, L. M. Hirvonen, B. Wells, K. Suhling, D. Richards, V. A. Podolskiy, and A. V. Zayats, “Spontaneous emission in nonlocal materials,” Light: Sci. Appl. 6, e16273 (2017).
[Crossref]

Roth, D. J.

D. J. Roth, A. V. Krasavin, A. Wade, W. Dickson, A. Murphy, S. Kéna-Cohen, R. Pollard, G. A. Wurtz, D. R. Richards, S. A. Maier, and A. V. Zayats, “Spontaneous emission inside a hyperbolic metamaterial waveguide,” ACS Photonics 4, 2513–2521 (2017).
[Crossref]

Savateeva, D.

D. Melnikau, D. Savateeva, Y. K. Gun, and Y. P. Rakovich, “Strong enhancement of circular dichroism in a hybrid material consisting of J-aggregates and silver nanoparticles,” J. Phys. Chem. C 117, 13708–13712 (2013).
[Crossref]

Savelev, R. S.

D. G. Baranov, R. S. Savelev, S. V. Li, A. E. Krasnok, and A. Alù, “Modifying magnetic dipole spontaneous emission with nanophotonic structures,” Laser Photon. Rev. 11, 1600268 (2017).
[Crossref]

Scha, M.

M. L. Nesterov, X. Yin, M. Scha, H. Giessen, and T. Weiss, “The role of plasmon-generated near fields for enhanced circular dichroism spectroscopy,” ACS Photonics 3, 578–583 (2016).
[Crossref]

Schäferling, M.

M. Schäferling, X. Yin, and H. Giessen, “Formation of chiral fields in a symmetric environment,” Opt. Express 20, 26326–26336 (2012).
[Crossref] [PubMed]

M. Schäferling, D. Dregely, M. Hentschel, and H. Giessen, “Tailoring enhanced optical chirality: design principles for chiral plasmonic nanostructures,” Phys. Rev. X 2, 31010 (2012)

Segovia, P.

G. Marino, P. Segovia, A. V. Krasavin, P. Ginzburg, N. Olivier, G. A. Wurtz, and A. V. Zayats, “Second-harmonic generation from hyperbolic plasmonic nanorod metamaterial slab,” Laser Phot. Rev. 12, 1700189 (2018).
[Crossref]

P. Ginzburg, D. Roth, M. E. Nasir, P. Segovia, A. V. Krasavin, J. Levitt, L. M. Hirvonen, B. Wells, K. Suhling, D. Richards, V. A. Podolskiy, and A. V. Zayats, “Spontaneous emission in nonlocal materials,” Light: Sci. Appl. 6, e16273 (2017).
[Crossref]

A. P. Slobozhanyuk, P. Ginzburg, D. A. Powell, I. Iorsh, A. S. Shalin, P. Segovia, A. V. Krasavin, G. A. Wurtz, V. A. Podolskiy, P. A. Belov, and A. V. Zayats, “Purcell effect in hyperbolic metamaterial resonators,” Phys. Rev. B 92, 195127 (2015).
[Crossref]

Shah, N. C.

P. L. Stiles, J. A. Dieringer, N. C. Shah, and R. P. Van Duyne, “Surface-enhanced Raman spectroscopy,” Ann. Rev. Anal. Chem. 1, 601–626 (2008).
[Crossref]

Shalin, A. S.

A. P. Slobozhanyuk, P. Ginzburg, D. A. Powell, I. Iorsh, A. S. Shalin, P. Segovia, A. V. Krasavin, G. A. Wurtz, V. A. Podolskiy, P. A. Belov, and A. V. Zayats, “Purcell effect in hyperbolic metamaterial resonators,” Phys. Rev. B 92, 195127 (2015).
[Crossref]

A. A. Bogdanov, A. S. Shalin, and P. Ginzburg, “Optical forces in nanorod metamaterial,” Sci. Rep. 5, 15846 (2015).
[Crossref] [PubMed]

Shemer, G.

I. Lieberman, G. Shemer, T. Fried, E. M. Kosower, and G. Markovich, “Plasmon-resonance-enhanced absorption and circular dichroism,” Angew. Chemie Int. Ed. 47, 4855–4857 (2008).
[Crossref]

Shvets, G.

M. A. Belkin and G. Shvets, “Experimental demonstration of the microscopic origin of circular dichroism in two-dimensional metamaterials,” Nat. Commun. 7, 12045 (2016).
[Crossref] [PubMed]

Slobozhanyuk, A. P.

A. P. Slobozhanyuk, P. Ginzburg, D. A. Powell, I. Iorsh, A. S. Shalin, P. Segovia, A. V. Krasavin, G. A. Wurtz, V. A. Podolskiy, P. A. Belov, and A. V. Zayats, “Purcell effect in hyperbolic metamaterial resonators,” Phys. Rev. B 92, 195127 (2015).
[Crossref]

Slocik, J. M.

A. O. Govorov, Z. Fan, P. Hernandez, J. M. Slocik, and R. R. Naik, “Theory of circular dichroism of dipole interactions and dielectric effects,” Nano Lett. 10, 1374–1382 (2010).
[Crossref] [PubMed]

Stiles, P. L.

P. L. Stiles, J. A. Dieringer, N. C. Shah, and R. P. Van Duyne, “Surface-enhanced Raman spectroscopy,” Ann. Rev. Anal. Chem. 1, 601–626 (2008).
[Crossref]

Suhling, K.

P. Ginzburg, D. Roth, M. E. Nasir, P. Segovia, A. V. Krasavin, J. Levitt, L. M. Hirvonen, B. Wells, K. Suhling, D. Richards, V. A. Podolskiy, and A. V. Zayats, “Spontaneous emission in nonlocal materials,” Light: Sci. Appl. 6, e16273 (2017).
[Crossref]

Tang, Y.

Y. Tang and A. E. Cohen, “Enhanced enantioselectivity in excitation of chiral molecules by superchiral light,” Science 332, 6027 (2011).
[Crossref]

Y. Tang and A. E. Cohen, “Optical chirality and its interaction with matter,” Phys. Rev. Lett. 104, 163901 (2010).
[Crossref] [PubMed]

Thomas, K. G.

J. Kumar, K. George, L. M. Liz-Marzán, and K. G. Thomas, “Nanoscale chirality in metal and semiconductor nanoparticles,” Chem. Commun. 52, 12555–12569 (2016).
[Crossref]

Tsai, K.-T.

K.-T. Tsai, G. A. Wurtz, J.-Y. Chu, T.-Y. Cheng, H.-H. Wang, A. V. Krasavin, J.-H. He, B. M. Wells, V. A. Podolskiy, J.-K. Wang, Y.-L. Wang, and A. V. Zayats, “Looking into meta-atoms of plasmonic nanowire metamaterial,” Nano Lett. 14, 4971–4976 (2014).
[Crossref] [PubMed]

Tullius, R.

R. Tullius, A. S. Karimullah, M. Rodier, B. Fitzpatrick, N. Gadegaard, L. D. Barron, V. M. Rotello, G. Cooke, A. Lapthorn, and M. Kadodwala, “’Superchiral’ spectroscopy: detection of protein higher order hierarchical structure with chiral plasmonic nanostructures,” J. Am. Chem. Soc. 137, 8380–8383 (2015).
[Crossref] [PubMed]

Van Duyne, R. P.

A. B. Zrimsek, A. Henry, and R. P. Van Duyne, “Single molecule surface-enhanced Raman spectroscopy without nanogaps,” J. Phys. Chem. Lett. 4, 3206–3210 (2013).
[Crossref]

P. L. Stiles, J. A. Dieringer, N. C. Shah, and R. P. Van Duyne, “Surface-enhanced Raman spectroscopy,” Ann. Rev. Anal. Chem. 1, 601–626 (2008).
[Crossref]

van Hulst, N.

L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics,  5, 83–90 (2011).
[Crossref]

Wade, A.

D. J. Roth, A. V. Krasavin, A. Wade, W. Dickson, A. Murphy, S. Kéna-Cohen, R. Pollard, G. A. Wurtz, D. R. Richards, S. A. Maier, and A. V. Zayats, “Spontaneous emission inside a hyperbolic metamaterial waveguide,” ACS Photonics 4, 2513–2521 (2017).
[Crossref]

Wang, H.-H.

K.-T. Tsai, G. A. Wurtz, J.-Y. Chu, T.-Y. Cheng, H.-H. Wang, A. V. Krasavin, J.-H. He, B. M. Wells, V. A. Podolskiy, J.-K. Wang, Y.-L. Wang, and A. V. Zayats, “Looking into meta-atoms of plasmonic nanowire metamaterial,” Nano Lett. 14, 4971–4976 (2014).
[Crossref] [PubMed]

Wang, J.-K.

K.-T. Tsai, G. A. Wurtz, J.-Y. Chu, T.-Y. Cheng, H.-H. Wang, A. V. Krasavin, J.-H. He, B. M. Wells, V. A. Podolskiy, J.-K. Wang, Y.-L. Wang, and A. V. Zayats, “Looking into meta-atoms of plasmonic nanowire metamaterial,” Nano Lett. 14, 4971–4976 (2014).
[Crossref] [PubMed]

Wang, Y.-L.

K.-T. Tsai, G. A. Wurtz, J.-Y. Chu, T.-Y. Cheng, H.-H. Wang, A. V. Krasavin, J.-H. He, B. M. Wells, V. A. Podolskiy, J.-K. Wang, Y.-L. Wang, and A. V. Zayats, “Looking into meta-atoms of plasmonic nanowire metamaterial,” Nano Lett. 14, 4971–4976 (2014).
[Crossref] [PubMed]

Weiss, T.

M. L. Nesterov, X. Yin, M. Scha, H. Giessen, and T. Weiss, “The role of plasmon-generated near fields for enhanced circular dichroism spectroscopy,” ACS Photonics 3, 578–583 (2016).
[Crossref]

Wells, B.

P. Ginzburg, D. Roth, M. E. Nasir, P. Segovia, A. V. Krasavin, J. Levitt, L. M. Hirvonen, B. Wells, K. Suhling, D. Richards, V. A. Podolskiy, and A. V. Zayats, “Spontaneous emission in nonlocal materials,” Light: Sci. Appl. 6, e16273 (2017).
[Crossref]

B. Wells, A. V. Zayats, and V. A. Podolskiy, “Nonlocal optics of plasmonic nanowire metamaterials,” Phys. Rev. B 89, 035111 (2014).
[Crossref]

Wells, B. M.

K.-T. Tsai, G. A. Wurtz, J.-Y. Chu, T.-Y. Cheng, H.-H. Wang, A. V. Krasavin, J.-H. He, B. M. Wells, V. A. Podolskiy, J.-K. Wang, Y.-L. Wang, and A. V. Zayats, “Looking into meta-atoms of plasmonic nanowire metamaterial,” Nano Lett. 14, 4971–4976 (2014).
[Crossref] [PubMed]

Wertz, E.

E. Wertz, B. P. Isaaco, J. D. Flynn, and J. S. Biteen, “Single-molecule super-resolution microscopy reveals how light couples to a plasmonic nanoantenna on the nanometer scale,” Nano Lett. 15, 2662–2670 (2015).
[Crossref] [PubMed]

Wiederrecht, G. P.

G. A. Wurtz, R. Pollard, W. Hendren, G. P. Wiederrecht, D. J. Gosztola, V. A. Podolskiy, and A. V Zayats, “Designed ultrafast optical nonlinearity in a plasmonic nanorod metamaterial enhanced by nonlocality,” Nat. Nanotechnol. 6, 107–111 (2011).
[Crossref] [PubMed]

Wurtz, G. A.

G. Marino, P. Segovia, A. V. Krasavin, P. Ginzburg, N. Olivier, G. A. Wurtz, and A. V. Zayats, “Second-harmonic generation from hyperbolic plasmonic nanorod metamaterial slab,” Laser Phot. Rev. 12, 1700189 (2018).
[Crossref]

D. J. Roth, A. V. Krasavin, A. Wade, W. Dickson, A. Murphy, S. Kéna-Cohen, R. Pollard, G. A. Wurtz, D. R. Richards, S. A. Maier, and A. V. Zayats, “Spontaneous emission inside a hyperbolic metamaterial waveguide,” ACS Photonics 4, 2513–2521 (2017).
[Crossref]

A. P. Slobozhanyuk, P. Ginzburg, D. A. Powell, I. Iorsh, A. S. Shalin, P. Segovia, A. V. Krasavin, G. A. Wurtz, V. A. Podolskiy, P. A. Belov, and A. V. Zayats, “Purcell effect in hyperbolic metamaterial resonators,” Phys. Rev. B 92, 195127 (2015).
[Crossref]

K.-T. Tsai, G. A. Wurtz, J.-Y. Chu, T.-Y. Cheng, H.-H. Wang, A. V. Krasavin, J.-H. He, B. M. Wells, V. A. Podolskiy, J.-K. Wang, Y.-L. Wang, and A. V. Zayats, “Looking into meta-atoms of plasmonic nanowire metamaterial,” Nano Lett. 14, 4971–4976 (2014).
[Crossref] [PubMed]

P. Ginzburg, F. J. Rodríguez Fortuño, G. A. Wurtz, W. Dickson, A. Murphy, F. Morgan, R. J. Pollard, I. Iorsh, A. Atrashchenko, P. A. Belov, Y. S. Kivshar, A. Nevet, G. Ankonina, M. Orenstein, and A. V Zayats, “Manipulating polarization of light with ultrathin epsilon-near-zero metamaterials,” Opt. Express 12, 14907–14917 (2013).
[Crossref]

G. A. Wurtz, R. Pollard, W. Hendren, G. P. Wiederrecht, D. J. Gosztola, V. A. Podolskiy, and A. V Zayats, “Designed ultrafast optical nonlinearity in a plasmonic nanorod metamaterial enhanced by nonlocality,” Nat. Nanotechnol. 6, 107–111 (2011).
[Crossref] [PubMed]

G. A. Wurtz, W. Dickson, D. O’Connor, R. Atkinson, W. Hendren, P. Evans, R. Pollard, and A. V. Zayats, “Guided plasmonic modes in nanorod assemblies: strong electromagnetic coupling regime,” Opt. Express 16, 7460–7470 (2008).
[Crossref] [PubMed]

Yin, X.

M. L. Nesterov, X. Yin, M. Scha, H. Giessen, and T. Weiss, “The role of plasmon-generated near fields for enhanced circular dichroism spectroscopy,” ACS Photonics 3, 578–583 (2016).
[Crossref]

M. Schäferling, X. Yin, and H. Giessen, “Formation of chiral fields in a symmetric environment,” Opt. Express 20, 26326–26336 (2012).
[Crossref] [PubMed]

Zayats, A. V

P. Ginzburg, F. J. Rodríguez Fortuño, G. A. Wurtz, W. Dickson, A. Murphy, F. Morgan, R. J. Pollard, I. Iorsh, A. Atrashchenko, P. A. Belov, Y. S. Kivshar, A. Nevet, G. Ankonina, M. Orenstein, and A. V Zayats, “Manipulating polarization of light with ultrathin epsilon-near-zero metamaterials,” Opt. Express 12, 14907–14917 (2013).
[Crossref]

G. A. Wurtz, R. Pollard, W. Hendren, G. P. Wiederrecht, D. J. Gosztola, V. A. Podolskiy, and A. V Zayats, “Designed ultrafast optical nonlinearity in a plasmonic nanorod metamaterial enhanced by nonlocality,” Nat. Nanotechnol. 6, 107–111 (2011).
[Crossref] [PubMed]

Zayats, A. V.

G. Marino, P. Segovia, A. V. Krasavin, P. Ginzburg, N. Olivier, G. A. Wurtz, and A. V. Zayats, “Second-harmonic generation from hyperbolic plasmonic nanorod metamaterial slab,” Laser Phot. Rev. 12, 1700189 (2018).
[Crossref]

D. J. Roth, A. V. Krasavin, A. Wade, W. Dickson, A. Murphy, S. Kéna-Cohen, R. Pollard, G. A. Wurtz, D. R. Richards, S. A. Maier, and A. V. Zayats, “Spontaneous emission inside a hyperbolic metamaterial waveguide,” ACS Photonics 4, 2513–2521 (2017).
[Crossref]

P. Ginzburg, D. Roth, M. E. Nasir, P. Segovia, A. V. Krasavin, J. Levitt, L. M. Hirvonen, B. Wells, K. Suhling, D. Richards, V. A. Podolskiy, and A. V. Zayats, “Spontaneous emission in nonlocal materials,” Light: Sci. Appl. 6, e16273 (2017).
[Crossref]

A. P. Slobozhanyuk, P. Ginzburg, D. A. Powell, I. Iorsh, A. S. Shalin, P. Segovia, A. V. Krasavin, G. A. Wurtz, V. A. Podolskiy, P. A. Belov, and A. V. Zayats, “Purcell effect in hyperbolic metamaterial resonators,” Phys. Rev. B 92, 195127 (2015).
[Crossref]

B. Wells, A. V. Zayats, and V. A. Podolskiy, “Nonlocal optics of plasmonic nanowire metamaterials,” Phys. Rev. B 89, 035111 (2014).
[Crossref]

K.-T. Tsai, G. A. Wurtz, J.-Y. Chu, T.-Y. Cheng, H.-H. Wang, A. V. Krasavin, J.-H. He, B. M. Wells, V. A. Podolskiy, J.-K. Wang, Y.-L. Wang, and A. V. Zayats, “Looking into meta-atoms of plasmonic nanowire metamaterial,” Nano Lett. 14, 4971–4976 (2014).
[Crossref] [PubMed]

P. Ginzburg, A. V. Krasavin, A. N. Poddubny, P. A. Belov, Y. S. Kivshar, and A. V. Zayats, “Self-induced torque in hyperbolic metamaterials,” Phys. Rev. Lett. 111, 36804 (2013).
[Crossref]

G. A. Wurtz, W. Dickson, D. O’Connor, R. Atkinson, W. Hendren, P. Evans, R. Pollard, and A. V. Zayats, “Guided plasmonic modes in nanorod assemblies: strong electromagnetic coupling regime,” Opt. Express 16, 7460–7470 (2008).
[Crossref] [PubMed]

Zhang, J.

Y. Fu, J. Zhang, and J. R. Lakowicz, “Largely enhanced single-molecule fluorescence in plasmonic nanogaps formed by hybrid silver nanostructures,” Langmuir 29, 2731–2738 (2013).
[Crossref] [PubMed]

Žinic, M.

A. Guerrero-Martìnez, B. Auguié, J. L. Alonso-Gómez, Z. Džolić, S. Gómez-Graña, M. Žinić, M. M. Cid, and L. M. Liz-Marzán, “Intense optical activity from three-dimensional chiral ordering of plasmonic nanoantennas,” Angew. Chemie 123, 5613–5617 (2011).
[Crossref]

Zrimsek, A. B.

A. B. Zrimsek, A. Henry, and R. P. Van Duyne, “Single molecule surface-enhanced Raman spectroscopy without nanogaps,” J. Phys. Chem. Lett. 4, 3206–3210 (2013).
[Crossref]

ACS Photonics (2)

M. L. Nesterov, X. Yin, M. Scha, H. Giessen, and T. Weiss, “The role of plasmon-generated near fields for enhanced circular dichroism spectroscopy,” ACS Photonics 3, 578–583 (2016).
[Crossref]

D. J. Roth, A. V. Krasavin, A. Wade, W. Dickson, A. Murphy, S. Kéna-Cohen, R. Pollard, G. A. Wurtz, D. R. Richards, S. A. Maier, and A. V. Zayats, “Spontaneous emission inside a hyperbolic metamaterial waveguide,” ACS Photonics 4, 2513–2521 (2017).
[Crossref]

Angew. Chem. Int. Ed. (1)

A. Ben-Moshe, A. O. Govorov, and G. Markovich, “Enantioselective synthesis of intrinsically chiral mercury sulfide nanocrystals,” Angew. Chem. Int. Ed. 52, 1275–1279 (2013).
[Crossref]

Angew. Chemie (1)

A. Guerrero-Martìnez, B. Auguié, J. L. Alonso-Gómez, Z. Džolić, S. Gómez-Graña, M. Žinić, M. M. Cid, and L. M. Liz-Marzán, “Intense optical activity from three-dimensional chiral ordering of plasmonic nanoantennas,” Angew. Chemie 123, 5613–5617 (2011).
[Crossref]

Angew. Chemie Int. Ed. (1)

I. Lieberman, G. Shemer, T. Fried, E. M. Kosower, and G. Markovich, “Plasmon-resonance-enhanced absorption and circular dichroism,” Angew. Chemie Int. Ed. 47, 4855–4857 (2008).
[Crossref]

Ann. Phys. (1)

P. Ginzburg, “Accelerating spontaneous emission in open resonators,” Ann. Phys. 508, 571–579 (2016).
[Crossref]

Ann. Rev. Anal. Chem. (1)

P. L. Stiles, J. A. Dieringer, N. C. Shah, and R. P. Van Duyne, “Surface-enhanced Raman spectroscopy,” Ann. Rev. Anal. Chem. 1, 601–626 (2008).
[Crossref]

Appl. Phys. Lett. (1)

J. Pedersen, N. A. Mortensen, J. Pedersen, and N. A. Mortensen, “Enhanced circular dichroism via slow light in dispersive structured media,” Appl. Phys. Lett. 91, 213501 (2007).
[Crossref]

Chem. Commun. (1)

J. Kumar, K. George, L. M. Liz-Marzán, and K. G. Thomas, “Nanoscale chirality in metal and semiconductor nanoparticles,” Chem. Commun. 52, 12555–12569 (2016).
[Crossref]

J. Am. Chem. Soc. (1)

R. Tullius, A. S. Karimullah, M. Rodier, B. Fitzpatrick, N. Gadegaard, L. D. Barron, V. M. Rotello, G. Cooke, A. Lapthorn, and M. Kadodwala, “’Superchiral’ spectroscopy: detection of protein higher order hierarchical structure with chiral plasmonic nanostructures,” J. Am. Chem. Soc. 137, 8380–8383 (2015).
[Crossref] [PubMed]

J. Phys. Chem. C (1)

D. Melnikau, D. Savateeva, Y. K. Gun, and Y. P. Rakovich, “Strong enhancement of circular dichroism in a hybrid material consisting of J-aggregates and silver nanoparticles,” J. Phys. Chem. C 117, 13708–13712 (2013).
[Crossref]

J. Phys. Chem. Lett. (1)

A. B. Zrimsek, A. Henry, and R. P. Van Duyne, “Single molecule surface-enhanced Raman spectroscopy without nanogaps,” J. Phys. Chem. Lett. 4, 3206–3210 (2013).
[Crossref]

Langmuir (1)

Y. Fu, J. Zhang, and J. R. Lakowicz, “Largely enhanced single-molecule fluorescence in plasmonic nanogaps formed by hybrid silver nanostructures,” Langmuir 29, 2731–2738 (2013).
[Crossref] [PubMed]

Laser Phot. Rev. (1)

G. Marino, P. Segovia, A. V. Krasavin, P. Ginzburg, N. Olivier, G. A. Wurtz, and A. V. Zayats, “Second-harmonic generation from hyperbolic plasmonic nanorod metamaterial slab,” Laser Phot. Rev. 12, 1700189 (2018).
[Crossref]

Laser Photon. Rev. (1)

D. G. Baranov, R. S. Savelev, S. V. Li, A. E. Krasnok, and A. Alù, “Modifying magnetic dipole spontaneous emission with nanophotonic structures,” Laser Photon. Rev. 11, 1600268 (2017).
[Crossref]

Light: Sci. Appl. (1)

P. Ginzburg, D. Roth, M. E. Nasir, P. Segovia, A. V. Krasavin, J. Levitt, L. M. Hirvonen, B. Wells, K. Suhling, D. Richards, V. A. Podolskiy, and A. V. Zayats, “Spontaneous emission in nonlocal materials,” Light: Sci. Appl. 6, e16273 (2017).
[Crossref]

Nano Converg. (1)

S. S. Oh and O. Hess, “Chiral metamaterials: enhancement and control of optical activity and circular dichroism,” Nano Converg. 2, 24 (2015).
[Crossref] [PubMed]

Nano Lett. (3)

E. Wertz, B. P. Isaaco, J. D. Flynn, and J. S. Biteen, “Single-molecule super-resolution microscopy reveals how light couples to a plasmonic nanoantenna on the nanometer scale,” Nano Lett. 15, 2662–2670 (2015).
[Crossref] [PubMed]

A. O. Govorov, Z. Fan, P. Hernandez, J. M. Slocik, and R. R. Naik, “Theory of circular dichroism of dipole interactions and dielectric effects,” Nano Lett. 10, 1374–1382 (2010).
[Crossref] [PubMed]

K.-T. Tsai, G. A. Wurtz, J.-Y. Chu, T.-Y. Cheng, H.-H. Wang, A. V. Krasavin, J.-H. He, B. M. Wells, V. A. Podolskiy, J.-K. Wang, Y.-L. Wang, and A. V. Zayats, “Looking into meta-atoms of plasmonic nanowire metamaterial,” Nano Lett. 14, 4971–4976 (2014).
[Crossref] [PubMed]

Nat. Commun. (1)

M. A. Belkin and G. Shvets, “Experimental demonstration of the microscopic origin of circular dichroism in two-dimensional metamaterials,” Nat. Commun. 7, 12045 (2016).
[Crossref] [PubMed]

Nat. Nanotechnol. (2)

E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, and M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol. 5, 783–787 (2010).
[Crossref] [PubMed]

G. A. Wurtz, R. Pollard, W. Hendren, G. P. Wiederrecht, D. J. Gosztola, V. A. Podolskiy, and A. V Zayats, “Designed ultrafast optical nonlinearity in a plasmonic nanorod metamaterial enhanced by nonlocality,” Nat. Nanotechnol. 6, 107–111 (2011).
[Crossref] [PubMed]

Nat. Photon. (1)

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photon. 4, 83–91 (2010).
[Crossref]

Nat. Photonics (1)

L. Novotny and N. van Hulst, “Antennas for light,” Nat. Photonics,  5, 83–90 (2011).
[Crossref]

Opt. Express (3)

P. Ginzburg, F. J. Rodríguez Fortuño, G. A. Wurtz, W. Dickson, A. Murphy, F. Morgan, R. J. Pollard, I. Iorsh, A. Atrashchenko, P. A. Belov, Y. S. Kivshar, A. Nevet, G. Ankonina, M. Orenstein, and A. V Zayats, “Manipulating polarization of light with ultrathin epsilon-near-zero metamaterials,” Opt. Express 12, 14907–14917 (2013).
[Crossref]

G. A. Wurtz, W. Dickson, D. O’Connor, R. Atkinson, W. Hendren, P. Evans, R. Pollard, and A. V. Zayats, “Guided plasmonic modes in nanorod assemblies: strong electromagnetic coupling regime,” Opt. Express 16, 7460–7470 (2008).
[Crossref] [PubMed]

M. Schäferling, X. Yin, and H. Giessen, “Formation of chiral fields in a symmetric environment,” Opt. Express 20, 26326–26336 (2012).
[Crossref] [PubMed]

Opt. Lett. (1)

P. Ginzburg, D. Arbel, and M. Orenstein, “Gap plasmon polariton structure for very efficient microscale-to-nanoscale interfacing,” Opt. Lett. 32, 3288–3290 (2006).
[Crossref]

Phys. Rev. B (6)

T. J. Davis and D. E. Gómez, “Interaction of localized surface plasmons with chiral molecules,” Phys. Rev. B 90, 235424 (2014).
[Crossref]

A. P. Slobozhanyuk, P. Ginzburg, D. A. Powell, I. Iorsh, A. S. Shalin, P. Segovia, A. V. Krasavin, G. A. Wurtz, V. A. Podolskiy, P. A. Belov, and A. V. Zayats, “Purcell effect in hyperbolic metamaterial resonators,” Phys. Rev. B 92, 195127 (2015).
[Crossref]

A. García-Etxarri and J. Dionne, “Surface-enhanced circular dichroism spectroscopy mediated by nonchiral nanoantennas,” Phys. Rev. B 87, 235409 (2013).
[Crossref]

A. García-Etxarri and J.A. Dionne, “Surface-enhanced circular dichroism spectroscopy mediated by nonchiral nanoantennas,” Phys. Rev. B 87, 235409 (2013).
[Crossref]

B. Wells, A. V. Zayats, and V. A. Podolskiy, “Nonlocal optics of plasmonic nanowire metamaterials,” Phys. Rev. B 89, 035111 (2014).
[Crossref]

Giovanni Pellegrini, Marco Finazzi, Michele Celebrano, Lamberto Duó, and Paolo Biagioni, “Chiral surface waves for enhanced circular dichroism,” Phys. Rev. B 95, 241402 (2017)
[Crossref]

Phys. Rev. Lett. (2)

Y. Tang and A. E. Cohen, “Optical chirality and its interaction with matter,” Phys. Rev. Lett. 104, 163901 (2010).
[Crossref] [PubMed]

P. Ginzburg, A. V. Krasavin, A. N. Poddubny, P. A. Belov, Y. S. Kivshar, and A. V. Zayats, “Self-induced torque in hyperbolic metamaterials,” Phys. Rev. Lett. 111, 36804 (2013).
[Crossref]

Phys. Rev. X (1)

M. Schäferling, D. Dregely, M. Hentschel, and H. Giessen, “Tailoring enhanced optical chirality: design principles for chiral plasmonic nanostructures,” Phys. Rev. X 2, 31010 (2012)

Sci. Rep. (1)

A. A. Bogdanov, A. S. Shalin, and P. Ginzburg, “Optical forces in nanorod metamaterial,” Sci. Rep. 5, 15846 (2015).
[Crossref] [PubMed]

Science (2)

Y. Tang and A. E. Cohen, “Enhanced enantioselectivity in excitation of chiral molecules by superchiral light,” Science 332, 6027 (2011).
[Crossref]

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275, 1102–1106 (1996).
[Crossref]

Other (2)

R. W. W. K. Nakanishi and N. Berova, eds., Circular Dichroism: Principles and Applications (Wiley-VCH, 2000).

E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1985).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1 (a) Schematic of the nanorod metamaterial with a chiral nanocrystal (a hexagonal box) introduced between the nanorods. (b) Normal-incidence extinction spectra measured for the metamaterial (black line) and HgS nanoparticles (red line). The metamaterial parameters are 60±10 nm nanorod diameter, 270 nm length, and 100±20 nm nanorod array period; the nanorods are in air. (c) Effective permittivity components of the nanorod metamaterial calculated using the metamaterial parameters as in (b).
Fig. 2
Fig. 2 SEM images of (a) HgS nanocrystals drop-casted on silicon substrate, (b) nanorod metamaterial before spin-coating the PVA layer with HgS NCs, (c) metamaterial after the PVA coating with HgS NCs, (d) Zoomed view of (c). Red circles mark the positions of individual HgS NCs.
Fig. 3
Fig. 3 (a) Experimental circular dichroism spectra of the HgS NCs in a PVA film on a glass substrate (red line), the metamaterial before (black line) and after (blue lines) coating with the PVA-HgS NCs film for the nanorod lengths of 180 nm (dashed blue line) and 270 nm (solid blue line). (b) Numerically calculated circular dichroism of the HgS NCs (red line) and the metamaterial-HgS NCs composite for the nanorod length of 180 nm (dashed blue line) and 270 nm (solid blue line). All other parameters of the metamaterials are as in Fig. 1(b). Both experiments and simulations are performed at normal incidence.
Fig. 4
Fig. 4 Simulated electromagnetic wave propagation (from right to left) through (a,b) chiral medium without the metamaterial and (c,d) chiral medium embedded in the metamaterial for (a,c) LCP and (b,d) RCP incident light. The instantaneous field Ex is shown as a color map. Arrows indicate the direction of the electric field with their length being proportional to the instantaneous field amplitude (panels (a,b)) and its logarithm (panels (c,d)). For the visualization purposes the chiral parameter k was increased 1,000 times compared to the experimental value.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

D = ε E i k ε μ H B = μ H + i k ε μ E ,

Metrics